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Abstract

This dissertation combines electrochemistry-based battery models and optimal control

theory to study power management in energy storage/conversion systems. This topic

is motivated by the need to enhance the performance and longevity of battery electric

systems. In particular, the rapid progress in battery material science and energy

conversion presents a highly relevant opportunity to bridge the knowledge gap between

electrochemistry and control. Ultimately, this dissertation elucidates the key physical

phenomena in battery-powered systems which enable opportunities to improve battery

performance and health through control. We address this topic in three phases.

First we provide an overview of battery fundamentals and relevant degradation

mechanisms. Then we develop mathematical models for the electrochemical battery

phenomena, plug-in hybrid vehicle drivetrain dynamics, and stochastic drive cycle

dynamics. A battery-in-the-loop experimental test system is fabricated to identify the

electrochemical battery model.

Second, we investigate the battery-health conscious power management problem

for plug-in hybrid electric vehicles (PHEVs). This effort designs controllers to split

engine and battery power to minimize both fuel/electricity consumption costs and

battery state-of-health degradation. Mathematically, this problem is formulated as a

stochastic dynamic program. The degradation phenomena considered include anode-

side solid electrolyte interphase film growth and the “Ah-processed” model. This work

is the first to utilize fundamental electrochemical battery models to optimize power

management.

The final phase proposes a novel battery pack management strategy which investi-

gates the potential health advantages of allowing unequal yet controlled charge levels

across batteries connected in parallel. Mathematically, this problem is formulated as a

deterministic dynamic program. The optimal solutions reveal that capacity fade can

be mitigated through controlled charge unequalization if concavity properties exist in

the health degradation dynamics. The sensitivity of these results are analyzed across

various degradation models derived from existing literature and experimental data.
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In total, this dissertation utilizes physics-based battery models to optimize power

management in energy storage systems. The unique overarching contribution is a

systematic optimal control approach for elucidating the physical electrochemical prop-

erties one can exploit through control to enhance battery performance and life. The

second and third phases described above demonstrate how this approach can be very

useful for PHEV and battery pack management applications
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Chapter 1

Introduction

This dissertation combines electrochemical physics and optimal supervisory control

to study the tradeoffs between performance and health in battery-powered systems.

The proposed health-conscious control algorithms have the potential to increase the

performance characteristics and long-term energy capacity of battery packs. This

is critically important for large scale battery energy storage systems - ranging from

electrified transportation to stationary grid-scale storage - where replacement cost,

bulk, and cycle life are inhibiting factors associated with the uncertainty in maintaining

safe operation. Moreover, the framework presented here fuses electrochemical physics

and control techniques to increase our intellectual understanding of how to manage

their interaction.

In order to design battery-health conscious power management algorithms via

electrochemical principles, this dissertation introduces novel techniques for modeling,

control problem formulation, and analysis. These techniques may be applied to any

situation which involves complex physical models, multiple energy storage/conversion

devices, stochastic dynamics, multiple objectives, and state/control constraints. This

dissertation applies these techniques to plug-in hybrid electric vehicles (PHEVs) and

lithium-ion battery packs. Nonetheless, the approaches are fundamental and extend

beyond batteries and PHEVs.

Ultimately, the results of this dissertation highlight which physical/mathematical

properties in battery health degradation dynamics enable the use of innovative control

techniques to enhance performance and health attributes. These specific properties

include slope and convexity of health degradation metrics with respect to state-of-

charge and current. This question has been generally unexplored in the literature. Yet

it results from the innovative combination of electrochemical physics and supervisory

control explored here.

The remainder of this introduction is structured as follows. First, we motivate the

above research question through its broader impacts on the energy and transportation
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Figure 1.1 Potential future energy infrastructure, in which battery energy storage miti-
gates the intermittency of renewable energy generation. Photos sources: Tidal power photo
from Pelamis Agucadoura wave farm project in Portugal, pumped hydroelectric storage
photo from [2], flywheel diagram courtesy of Beacon Power Corporation.

infrastructure. Second, we succinctly summarize the technical challenges associated

with optimal power management of battery-powered systems via electrochemical

modeling. Third, we review the existing literature which sets the foundation for this

work. Finally, we summarize the contributions of this dissertation and outline their

development in the subsequent chapters.

1.1 Research Objective and Motivation

The objective of this dissertation is to develop battery health conscious algorithms

which manage power flow in energy systems. The relevancy of this topic is highlighted

by the 27.2 billion USD federal government investment in energy efficiency and renew-

able energy research, including advanced batteries and electrified transportation, under

the American Recovery and Reinvestment Act (ARRA) of 2009 [11]. Techniques for

battery-health conscious power management are further motivated by a vision for the

future energy infrastructure, depicted in Fig. 1.1. Potentially, renewable energy will

represent a significant portion of the energy generation mix. In the near term, ARRA
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Table 1.1 Renewable Portfolio Standards for Select States [1]

State Renewable Energy as
Percentage of Total Sales

Year Full Requirements
Take Effect

California 33% 2030

Colorado 20% 2020

Hawaii 20% 2020

Illinois 25% 2025

Massachusetts 15% 2020

Maryland 20% 2022

Maine 40% 2017

Michigan 10% 2015

New Jersey 22.5% 2021

Nevada 20% 2015

New York 24% 2013

Oregon 25% 2025

Pennsylvania 8% 2020

Utah 20% 2025

Virginia 12% 2022

Washington 15% 2020

seeks to double nation-wide renewable energy capacity within two years [11]. In the

long term, individual states are implementing renewable portfolio standards (RPS) to

increase renewable energy production. The current RPS programs for several select

states are included in Table 1.1 [1]. Yet most renewables such as wind, solar, and tidal

power are fundamentally intermittent sources which do not temporally match energy

demand. Overcoming this mismatch to enable significant penetration of renewable

energy requires large scale energy storage. This is where electrified transportation

can provide an enabling role. That is, large energy capacity battery packs on grid-

connected vehicles can potentially provide the necessary energy storage to enable

significant penetration of renewable energy. This “vehicle-to-grid” infrastructure thus

couples the electric grid and transportation to form a large scale distributed energy

generation, storage, and consumption system [12, 13, 14].

The critical enabling technology to realize this future energy infrastructure is,

arguably, the battery energy storage system. In this dissertation we focus on modeling,

systems, and control to study optimal power management algorithms for these battery

systems. To narrow the focus further we study battery health-conscious optimal power
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management in plug-in hybrid electric vehicle systems. Such health-conscious battery

pack management has the potential to increase the useful life and reduce the long-term

replacement costs of expensive high-capacity battery packs. This is important for

ensuring the financial feasibility of battery energy storage in systems such as electric

vehicles and smart grids, especially if such systems are able to share energy through,

e.g., vehicle-to-grid (V2G) integration [15].

1.2 Literature Review

Two general categories of research provide the foundation for optimal power manage-

ment of battery-powered systems. These include fundamental battery research and

optimal supervisory control (see Fig. 1.2). One of this dissertation’s main goals is to

connect these two previously separate bodies of literature.

Fundamental 

Battery Research

Optimal

Supervisory Control

Theoretic electrochemical 
SOC dynamics

Empirical 
capacity fade 

models

Experimental 
examinations of aging

Electrode/electrolyte 
material science

In situ and ex situ 
analyses of capacity fade

Phenomenological 
equivalent circuit models

Equivalent consumption 
minimization strategy

Model predictive control

Deterministic and stochastic 
dynamic programming

Combined design 
and control

Control parameter 
optimization

Iterative optimal control

Region of 

opportunity for 

electrochemistry-

based optimal 

supervisory 

control Approximate dynamic 
programming

Figure 1.2 This dissertation seeks to contribute knowledge at the intersection of funda-
mental battery research and optimal supervisory control.

1.2.1 Fundamental Battery Research

The first body of literature involves fundamental battery research. This research

considers the theoretical and experimental design and analysis of batteries through

mechanical, material, and chemical science techniques. Much of the fundamental
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operating principles are unified in excellent textbooks on electrochemical systems [16]

and advanced batteries [17, 18].

In the area of Li-ion batteries, one of the first significant breakthroughs was the

utilization of LiCoO2 as the metal oxide cathode material. This battery design was

eventually commercialized by Sony in 1991 [19]. More recently, LiFePO4 cathodes with

olivine structures were introduced as low-cost, safe alternatives to lithium cobalt oxide,

though they sacrifice some energy density [20]. During the development of Li-ion

batteries, lithium polymer battery technology was born. The key difference in lithium

polymer batteries is that the electrolyte is contained within a solid polymer as opposed

to an aqueous organic solvent [21]. The key advantages of such a design include lower

manufacturing cost and flexible packaging. An excellent overview (ca. 1991) of lithium

battery technology, its promises, and challenges is provided by Tarascon and Armand

[22].

A crucial development in lithium battery technology was the discovery of interca-

lation compounds [22]. Intercalation, by definition, is the inclusion of one molecule

between two other molecules. In the case of lithium batteries, the electrodes are made

of intercalation compounds which effectively store and release lithium. Intercalation

continues to be an extremely active area of research. Interested readers should refer

to the historical perspective and research trends summarized in the survey paper by

Broussley (ca. 1999) [23]. Example studies over the past fifteen years include the

intercalation of carbon fiber micro-electrodes [24], the impact of carbonate solvents

[25], and mechanical/thermal stress due to intercalation [26, 27]. The impact of

structural design has also been considered with respect to optimal porosity [28] and

conductivity in olivine [29].

A subset of this literature considers modeling degradation in lithium-ion batter-

ies, including phenomena such as solid electrolyte interphase (SEI) layers, dendrite

formation, carbon dissolution, electrolyte degradation, and electrode structural distor-

tion. Excellent reviews by Aurbach [30], Arora [31], and Kanevskii [32] survey these

various mechanisms in depth. In this dissertation we leverage a model particularly

well-suited for model reduction and control applications that accounts for lithium

diffusion dynamics, intercalation kinetics, and electrochemical potentials developed

by Doyle, Fuller, and Newman [33, 34]. Ramadass et al. [7] added a degradation

component to this model by including an irreversible solvent reduction reaction at the

anode-side solid/electrolyte interface that generates a resistive film which consumes

cyclable lithium. This mechanism has been identified as one of the chief contributors

to capacity and power fade, whose effect is also representative of other mechanisms.
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A more detailed overview of battery damage processes is provided in Section 2.1.1.

1.2.2 Optimal Supervisory Control

The second relevant body of research considers optimal supervisory control. Specifi-

cally, we focus our attention to the power management problem in hybrid vehicles.

An excellent overview of this research area ca. 2007 is provided by Sciarretta and

Guzzella [35].

Deterministic dynamic programming generates provably optimal performance, yet

requires exact knowledge of the input signal, i.e. drive cycle [36, 37, 38, 39]. In many

cases, it is impossible to know the exact input a priori. However, it is often possible to

identify and optimize with respect to the statistics of the input signal by modeling it

as a random process. This idea motivates the use of stochastic dynamic programming,

which generates a supervisory controller that is optimal with respect to the expected

input behavior [37, 40, 41, 42].

Dynamic programming approaches are generally computed off-line and are optimal

only with respect to a model - our mathematical idealization of the actual plant. In

contrast, model predictive control methods are generally computed on-line. Namely,

they determine optimal state and control trajectories over a receding time horizon

using a predictive model and implement only the subsequent step. Real-time opti-

mization necessities the use of relatively simple models, however the initial state can

be recalibrated using measurement signals at each time step [43, 44]. Yet another

concept, called Equivalent Consumption Minimization Strategy (ECMS), applies an

instantaneous optimization procedure which minimizes the energetic equivalent fuel

consumption of both engine fuel and electric battery energy [45, 46]. Recently several

researchers have shown that this formulation is in fact a physical interpretation to

instantaneous optimization using Pontryagin’s minimum principle [47, 48, 49].

This body of research has considered various hybrid vehicle configurations, such

as engine/battery [50], fuel cell/battery [37], fuel cell/ultracapacitor [46], ultracapaci-

tor/battery [51], and engine/hydraulics [52]. These strategies are typically optimized

for objectives such as fuel consumption [37, 52, 45, 46, 43, 38, 39, 51, 41, 50], emissions

[53], drivabilitiy [54], and/or combined fuel/electricity consumption [55, 42]. For

PHEVs, several studies (e.g. [38]) have identified that the optimal strategy rations

battery charge such that it reaches the minimum value exactly when the trip ter-

minates. However, exact a priori knowledge of drive cycle behavior and length is

typically not available. Moreover, there has been no work performed on optimizing
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vehicle power management for battery health. In this dissertation, we shall consider

battery health as an objective and directly encode trip length distribution information

into the problem formulation.

1.2.3 Estimation Techniques for Li-ion Batteries

Although there have been few publications on controlling battery health degradation,

the concept of modeling battery degradation in terms of charge capacity fade and

increased internal resistance spawned a body of research known as state-of-health

(SOH) estimation. Although this dissertation does not explicitly make contributions

to SOH estimation, this body of literature is closely related and worth mentioning

vis-à-vis the work presented here.

Research on SOH estimation generally uses empirical equivalent circuit battery

cell models to estimate charge capacity and internal resistance. Various algorithms

have been investigated, including batch data reconciliation, moving-horizon parame-

ter estimation [56], recursive least squares [57], subspace parameter estimation [58],

slide-mode observers [59], impedance-based Kalman filters [60], and extended Kalman

filtering [61, 62, 63]. The key advantage of these equivalent circuit model-based

methods lie in their relatively low complexity. However, the state and parameter

values correspond to phenomenological effects as opposed to the true physical values.

Moreover, validation of these estimation algorithms is very difficult using in-situ

methods [64].

More recently electrochemical models have been utilized in estimation algorithms.

For example Smith et al. [65], Di Domenico et al. [66], and Klein et al. [67] respectively

used linear Kalman filters, extended Kalman filters, and PDE observers to estimate

the internal spatial-temporal states (i.e. Li-ion concentrations) of reduced order

electrochemical models derived from [33, 34]. These investigations do not estimate

SOH-related parameters. Combining state estimation with SOH-related parameter

estimation is a difficult task for two reasons. First, the electrochemical models have

10’s of parameters which relate directly to capacity and power fade. Secondly, these

parameters vary at significantly slower rates than the concentration dynamics. One

recently reported approach uses an Unscented Kalman filter (UKF) in combination

with least squares parameter identification [68]. Specifically, the UKF estimates the

concentration states and least squares is employed every five cycles to identify the

cathode porosity and electrolyte conductivity.

Tangent to model-based battery estimation is prognostics. These studies focus on
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predicting when a battery reaches its end-of-life, rather than identifying the exact SOH

parameter values. Some of the techniques employed for battery health prognostics

include particle filters [69, 70] and mechanical fatigue inspired-approaches [71, 72].

Nonetheless, none of these estimation or prognostic approaches seek to manage or at

least mitigate battery health degradation via electrochemical modeling and optimal

control.

