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Abstract—Recent advances in lithium ion battery modeling
suggest unequal but controlled and carefully timed charging
of individual cells by reduce degradation. This article com-
pares anode-side film formation for a standard equalization
scheme versus unequal charging through switches controlled by
deterministic dynamic programming (DDP) and DDP-inspired
heuristic algorithms. A static map for film growth rate is
derived from a first-principles battery model adopted from
the electrochemical engineering literature. Using this map, we
consider two cells connected in parallel via relay switches. The
key results are: (1) Optimal unequal and delayed charging indeed
reduces film buildup; (2) A near-optimal state feedback controller
can be designed from the DDP solution and film growth rate
convexity properties. Simulation results indicate the heuristic
state-feedback controller achieves near optimal performance
relative to the DDP solution, with significant reduction in film
growth compared to charging both cells equally, for several
film growth models. Moreover, the algorithms achieve similar
film reduction values on the full electrochemical model. These
results correlate with the convexity properties of the film growth
map. Hence, this article demonstrates that unequal charging may
indeed reduce film growth given certain convexity properties
exist, lending promise to the concept for improving battery pack
life.

Index Terms—Lithium-ion batteries, health management, bat-
tery management systems, optimal control, dynamic program-
ming.

I. INTRODUCTION

THIS article examines the problem of optimizing charging
for individual modules in a battery pack such that the

pack’s overall health degradation is minimized. Such health-
conscious battery pack management has the potential to in-
crease the useful life and reduce the long-term replacement
costs of expensive high-capacity battery packs. This is im-
portant for ensuring the financial feasibility of battery energy
storage in systems such as electric vehicles and smart grids, es-
pecially if such systems are able to share energy through, e.g.,
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vehicle-to-grid (V2G) integration [1]. The article’s overall goal
is therefore to design battery pack management algorithms that
control degradation in some optimal sense. We pursue this goal
specifically for a pack consisting of two modules connected
in parallel. Moreover, we specifically focus on lithium ion
chemistries, which have been identified as a promising battery
technology for achieving high energy and power densities,
among other benefits [2]. Managing degradation is particularly
challenging because the associated mechanisms, including
resistive film growth at the anode, are typically simulated using
computationally intensive electrochemistry-based models that
may not be directly conducive to control design. Furthermore,
it is currently impractical to directly access and control the
mechanisms causing degradation inside the cell. To address
these issues, we construct a simple map-based model of battery
degradation and use it to design a nearly optimal controller that
utilizes existing relays in high-energy capacity battery packs.

Previous research has examined at least three important
problems related to health-conscious battery management.
First, researchers have developed cell-to-cell charge equaliza-
tion circuits that protect cells connected in series strings from
over-charging or over-discharging due to capacity imbalances
[3]–[6]. This article proposes an additional battery health
management algorithm at the cell module level. Specifically,
we consider the potential advantages of allowing unequal
charge values across modules connected in parallel, and allow
flexibility in determining the timing of the charge process.

Second, the literature on lithium ion batteries also addresses
the problem of modeling battery degradation, power fade, and
capacity fade. A popular model for capturing the lithium diffu-
sion dynamics and intercalation phenomena was developed by
Doyle, Fuller, and Newman in [7], [8]. This model is partic-
ularly appealing because it accurately captures the diffusion
dynamics and voltage response characteristics relevant for a
wide range of electrolyte materials and physical parameters.
Ramadass et al. [9] extended this model to study capacity fade
by hypothesizing an irreversible solvent reduction reaction at
the anode-side electrode/electrolyte interface that generates a
resistive film by consuming cyclable lithium. Because this
process is considered one of the chief contributors to capacity
fade and power loss [10]–[12], this article uses the model
presented in [9] to study battery health management.

Finally, although there have been few publications on con-
trolling battery health degradation, the concept of modeling
battery degradation in terms of charge capacity fade and
increased internal resistance spawned a body of research
known as state-of-health (SOH) estimation. Research on SOH
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estimation generally uses empirical equivalent circuit battery
cell models to estimate charge capacity and internal resistance,
using a variety of algorithms, such as batch data reconcilia-
tion, moving-horizon parameter estimation [13], recursive least
squares [14], and extended Kalman filtering [15]–[17]. Re-
cently, Smith, Rahn, and Wang [18] and Di Domenico, Fiengo,
and Stefanopoulou [19] respectively used linear and extended
Kalman filters to estimate the internal spatial-temporal states
of reduced order electrochemical models derived from [7], [8].
This work does not estimate SOH-related parameters, however.