Prior to this dissertation, fundamental battery research and optimal supervisory

control have been largely separate bodies of knowledge. Our focus is to investigate

the interaction between electrochemical physics and control systems. Yet, the fusion

of these two topics contains several technical challenges.

1.3 Technical Challenges

The design of optimal supervisory controllers for battery energy storage systems is

particularly challenging for the following reasons:

• The material properties, energy storage dynamics, health degradation mecha-

nisms, and operating scenarios can vary widely from one battery to another.

Therefore a fundamental framework for analyzing battery-health conscious power

management is required.

• The dynamics of electrochemical battery models are generally too complex for

control design. These challenges are underscored in the context of this disserta-

tion, which utilizes dynamic programming techniques that suffer from the “curse

of dimensionality”. Innovative model reduction, optimal control solution, and

validation approaches are required.

• The input signals are stochastic. That is, the load profiles (e.g. drive cycles,

charge/discharge cycles) are typically unknown a priori. However the statistics

of these inputs may be known. Therefore, new stochastic modeling and control

techniques are required.

• Optimal power management is, by itself, a non-trivial problem that requires the

solution of an optimal control problem with multiple inputs, stochastic dynamics,

state and control constraints, and multiple objectives. A fundamental framework

which considers all these features is required.
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1.4 New Contributions

The overarching goal of this dissertation is to link battery electrochemistry with

optimal supervisory control to enhance battery lifetime. This objective is comprised

of three categories of contributions to knowledge on battery systems and control for

energy systems:

Model Development of Battery-Electric Systems (Chapter 2)

• Integration of PHEV drivetrain and electrochemical battery models: A first-

principles partial differential algebraic equation based electrochemical model is

coupled together with PHEV drivetrain models, for the first time. (Sections 2.1

- 2.2)

• Model of power-split PHEV: An established power-split HEV model from Liu

[73] is augmented with a high-energy capacity Li-ion battery model, engine

start/stop dynamics, and higher accuracy actuator/state constraints. (Section

2.2)

• Markov chain model of drive cycle dynamics and daily trip length: Markov chain

models of drive cycles are not new [37, 73, 41, 48]. However, the direct incorpo-

ration of daily trip length distributions via an identified absorbing state in the

Markov chain is new. (Section 2.3)

Power Management via Stochastic Optimal Control (Chapter 3)

• An energy consumption cost objective: This objective function includes the mone-

tary cost of fuel and electricity, sourced from the gas pump and electric utility,

respectively. This objective represents the true utilization cost of a plug-in

hybrid electric vehicle. (Section 3.1)

• Numerical techniques for constrained SDP problems: Many past methods enforce

constraints through penalty functions [37, 73, 53] - a soft constraint method.

In this dissertation we calculate the sets of admissible controls offline. These

sets then become the admissible decision space over which optimization occurs

online. Hence the constraints are hard. (Section 3.1.2)
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• Integration of high fidelity and reduced battery models into SDP formulation, solu-

tion, and analysis: The full model is used for determining the sets of admissible

controls and evaluating the resulting controllers. The reduced model is used for

control optimization. This ensure the constraints of the full model are satisfied

while retaining the numerical tractability of dynamic programming. (Section

3.4)

• Analysis of optimal blending versus charge depletion-charge sustenance (CDCS):

This analysis reveals how a power-split architecture and charge depletion strategy

add an additional degree of freedom to regulate engine operation around its

most efficient region. (Section 3.2.2)

• Sensitivity to battery size, daily trip distance, and energy price : The sensitivity of

optimal blending performance is evaluated against varying model parameters

and input conditions. This analysis demonstrates when blending provides the

greatest and least performance improvement over CDCS. (Section 3.3)

• Battery-health conscious power management: This power management formula-

tion considers battery health with energy consumption cost, for the first time.

The example battery health metrics we analyzed include SEI layer growth and

charge processed. (Section 3.4 - 3.5)

• Relationships between optimal control and fundamental plant physics: Analysis

of the optimal control solutions reveals which physical plant properties enable

improved performance through control. Example include the analysis of opti-

mal blending (Section 3.2.2) and battery health conscious power management

(Section 3.4 - 3.5)

Health-Conscious Battery Charge Management (Chapter 4)

• Switching control paradigm for unequal charging of batteries connected in parallel:

Conventionally, all batteries connected in parallel are constrainted to equal

charge levels. This concept explores how unequal yet controlled charge levels

may improve battery pack life. (Chapter 4)

• Optimal control problem formulation including high fidelity and reduced order

battery models with degradation: The optimal switching sequence for health is
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determined via deterministic dynamic programming. Control optimization is

performed on a reduced degrading battery model (4.2), while control evaluation

is performed on a full order degrading battery model (Section 4.4.2).

• Relationships between optimal control and degradation mechanism properties: This

analysis reveals that unequal charge levels for batteries connected in parallel pro-

vide advantages when certain concavity features exist in the physical degradation

mechanisms. (Section 4.3.3)

• Extraction of state-feedback rules: Analysis of the optimal trajectories reveals

time-invariant patterns which are approximated by a “heuristic” state feedback

control algorithm. Similar ideas have been explored by Lin [37], Kum [53] and

their colleagues. (Section 4.3)

• Sensitivity to alternative degradation models: The robustness of these results

are evaluated against alternative degradation models taken from literature and

experimental data. (Section 4.4)

The research reported throughout this dissertation is based primarily on a series

of publications by the author and his colleagues [55, 42, 74, 75, 76, 77, 10, 78].

1.4.1 Impact on Related Efforts

In addition to the core contributions described above, the work presented in this

dissertation has had notable impact on several related efforts, which we list here.

Battery Experiments: A custom-built battery-in-the-loop test system was de-

veloped to identify the electrochemical model described in Chapter 2. This test

facility will also be utilized for future projects involving control system prototyping of

battery management systems. Appendix A contains a complete description of this

experimental rig and its components. This experimental effort also paved the way for

new multi-channel battery testing facilities and float charging equipment to obtain

data-driven models of health degradation.

Extremum Seeking Control of Alternative Energy Conversion Devices:

Extremum seeking (ES) deals with the problem of regulating a system to an unknown

optimal set-point, which may be time-varying [79]. This effort consists of developing

new theoretical advancements and applications of ES to fuel cell [80] and photovoltaic

systems [81].
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Vehicle-to-Grid Integration: The PHEV models and supervisory control algo-

rithms developed in Chapters 2 and 3, respectively, were utilized to develop optimal

grid-to-vehicle charging profiles [82] and predict PHEV-related power demand on the

grid [83]. This work forms the foundation for broader research questions on energy

management in smart-grid systems.

PDE Control: New theoretical developments in the area of PDE-based optimal

control and estimation are currently underway [84]. These theoretical developments

are motivated by the lack of control and estimation tools for the PDE-based battery

model described in Chapter 2.

Education on Battery Systems and Control: This dissertation has had a di-

rect impact on a new course developed at the University of Michigan entitled “Battery

Systems and Control.” The course disseminates knowledge gained from this research

to practicing engineers. Designing and delivering such a course is a unique opportu-

nity among doctoral students. A high-level description of this course is provided in

Appendix B, which is roughly based upon an education-focused publication by the

course instructors [85].

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 develops the mathematical models

for the electrochemical battery physics, PHEV powertrain, and drive cycle dynamics.

These models are used for control design in the subsequent two chapters. Chapter

3 investigates battery health conscious supervisory control algorithms for PHEVs.

Chapter 4 examines the potential of unequal charge levels in parallel-connected bat-

teries through optimal control. Finally Chapter 5 summarizes the main results of this

dissertation, its original contributions, and possible future research directions.
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Chapter 2

Model Development

This chapter introduces the physical dynamic system models used throughout this

dissertation. These include models of the lithium-ion battery concentration dynam-

ics, lithium-ion battery health degradation, plug-in hybrid electric vehicle (PHEV)

powertrain, and stochastic drive cycles.

2.1 Li-ion Batteries

In the following, we review the fundamentals of battery operation and provide an

overview of the important degradation mechanisms in Li-ion batteries. Next we develop

two types of battery cell models: electrochemical and equivalent circuit. Following

this discussion, we describe two battery health degradation models/metrics utilized

in the optimal control studies. Finally, we discuss the construction of battery pack

models from cells.

2.1.1 Battery Fundamentals

Jumping Frog Legs: A Brief History of the First Battery

The first battery cell was invented by Italian physicist Alessandro Volta in 1800 (see

Fig. 2.1). The so-called voltaic pile consisted of two metals in series, zinc and copper,

coupled by a sulphuric acid electrolyte. Volta was inspired to construct this system in

response to experiments performed by his colleague Luigi Galvani (Fig. 2.1), also an

Italian physicist. Galvani was interested in the interaction between electricity and

biological nervous systems. During his experiments, Galvani discovered that a dead

frog’s legs would kick to life when in contact with two dissimilar metals. Galvani called

this phenomenon “animal electricity” and theorized it resulted from an electrical fluid
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Figure 2.1 Alessandro Volta (left) [3] and Luigi Galvani (right) [4]. Volta is credited for
inventing the first battery cell, the voltaic pile, in an effort to further investigate Galvani’s
experimental findings in “animal electricity”. Both images are available to the public domain
from Wikimedia Commons.

within the nervous system. Volta, on the contrary, reasoned that this behavior was

caused by the different metals. The voltaic pile described above proved Volta’s theory

to be true.

Principles of Operation

A battery, put simply, converts chemical energy to and from electrical energy through

an oxidation-reduction (redox) reaction. It consists of two dissimilar metals (the

electrodes) connected by an electrolyte. The electrodes are electrically isolated from

one another via a separator. Hence, as the redox reactions occur, cations flow between

the electrodes through the electrolyte while electrons are forced through an external

electric circuit. This process is sometimes reversible when an external electric potential

is applied. This process is demonstrated by the zinc-copper Galvanic cell in Fig. 2.2.

Fundamentally, all electrochemical cells operate under this principle. The impor-

tant differences between types of battery cells relate to varying electrode and electrolyte

materials. Electrode and electrolyte materials are typically selected for their voltage,

charge capacity, conductivity, weight, cost, reactivity with other components, ease of

handling, ease of manufacturing, etc. [17]. For example, lithium-ion cells have become

very attractive in mobile applications [86, 19] because lithium is the lightest (6.94
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Figure 2.2 An example zinc-copper Galvanic (or Voltaic) cell demonstrating the principles
of operation for an electrochemical cell.

g/mol) and most electropositive (-3.01V vs. standard hydrogen electrode) metal in

the periodic table. Lead acid cells feature relatively heavy electrode materials (Pb

and PbO2), yet these cells can provide high surge currents and are cost effective. As

a final example, lithium-air batteries feature cathodes that couple electrochemically

with atmospheric oxygen, thus producing energy densities that rival gasoline fuel [87].

Overview of Degradation Mechanisms

In addition to the operating principles described above, batteries undergo various

degradation mechanisms that cause capacity and power fade. These mechanisms

include dendrite formation, electrode chemical and/or structural distortion, electrolyte

decomposition, and solid electrolyte interphase (SEI) layers. Excellent reviews of

these damage mechanisms and more are reported in [30, 31, 32]. Below we provide an

overview of the four mechanisms described above.

In lithium or lithium-ion batteries, dendrite formation refers to the uneven growth

of Li-metal, particularly in negative lithium or carbonaceous electrodes. These den-
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dritic structures can eventually pierce the separator material and cause a short-circuit.

Once this occurs, rapid overheating and possibly combustion ensues. Dendrites growth

can occur as a result of overcharging or rapid charging, where Li is deposited into

the dendritic structures as opposed to intercalating within the negative electrode

material [88]. Solutions to this problem generally include different electrode/electrolyte

combinations or coating the negative electrode [22].

The electrode material in either electrode may degrade chemically and/or struc-

turally for a number of reasons. For example, mechanical stress induced during

intercalation and deintercalation can produce distortions in the crystal structure [26].

To partially overcome this limitation LiFePO4 utilizes olivine structures over spinel

(in e.g. LiCoO2 and LiMnO2) which are generally more stable [20]. Another example

is that cyclable lithium ions may can be consumed by the formation of a resistive

surface layer through chemical decomposition. This manifests itself externally as both

capacity and power fade. This process could occur at the anode [30] or cathode [89],

depending on the electrode/electrolyte combination and operating conditions.

A third failure mechanism is electrolyte decomposition. Reduction of the electrolyte

material (particulary at the electrode surface) can consume salt and solvent species,

therefore impacting diffusion rates and conductivity [22]. Electrolyte reduction may

also produce gaseous products which increase internal pressure and ultimately cause

catastrophic failure [31]. As such, there exists ongoing investigations to find new

electrolyte materials, such as polymer electrolytes [21] or vinylene carbonate additives

[90].

The fourth failure mechanism involves the SEI layer. Several experimental studies

have identified lithium-consuming SEI as an important mechanism for capacity fade for

cells with LiFePO4 cathodes and carbon anodes. These studies include ex-situ analyses

[91, 92], in-situ analyses [93, 94], and cell design modifications that mitigate SEI layer

growth [95, 90, 96]. For example, Amine et al. reported on a series of electrochemical

impedance spectroscopy (EIS), Raman, and transmission electron microscopy (TEM)

tests were carried out on pouch-type LiFePO4-graphite cells following cycling [95].

These tests identified an increased SEI layer on the graphite anode via EIS testing.

For an excellent review EIS for determination of SOC and SOH, see Huet [97]. After

50 cycles at an elevated temperature of 55◦C, the anode contributes nearly 90% of

the total cell impedance. More specifically, the semi-circular portion of the EIS curve

increased most notably. The frequency range of this semi-circle corresponds directly

with the charge-transfer dynamics associated with the resistive SEI film. An example

of this behavior is illustrated in Fig. 2.3. After cycling, the cell was disassembled
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Figure 2.3 EIS results for a fresh and aged Li-ion battery cell. Note the increase in size
of the semi-circular shaped mid-frequency region, related to the charge-transfer dynamics.
This corresponds to a growing SEI layer. Note that the data was synthesized for tutorial
purposes and not taken from real measurements.

and energy-dispersive X-ray spectroscopy was performed on the anode. The results

indicate the presence of Fe metal at the graphite surface. These authors hypothesize

that Fe2+ dissolved from the cathode surface due to HF acid in the electrolyte, diffused

from the cathode into the anode, formed deposits on the negative electrode, and

ultimately catalyzed the interfacial impedance in the anode. This phenomenon has

been observed in a number of other studies, including [91, 90, 96].

Several researchers have proposed design modifications to C-LiFePO4 cells to

mitigate the deposition of iron on the negative electrode and SEI film growth. For

example, Amine et al. proposed a LiTi5O12 spinel anode in which the relatively high

equilibrium potential of 1.5V vs. pure Li should theoretically reduce the reduction

of Fe-ions on the electrode surface [95] In addition, they studied a LiBOB-based

electrolyte which was shown to suppress the erosion of Fe from the LiFePO4 cathode.

Wu et al. investigated the addition of vinylene carbonate (VC) in the electrolyte

solution, which dramatically suppresses the dissolution of Fe from the LiFePO4 [90].

Finally, Chang et al. studied how various metal coatings of the carbon negative

electrode may improve capacity life [96]. These authors found Au and Cu act as a
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sieve to collect dissolved Fe ions resulting from LiFePO4 corrosion, preventing Fe from

diffusing within the interior of the carbon electrode and catalyzing SEI formation.

To contain this dissertation’s scope, we focus our modeling and control efforts on

SEI layer growth and other metrics of aging (Ah-processed). Yet, the methods are

generalizable to other damage mechanisms - a key feature for extending and adapting

this work.

2.1.2 Battery Cell Models

Two battery models are considered in the control design and analysis process. A high-

fidelity electrochemical-based model is used for constraint satisfaction and closed-loop

simulation. A low-order equivalent circuit model is used for control optimization,

since it has one state variable. The parameters of both models have been identified

experimentally on a custom-built hardware-in-the-loop setup, for commercial Li-ion

cells containing LiFePO4 cathode chemistries [98]. Interested readers my refer to [10]

for further details on the genetic optimization procedure used to identify the parame-

ters of the electrochemical model. In the following we summarize the electrochemical

battery model and equivalent circuit model.

Electrochemical Battery Model

The electrochemical battery model captures the spatiotemporal dynamics of lithium-

ion concentration, electrode potential in each phase, and the Butler-Volmer kinetics

which govern the intercalation reactions. A schematic of the model is provided in

Fig. 2.4. This cross section displays three regions: a negative electrode (typically a

lithium-carbon material), the separator, and a positive electrode (typically a lithium

metal oxide). Each region is denoted by the subscript j ∈ {n, s, p} representing

the negative electrode, separator, and positive electrode respectively. The positive

electrode material varies widely across manufacturer designs. However lithium iron

phosphate (LiFePO4) cells were used to identify this electrochemical model. Each

electrode region contains two phases, the porous solid and electrolyte. The separator

has an electrolyte phase only.

Mathematically, the electrochemical model structure is a coupled set of partial

differential-algebraic equations. Parameter definition and values are provided in Table

2.1. Diffusion of lithium ions in the solid c1,j(x, r, t) is idealized by spherical diffusion.

Diffusion of lithium ions across the electrolyte c2,j(x, t) is modeled by linear diffusion in
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Figure 2.4 Structure of the electrochemical Lithium-ion battery cell model.

Cartesian coordinates. Respectively, these phenomena are represented mathematically

by:

∂c1,j

∂t
(x, r, t) =

D1,j

r2

∂

∂r

(
r2∂c1,j

∂r

)
(2.1)

ε2,j
∂c2,j

∂t
(x, t) = Deff

2

∂2c2,j

∂x2
+

1− t+

F
Jj (2.2)

where the variable Jj represents the local volumetric transfer current density due to

Li-ion intercalation at the solid/electrolyte interface, D1,j and Deff
2 are the diffusion

coefficients for the solid and electrolyte phases, t+ is the transference number, and F

is Faraday’s constant.

The boundary conditions for spherical diffusion of lithium ions in the solid phase

are given by:

∂c1,j

∂x
(x, r, t)

∣∣∣∣
r=0

= 0 (2.3)

∂c1,j

∂x
(x, r, t)

∣∣∣∣
r=Rs

= − 1

D1,jajF
Jj(x) (2.4)
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where aj is the specific surface area of the porous electrode. The second boundary

condition (2.4) models the rate at which lithium ions are exchanged between the solid

and electrolyte phases through intercalation at the particle surface (r = Rs). The first

boundary condition (2.3) results from spherical symmetry.

The boundary conditions for diffusion in the electrolyte are also Neumann-type,

and are given as follows:

∂c2,j

∂x
(x, t)

∣∣∣∣
x=0

=
∂c2,j

∂x
(x, t)

∣∣∣∣
x=Ln+Ls+Lp

= 0 (2.5)

D2,eff,n
∂c2,j

∂x
(x, t)

∣∣∣∣
x=Ln

= D2,eff,s
∂c2,j

∂x
(x, t)

∣∣∣∣
x=Ln

(2.6)

D2,eff,s
∂c2,j

∂x
(x, t)

∣∣∣∣
x=Ln+Ls

= D2,eff,p
∂c2,j

∂x
(x, t)

∣∣∣∣
x=Ln+Ls

(2.7)

The first boundary condition (2.5) says there is no mass flow of lithium-ions outside

the anode-separator-cathode sandwich. The subsequent two boundary conditions

(2.6)-(2.7) are continuity conditions at the anode-separator and separator-cathode

interfaces.

The electric potential of each phase (solid: φ1,j, electrolyte: φ2,j) within each

region is determined by a parameter distributed form of Ohm’s law. In the solid and

electrolyte, this is given respectively by:

Jj(x, t) =
∂

∂x

(
σeffj

∂φ1,j

∂x

)
(2.8)

Jj(x, t) =
∂

∂x

(
κeff

∂φ2,j

∂x

)
+

∂

∂x

(
κ
∂ ln c2,j

∂x

)
(2.9)

The first terms in each equation above represent flux due to potential gradients. The

second term in (2.9) represents the flux due to ionic concentration gradients in the

electrolyte. The conductivities σeffj , κeff , and κ are included in the partial derivatives

because they vary with concentration which varies in space.

The model inputs (and outputs) are defined by the boundary conditions of the

electric potential equations. When current is the input (iapp) the model runs in

galvanostatic mode and voltage is defined. When voltage is the input (Vapp) the model

runs in potentiostatic mode and current is defined. All potentials are defined relative

to the potential of the anode’s solid phase at x = 0. These conditions are given as
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follows:

∂φ1

∂x
(x, t)

∣∣∣∣
x=Ln+Ls+Lp

=
1

Aσeff
iapp (2.10)

φ1(x)|x=Ln+Ls+Lp
= Vapp (2.11)

φ1(x)|x=0 = 0 (2.12)

The remaining boundary conditions for the potential equations are continuity condi-

tions.

∂φ1

∂x
(x)

∣∣∣∣
x=Ln

=
∂φ1

∂x
(x)

∣∣∣∣
x=Ln+Ls

= 0 (2.13)

∂φ2

∂x
(x)

∣∣∣∣
x=0

=
∂φ2

∂x
(x)

∣∣∣∣
x=Ln+Ls+Lp

= 0 (2.14)

κeff (c2(x))
∣∣
anode

∂φ2

∂x
+ κ(c2(x))|anode

∂ ln(c2)

∂x
(x)

∣∣∣∣
x=Ln

= κeff (c2(x))
∣∣
separator

∂φ2

∂x
+ κ(c2(x))|separator

∂ ln(c2)

∂x
(x)

∣∣∣∣
x=Ln

(2.15)

κeff (c2(x))
∣∣
separator

∂φ2

∂x
+ κ(c2(x))|separator

∂ ln(c2)

∂x
(x)

∣∣∣∣
x=Ln+Ls

= κeff (c2(x))
∣∣
cathode

∂φ2

∂x
+ κ(c2(x))|cathode

∂ ln(c2)

∂x
(x)

∣∣∣∣
x=Ln+Ls

(2.16)

The intercalation current Jj is governed by Butler-Volmer kinetics in (2.17), where

ηj is the local overpotential defined by (2.18).

Jj(x, t) = aji0,j sinh

(
αa,jF

RT
ηj

)
(2.17)

ηj(x, t) = φ1,j(x, t)− φ2,j(x, t)− Uref,j(θj)−
Jj
an
Rfilm (2.18)

The term Uref,j is the reference potential of the corresponding electrode, and is a

function of the bulk electrode SOC θj. The term Rfilm is the resistance of the SEI

layer and is described in detail in Section 2.1.3. From a supervisory control systems

perspective, we define the total battery SOC to be the spatially averaged SOC of the

anode. This definition allows us to distill the stored charge of the electrochemical
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battery model into a single number.

Leveraged Model Reduction Techniques

In total, the electrochemical battery model is a system of partial differential algebraic

equations. Moreover, these equations apply over three different regions, in which two

regions contain multiple phases. Finally, there exist two spatial dimensions in the

electrode solid phase. This complexity makes control design difficult. Even numerical

simulation, by itself, is an extremely non-trivial task. In this dissertation we leverage

the model reduction techniques co-developed in the laboratory group to solve these

electrochemical model equations orders of magnitude faster than real-time. These

techniques include: (1) Padé approximations of the spherical diffusion equations,

which significantly reduce the number of states relative to finite differencing methods;

(2) Real-time linearization (a.k.a. quasi-linearization) of the Butler-Volmer equations,

which breaks the nonlinearity present in the algebraic equations and allows one to

transform the model into a set of ODEs; (3) Projection of the states onto Legendre

polynomials, which ultimately reduces the number of states relative to finite differ-

encing. Readers interested in the complete details of the model reduction techniques

should refer to [99].

Parameter Identification of the Electrochemical Model

A genetic identification procedure was utilized to determine the electrochemical model

parameters. The actual parameter identification procedure, results, and analysis are

not products of this dissertation. However, the resulting identified model is utilized

by this dissertation for control design purposes. As such, we describe the process at a

high level. Interested readers should refer to Forman et al. [10] for more details. The

identified parameters are reported in Table 2.1 and Appendix D.

Fitting and validation data has been collected from a custom-designed battery-in-

the-loop test system, shown in Fig. 2.5, fabricated for this very purpose. Appendix A

describes the details of fabricating this system. The data was obtained from LiFePO4

ANR26650M1A battery cells with a 2.3 amp-hour capacity, a nominal voltage of 3.3

volts, and a maximum continuous discharge current of 70 amps (30.4 C-rate). These

cells are designed for transient high power applications including commercial PHEVs

and portable power tools.

A variety of different cycles were used for obtaining model identification and
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validation data. These cycles include a CCCV chirp cycle, two naturalistic driving

cycles, and four government certification driving cycles. The chirp cycle consists of five

CCCV charge/discharge patterns between 2.0V - 3.6V with charge/discharge rates of

5C, 2.5C, and 1C. The naturalistic driving cycles were provided by the University of

Michigan Transportation Research Institute (UMTRI). This data has been collected

using real world drivers in midsized sedans equipped with over 200 data acquisition

channels [100]. An individual’s morning and evening commute were recorded to create

the Naturalistc1 and Naturalistc2 drive cycles. The last four cycles, UDDSx2, US06x3,

SC03x4, and LA92x2, are based on vehicle certification tests. The “x” indicates the

number of times each drive cycle is repeated. Current profiles were generated from all

six drive cycles by simulating the midsize power-split PHEV described in Section 2.2

using controllers from Chapter 3. For consistency, each experiment begins with the

battery at 90% SoC (3.35V relaxed). Due to sensor limitations, drive cycles which

contain current magnitudes greater than 20A have been uniformly scaled down to

have maximum magnitudes of 20A: US06x3, SC03x2, and LA92x2. These seven cycles

provide a rich data set for performing parameter identification and validation on

a battery model intended for PHEV-centric studies. The results of this effort are

reported in [10].
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Figure 2.5 Photo of battery-in-the-loop hardware configuration.
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Table 2.1 Electrochemical Model Parameters

Parameter Description Value

Ln Length of anode 2.8853× 10−5 m
Ls Length of separator 1.6971× 10−5 m
Lp Length of cathode 6.5205× 10−5 m
Rn Radius of anode spherical particles 3.5961× 10−6 m
Rp Radius of cathode spherical particles 1.6371× 10−7 m
c1,n,max Max concentration of anode solid 2.9482× 104 mol/m3

c1,p,max Max concentration of cathode solid 1.0355× 104 mol/m3

D1,n Diffusion coefficient in anode solid 8.2557× 10−14 m2/s
D1,p Diffusion coefficient in cathode solid 1.7362× 10−14 m2/s
D2 Diffusion coefficient of electrolyte 6.9114× 10−10 m2/s
ε1,n Porosity of solid in anode 0.3810
ε1,p Porosity of solid in cathode 0.4800
ε2,n Porosity of electrolyte in anode 0.6190
ε2,s Porosity of electrolyte in separator 0.3041
ε2,p Porosity of electrolyte in cathode 0.5200
σn Conductivity of anode solid 100 (Ω m)−1

σp Conductivity of cathode solid 100 (Ω m)−1

A Cross-sectional area 0.3108 m2

an Specific surface area of porous anode 3.1785× 105 m2/m3

ap Specific surface area of porous cathode 8.7965× 106 m2/m3

α Electrode transfer coefficients 0.5
b Bruggeman’s number 1.452
kn Kinetic rate constant in anode 8.6963× 10−7

(A/m2)(mol/m3)1+α

kp Kinetic rate constant in cathode 1.1267× 10−7

(A/m2)(mol/m3)1+α

RSEI Initial SEI resistivity 3.691× 10−3 Ω m2

t+ Transference number 0.2495
T Cell temperature 298.2 K

Equivalent Circuit Model

Although the electrochemical model predicts the spatiotemporal concentration and

potential dynamics of a battery cell, its complex structure is not easily conducive to

optimal control. This fact motivates the use of a reduced equivalent circuit model with

a single state. This model idealizes the battery as an open circuit voltage in series

with an internal resistance. Both elements are continuous functions of SOC. Electric
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power at the battery terminals Pbatt is the input, resulting in the following dynamics:

˙SOC = −
Voc −

√
V 2
oc − 4PbattRbatt

2QbattRbatt

(2.19)

To calculate the current I and voltage Vcell across each cell, one must know the

battery pack configuration. That is, how many cells are arranged in series to produce

the desired pack voltage, and how many parallel strings exist to achieve the desired

energy capacity. Here we assume the use of 2.3 Ah 26650 format cells (to be consistent

with our experimental batteries) arranged with ns = 110 in series, and np = 6 parallel

strings.

I = ˙SOC ·Qbatt/np (2.20)

Vcell = (Voc − IRbatt)/ns (2.21)

Each cell is assumed to be identical or properly balanced through appropriate charge

equalization schemes [101]. The current through each cell is used to calculate the

anode-side film growth rate discussed in Section 2.1.3. The voltage calculation is

used to ensure each cell does not exceed safe operating limits - which we implement

mathematically as constraints in the problem formulation in Section 4.2.

Temperature dynamics and their impact on battery health is also a critical factor

to consider [102, 103, 104]. In this work we constrain the scope to batteries whose

temperature is controlled around 25◦ C through appropriate thermal management

systems. Nonetheless, one may include thermal dynamics into the presented problem

formulation - a topic for future consideration.

2.1.3 Degradation Models

Anode-side Film Growth Model of Battery Aging

In this section we capture battery health degradation by modeling the resistive film

which builds up on the anode solid/electrolyte interface [95, 105, 7, 30, 94, 90, 106].

This mechanism effectively consumes cyclable lithium ions and increases the internal

impedance. The exact chemical side reaction depends on the chemistry of the electrode

and electrolyte. Equations (2.22)-(2.27), developed by Ramadass et al. argue that

a simple and general method for modeling capacity loss is to assume an irreversible
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solvent reduction reaction of the following form

S + Li+ + e− → P (2.22)

where S denotes the solvent species and P is the product.