The main goal of this article is to extend the above re-
search on battery health management by adding four important
and original contributions. First, we utilize a high-fidelity
electrochemistry-based model of film growth to generate a
reduced degradation model more suitable for control design.
Second, we set up a technique for active control of film growth
that uses existing relay switches in battery packs, typically
designed to prevent thermal runaway. Third, we formulate an
optimal control problem that seeks to minimize total battery
pack film growth through appropriate relay switching se-
quences. Fourth, we demonstrate that a nearly optimal control
policy can be implemented as a set of heuristic rules, designed
from the optimal control results and convexity properties of
film growth rate. Portions of this work have been previously
published in non-archival form [20]; however this article adds
significant new material which validates the aforementioned
controllers on a high-fidelity electrochemistry-based battery
model and alternative cycles and film growth parameteriza-
tions. In summary, the aim of this article is to extend dynamic
systems battery health research into the arena of lithium-ion
film growth control. Namely, this article demonstrates that film
growth can be reduced through novel charge unequalization
schemes when certain convexity properties of the film growth
map exist.

The remainder of the article is organized as follows: Section
2 reviews an electrochemical model for film growth developed
by Ramadass, et al. [9], the reduced model utilized in this
article, and a simple battery pack design. Section 3 formulates
a deterministic dynamic programming (DDP) problem for
minimizing total film growth in the battery pack under con-
sideration. Section 4 analyzes the DDP results and interprets
the solution via the convexity properties of film growth rate.
We also consider the same optimization process for alternative
film growth maps. This analysis motivates the design of a
suboptimal heuristic feedback control law. Section 5 charac-
terizes the performance of the heuristic algorithm vis-a-vis the
DDP solution and standard charge equalization scheme, both
on the equivalent circuit model used for optimization and the
full electrochemical model. Finally, Section 6 summarizes the
article’s main conclusions.

II. MODEL DEVELOPMENT

A. Electrochemical Capacity Fade Mechanics

In this article, a function mapping cell state of charge (SOC)
and current to film growth rate is extracted from a first-
principles electrochemical Li-ion battery cell model adopted
from [9]. This model simulates phenomena such as lithium
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Fig. 1. Structure of the electrochemical lithium-ion battery cell model.

ion diffusion and intercalation to determine the potential and
concentration gradients in the solid and solution sections of
the anode, cathode, and separator. A schematic of the cell
model is provided in Fig. 1, where Ramadass et al. argue that
a resistive film builds up on the anode electrode/electrolyte
interphase [9]. The exact chemical side reaction depends on
the chemistry of the electrode and electrolyte. Equations (1)-
(6), developed by Ramadass et al. argue that a simple and
general method for modeling capacity loss is to assume an
irreversible solvent reduction reaction of the following form

S + Li+ + e− → P (1)

where S denotes the solvent species and P is the product.
As a result of this irreversible side reaction, the products

form a film at the electrode/electrolyte interface, which has
a time and spatially varying thickness δfilm(x, t). This irre-
versibly formed film combines with the initial solid electrolyte
interphase (SEI) resistance RSEI to compose the total resis-
tance at the electrode/electrolyte interface as follows

Rfilm(x, t) = RSEI +
δfilm(x, t)

κP
(2)

where κP , denotes the conductivity of the film, x is the spatial
coordinate, and t is time. The state equation corresponding
to the growth of film thickness, due to the unwanted solvent
reduction described in Eq. (1), is given by

∂δfilm(x, t)
∂t

= − MP

anρPF
Js(x, t) (3)

In Eq. (3), MP , an, ρP , and F represent the product’s
molecular weight, specific surface area, mass density, and
Faraday’s constant, respectively. The term Js denotes the
local volumetric current density for the side reaction, which
is governed by Butler-Volmer kinetics. If we assume the
solvent reduction reaction is irreversible and the variation of
Li-ion concentration in the solution is small, then we may
approximate Js by the following Tafel equation [21].

Js(x, t) = −i0,sane(
−0.5F

RT ηs(x,t)) (4)

In Eq. (4), i0,s, R, and T respectively denote the exchange
current density for the side reaction, universal gas constant,
and cell temperature. The term ηs represents the side reaction
overpotential, which drives the solvent reduction reaction in
Eq. (1). This variable is expressed by the following equation,
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Fig. 2. Static approximation of film growth rate vs. cell current and SOC
for fresh, relaxed cell (i.e. δfilm = 0 and concentration distributions are
constant). Positive current corresponds to discharge.

based on Kirchoff’s voltage law.