As a result of this irreversible side reaction, the products form a film at the

solid/electrolyte interface, which has a time and spatially varying thickness δfilm(x, t)

across the anode. This irreversibly formed film combines with the solid electrolyte in-

terphase (SEI) resistance RSEI to compose the total resistance at the solid/electrolyte

interface as follows

Rfilm(x, t) = RSEI +
δfilm(x, t)

κP
(2.23)

where κP , denotes the conductivity of the film, x is the spatial coordinate, and t is

time. The state equation corresponding to the growth of film thickness, due to the

unwanted solvent reduction described in (2.22), is given by

∂δfilm(x, t)

∂t
= − MP

anρPF
Jsd(x, t) (2.24)

In (2.24), MP , an, ρP , and F represent the product’s molecular weight, specific surface

area, mass density, and Faraday’s constant, respectively. The term Jsd denotes the

local volumetric current density for the side reaction, which is governed by Butler-

Volmer kinetics. If the solvent reduction reaction is irreversible and the variation of

Li-ion concentration in the electrolyte is small, then we may approximate Jsd by the

Tafel equation [107].

Jsd(x, t) = −i0,sane
( −0.5F
RgasT

ηsd(x,t))
(2.25)

In (2.25), i0,s, R, and T respectively denote the exchange current density for the side

reaction, universal gas constant, and cell temperature. The term ηsd represents the

side reaction overpotential, which drives the solvent reduction reaction in (2.22). The

overpotential is calculated according to

ηsd(x, t) = φ1(x, t)− φ2(x, t)− Us,ref −
Jtot(x, t)

an
Rfilm(x, t) (2.26)

The variables φ1 and φ2 represent solid and electrolyte potentials, respectively. The

symbol Us,ref denotes the equilibrium potential of the solvent reduction reaction, which

we assume to be constant. The total intercalation current Jtot represents the flow of

charge exchanged with the anode-side electrolyte. Specifically, the total intercalation

current Jn in the anode is given by the sum of current between the solid and electrolyte
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Figure 2.6 Static approximation of film growth rate vs. cell current and SOC utilized for
PHEV power management control synthesis.

(J1), and the solvent reduction reaction and electrolyte (Jsd), that is

Jn = J1 + Jsd (2.27)

Equations (2.23)-(2.27) encompass the film growth subsystem of the Li-ion battery

cell model, adopted from [7]. This subsystem connects to the remainder of the battery

model (2.1)-(2.18) through the total intercalation current Jn and potentials φ1 and φ2.

Although this model captures complex physical phenomena such as coupled diffu-

sion, intercalation, and film growth processes, its complexity makes control design for

health management difficult. Therefore, the present research seeks to use the high

fidelity model to generate simpler models for the purposes of control design. In the

following, the anode-side film growth degradation dynamics will be approximated by

a nonlinear static function, which enables optimal control design. Once the optimal

control laws are derived from this approximate model, we simulate the closed-loop

system with the full electrochemical model.

To acquire insight on the relationship between battery cell SOC, current, and

film growth rate, consider an ideal fresh cell, that is δfilm(x, 0) = 0. Suppose all the

intercalation currents, overpotentials, and concentration profiles are constant with
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respect to space and correspond to zero initial applied current. Starting from these

initial conditions, we simulate the electrochemical battery cell model for different

initial SOC and applied current levels and measure the instantaneous film growth

rate. From this data we produce a static relationship mapping cell SOC and applied

current to the spatially averaged film growth rate δ̇film, shown in Fig. 2.6. The map

indicates that film growth rate increases with cell SOC. The film growth rate also

increases as the discharge current becomes increasingly negative, i.e. for increasing

charge current. Finally, film grows when zero current is applied, indicating that aging

occurs even when the cells are not in use - a fact previously reported in the literature

[106] and commonly seen in practice. A key question we revisit after obtaining the

optimal control solutions is what insight about the structural properties of this map

can be leveraged to design supervisory power management controllers that reduce film

formation in PHEV battery packs?

The Charge-Processed Model of Battery Aging

In this section we capture battery health degradation dynamics via an empirical result

found in numerous experimental studies [108, 109]. Specifically, this model assumes

battery SOH degrades in direct proportion to the “charge-processed” through the

battery. Physically, this implies that capacity fade mechanisms are insensitive to local

SOC levels, depth of discharge, or electrode lithiation rates. Instead, these mechanisms

progress in proportion with the integrated number of lithium ions intercalated or

de-intercalated into the electrode. Generally speaking, this model suggests batteries

degrade as their “mileage” increases. Mathematically, this means

Capacity/Power Fade ∝
∫ t

τ=0

|I(τ)| dτ (2.28)

Both experimental studies utilized C-LiFePO4 cells, which is the chemistry we

mostly focus on in this dissertation. However, they also cycled these cells under

relatively mild conditions. These conditions are summarized in Table 2.2. In this

table, one can see that Peterson et al. [108] applied scaled PHEV driving cycle loads.

However, these loads were limited between -3C and +1C, which is significantly less

than the 30C maximum continuous discharge rate quoted by the manufacturer [98].

Low C-rates (namely C/2) also characterize the experimental results found by Wang

et al. [109], which use cells from the same manufacturer. In contrast to the first

investigation, this work cycled the cells at an elevated temperature of 60◦C, which
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will induce accelerated capacity fade.

Although it remains an open question whether capacity fade is correlated with

SOC or depth of discharge for high C-rates, we consider Ah-processed as a very

simple model for battery health degradation. That is, in Chapter 3 we design PHEV

supervisory control algorithms which optimally blend fuel and battery energy in a

manner that minimizes the total Ah-processed through each cell.

Table 2.2 Cycling conditions for experimental studies on C-LiFePO4 cells relating Ah-
processed and capacity fade.

Reference C-rate Depth of
discharge

Temperature

Peterson et al.
[108]

Scaled PHEV drive cycle
loads with C-rates ranging
from -3C to +1C

34% to 97% Ambient room
temp. (24-27◦C)

Wang et al. [109] Constant current at C/2 10% to 90% 60◦ C

Future Work: Data-driven Health Models

Efforts to obtain data-driven models of battery health degradation are currently

underway. These efforts consist of cycling multiple cells at various rates, depth of

discharge levels, and temperatures using the experimental equipment shown in Fig. 2.7

and 2.8. These tests have been carefully designed using theory on experimental design

and Fisher information [110, 10]. Future work shall utilize the methods proposed

throughout this dissertation on these models.

2.1.4 Battery Pack Model

Switched capacitor circuits [111, 112] are typically applied to equalize individual SOC

levels for cells connected in series. In this article, we examine the potential advantages

of allowing unequal charge levels for battery modules connected in parallel. A simple

method to independently control module charge levels uses switches in protection

circuits [113] (e.g. solid state relays or contactors). These devices are primarily

designed to disconnect the battery in case of imminent catastrophic behavior, such as

thermal runaway [114]. When multiple modules are arranged in parallel, individual

solid state relays can be connected in series with each parallel branch. These relays

may serve as one potential opportunity for individually controlling battery module

SOC, and will be the topology we consider henceforth.
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Figure 2.7 Arbin BT2000 32-channel battery test system used for data-driven health
degradation modeling.

Two-Module Pack

Consider a battery pack architecture consisting of two modules connected in parallel

through two switches, where each module contains one cell for simplicity (Fig. 2.9).

1.5 ft3 chamber, 
-70°C to +150°C

18650 LiFePO4 cells

Li-Polymer cellsa b

Figure 2.8 (a) Espec 1.5 cu ft. thermal chamber used for data-driven health degradation
modeling. (b) LiFePO4 and Li-Polymer cells undergoing temperature controlled cycling.
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Figure 2.9 Circuit diagram of battery pack.

The goal is to determine the optimal switching strategy that minimizes the total film

growth of both cells, given an exogenous current trajectory i0. Due to the computa-

tional complexity of the distributed parameter electrochemical cell model described in

Section 2.1, and the curse of dimensionality imposed by dynamic programming [115],

we require a simplified model for control design. As such, we utilize an equivalent

circuit model [62, 55], written in discrete time, with a ten second time step (∆T = 10

sec). This equivalent circuit model consists of an open circuit voltage source OCV

in series with an internal resistor Rint. Open circuit voltage and internal resistance

are nonlinear functions of SOC, that is OCV (zi) and Rint(zi) where i = 1, 2. The

state variables z1 and z2 represent the SOC of battery cells 1 and 2 respectively. The

dynamic equations for each cell are based on integrating current i1, i2 to obtain charge,

and then dividing by the total charge capacity of the cell Q.

z1,k+1 = z1,k −
i1,k
Q

∆T (2.29)

z2,k+1 = z2,k −
i2,k
Q

∆T (2.30)

The currents i1, i2 are determined by the configuration of the switches and exogenous

current demand on the battery pack i0. The currents are given by Kirchoff’s current

law, where the switching signals q1 and q2 equal zero and one when the corresponding
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switch is respectively open or closed:

i1,k = q1,k(1− q2,k)i0,k (2.31)

+
OCV (z1,k)−OCV (z2,k) + i0,kRint(z2,k)

Rint(z1,k) +Rint(z2,k)
q1,kq2,k

i2,k = (1− q1,k)q2,ki0,k (2.32)

+
OCV (z2,k)−OCV (z1,k) + i0,kRint(z1,k)

Rint(z1,k) +Rint(z2,k)
q1,kq2,k

The first terms on the right-hand sides of (2.31) and (2.32) model one cell connected

at a time. The second terms model when both cells are connected. When both q1 and

q2 equal zero neither cell charges (i.e. both cells experience zero current).

Parameterization

The parameters OCV and Rint for the equivalent circuit model are identified from

experimental characterization of commercial lithium-ion cells with LiFePO4 cathode

chemistries. The measured values are provided in Fig. 2.10. The open circuit voltage

is determined by charging and discharging the cells at a C/10 rate across the entire

voltage range. Then we average the measured terminal voltage for each SOC value.

Internal resistance is determined by applying step changes in current and measuring

the associated jump in terminal voltage, for each SOC value. This is done for both

charging and discharging, rendering internal resistance as a function of SOC and

direction of current flow.

2.2 PHEV Powertrain

The PHEV modeled in this dissertation has a power-split configuration based upon

THS-II [5], with a lithium-ion battery pack enlarged to a 5kWh energy capacity for

plug-in operation [116]. Figure 2.11 portrays the main components and configuration

of the power-split configuration (also known as “series/parallel” or “combined”. This

architecture combines internal combustion engine power with power from two electric

motor/generators (identified as M/G1 and M/G2) through a planetary gear set. The

planetary gear set creates both series and parallel paths for power flow to the wheels.

The parallel flow paths (dashed blue arrows) include a path from the engine to the

wheels and a path from the battery, through the motors, to the wheels. The series flow
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Figure 2.10 Parameterization of equivalent circuit battery model identified from com-
mercial lithium-ion cells with LiFePO4 cathode chemistries. [Top] Open circuit voltage and
[Bottom] internal resistance.

path, on the other hand, takes power from the engine to the battery first, then back

through the electrical system to the wheels (solid red arrows). This redundancy of

power flow paths, together with battery storage capacity, increases the degree to which

one can optimize powertrain control for performance and efficiency while meeting

overall vehicle power demand.

General parameters for the vehicle are provided in Table 2.3. A schematic of the

PHEV system, the supervisory controller, and the relevant signals are given in Fig.

2.12. The state variables include engine speed, vehicle speed, battery state-of-charge

(SOC) and acceleration. Acceleration is governed by a Markov chain which captures

drive cycle dynamics, described in Section 2.3. We design this Markov chain to

explicitly account for real-world daily trip length distributions - which is relevant

for PHEVs that will potentially recharge overnight. In addition, we also include

a battery health degradation model based upon an electrochemical anode-side film

formation mechanism. To provide some perspective on the computational complexity

for SDP-based control studies, Table 2.4 summarizes the number of states and controls
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Figure 2.11 The single mode power-split hybrid architecture uses a planetary gear set to
split power amongst the engine, M/G1, and M/G2. Diagram adapted from [5].

for various hybrid configurations studied in the past decade. A power-split architecture,

with four states and two controls, is one of the more complex systems to study. In the

following subsections we summarize the dynamic phenomena and governing equations

for these models. Please reference the Appendix C for nomenclature definitions.

2.2.1 Mechanical Subsystem

The planetary gearset is at the heart of the power-split configuration. This three-port

device couples the engine, motor/generator 1 (M/G1), and motor/generator 2 (M/G2)

crankshafts. The planetary gear set can be conceptually and mathematically treated

as an ideal “lever” connecting the engine, two motor/generators, and vehicle wheels

(through the final drive), as shown in Fig. 2.13. The dynamic-algebraic equations that

describe this device are governed by Euler’s law and a kinematic constraint relating
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Table 2.3 General PHEV Model Parameters

Vehicle

EPA Classification Midsize Sedan

HEV Configuration Power-split

Base Curb Weight 1471 kg

Engine

Type Gasoline Inline 4-cylinder

Displacement 1.5 L

Max Power 57 kW @ 4500 RPM

Max Torque 110 N-m @ 4500 RPM

Motor/ Generators

Type Permanent Magnet AC

M/G1 Max Power 30 kW @ 3000-5500 RPM

M/G2 Max Power 35 kW @ 1040-5600 RPM

Battery Pack

Cell Chemistry C-LiFePO4

Energy Capacity 5 kWh for pack

Charge Capacity 2.3 Ah per cell

Number of Cells 660

Cell Arrangement 110S6P

SUPERVISORY 

CONTROLLER

M/G1

M/G2

PLANETARY 

GEAR SET

BATTERY PACK

DRIVE

CYCLE

ENGINE

VEHICLE

Battery State of Charge

Acceleration

Engine 

Speed

Engine 

Torque

M/G1 Torque

M/G2 

Torque

Vehicle 

Speed

Fuel Consumption 

Cost

Grid Electricity 

Consumption Cost

Anode-Side Film 

Growth Penalty

Figure 2.12 PHEV powertrain system model. The supervisory controller provides the
optimal engine, M/G1, M/G2, and M/G2 torque inputs as a function of the PHEV states
to minimize energy consumption and battery film growth.
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Table 2.4 Previous SDP-Based Hybrid Vehicle Control Problem Formulations

Configuration Reference States Controls

Parallel HEV Lin/2004 [37] v, SOC, Pdem Pe

Parallel Fuel Cell Lin/2004 [37] v, SOC, Pdem Ifc

Parallel HEV Johannesson/2007 [40] v, SOC, Pdem Pe

Power Split HEV Liu/2007 [73] ωe, v, SOC, Pdem Pe, TM/G1

Parallel HEV Tate/2007 [41] v, SOC, Pdem PSR

Dual Mode HEV Tate/2007 [41] ωe, v, SOC, a, Tcat ωe, Pbatt,Me,Mtrm

Series-Parallel
HEV

Opila/2010 [48] v, SOC, a,
CurrentGear,
EngState

Te, T ransGear,
TEM1orωEM1

Series Hydraulic
Hybrid

Johri/2010 [117] v, SOC, Pdem Te, ωe

Power Split PHEV Moura/2011 ωe, v, SOC, a Te, TM/G1

component speeds [73]:
Ie 0 0 R + S

0 IM/G1 0 −S
0 0 I ′M/G2 −R

R + S −S −R 0




ω̇e

ω̇M/G1

ω̇M/G2

Fg

 =


Te

TM/G1

T ′M/G2

0

 (2.33)

The terms I ′M/G2 and T ′M/G2 are effective inertia and torques

I ′M/G2 = IM/G2 + (Iw +mR2
tire)/K

2 (2.34)

T ′M/G2 = TM/G2 + FroadRtire/K (2.35)

Froad = 0.5ρCdAfrv
2 + µrollmg (2.36)

where Froad includes viscous aerodynamic drag and rolling friction forces.

Liu [73] demonstrated that the differential-algebraic equations which govern all

possible power-split designs satisfy a universal matrix format give by[
J D

DT 0

][
Ω̇

F

]
=

[
T

0

]
(2.37)

where J is a diagonal matrix containing inertia of each component attached to the

planetary gear set and D contains kinematic parameters associated with the coupling
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Figure 2.13 Planetary gear set and lever diagram. The engine, M/G1, and M/G2 are
attached to the planet carrier, sun, and ring gears, respectively.

between gears. This format has the special property that one may analytically solve

for the state variables Ω̇ without explicitly determining the gear force F or inverting

the matrix on the LHS of (2.33). The resulting matrix ordinary differential equation

is:

Ω̇ = J−0.5
[
I − E(ETE)−1ET

]
J−0.5T (2.38)

This process results in two degrees of freedom, since originally there exist three ordinary

differential equations and one algebraic constraint.

The control inputs include engine torque Te and M/G1 torque TM/G1. The engine is

allowed to shut off by considering an “engine off” torque input command, which causes

the engine speed to drop to zero within the span of one supervisory control time step

(one second in this case). When positive torque is commanded from the engine while it

is in the shutoff state, the engine is brought back to idle speed within one supervisory

control time step. During both engine-on and engine-off modes, and transitions in

between, the equations in (2.33)-(2.36) must be respected. For example, ω̇e = 0 when

the engine remains off. When the engine is commanded to turn on, then ω̇e must equal

the appropriate value such that it reaches idle speed in the next simulation time step.

If the engine speed must be above idle to meet the motor/generator speed constraints,

then ω̇e must correspond to this speed change. The same type of calculations are

used for engine shut-down. M/G2 torque TM/G2 is determined by the states and

control inputs since ω̇M/G2 is proportional to the acceleration state a according to

ω̇M/G2 = aK/Rtire. This concept is illustrated by the hybrid state automata depicted
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Figure 2.14 Hybrid state automata used for engine shut-off and start-up transition.

if Fig. 2.14.

2.2.2 Electrical Subsystem

Both M/G1 and M/G2 interface with the battery pack, as shown in Fig. 2.12. These

devices are modeled by power efficiency maps supplied by the Powertrain System

Analysis Toolkit (PSAT) [9]. The motor/generator inertial dynamics are accounted

for in (2.33), while their significantly faster inductive dynamics are approximated as

instantaneous. The electrical powertrain also consists of power electronics. However,

their dynamics are also ignored since they exceed the 1Hz bandwidth typically con-

sidered in power management studies. Nonetheless, their power transfer losses are

accounted for in the motor/generator power efficiency maps, provided in Appendix D.

Hence, the governing equations for the electric subsystem are given by:

Pbatt = TM/G1ωM/G1η
kM/G1

M/G1 + TM/G2ωM/G2η
kM/G2

M/G2 (2.39)

ki =

−1, Tiωi > 0

1, Tiωi ≤ 0
for i = {M/G1,M/G2}

(2.40)
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2.3 Drive Cycle Models

An important new contribution we apply toward plug-in HEV power management

is to model drive cycles with a first-order Markov chain containing a terminal state.

Namely, the terminal state can represent “vehicle off” which signifies when the drive

cycle terminates and no more cost accrues. The concept of a terminal state in Markov

chain models of drive cycles is not new and has been applied in the context of HEVs

[41]. However, it has critical importance for plug-in HEV power management. Namely,

a terminal state allows us to model distributions of drive cycle length directly. As

demonstrated by O’Keefe and Markel [38], drive cycle length is critically important for

plug-in HEV power management. They demonstrate that the optimal strategy rations

battery charge through blending engine and battery power such that SOC reaches

the minimum level exactly when the trip terminates, if the drive cycle is known a

priori. This is in contrast to HEV power management, where battery SOC is typically

sustained around a fixed value. In a later study Larsson, Johannesson, and Egardt

studied the sensitivity of energy consumption to uncertainties in trip length [118].

Specifically, they formulated dynamic programming problems in which trip length was

modeled by a Gaussian distribution. They discovered notable savings in fuel costs

even with relatively little knowledge of trip length. We extend this work by directly

incorporating daily trip length distribution information using this terminal state. This

modeling approach is not new, and has been applied in the context of HEV power

management [54]. Yet, its utility is particularly well suited for plug-in applications.

Mathematically, the Markov chain is given by

pijm = Pr(ak+1 = j|ak = i, vk = m) (2.41)

pitm = Pr(ak+1 = t|ak = i, vk = 0) (2.42)

1 = Pr(ak+1 = t|ak = t, vk = 0) (2.43)

which maps acceleration-velocity pairs to a probability distribution over acceleration

in the next time step (2.41)-(2.42). These transition probabilities are identified from

certification cycles and real-world micro-trip data [42]. We derived the transition

probabilities in 2.41 from this data using maximum likelihood estimation [119]. The

Markov chain model assumes that the current state is conditioned only on the state

immediately preceding it. We validated this assumption by computing the model

residuals and confirming that their autocorrelation exceeds the 95 percent confidence

interval for no more than 5 percent of all lag values that are 25% of the length of the
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data set or less - as is the case for a white noise process [120].

Figure 2.15 visually demonstrates the transition probabilities at zero vehicle speed

where there exists non-zero transition probabilities to the absorbing state for certain

velocity-acceleration pairs. When acceleration reaches the terminal state t, it remains

in that state with probability one (2.43) and no further cost is incurred. In other

words, the vehicle is off and the trip is over.

Figure 2.16 demonstrates the distribution of trip length for the Markov chain, in

which the transition probabilities pitm in (2.42) have been identified from the 2009 Na-

tional Household Travel Survey (NHTS) database [121]. Specifically, the probability of

transition to “vehicle off” is zero unless the vehicle is completely stopped (vk = 0) and

has zero or small negative acceleration. Without adding distance as a state variable,

it is difficult to perfectly match the Markov chain and NHTS data. Nevertheless this

approach integrates a reasonably accurate representation of real-world trip lengths

without adding an exponential increase in computational complexity - a key benefit.

In the results presented in Chapter 3 we evaluate each controller across a library

of 1,000 drive cycles generated from the Markov chain. An example randomly gen-

erated drive cycle is shown in Fig. 2.17. This process enables us to quantify the

performance metrics across a distribution of drive cycle characteristics, rather than

single certification cycles such as UDDS.

To provide more insight on the characteristics of the Markov chain model vis-a-vis

government certification cycles, Fig. 2.18 portrays the distributions of road power

demand for various cycles. The road power demand is calculated from the following

equation

Pdem = mav +
1

2
AfrCdv

3 + µmgv (2.44)

which includes acceleration/deceleration, viscous air drag, and power loss due to rolling

resistance. The parameters correspond to the PHEV model described in Section 2.2.

Figure 2.18 superimposes various certification cycles over the Markov chain model.

One can see how the Markov chain is generally more aggressive (i.e. higher power

demand magnitudes) than UDDS, yet less aggressive than US06. In HWFET, which

consists of mostly sustained high speeds experienced in highway driving, the distribu-

tion mean is shifted toward positive power. The New European Drive Cycle (NEDC)

is relatively mild and experiences a large amount of stops (0 kW). These certification

cycles, along with the Markov chain, will be used to evaluate various PHEV power

management control designs in Chapter 3.
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Figure 2.17 A sample randomly generated drive cycle from the Markov chain model.
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Figure 2.18 Distributions of road power demand for various certification cycles superim-
posed on the distribution of road power demand for the Markov chain model.
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2.4 Summary

This chapter utilizes first-principle physics to develop dynamic system models of the

components considered throughout this dissertation. These components include Li-ion

batteries, PHEV powertrains, and stochastic drive cycle dynamics and length. In

the discourse on Li-ion batteries, we provide an overview of battery fundamentals,

important degradation mechanisms, and the electrochemical transport, diffusion, in-

tercalation, and electric dynamics. A custom-built battery-in-the-loop test system

is also fabricated to identify the electrochemical model. The dynamics for each cell

can be combined into battery packs, which are subsystems of the PHEV drive train.

We specifically focus on a power-split architecture, yet other architectures can be

considered as well. Finally, we describe a Markov chain modeling approach to predict

drive cycle behavior in a statistical sense [37]. A new contribution to drive cycle

modeling is the direct encoding of daily trip length through the utilization and proper

identification of a terminal state (i.e. “vehicle off”) within the Markov chain. These

models will be utilized in the subsequent chapters to design battery-health conscious

power management algorithms.
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Chapter 3

Stochastic Control for
Health-Conscious PHEV Power

Management

This chapter investigates battery health conscious power management in plug-in

hybrid electric vehicles through a novel combination of electrochemical modeling and

stochastic control. This framework is a critical step toward increased performance and

longevity of battery-powered systems. The controllers are designing to minimize both

energy consumption (fuel and grid-supplied electricity) and battery health degradation

metrics (SEI layer or Ah-processed). Several recent studies have considered the HEV

power management problem for extending battery life. These studies focus on depth

of discharge control [122, 123], power electronics management[124], and temperature

management [125]. To date, however, no studies have applied models that explicitly

account for specific electrochemical degradation mechanisms in the context of an

optimal control framework, to the author’s knowledge.

As a foundation, we first consider optimal blending without battery health. Then

we analyze the sensitivity of these algorithms to battery size. Next we include

electrochemistry-based degradation mechanisms and analyze the tradeoff between

reducing energy consumption and reducing battery damage. Analysis of the optimal

solutions reveal which physical properties (i.e. slope properties of the degradation

model) enable increased performance and longevity through control. The design and

analysis framework begins with a formulation of the general stochastic optimal control

problem.
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3.1 Optimal Control Problem Formulation

The control objective is to synthesize a static function mapping the PHEV state vari-

ables to the engine and M/G1 torque inputs such that both energy consumption cost

(i.e. fuel and grid electricity) and battery health degradation in terms of anode-side

film growth are minimized. We formulate this as a shortest-path1 stochastic dynamic

programming problem.

min: Jg = lim
N→∞

E

[
N∑
k=0

c(xk, uk)

]
(3.1)

subject to: xk+1 = f(xk, uk, wk) (3.2)

x ∈ X (3.3)

u ∈ U(x) (3.4)

where Jg is the cost for a given control policy g and c(xk, uk) is a function that maps

the state and control vectors to an instantaneous cost. Note that 3.1 is formulated as

an infinite-horizon problem, which brings forth the question of whether Jg is finite.

Indeed, Jg is guaranteed to be finite since the system enters the terminal state (i.e.

“vehicle off”) in finite time with probability one and incurs zero addition cost hence-

forth. As such, the cost function Jg is guaranteed to be finite. The system dynamics

summarized in discrete-time by (3.2) are provided in Chapter 2, with a one-second

time step. This optimization is subject to sets of state and control constraints, X and

U(x) respectively, described in detail in Section 3.1.2. Our objective is to solve for

the optimal control policy g∗ which satisfies.

g∗ = arg min
g∈G

Jg (3.5)

where G denotes the set of all feasible control policies.

3.1.1 Objective Function

The minimization of both energy consumption cost and battery health is, generally

speaking, a multi-objective optimal control problem. For simplicity, we combine both

1The shortest-path term [126] is used for Markov decision processes that contain a terminal state
in the Markov chain, such as our drive cycle model.
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objectives into a scalar objective with linear weighting α, given mathematically by

c(xk, uk) = α · cE(xk, uk) + (1− α) · cH(xk, uk) + cSOC(xk, uk) (3.6)

where the individual objective functions are given by

cE(xk, uk) = βαfuelWfuel + αelec
−VocQbatt

˙SOC

ηgrid
(3.7)

cH(xk, uk) = δ̇film(I, SOC) OR |I/Imax| (3.8)

cSOC(xk, uk) =

αSOC SOCmin−SOC
SOCmax−SOCmin

if SOC ≤ SOCmin

0 else
(3.9)

Equation (3.7) represents the instantaneous energy consumption cost in USD, which

includes both fuel and grid charging costs. The first term of (3.7) quantifies PHEV

fuel consumption, while the second term quantifies electricity consumption, and the

coefficient β makes it possible to carefully study tradeoffs between the two. Specifically,

Wfuel represents the fuel consumption rate in grams per time step. The constant

parameter αfuel then converts this rate to an energy consumption rate, in megajoules

(MJ) per time step. Similarly, the second term of (3.7) represents the instantaneous

rate of change of the battery’s internal energy. The constant parameter αelec converts

the electricity consumed to MJ per time step. Dividing this change in stored battery

energy by a constant charging efficiency ηgrid = 0.98 (which corresponds to a full

recharge in six hours) furnishes an estimate of the amount of energy needed from the

grid to replenish the battery charge consumed during the trip. Note that the second

term is positive when the PHEV uses stored battery energy and negative during

regeneration. Hence, there exists a reward for regeneration that offsets the need to

consume grid electricity. The magnitude of this reward depends on the parameter β,

which represents the relative price of gasoline per MJ to the price of grid electricity

per MJ is defined as follows:

β =
Price of Gasoline per MJ

Price of Grid Electricity per MJ
(3.10)

We refer to this parameter as the “energy price ratio,” and use it to examine the

tradeoffs between fuel consumption and electricity consumption in PHEVs. Through-

out this dissertation, we use β = 0.8, consistent with the average energy prices in

June 2010, namely $2.73 USD per gallon of gasoline [127] and $0.094 USD per kWh

of electricity [6].
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Equation (3.8) represents one of two types of battery health models: the instanta-

neous anode-side SEI film growth, characterized by the map depicted in Fig. 2.6, or

the normalized magnitude of applied current in a single battery cell. In the following

subsections we consider PHEV power management controllers which minimize both

of these measures of health degradation. In principle, other degradation models may

also be input here. Additionally, both objectives are normalized by scaling the range

of their physical values to values between zero and one.