ηs(x, t) = ∆φ(x, t)− Us,ref −
Jtot(x, t)

an
Rfilm(x, t) (5)

The variable ∆φ represents the difference in potentials be-
tween the solid and solution. The symbol Us,ref denotes the
equilibrium potential of the solvent reduction reaction, which
we assume to be constant. The total intercalation current Jtot
represents the flow of charge exchanged with the anode-side
solution. Specifically, the total intercalation current Jtot is
given by the sum of current between the solid and solution
(J1), and the solvent reduction reaction and solution (Js), that
is

Jtot = J1 + Js (6)

Equations (2)-(6) encompass the film growth subsystem of
the Li-ion battery cell model, adopted from [9]. This subsys-
tem connects to the remainder of the battery model through
the total intercalation current Jtot and potential difference ∆φ.
Since these variables vary with respect to space (across the
electrodes and separator) and time, they are determined by
solving coupled partial differential equations and algebraic
constraints representing the concentration and potential dis-
tributions in the solid and solution of the anode, cathode,
and separator (see [7], [8] for details). For the lithium-ion
cells studied in this paper the parameters pertaining to SOC
dynamics have been fitted using a custom-built battery test rig.
Details on the experimental setup and identification procedure
can be found in [22]. Although this model accounts for com-
plex electrochemical phenomena such as diffusion dynamics
and film growth, its complexity makes control design for
health management difficult. Therefore, the present research
seeks to use the high fidelity model to generate simpler models
for the purposes of control design.

B. Static Approximation of Film Growth Rate

To acquire insight on the relationship between battery cell
SOC, current, and film growth rate, consider an ideal fresh

Fig. 3. Circuit diagram of battery pack.

cell, that is δfilm(x, 0) = 0. Suppose all the intercalation
currents, overpotentials, and concentration profiles are constant
with respect to space and correspond to zero initial applied
current. Starting from these initial conditions, we simulate the
electrochemical battery cell model for different initial SOC
and applied current levels and measure the instantaneous film
growth rate. From these data we produce a static relationship
mapping cell SOC and applied current to the spatially averaged
film growth rate δ̇film, shown in Fig. 2.

The map indicates that film growth rate increases with cell
SOC. The film growth rate also increases as the discharge
current becomes increasingly negative, i.e. for increasing
charge current. Finally, film grows when zero current is
applied, indicating that aging occurs even when the cells are
not in use. The authors of [9] assume film growth occurs
only during charging. However, we simulate the side reaction
equations under all applied current conditions and allow the
side reaction overpotential to govern film growth. In Section
V-E we consider alternative film growth model realizations by
(1) obeying the assumption in [9] and (2) using a specific set of
alternative model parameter values. A key question we revisit
after obtaining the optimal control solution is what insight can
be extracted from this map to design controllers that reduce
film formation in battery packs?

C. Battery Pack Model

Switched capacitor circuits [5], [6] are typically applied
to equalize individual SOC levels for cells connected in
series. In this article, we examine the potential advantages of
allowing unequal charge levels for battery modules connected
in parallel. A simple method to independently control module
charge levels uses switches in protection circuits [23] (e.g.
solid state relays or contactors). These devices are primarily
designed to disconnect the battery in case of imminent catas-
trophic behavior, such as thermal runaway [24]. When multiple
modules are arranged in parallel, individual solid state relays
can be connected in series with each parallel branch. These
relays may serve as one potential opportunity for individually
controlling battery module SOC, and will be the topology we
consider henceforth.
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Consider a battery pack architecture consisting of two
modules connected in parallel through two switches, where
each module contains one cell for simplicity (Fig. 3). The goal
is to determine the optimal switching strategy that minimizes
the total film growth of both cells, given an exogenous current
trajectory i0. Due to the computational complexity of the
distributed parameter electrochemical cell model described
in Section 2.1, and the curse of dimensionality imposed by
dynamic programming [25], we require a simplified model for
control design. As such, we utilize an equivalent circuit model
[16], [26], written in discrete time, with a ten second time step
(∆T = 10 sec). This equivalent circuit model consists of an
open circuit voltage source OCV in series with an internal
resistor Rint. Open circuit voltage and internal resistance are
nonlinear functions of SOC, that is OCV (zi) and Rint(zi)
where i = 1, 2. The state variables z1 and z2 represent the SOC
of battery cells 1 and 2 respectively. The dynamic equations
for each cell are based on integrating current i1, i2 to obtain
charge, and then dividing by the total charge capacity of the
cell Q.

z1,k+1 = z1,k −
i1,k
Q

∆T (7)

z2,k+1 = z2,k −
i2,k
Q

∆T (8)