Equation (3.9) invokes a linear penalty when the SOC falls below a minimum

value. The parameter αSOC is a penalty weight. The inclusion of this term produces

the charge sustaining behavior we desire once the minimum SOC value is reached.

We vary the weighting α in (3.6) between zero and one to obtain the convex subset

of the Pareto optimal control policies. The complete Pareto optimal set would require

multi-objective dynamic programming techniques, such as those developed in [128].

Henceforth, we refer to the convex subset of Pareto optimal solutions as, simply, the

Pareto set - although this is admittedly an abuse of terminology.

3.1.2 Constraints

In addition to minimizing the aforementioned objectives, the power management algo-

rithm satisfies constraints on both the states and control actions. These constraints

correspond to physical operating limits, zones of safe operation, and actuation limits.

Rate of change constraints are not considered here, although they can be easily added

in this formulation. The state constraints are given by

ωe,min(Te) ≤ ωe ≤ ωe,max (3.11)

ωM/G1,min ≤ ωM/G1 ≤ ωM/G1,max (3.12)

ωM/G2,min ≤ ωM/G2 ≤ ωM/G2,max (3.13)

SOCmin ≤ SOC ≤ SOCmax (3.14)

Minimum engine speed is equal to idle speed when the engine is on, which is typically

enforced for combustion stability, noise, vibration, and harshness. Minimum engine

speed is zero otherwise. The minimum M/G1 speed constraint also produces an inter-

esting effect in a power-split configuration. If the engine is off, then ωM/G1 will violate

its minimum value if vehicle speed, which is proportional to ωM/G2, is sufficiently high,

due to the kinematic relationship in (2.33). Consequently the engine must turn on

for vehicle speeds greater than 36 mph, even when sufficient battery charge exists to
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run in all-electric mode. This constraint partly motivates the need for a dual-model

power-split where all-electric operation is possible at high speeds [73].

The control constraints are given by the following:

Te,min ≤ Te ≤ Te,max(ωe) (3.15)

TM/G1,min(ωM/G1) ≤ TM/G1 ≤ TM/G1,max(ωM/G1) (3.16)

TM/G2,min(ωM/G2) ≤ TM/G2 ≤ TM/G2,max(ωM/G2) (3.17)

Vcell,min ≤ Vcell ≤ Vcell,max (3.18)

Icell,min ≤ Icell ≤ Icell,max (3.19)

The minimum M/G2 torque is determined by two constraints: saturation limits

on M/G2 and the maximum battery pack voltage, which can be violated if too

much regenerative power is supplied to the battery at, for example, high SOC levels.

Hence the minimum M/G2 torque is a function of several states and control inputs

TM/G2,min = TM/G2,min(SOC, ωM/G1, TM/G1, ωM/G2). The residual M/G2 torque after

applying these constraints is provided by hydraulic braking.

To enforce both the state and control constraints we apply the following method.

For all state and control pairs we simulate the subsequent state using (3.2) and the

full electrochemical model. If any constraints are violated then the corresponding

control inputs are removed from the set of admissible controls, for the given state.

This process generates the set of admissible controls U(x) for each state, which can

be computed offline from the stochastic dynamic programming algorithm.

Numerically, the SDP problem is solved via modified policy iteration, where the

policy evaluation step is approximated through successive value iterations. This

algorithm has the property that convergence to the optimal policy occurs in finite

time [126]. More details on the implementation of this algorithm can be found in the

next subsection.

Since we solve the stochastic dynamic programming problem for a sweeping range

of α, and simulate the resulting controllers across 1,000 cycles each, we leverage parallel

computing resources at the University of Michigan Center for Advanced Computing.

3.1.3 Numerical Techniques

This section presents the numerical techniques used to solve the optimal power

management problem posed in the previous sections.

The SDP problem, which is framed as an infinite-horizon shortest-path problem, is
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solved via modified policy iteration, where the policy evaluation step is approximated

through successive value iterations. This algorithm has the property that convergence

to the optimal policy occurs in finite time [126]. The approach begins with a uni-

form discretization of the admissible state and control input sets, X and U(x). This

discretization makes the optimal power management problem amenable to computer

calculations, but generally produces suboptimal results. For a very thorough study

of various discretization techniques, refer to the Ph.D. dissertation of Tate [41]. We

use the symbols X and U(x) to refer to both the continuous and discrete-valued state

and control input sets for ease of reading. Given the discrete-valued sets, we apply

a modified policy iteration algorithm to compute the optimal power management

cost function and policy. This algorithm consists of two successive steps, namely,

policy evaluation and policy improvement, repeated iteratively until convergence. For

each possible PHEV state, the policy iteration step approximates the corresponding

“cost-to-go” J , which may be intuitively interpreted as the expected cost function

value averaged over a stochastic distribution of drive cycles starting at that state.

The policy improvement step then approximates the optimal control policy g∗, corre-

sponding to each possible PHEV state. This process iterates, as shown in Fig. 3.1,

until convergence. The following subsections present the policy iteration and policy

improvement steps in further detail.

Policy Evaluation

The policy evaluation step computes the cost-to-go for each state vector value, x, given

a control policy, g. This computation is performed recursively as shown in (3.20):

Jn+1(x) = c(x, u) + Ea [Jn(f(x, u))] (3.20)

The cost-to-go J is guaranteed to be finite because the system will reach the absorbing

state (i.e. vehicle-off) in finite-time with probability one and incur zero cost henceforth.

The expectation is taken over vehicle acceleration a, whose dynamics are governed by

a Markov chain representing drive cycle behavior (See Section 2.3). The index n in the

above recurrence relation represents an iteration number, and the recurrence relation

is evaluated iteratively for all state vector values in the discretized set of admissible

states, X. In general, the cost-to-go values within the expectation operator must be

interpolated because f(x, u) will not always generate values in the discrete-valued

state set X. The true cost-to-go for a given control policy must satisfy Jn = Jn+1.
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As such, we iterate (3.20) until one of two possible conditions are satisfied: (1) the

infinity-norm of the normalized difference between Jn and Jn+1 fall below a threshold

value, or (2) a finite number of iterations are reached. This truncated policy evaluation

approach, used in combination with the policy improvement step below, converges

to the optimal control policy regardless of the maximum number of iterations. See

[129, 130, 131, 126] for the theory underlying this method.

Policy Improvement

Bellman’s principle of optimality indicates that the optimal control policy for the

stochastic dynamic programming problem in (3.1)-(3.2) is also the control policy that

minimizes the cost-to-go function J(x) in (3.20). Thus, to find this control policy u∗,

we minimize cost-to-go over all admissible controls for a given state U(x) for each state

vector value x, given the cost-to-go function J(x). Mathematically, this minimization

is represented by:

u∗(x) = arg min
u∈U(x)

{
c(x, u) + Ea[J(x)]

}
(3.21)

Equation (3.21) imposes the state and control input set constraints from Section 3.1.2

by minimizing over the admissible control set U(x).

After both policy evaluation and policy improvement are completed, the optimal

control policy is passed back into the policy evaluation step and the entire procedure

is repeated iteratively. The process terminates when the infinity norm of the difference

between two consecutive steps is less than 1%, for both the cost and control functions.

Reducing Computational Effort

Dynamic programming is, generally speaking, computational intensive because it

suffers from the so-called curse of dimensionality. That is, the complexity of the

solution algorithms increase exponentially with each additional dimension added to

the control-state space [126]. For the PHEV power management problem considered

in this dissertation, there exist four states (ωe, v, SOC, a) and two control inputs

(Te, TM/G1). These six dimensions produce a problem that is more complex than

most HEV power management studies. This dissertation does not seek to investigate

efficient numerical techniques for SDP. However, we shall highlight basic techniques

which are effective in making the relatively complex problem under consideration
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computationally tractable.

Vectorization: The most effect method to reduce computational effort, by far, is to

vectorize the model equations in (3.2). This allows one to input a vector of control

inputs and receive a vector of outputs, as opposed to using a for-loop.

Custom Interpolation Code: The most computationally intensive task of SDP, in

this author’s experience, is interpolating the cost function over the states calculated

for the next time step in (3.20). For this reason we designed stripped-down, singular

purpose codes that sacrifice error checking and general purpose features for speed.

Offline Calculations: As an iterative process, SDP repeats several calculations over

and over. However, many of these calculations are identical through each iteration

and can be performed once offline. Examples include finding admissible control sets,

inverting large matrices, preallocating variable space, and discretizing state-control

spaces into meshed grids. In the code used to generate all the results shown here, we

take advantage of this opportunity whenever possible.

Control Space Reduction: Note that in the policy improvement step (3.21) one

must compute the cost of all possible controls to find the minimizer. In this work we

calculate the admissible control set U(x) for a given state x offline. That is, for each

state we determine the subset of control actions which satisfy all the state and control

constraints described in Section 3.1.2. This allows us to perform the minimization

in (3.21) over a subset of the complete control space, hence reducing computational

complexity. A more detailed description of this process is described in Section 3.4.

Overhead Reduction: Simulink c© is a very popular tool for modeling vehicle sys-

tems. However it suffers from overhead calculations that are often unnecessary in the

context of SDP. Therefore all models are directly coded in Matlab c© with stochastic

dynamic programming applications in mind.

There exist a number of focused studies on the computational aspects of stochastic

dynamic programming. These include state-control sampling with Barycentric coordi-

nates [41], linear programming approximations [132], iterative dynamic programming

[133, 134, 135, 136], and approximate dynamic programming (ADP) [137, 138, 139],

to name a few.
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3.2 Optimal Blending without Battery Health

In this section we first consider optimal PHEV power management results without

considering battery health. This analysis is important for contextualizing and inter-

preting the results when battery health is considered. Mathematically, this problem is

formulated by disregarding the battery health term in the objective function (3.6).

In this section we compare the optimal blending solution resulting from the problem

formulated in Section 4.2 to a more conventional strategy. Namely, it is common in

PHEV power management research to use control laws that first prioritize battery

energy consumption, until they enter a charge sustenance mode like those used by

conventional HEVs [140, 141, 142]. We refer to this method as charge depletion,

charge sustenance (CDCS). Representative CDCS and blending SOC trajectories are

demonstrated in Fig. 3.2. Generally speaking, CDCS seeks to enter the CS-region in

minimal time. In contrast, blending attempts to mix engine and battery power such

that the SOC reaches the minimum SOC exactly when the trip terminates. CDCS is

implemented in the SDP framework here by defining the following cost function.

c(xk, uk) =

SOC + cSOC(xk, uk) if SOC ≥ 0.3

αfuelWfuel + cSOC(xk, uk) else
(3.22)

where cSOC is defined in (3.9). This formulation penalizes SOC in the charge depletion

region (see Fig. 3.2), therefore causing the power management algorithm to deplete

electricity whenever possible. If the electric machines are capable of meeting the peak

power demand of a given drive schedule, this formulation will produce an all-electric

range during charge depletion. If the electric machines cannot meet power demand

or sufficient SOC does not exist in the battery, then the CDCS algorithm requests

engine power to satisfy drive cycle power demand. When the battery reaches the

charge sustenance region (i.e. SOC < 0.3 in Fig. 3.2), the second case in (3.22) is

taken. This cost function forces the power management algorithm to sustain charge in

a manner that minimizes fuel consumption. This cost function is extremely common

in DP-based HEV power management [37, 38, 73, 41].

3.2.1 Performance

To illustrate the potential performance improvements of a blending strategy over

a CDCS strategy, consider their responses for two FTP-72 drive cycles simulated
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Figure 3.2 Typical SOC trajectories for the charge depletion, charge sustenance (CDCS)
and optimal blending strategies.

back-to-back, as shown in Fig. 3.3 and 3.4. The total cost of energy for this trip is

6.4% less for the blended strategy relative to CDCS, and fuel consumption is reduced

by 8.2%. Blending accomplishes this by utilizing the engine more during the charge

depletion phase, thereby assisting the battery to meet total power demand more

often than CDCS. Although in the blended case the engine operates at higher loads,

therefore consuming more fuel, the engine efficiency is greater and, as demonstrated

in Fig. 3.4, battery charge depletes more slowly. As a result, blending and CDCS

incur nearly the same total energy costs through the depletion phase (Fig. 3.3), and

the advantage of blending in terms of overall cost arises from its delayed entry into

charge sustenance.

The benefit of delayed entry into charge sustenance is evident from previous re-

search in the literature in which the PHEV drive cycle and total trip length were

assumed to be known a priori (e.g., [38], [141]). For example, in [38] deterministic

dynamic programming furnished blending strategies that reached minimum SOC

exactly when the PHEV trip terminated, thereby never allowing the PHEV to enter

the charge sustenance mode. This result agrees with our current findings, namely,

that the primary benefit of blending strategies results from their ability to delay or

eliminate the need for charge sustenance. However, the approach in [38] requires
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knowledge of trip length a priori. Since SDP explicitly takes into account a probability

distribution of drive cycle behavior, our identified strategy is optimal in the average

sense.
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Figure 3.3 Running energy consumption costs for blended and CDCS control strategies
on two FTP-72 cycles simulated back-to-back. The total cost (solid line) is the sum of fuel
(dashed line) and electricity (dotted line) costs.
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Figure 3.4 State-of-charge response for blended and CDCS control strategies on two
FTP-72 cycles simulated back-to-back.

Performance improvements of blending over CDCS are uniform across all the drive
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cycles shown in Table II, where the drive cycle lengths are selected to ensure that the

vehicle reaches charge sustenance before the trip terminates. If the vehicle reaches

its destination before entering charge sustenance phase, however, the total energy

consumption costs are nearly identical for blending and CDCS (as demonstrated in

Fig. 3.3). Therefore the blending strategy proposed herein has no significant energy

consumption cost penalty for early trip termination. Note that some of the largest

improvements are observed for drive cycles that were not used to estimate the Markov

state transition probability matrix.

3.2.2 Engine Control

A significant benefit of the power-split architecture is the fact that it decouples the

engine crankshaft from the road, and allows the electric machines to move engine speed

where fuel efficiency is maximized [5]. This optimal operating line is identified by the

black dashed line in Fig. 3.5(a) and 3.5(b). As shown in Fig. 3.5(a), the blending

strategy initially operates the engine at fairly low speeds and high torques, close to the

optimal fuel efficiency operating line. This occurs even when power demand can be

met by the electric motors alone. The excess engine power goes towards regenerating

battery charge, which the blended cost function in (3.7) rewards. Moreover, the

electric machines are not generally saturated and are thus free to maintain low engine

speeds and high efficiencies. In contrast, the CDCS strategy causes the engine to

remain at very low brake torque levels during depletion, where fuel consumption is low

but so is engine efficiency (Fig. 3.5(b)). Moreover, significant power is requested from

the engine only when the electric machines saturate and cannot meet driver power

demand by themselves. This limits the control authority of the electric machines when

driver power demand is large, thereby reducing their ability to move engine speed

to the optimal operating line. These observations explain how the blending strategy

utilizes the engine and electric motors more efficiently, thereby delaying the charge

sustenance phase and improving overall PHEV operating costs.