The currents i1, i2 are determined by the configuration of the
switches and exogenous current demand on the battery pack
i0. The currents are given by Kirchoff’s current law, where
the switching signals q1 and q2 equal zero and one when the
corresponding switch is respectively open or closed:

i1,k = q1,k(1− q2,k)i0,k (9)

+
OCV (z1,k)−OCV (z2,k) + i0,kRint(z2,k)

Rint(z1,k) +Rint(z2,k)
q1,kq2,k

i2,k = (1− q1,k)q2,ki0,k (10)

+
OCV (z2,k)−OCV (z1,k) + i0,kRint(z1,k)

Rint(z1,k) +Rint(z2,k)
q1,kq2,k

The first terms on the right-hand sides of (9) and (10) model
one cell connected at a time. The second terms model when
both cells are connected. When both q1 and q2 equal zero
neither cell charges (i.e. both cells experience zero current).

The parameters OCV and Rint for the equivalent cir-
cuit model are identified from experimental characteriza-
tion of commercial lithium-ion cells with LiFePO4 cathode
chemistries. The measured values are provided in Fig. 4. The
open circuit voltage is determined by charging and discharging
the cells at a C/10 rate across the entire voltage range. Then
we average the measured terminal voltage for each SOC value.
Internal resistance is determined by applying step changes in
current and measuring the associated jump in terminal voltage,
for each SOC value. This is done for both charging and
discharging, rendering internal resistance as a function of SOC
and direction of current flow.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The control objective is to determine the optimal switching
sequence that minimizes the total resistive film growth in the
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Fig. 4. Parameterization of equivalent circuit battery model identified from
commercial lithium-ion cells with LiFePO4 cathode chemistries. [Top] Open
circuit voltage and [Bottom] internal resistance.

battery pack described in Section 2, given a current trajectory,
i0, known a priori. We formulate this as a finite horizon
constrained optimal control problem

min
(q1,q2)

J =
N∑
k=0

 2∑
j=1

δ̇film(zj,k, ij,k) + gz(zk)


+αN‖zN − 0.95‖22 (11)

subject to

zk+1 = f(zk, ik) (12)
ik = h(qk, i0,k) (13)
z0 = zic (14)

where

(q1, q2) ∈ {0, 1} × {0, 1} (15)

gz(zk) = αz

∑
i=1,2

max {0.05− zi,k, 0, zi,k − 0.98}

2

+

αv

∑
i=1,2

max {2.0− vi,k, 0, vi,k − 3.6}

2

(16)

zk = [z1,k z2,k]T (17)
ik = [i1,k i2,k]T (18)

where the function δ̇film maps SOC and current to average
film growth rate according to the relationship depicted in Fig.
2. The function gz(zk) denotes soft constraints that limit cell
SOC and cell voltage to protect against over-charging and
over-discharging. However, for the simulation described in
this article, these constraints never become active due to the
modest charging rate employed. A terminal constraint with
weighting αN is provided to ensure the battery pack charges
to the SOC corresponding to the desired final voltage. The
function f(zk, ik) represents the dynamic equation in (7)-(8).
The function h(qk, i0,k) maps the switch position and battery
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Fig. 5. Time responses for optimal charging pattern identified by DDP, given
a 1C battery pack charge rate.

pack current to cell current in (9)-(10). Finally, we impose a
fixed initial condition zic.

To solve the optimization problem in (11)-(18), we re-
express the equations as a dynamic programming problem by
defining a value function as follows [25]: Let Vk(zk) represent
the minimum total film growth from discrete time k to the end
of the time horizon, given that the cell SOC in the present time
step k is given by the vector zk. Then the optimization problem
can be written as the following recursive Bellman optimality
equation and boundary condition.

Vk(zk) = min
(q1,q2)

{∑2
j=1 δ̇film(zj,k, ij,k)

+gz(zk) + Vk+1(zk+1)

}
(19)

VN (zN−1) = min
(q1,q2)

{
αN‖zN − 0.95‖22

}
(20)

The above dynamic programming problem is solved via a
full enumeration algorithm. That is, we compute a family of
optimal trajectories for a set of fixed initial conditions. This
approach enables us to analyze an ensemble of trajectories to
gain insight on how DDP minimizes total film growth.

IV. SOLUTION ANALYSIS

A. Analysis of Optimal Trajectories

To acquire insight on the optimal switching sequence for
minimizing resistive film growth, we consider a constant
1C (2.3 A) charge rate applied to the battery pack. Note
that while the battery pack experiences a constant current
charge rate, the individual cells will have time-varying charge
rates. Time responses for an initial SOC of 0.1 for each cell
are provided in Fig. 5. Figure 6 demonstrates the optimal
trajectories for a set of initial battery cell SOC conditions.
These figures indicate that the optimal switching sequence
follows a consistent pattern:
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Fig. 6. Optimal trajectories for various initial conditions, given a 1C battery
pack charge rate.