3.2.3 Energy Price Ratio

An important feature of the proposed power management algorithm is its dependence

on the energy price ratio, β , which varies temporally (e.g., by year) and spatially

(e.g., by geographic region). To investigate the nature of this dependence, we obtained

the history of energy price ratios since 1973 [6], shown in Fig. 3.6. The value of β
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Figure 3.5 Engine operating points for (a) the optimal blended strategy and (b) CDCS
strategies on a brake specific fuel consumption map, for two FTP-72 cycles simulated
back-to-back.
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Figure 3.6 Historic values for the energy price ratio β from 1973 to 2007 [6]. Note how
the variation corresponds with shifts in oil and electricity prices.
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Figure 3.7 State-of-charge response for varying β (blended) and CDCS control strategies
on two FTP-72 cycles simulated back-to-back. Blending approaches CDCS as β approaches
infinity.

has clearly changed significantly over the past 35 years due to shifts in both oil and

electricity prices. This motivates the need to understand how this parameter impacts

optimal PHEV power management.

Consider the SOC depletion responses shown in Fig. 3.7 for controllers synthesized

with energy price ratios in the set β ∈ 0.4, 0.6, 0.8, 1.0, 1.2 and for a CDCS strategy,

58



which by definition does not depend on β. Several conclusions can be drawn from this

parametric study. First, as β approaches infinity (i.e. fuel becomes infinitely more

expensive than grid electric energy), the optimal blending strategy converges to a

CDCS strategy. This is consistent with the fact that the CDCS strategy implicitly

assumes the cost of fuel is infinitely more than the cost of electricity. Secondly, for

sufficiently low β (i.e. electricity becomes more expensive than fuel), the optimal

blending strategy generates electric energy. The implicit assumption leading to this

result is that the driver is able to sell energy back to the grid when the vehicle is

plugged in. Although electricity prices are unlikely to be this high in general, real-time

pricing could motivate using the vehicle as a distributed power generator during

periods of peak demand when conventional generation is scarce [13]. This suggests

that, with the appropriate exchange of information, a vehicle could be configured to

modify its control policy in real time to reflect grid conditions, a key benefit when

considering vehicle-to-grid infrastructures.
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3.3 Impact of Varying Battery Size

In this section our goal is to analyze the coupling between battery size and control

strategy. Specifically, our aim is to quantify how control strategy choice enables the

use of smaller battery sizes, in terms of both operating cost and energy consumption.

Smaller battery sizes could be interpreted as a design choice, or a result of capacity

fade in a used battery pack. To facilitate this analysis, we first define an analysis

methodology. Secondly, we analyze the coupling of control strategy and battery energy

capacity in terms of two PHEV performance metrics: operating cost and energy

consumption. Third, we consider how daily driving duration (that is, the driving time

between PHEV recharge events), affects PHEV performance. Finally, Section 3.3.4

closes with an analysis of control strategy/battery size coupling as a function of the

energy price ratio.

3.3.1 Analysis Methodology

Distributions for the PHEV performance characteristics are calculated by simulating

each control strategy (Blended and CDCS) and battery size in Table 3.1 configuration

over the entire distribution of trip duration and drive cycles. For each battery size

option, we synthesize both a blended and CDCS control law as formulated in Section

3.1 - without considering battery health. We then evaluate the performance of the

control law / battery size combination by the following approach:

1. Generate optimal control strategies for varying battery sizes (and corresponding

vehicle weights) and energy price ratios, subject to the model described in

Chapter 2.

2. Randomly generate daily drive cycles from the Markov chain model described

in Section 2.3

3. Simulate the closed loop PHEV model across the distribution of random drive

cycles, generated in step 2.

4. Record the distribution of performance characteristics

5. Repeat steps 1-4 across a range of energy price ratios

The number of randomly generated drive cycles used to estimate the distribution

of performance characteristics is determined by the statistical distribution convergence

criterion described in Appendix E. Step 5, which obtains performance characteristics

across a range of energy price ratios, furnishes the data presented in Section 3.3.4.
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Table 3.1 Battery Pack Energy Capacities, No. of Cells, and PHEV masses

Energy Capacity No. of Li-ion Cells PHEV curb weight

2 kWh 263 cells 1374 kg

4 kWh 526 cells 1393 kg

6 kWh 789 cells 1411 kg

8 kWh 1052 cells 1430 kg

10 kWh 1315 cells 1448 kg

12 kWh 1578 cells 1467 kg

14 kWh 1841 cells 1485 kg

16 kWh 2104 cells 1503 kg

3.3.2 Operating Cost & Energy Consumption

Figures 3.8(a) and 3.8(b) respectively depict the distributions of operating cost (USD

per 100 km) and energy consumption (MJ per 100 km) across a range of battery energy

capacities. The operating cost includes both the cost of fuel from the pump, and

electricity from the grid necessary to recharge the battery to its initial SOC level. The

distributions are represented by box and whisker plots, where the (×) symbol denotes

the distribution average and the whiskers are limited to 1.5 times the interquartile

range.

For each battery size we observe that the distribution of operating costs and energy

consumption for the blended strategy is consistently better or approximately equal

to the CDCS distributions. Moreover, the advantages of blending appear to be more

pronounced as battery energy capacity decreases. This can be explained by noting that

as battery energy capacity decreases, the probability of fully depleting the battery on

a given trip increases for either strategy. This fact is important because, as discussed

in 3.2, blending’s key advantage is that it increases the time required to fully deplete

the battery. This reduces the time spent in costly charge sustenance mode, where the

engine is forced out of its sweet spot in order to satisfy drive cycle power demand and

regulate the battery SOC. Since the two strategies are roughly cost-equivalent during

the charge depletion phase, the differences between them are most prevalent on cycles

that force CDCS into charge sustenance mode for a significant period of time. In

contrast, for large battery energy capacities, the percentage of trips which fully deplete

the battery is relatively small for either strategy. Hence, the two strategies produce

almost equivalent performance characteristics for large battery energy capacities.
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Figure 3.8 Box and whisker plots of (a) operating cost (USD per 100 km) and (b) energy
consumption (MJ per 100 km) distributions for each battery size and control strategy
configuration. The symbol (x) denotes the average value of each distribution. Whisker
lengths are limited to 1.5 times the interquartile range.

These results are in agreement with prior claims that a blended strategy should

enable the use of smaller batteries [140, 141, 143], although in this case the result

applies to battery energy capacity, whereas the prior claims are predominantly in

reference to battery power capacity. Moreover, this work justifies those claims in

62



a more rigorous manner by developing blending strategies through optimal control

theory. Furthermore, the differences between blending and CDCS are evaluated across

a distribution of drive cycle behavior and daily trip times, instead of a small set of

certification cycles.

3.3.3 Impact of Varying Daily Trip Distance

This section focuses on the performance of both control strategies across varying daily

trip lengths. Namely, we seek to answer the following two questions: (1) Given a fixed

daily trip distance, what battery capacity minimizes energy costs? (2) For what range

of trip distances does blending provide the greatest improvements over CDCS? The

simulation framework used to answer these questions has one important difference

with the preceding section: Random drive cycles are simulated for a finite set of trip

distances, as opposed to randomly sampled daily trip durations from the distribution

described in Section 2.3.

Given a finite set of trip distances, the average operating cost as a function of

battery energy capacity is demonstrated in Fig. 3.9, for the blended control strategy.

Note that the average is taken over a set of random drive cycles generated by the

Markov chain in Section 2.3 (where the simulation is terminated at the specified

distance). For each trip distance, operating cost performance is a convex function of

battery energy capacity. That is, performance decreases as battery energy capacity

increases, up to a critical energy capacity. Beyond this energy capacity, operating

cost increases slightly with storage capacity. This slight increase is because vehicle

efficiency declines with added battery weight, which is essentially unused for the given

trip distance.

The results analyzed in the preceding paragraph can also be leveraged to investigate

the relative advantages of blending over CDCS across varying daily trip distances.

Figure 3.10 provides the percentage improvement in average operating cost perfor-

mance of applying a blended strategy over CDCS. In general, blending demonstrates

the greatest improvements for small battery energy capacities and long trips - up to

5%. This is because blending rations electric energy storage rather than applying

aggressive depletion. The range of battery energy capacity for which blending provides

an advantage over CDCS increases as trip distance increases. However, beyond a

certain battery size, there is a small probability that either strategy will fully deplete

the battery and therefore differences between blended control and CDCS are small.

In fact, for large batteries blending provides slightly worse performance than CDCS
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Figure 3.9 Average operating cost (USD per 100 km) for varying daily trip distances and
battery energy capacities, for the blended strategy.

because blending applies more engine power during charge depletion to conserve

electric energy. Nevertheless, Fig. 3.10 is useful for understanding the ranges of trip

distances and battery energy capacities where blending provides significant benefits

over the standard CDCS control strategy.

3.3.4 Impact of Varying Energy Prices

To this point we have reported results corresponding to an energy price ratio of β = 0.8

(equivalent to the gasoline price per gallon being 27.6 times the electricity price per

kWh – for example, 2.76 USD per gallon of fuel and 0.10 USD per kWh of electricity).

This parameter is explicitly accounted for in both the control design procedure and

simulation results. However, this value varies both temporally (e.g., by year) and

spatially (e.g., by geographic region). To highlight the volatility of this parameter,

consider the history of average energy price ratios in the United States since 1973

[6], shown in Fig. 3.6. The value of β has clearly changed significantly over the past

35 years due to shifts in both oil and electricity prices. This motivates the need

to understand how this parameter impacts the interdependency of optimal power

management and battery energy capacity.
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Figure 3.10 Impact of daily trip distance on operating cost savings of applying a blended
strategy relative to CDCS.

Consider the operating cost savings (given in terms of percentage) of applying

a blended strategy over CDCS in Fig. 3.11. Since the proposed simulation method

produces a distribution of operating cost savings for each energy price ratio, Fig. 3.11

provides the average values calculated across all the drive cycles.

Two key observations are made from the results depicted in Fig. 3.11. First, the

benefits of blending over CDCS is more significant for smaller battery energy capacities,

across all values of the energy price ratio. This result matches the trends identified

in the previous section and quantifies the benefits across varying energy price ratios.

Secondly, the benefits of applying a blended strategy over CDCS become notably

more significant for smaller values of β, i.e. as fuel becomes less expensive relative

to fixed electricity prices. This result makes intuitive sense for the following reason:

Recall that the blended approach explicitly accounts for the cost of fuel and electricity,

and therefore optimally mixes these energy sources in a manner that minimizes total

energy consumption costs. In the case of decreasing values for the energy price ratio,

blending utilizes increasing amounts of engine power and fuel. As a result, the optimal

fuel/electricity mix deviates further from the CDCS strategy, which always attempts

to consume electric battery energy first. The final result is that blending produces
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Figure 3.11 Impact of energy price ratio on operating cost savings of applying a blended
strategy relative to CDCS. Recall the definition of energy price ratio provided in (3.10).

significantly lower operating cost values relative to CDCS for small energy price ratios.

3.4 Optimal Blending to Minimize SEI Layer

This section examines the performance of supervisory control algorithms that opti-
mally tradeoff SEI film growth with energy consumption cost. To obtain a measure
of controller performance across a variety of drive cycle behavior (as opposed to
single certification cycles), we apply the process outlined in Fig. 3.12. This can be
summarized as follows:

1. The set of admissible controls is determined for each state using the electro-

chemical model.

2. The Pareto optimal set of controllers is synthesized via the stochastic dynamic

program formulated in Section 3.1 by sweeping α and considering the reduced

equivalent circuit model.

3. A library of 1,000 drive cycles is generated from the Markov chain described in

Section 2.3.

4. Each controller in the Pareto set is simulated for all drive cycles in the library
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Figure 3.12 Flowchart of the design and analysis procedure. Note that the full electro-
chemical model is used to compute the admissible control set and simulate the closed-loop
system after the SDP problem has been solved. The reduced equivalent circuit model is
used to solve the SDP problem, since it contains only one state.

with the full electrochemical model.

5. Performance characteristics, including film growth and energy cost, are recorded.

Subsequently, we analyze three controllers of interest from the Pareto set on single

certification cycles to obtain a fundamental understanding of how to optimally tradeoff

battery health and energy consumption through proper SOC management.
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Figure 3.13 Number of admissible controls for each state, sorted in descending order.
Sets of admissible controls for three examples states are shown on the right.

Admissible Controls

At this point we wish to highlight Step 1, where the set of admissible controls is

determined for each state using the electrochemical model. This step is critical for

three reasons.

First, computing admissible controls for each state off-line guarantees that the con-

straints are always satisfied. In other words, they are implemented as hard constraints.

A typically alternative in hybrid vehicle power management applications is to apply

penalty functions when constraints are violated - a soft constraint approach [37, 73, 53].

The latter has been shown to cause numerical difficulties due to interpolation leakage

of the penalty function values into the admissible region [144].

The second critical reason for computing admissible controls offline is that it ensures

the controllers satisfy the constraints on the full electrochemical model, despite being
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optimized on the reduced equivalent circuit model. This point is crucial for integrating

electrochemical models into stochastic dynamic programming - a key contribution of

this dissertation.

Finally, computing admissible controls offline can dramatically reduce the control

space one needs to consider during the online SDP calculation. To demonstrate this

point Fig. 3.13 displays the number of admissible controls for each state, sorted in

descending order. Note that there are four state variables, quantized at 20 levels each,

resulting in 160,000 states. The two control inputs are also quantized at 20 levels,

resulting in 400 possible controls. Figure 3.13 demonstrates that 86% of the control

space is reduced through this offline calculation, a significant reduction to say the

least. The plots on the right-side of Fig. 3.13 further demonstrate the non-trivial

nature of determining admissible controls for each state. That is, these three plots

show the exact sets of admissible controls for three example states, which contain 300,

200, and 100 admissible controls, displayed respectively from top to bottom.

The results from computing the admissible controls are saved into a database,

which SDP uses to determine the set over which to optimize controls for each state.

This offline calculation does not depend on the specific optimization objective, and

can thus be performed once. As such, the database of admissible controls are used to

minimize SEI layer growth and Ah-processed in the subsequent sections.

3.4.1 Energy Consumption vs. Film Growth

Performance results for the Pareto set of controllers that optimally tradeoff SEI layer

film growth (per battery cell) with energy consumption costs are presented in Fig.

3.14. This is achieved by sweeping the weighting parameter α in (3.6) from zero to

one. A distribution of performance metrics is obtained for simulating the controllers

across the entire library of drive cycles. As such, Fig. 3.14 indicates the average

values as well as the 25/75% quantile ranges. The horizontal axis reports the SEI

layer growth resistance per km, while the vertical axis indicates energy economy in

km/USD (analogous to miles per gallon). The utopia point is located in the upper-left,

which indicates the individually achievable optimal performance metrics [145].