1) Leave the battery pack uncharged for as long as possible.
This minimizes the duration of time over which the
pack’s cells have large SOC values and, consequently,
large film buildup rates.

2) Charge the cell with greater initial SOC.
3) Charge the cell with less SOC until both cells approxi-

mately equalize.
4) Charge both cells together, at approximately equal cur-

rent values, until the final state is reached.
The key question is why does DDP identify the pattern in Steps
2-4 above as the optimal switching sequence for minimizing
film growth?

B. The Energy Storage-Film Growth Tradeoff

First, consider the result that film growth is minimized by
leaving the battery pack uncharged for as long as possible.
This is, film growth is minimized if battery packs are charged
only immediately before use. This result was also found in
a recent study on charge trajectory optimization for plug-in
hybrid electric vehicles [22]. The reason for this result can be
seen by observing that the film growth rate increases with
SOC in Fig. 2. Therefore, maintaining each cell in a low
SOC reduces the overall film buildup. However, this requires
a priori knowledge of when the battery pack will be used.
Moreover, if the battery is discharged sooner than expected,
only a fraction of the total energy capacity is available for use.
This suggests a fundamental tradeoff between electric energy
storage and reducing anode-side film growth.

C. Convexity Analysis of Film Growth Rate

To answer the fundamental question of why DDP identifies
the particular charging pattern described above, let us focus on
the switching pattern exhibited by the optimal solution when
charging does occur. Consider the film growth rate for varying
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SOC and zero current input, as portrayed in Fig. 7. For small
SOC values, δ̇film is concave. Along this portion of the curve,
the total film growth rate for two cells at different SOC values
is less than the total film growth rate for two cells at the same
SOC value. However, for large SOC values δ̇film is convex.
This implies that the total film growth rate for two cells at
different SOC values is greater than the total film growth rate
for two cells at equal SOC values. If one assumes the solution
is infinitely greedy, these observations for reducing film growth
can be applied as follows:

1) In the concave region of δ̇film, drive the individual SOC
values apart.

2) In the convex region of δ̇film, equalize the individual
SOC values.

In other words, charge each module one-by-one through the
concave region and then charge them all simultaneously.

These results indicate that a reduction in total film growth
can be achieved by allowing individual modules to have
unequal SOC values - particularly within concave regions of
film growth. This result motivates the health reduction oppor-
tunities for battery management systems if certain convexity
properties can be identified for lithium battery degradation
mechanisms. Additionally, the optimal policy follows a con-
sistent pattern that may be closely approximated by a heuristic
feedback control law, which leaves the battery discharged for
the maximum allowable time.

D. DDP-inspired Heuristic Control

Inspired by these results, and the convexity analysis pre-
sented in Section IV-C, we examine a heuristic control scheme
for minimizing film growth, depicted in Fig. 8. The advantage
of a heuristic control scheme over the optimal trajectories
computed by DDP is that the former can be implemented
in a feedback loop. Additionally, one expects the heuristic
scheme to achieve nearly optimal performance, due to the
consistent pattern exhibited by the DDP solutions. The process
of converting optimal trajectories into an explicit feedback
map has been studied in model predictive control theory [27].
These concepts are potentially applicable here, but a simpler
less formal approach is used in this initial study. Note that
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Fig. 8. DDP-inspired heuristic rule for charging, with optimal state
trajectories superimposed.

the switching pattern defined by the heuristic rule should not
be initiated until the last possible opportunity. In this example,
each cell has a 1.8 A-h charge capacity and thus the total pack
charge capacity is 3.6 A-h. Therefore charging both cells from
0.1 SOC to 0.95 SOC at a 1C (1.8 A) rate requires about 100
minutes. As a result, we initiate the heuristic charging scheme
100 minutes prior to the final time.

The design of the heuristic control law follows two steps:
First, we simulate the optimal trajectories from a family of
initial conditions, such as shown in Fig. 6. Second, we identify
regions of the state-space corresponding to a certain switch
configuration. For regions in which the optimal state trajecto-
ries do not enter, we select a switch configuration that steers
the state toward an optimal trajectory. This step is required,
because for the 1C charge rate input studied here, feasible
trajectories do not cover the entire state-space. The final result
of this procedure is depicted in Fig. 8, where several optimal
state trajectories are superimposed on the proposed heuristic
rule. Note how the heuristic controller follows the general
guidelines of SOC separation and equalization in the respective
concave and convex regions of Fig. 7.

V. COMPARATIVE ANALYSIS AND SENSITIVITY STUDIES

To evaluate the performance of the proposed heuristic
controller, we compare it to the optimal DDP-based and stan-
dard equalization schemes (i.e. both switches closed during
charging). We perform this study by simulating the closed
loop battery pack degradation control system for a 1C (2.3
A) constant current charge rate cycle. This study is performed
on both the equivalent circuit model and static map of film
growth rate (which was used for optimization, and henceforth
is referred to as the “Control” model) and the full electro-
chemical model. In both cases the initial cell SOC values are
0.1 each. In practice, the standard charge method is to apply
constant current to every cell in the pack until the voltage
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Fig. 9. SOC trajectories for each control scheme, superimposed on the
heuristic control map.

reaches a maximum value, then the voltage is held constant
at this maximum value until the applied current reaches some
minimal level. This is known as a constant current, constant
voltage (CCCV) charge cycle [9]. Here, we only investigate
the potential improvements incurred during the period when
the cells charge up to a maximum voltage limit, corresponding
to 0.95 SOC in our simulations. Subsequently, we report on
similar results obtained for constant current discharge inputs.
Finally, we analyze optimal switch patterns for alternative film
growth maps, created using different assumption sets or model
parameters. The latter analysis is motivated by the fact that
accurately modeling aging in lithium batteries is extremely
difficult - due to the extensive array of degradation mech-
anisms and materials within lithium-ion batteries. Regardless
of these differences, the link between convexity properties and
unbalanced cells remains in our studies.

A. Control Model Charge Cycle Simulation

The cell SOC trajectories for each control scheme simulated
on the Control model are provided in Fig. 9, superimposed on
the heuristic rule. Observe that the standard charging scheme
maintains each cell at equal SOC values as the battery pack
charges. In contrast, the trajectories corresponding to DDP and
the heuristic rule follow trajectories similar to Fig. 6 and 8.
Namely, both methods charge one cell at a time in the concave
region of δ̇film, and then apply charge equalization in the
convex region of δ̇film. Also observe that trajectories for DDP
and the heuristic controller match closely, indicating that the
proposed heuristic controller closely approximates the optimal
solution for the trajectory shown here.

Time responses for the cell SOC, current, and battery pack
voltage are provided in Fig. 10. Here we see that the heuristic
rule is initiated approximately 50 minutes into the simula-
tion, allowing 100 minutes of charging time. Figure 10(a)-(c)
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Fig. 10. Time responses for each control scheme.
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Fig. 11. Film Buildup for each control scheme, simulated on the control
model and full electrochemical model.

further demonstrate how closely the heuristic controller and
DDP solution match, with respect to time. Since the standard
method initiates charging immediately, the cells remain idle
at 0.95 SOC once charging is complete. This is important
because film builds up at a faster rate for high SOC relative to
low SOC, which is the intuitive reason why delayed charging
significantly reduces total film buildup. The impact of this
property can be seen in Fig. 10(c). Figure 10(b) demonstrates
each cell’s voltage, which increases only when that particular
cell is charging. Note that all schemes maintain the cell voltage
within the safety range of 2.0V to 3.6V.

B. Film Buildup Validation on Full Electrochemical Model

To this point, all simulation results have been performed on
a reduced equivalent circuit model and static film growth rate
map in Fig. 2 used for control optimization. In this subsection
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we study (1) if optimal switching indeed reduces film buildup
for a high-fidelity electrochemical battery model, and (2) if
the static approximation of film growth reasonably matches
the film model prediction. Towards this goal, we apply all
three controllers (standard, DDP, and heuristic) on the full
electrochemical model (Full).

The aggregated film buildup for the Control and Full
models, simulated using each control scheme, are provided
in Fig. 11. This figure indicates that the DDP and heuristic
control schemes indeed reduce film buildup on the full elec-
trochemical model, despite being synthesized for the Control
model. Specifically, the open-loop DDP control and closed-
loop heuristic controller reduced buildup by 49.5% and 48.7%,
respectively. Moreover, the total film growth predicted by the
Control model differ from the Full model by less than 10% for
all control schemes. Therefore, we conclude that the reduced
order model, taking the form of a static nonlinear map, enables
the accurate minimization of film growth for the charge cycles
studied here.

C. Performance Results

A comparison of the performance for each control scheme
is provided in Table I. For the 2.3A rate charge cycle studied in
this article, the heuristic controller produces an additional 20
µΩ/m2 (0.8%) of resistive film buildup over the DDP solution
on the full electrochemical model. Hence, the heuristic scheme
exhibits nearly identical performance to the optimal control
design. Both DDP and the heuristic controller reduce film
buildup by about 50%, for this charge cycle. It is important
to note that the reduction in film buildup is a function of the
particular charge cycle and time horizon. That is, cycles that
remain within the concave region of δ̇film may experience
greater improvement, because the switched scheme proposed
in this article has the greatest advantage in this domain.
Moreover, the bulk of film reduction occurs due to delaying
the charging process to the end of the time horizon. For the
example studied here, 48% of film buildup reduction is due to
delaying charging until the final 100 minutes.

D. Optimal Trajectories for Discharge

Throughout this article, we have consider optimally con-
necting battery cells in parallel with relay switches to minimize
total film growth - under charging events only. Here we
consider constant current discharge events. The problem is
formulated exactly as before, except now we apply a 2.3A
discharge current input. The optimal switch, SOC, and voltage
trajectories are provided in Fig. 12, with the battery pack
initialized at 95% SOC for each cell. Optimal SOC trajectories
for various initial conditions are provided in Fig. 13. Under
a discharging scenario, these results indicate the optimal
constant current discharging trajectories follow a consistent
pattern.

1) Discharge the pack immediately. This moves the system
away from regions of fast film growth - so less interfacial
film accumulates over time.

2) Equalize both cells as they discharge.
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Fig. 12. Time responses for optimal discharging pattern identified by DDP,
given a 1C battery pack discharge rate.

3) Continue to discharge both cells at equal charge levels,
until a certain point.

4) Discharge each cell individually until the battery pack
is fully discharged.

In essence, these discharge trajectories follow the optimal
charge trajectories backwards. Moreover, the breakpoint be-
tween charge equalization and unequalization is approximately
the same - 60% for both cells. Convexity arguments for in-
finitely greedy trajectory optimization solutions can be applied,
once again, to interpret these results. Hence, allowing unequal
charge levels in battery management systems may provide
long-term health benefits when concavity properties exist in
the aging mechanics.

E. Sensitivity to Alternative Film Growth Parameterizations

Anode-side film growth has been recognized as a significant
contributor to lithium-ion battery health degradation [12].
However a plethora of other difficult-to-model aging mech-
anisms can contribute to capacity and power fade. Moreover,
modeling and accurately parameterizing these models across a
wide range of lithium-ion cell chemistries and manufacturers
can be difficult. This motivates the sensitivity analysis pre-
sented here. Specifically, we consider alternative film growth
maps to evaluate the generality of unbalanced charging to
varying model assumptions and parameterizations.
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TABLE I
CONTROLLER PERFORMANCE COMPARISON ON CONTROL MODEL AND FULL ELECTROCHEMICAL MODEL.

Control Model Full Model

Control Scheme Resistance of Total
Film Buildup

Reduction in
Film Buildup

Resistance of Total
Film Buildup

Reduction in
Film Buildup

Control vs.
Full Error

Standard 3.20 mΩ/m2 0% 2.95 mΩ/m2 0% 8.47%
DDP 1.55 mΩ/m2 51.8% 1.49 mΩ/m2 49.5% 4.03%
Heuristic 1.56 mΩ/m2 51.2% 1.51 mΩ/m2 48.7% 3.31%
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Fig. 14. Film growth maps for alternative electrochemical model parameterizations: (a) No film growth occurs during discharge or rest conditions, which
follows Assumption 2 of [9]; (b) Preliminary parameterization to match the manufacturer’s cycling and storage performance data.
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Fig. 15. Time responses of optimal charging trajectories for the alternative film growth maps. (a) Response for map in Fig. 14(a). This map suggests charging
the battery pack one cell at a time. (b) Response for map in Fig. 14(b). This map suggests charge equalization is optimal.
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The first map, shown in Fig. 14(a), is equivalent to Fig.
2 except we enforce Assumption 2 of [9] which states that
film growth occurs only during charging events, i.e. zero
growth during rest and discharge conditions. The optimal
charge trajectories for a 1C constant current rate are shown in
Fig. 15(a). In this case the optimal solution charges each cell
individually and in succession. This result can be understood
by noting that one cell charged at 1C and the other at rest (no
growth) produces less total film growth than two cells charged
simultaneously at 0.5C. Also note that although Fig. 15(a)
shows a delayed charging strategy, delaying charging provides
equivalent film growth as immediate charging since zero
film growth occurs during rest. Therefore when Assumption
2 of [9] holds true, unbalanced charging provides a 53%
reduction in total film growth, which is a greater reduction
from unbalanced charging when using the original film growth
map.

The second map, shown in Fig. 14(b), is based upon the
same model equations used for Fig. 2 but with an alterna-
tive parameter set. This parameter set has been identified to
produce capacity fade trends that match the manufacturer’s
cycling and storage data [22]. The two parameter sets used
for each map are provided in Appendix B. The optimal charge
trajectories for a 1C constant current rate are shown in Fig.
15(b). Unlike the previous two cases the optimal solution
does not unbalance the cells’ charge levels. This result can be
interpreted through the convexity arguments of Section IV-C
by observing that Fig. 15(b) contains no concave regions. Thus
charge balancing minimizes film growth. However, delayed
charging still provides benefits by maximizing the time spent
to low SOC levels, where film growth is slow.

VI. CONCLUSIONS

This research investigates battery health management in
lithium ion battery packs using relay switches for modules

connected in parallel. To facilitate control design and analy-
sis, we consider an electrochemical battery cell model with
irreversible solvent reduction reaction dynamics at the anode,
developed by Ramadass et. al. [9]. From this high fidelity
model, we approximate film growth rate as a static map
that functionally depends on cell SOC and applied current.
Using this map, we formulate an optimal control problem to
minimize total battery pack film growth for a constant current
charge trajectory. Inspired by the optimal trajectories, and the
convexity properties of the film growth map, we design a
heuristic rule base that produces nearly optimal performance.
Further optimization results for constant current discharge
trajectories and alternative film growth models demonstrate the
generality of charge unequalization to varying input profiles,
model assumptions, and parameterizations.

The key result demonstrated by this work is that health
degradation due to film growth can be reduced by: (1) Al-
lowing battery modules connected in parallel to attain unequal
SOC values when concavity features exist; and (2) Delaying
charging until immediately before discharging. Indeed, the
optimal solution approximately separates SOC in the concave
region and equalizes SOC in the convex region of film
growth rate at the end of the time horizon. This process can
be implemented using a heuristic static feedback controller
designed from optimal trajectories computed via dynamic
programming. Individual control of module SOC is achieved
via relay switches typically used for safety precautions. Within
each module, individual cell SOC may be equalized via
traditional switched capacitor circuits [5], [6] to protect against
over-charging or over-discharging. Simulation results indicate
this approach may significantly reduce total battery pack film
growth, if one can identify concavity features in the degrada-
tion performance map. This motivates future work focused
in two directions. First, experimentally identifying a data-
driven degradation map similar to Fig. 2 may enable significant
improvements in lithium ion battery lifetime through charge
unbalancing schemes. Second, experimental verification of
these algorithms designed from data-driven degradation mod-
els will provide the ultimate proof-of-concept.

APPENDIX A
NOMENCLATURE

Symbol Description Units
F Faraday’s constant [C/mol]
i0 Battery pack current [A]

i0,s
Exchange current density [A/m2]for side reaction

i1, i2 Cell current [A]
hpenalty Quadratic penalty function [pm/m2]
J Cost functional [pm/m2]

J1
Intercalation current between [A/m3]solid and solution

Jp Terminal state penalty function [pm/m2]
Jtot Total intercalation current [A/m3]
Js Side rxn. current density [A/m3]
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Symbol Description Units

MP
Molecular weight of product [mol/kg]from side reaction

Q Battery cell charge capacity [A·h]
q1, q2 Contactor switch position
R Universal gas constant [J/K/mol]

Rfilm
Total film resistance at [Ω·m2]electrode/electrolyte interface

Rint Battery cell internal resistance [Ω]

RSEI
Resistance of solid electrolyte [Ω/m2]interphase (SEI)

Us,ref
Equilibrium potential of [V]side reaction

V Value function [pm/m2]
v Battery pack voltage [V]
x Spatial coordinate [m/m]
z Battery cell state of charge [C/C]

∆φ Local potential difference b/w [V]solid and solution at anode
δfilm Resistive film thickness [pm/m2]
ηs Overpotential driving side rxn. [V]
κP Side rxn. product conductivity [1/m/Ω]
ρP Side rxn. product density [kg/m2]

APPENDIX B
FILM GROWTH MODEL PARAMETERS

Values for map depicted in
Symbol Fig. 2 & 14(a) Fig. 15(b)
i0,s 1.5× 10−6 A/m2 4× 10−8 A/m2

MP 73000 mol/kg 73000 mol/kg
RSEI 7.4 mΩ·m2 7.4 mΩ·m2

Us,ref 0.4 V 0.4 V
κP 1 (m·Ω)−1 1 (m·Ω)−1

ρP 2100 kg/m2 2100 kg/m2

Uref,n(θn) Adopted from [9] Adopted from [22]
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