This plot indicates that, indeed, there exists a fundamental tradeoff between

anode-side SEI film growth in battery packs and energy consumption costs. Namely,

average SEI film growth can be reduced by 20% relative to an “energy-only” controller,

but at the sacrifice of a 72% decrease in average energy economy. The reason the

distributions of film growth stretch left of the mean is related to the distribution of
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Figure 3.14 Pareto set of optimal controllers for anode-side film growth and energy
economy, simulated across a library of 1,000 randomly generated drive cycles. Stars (?)
indicate the average values and the dashed lines (- -) are the 25/75% quantile range.

trip length. As trips become longer, more battery SOC is depleted and film growth

rate decreases. Normalizing this effect against longer distances traveled produces a

long tail toward the left side of Fig. 3.14.

One method for analyzing the combined optimality of each controller is to consider

the relative optimality analysis depicted in Fig. 3.15. This figure reports on the

optimality of each controller with respect to the Utopia point defined in Fig. 3.14.

Note that the relative optimality is nearly (but not exactly) a monotonic function of

controller weighting α. This is because the stochastic dynamic programming procedure

optimizes with respect to the reduced order equivalent circuit battery model, whereas

these results are calculated from the full electrochemical model (see Fig. 3.12). One

can see that the controller corresponding to α = 0.84 provides the minimum 2-norm

distance from the Utopia point, and in this specific sense, is the best balance between

both objectives. In the following analysis, we discuss the two extreme solutions (α = 0
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Utopia point in Fig. 3.14

and α = 1) and the “best mix” (α = 0.84).

3.4.2 Analysis and Discussion

To acquire physical insight into the structural properties of the optimal controllers, we

analyze three solutions from the Pareto set, α = 1.0, 0.84, and 0. Generally speaking

these respectively correspond to emphasizing energy only, balancing energy and SEI

layer growth, and SEI layer growth only. The controller corresponding to α = 0.84 is

chosen because it represents the best balance between both objectives, measured in

terms of the normalized 2-norm distance from the utopia point in Fig. 3.14. These

controllers are simulated on two concatenated FTP-72 cycles. Performance results for

various other drive cycles are reported in Table 3.2.

Figure 3.16 demonstrates the SOC trajectories for each controller. The energy-only

controller (α = 1.0) conservatively rations battery charge by blending engine and

battery power. This process reduces the time spent in charge sustenance mode, where

fuel must be consumed to meet power demand and sustain battery charge [42]. Put

simply, charge sustenance mode is extremely expensive relative to charge depletion,

and should be avoided, if possible, to reduce energy consumption cost. If the drive cycle
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Figure 3.16 SOC trajectories for SEI film growth (α = 0), mixed (α = 0.84), and energy
(α = 1.0) optimal controllers simulated on two concatenated FTP-72 cycles.

were known beforehand, the optimal strategy would blend engine and battery power

so battery SOC reaches its minimum level exactly when the trip terminates. Recall

that trip length distributions are directly implemented into the problem formulation

through the terminal state of the Markov chain, as described in Section 2.3. Hence the

controller is trip length-conscious. In contrast, the SEI layer-only controller (α = 0)

aggressively depletes battery charge to avoid the high SEI film growth rates seen in

Fig. 2.6. This results in a strategy that mimics electric-only operation, followed by

charge sustenance. Interestingly, the mixed (α = 0.84) controller’s characteristics are

more similar to α = 0 than α = 1 during the first 300 seconds (see the zoom-in in

Fig. 3.16. The reason can be understood by analyzing the gradient properties of the

film growth map. Namely, the steep gradient at high SOC values indicates significant

benefits in accumulated film growth can be achieved by quickly depleting charge. This

is in spite of heavily weighting energy costs over battery health, since instantaneous

energy cost as defined in (3.7) is relatively insensitive to SOC. Conversely, SEI film
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Figure 3.17 Operating points on anode-side SEI film growth rate map for SEI layer
(α = 0), mixed (α = 0.84), and energy (α = 1.0) optimal controllers simulated on two
concatenated FTP-72 cycles.

growth is very sensitive to SOC. Mathematically this is shown from (3.7)-(3.8)

∂cfilm
∂SOC

� ∂cenergy
∂SOC

(3.23)

⇔ ∂δ̇film(I, SOC)

∂SOC
� −αelec

Qbatt
˙SOC

ηgrid

dVoc(SOC)

dSOC
≈ 0 (3.24)

where the RHS of (3.24) is approximately zero because a typical Li-ion battery has

nearly constant open-circuit voltage with respect to SOC, in the allowable SOC range.

This result is clearly illustrated in Fig. 3.17, which indicates the operating points

of each controller superimposed on the film growth map from Fig. 2.6. Observe that

adding a small consideration for SEI layer growth (e.g. α = 0.84) to an energy-only

objective (e.g. α = 1.0) dramatically changes the operating point behavior. Namely,

it induces the controller to escape high film growth rate regions by depleting battery

charge quickly until it reaches a lower SOC level (between 50-60%). However, it leaves

enough available battery energy to blend power until the trip ends, without entering

charge sustenance (near 25% SOC). In summary, a PHEV power management strategy

that considers SEI film growth in addition to energy consumption will, in general: (1)

deplete battery charge quickly to reduce film growth rates, then (2) blend engine and

battery power to avoid charge sustenance, at least for the models considered in this

dissertation.
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Table 3.2 Performance over various Certification Cycles

Energy Economy [km/USD] Film Growth [µΩ/m2/km]

Drive SEI Mixed Energy SEI Mixed Energy

Cycle α = 0.00 α = 0.84 α = 1.00 α = 0.00 α = 0.84 α = 1.00

3xFTP 46.5 187 434 14.0 17.9 22.4

3xUS06 37.1 80.7 88.3 5.25 6.01 6.58

6xSC03 50.0 170 312 13.2 16.2 20.0

3xHWFET 44.9 173 266 5.15 6.48 7.96

3xLA92 39.6 150 263 10.6 13.0 16.2

3.4.3 Sensitivity to Film Growth Model Parameters

The property that batteries degrade faster at higher SOC strongly influences the

results presented here. This fact motivates an analysis of how sensitive the gradient

properties of the film growth map in Fig. 2.6 are to variations in the model parameters.

Namely, are the gradient properties a fundamental physical property of the film growth

mechanism, or a realization of the particular model parameters used in this study?

The answer is the former, as shown by the following proposition.

Proposition 1. Consider a rested battery cell with constant concentration and poten-

tial distributions, zero applied current, and hence zero intercalation current J1 = 0.

Then the rate of anode-side film growth increases with cell SOC,

∂δ̇film
∂θa

> 0 ∀ θa ∈ [0, 1] (3.25)

where θa is the bulk state-of-charge of the anode, which we use as the definition

of cell SOC. Moreover, the only model property necessary to ensure this result is

that anode equilibrium potential is decreasing with SOC, dUref,a/dθa < 0, which is

a thermodynamic electrochemical property of porous lithiated carbon electrodes [146].

Thus film growth rate is an increasing function of SOC, for a rested cell under no loads.

Proof. First consider the Butler-Volmer equation for the anode.

J1 = a0i0,a sinh

[
αaF

RT

(
φ1,a − φ2,a − Uref,a −

J1

an
Rfilm

)]
(3.26)

74



The following expression holds true if and only if J1 = 0 in (3.26).

φ1,a − φ2,a = Uref,a(θa) (3.27)

The simplifying condition (3.27) enables us to analytically show ∂δ̇film/∂θa > 0

through the following arguments. First we derive δ̇film as an explicit function of θa.

Then we show its derivative is positive. Rewrite (2.24) and (2.25) by lumping together

parameters into positive constants C1, C2, C3, and then combine

δ̇film = C1C2 exp [−C3ηs] (3.28)

Use the definition of ηs from (2.18) and condition (3.27) to write

ηs = Ua,ref (θa)− Us,ref (3.29)

noting that the third term in (2.18) is dominated by the others and can be approximated

as zero. Substitute ηs into (3.29)

δ̇film = C1C2 exp [−C3 (Ua,ref (θa)− Us,ref )] (3.30)

Now differentiate with respect to θa

∂

∂θa

(
δ̇film

)
=

[−C1C2C3 exp (−C3(Ua,ref (θa))− Us,ref )]
[
dUa,ref
dθa

]
(3.31)

The first term in brackets on the RHS of (3.31) is negative for all θa, since the constants

C1, C2, C3 are positive by definition and the exponential function is always positive.

Hence, ∂δ̇film/∂θa > 0 if and only if the second term in brackets in (3.31) is negative.

That is, the equilibrium potential of the anode decreases with bulk anode SOC. This

condition is a thermodynamic property of lithiated carbon electrodes [146]. Therefore

(3.25) holds true, which completes the proof.

This result implies anode-side film growth rate increases as SOC increases ir-

respective of the model parameters, at least for a rested battery under zero loads.

Experimental validation of this result has been reported in the literature [106] and is

currently underway in our laboratory. This evidence provides confidence in the trends

and insights reported here.

75



In this study we focus on one particular battery degradation mechanism - anode-

side film growth. In truth a myriad of mechanisms exist that cause capacity fade in

lithium-ion batteries, although film growth has been identified as one of the most

significant [30]. A comprehensive review of these mechanisms can be found in [30] and

the references therein. From a systems-level perspective degradation can be associated

with SOC, temperature, depth of discharge, cycling, etc. Experiments identifying

several of these relationships are currently underway in our laboratory. Nonetheless

the application of an established degradation model [7] represents a reasonable first

step toward health-conscious power management.

3.5 Optimal Blending to Minimize Ah-Processed

In this section we examine the performance of supervisory control algorithms that

optimally tradeoff Ah processed with energy consumption cost. The analysis follows

the exact same procedure outlined in the previous section (Section 3.4) and Fig. 3.12.

In particular we analyze the Pareto frontier of optimal solutions and their relative

optimality. For additional insight, we consider the controllers which optimize each

objective individually and compare their performance on three concatenated US06

cycles.

3.5.1 Energy Consumption vs. Ah Processed

Performance results for the Pareto set of controllers that optimally tradeoff Ah pro-

cessed (per battery cell) with energy consumption costs are presented in Fig. 3.18. As

before, this is achieved by sweeping the weighting parameter α in (3.6) from zero to

one. A distribution of performance metrics is obtained for simulating the controllers

across the entire library of drive cycles. As such, Fig. 3.14 indicates the average values

as well as the 25/75% quantile ranges. The horizontal axis reports the Ah processed

per km, while the vertical axis indicates energy economy in km/USD (analogous to

miles per gallon). The utopia point is located in the upper-left, which indicates the

individually achievable optimal performance metrics [145].

This plot indicates that a fundamental tradeoff also exists between reducing energy

consumptions costs and Ah processed in battery packs, for PHEVs. Specifically, the

average Ah processed can be reduced by 57% relative to an “energy-only” controller,

but at the sacrifice of an 82% decrease in average energy economy. One method
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Figure 3.18 Pareto set of optimal controllers for Ah processed and energy economy,
simulated across a library of 1,000 randomly generated drive cycles. Stars (?) indicate the
average values and the dashed lines (- -) are the 25/75% quantile range.

for analyzing the combined optimality of each controller is to consider the relative

optimality analysis depicted in Fig. 3.19. This figure reports on the optimality of each

controller with respect to the Utopia point defined in Fig. 3.18. One can see that the

controller corresponding to α = 0.85 provides the minimum 2-norm distance from the

Utopia point, and in this specific sense, is the best balance between both objectives.

3.5.2 Analysis and Discussion

As before, we acquire physical insight into the structural properties of the optimal

controllers by analyzing the two extreme solutions from the Pareto set, α = 0 and

1.0. These two controllers corresponding to emphasizing minimum Ah-processed and

minimum energy consumption cost, respectively. These controllers are simulated on

two concatenated US06.
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Figure 3.19 Relative optimality of each controller depicted in Fig. 3.18 with respect to
each individual objective. The stems are proportional to the 2-norm distance from the
Utopia point in Fig. 3.18

Figure 3.20 portrays the SOC trajectories for each controller. As before, the

energy-focused controller rations battery charge such that the PHEV reaches the

minimum SOC over the course of an average drive cycle. This effectively reduces the

time spent in charge sustenance mode while completely utilizing the relatively cheap

electric energy store. In contrast to the results shown in Fig. 3.16, the minimum

Ah-processed controller severely limits high C-rates and therefore consumes a very

small amount of battery energy (about 5% depth of discharge).

This behavior can be understood further by analyzing the distribution of power

demand on the engine and battery, depicted in Fig. 3.21. This figure elucidates how

the minimum Ah-processed controller constraints the distribution of battery power

demand to a small range around 0 kW, which limits the depth of discharge. The

tradeoff is a larger number of high engine power occurrences, as shown in the top

subplot of Fig. 3.21, to satisfy the total power demand. In contrast, the energy-focused

controller experiences a broad range of battery power demand and a distribution of

engine power more closely concentrated toward lower values, which decreases total

energy consumption cost. Therefore, a PHEV supervisory control algorithm which

attempts to minimize battery health degradation by reducing Ah-processed will be

extremely cautious of using the battery as a depletable energy store. Interestingly
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this action fundamentally opposes the key advantageous feature of a PHEV - the

depletable battery pack energy store.
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Figure 3.20 SOC trajectories for minimum Ah-processed (α = 0) and energy (α = 1.0)
simulated on three concatenated US06 cycles.

3.6 Summary

This chapter examines health-conscious power management in plug-in hybrid electric

vehicles through electrochemical modeling and stochastic control. The framework pre-

sented here is the first integration of electrochemical modeling and stochastic control.

First we consider the optimal blending problem without consideration for battery

health. The results here demonstrate how blending maintains the engine operating

points near the contours of greatest efficiency relative to CDCS. The battery size sensi-

tivity analysis demonstrates that blending has greater impact as battery size decreases.

Next, we formulate a multi-objective optimal control problem which optimally trades

off battery health in terms of two aging metrics (SEI layer and Ah-processed) with

energy consumption cost (fuel and grid electricity). The problem formulation includes
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Figure 3.21 Distributions of engine and battery power for minimum Ah-processed (α = 0)
and energy (α = 1.0) simulated on three concatenated US06 cycles.

two levels of battery model fidelity. The first is a reduced degrading electrochemical

battery model for control optimization. The second is a full-order electrochemical

model for constraint satisfaction and control validation. Throughout this chapter we

apply a shortest path stochastic dynamic programming formulation. This enables us

to directly encode real-world daily trip length distributions reported by the National

Household Travel Survey [121] into the Markov chain drive cycle model.

Analysis of the optimal power management algorithms indicates that an energy-

focused controller conservatively depletes SOC by blending engine and battery power.

This reduces the time spent in charge sustenance mode, where relatively expensive fuel

is required to meet driver power demand and sustain battery charge. An SEI-focused
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controller aggressively depletes SOC, since the SEI layer grows faster at high SOC

levels. For the models we study, a controller which considers both objectives will

aggressively deplete SOC first, to reduce film growth rates, then conservatively blend

engine and battery power to limit entry into charge sustenance mode. In the case

of anode-side film growth, we have demonstrated this result is fundamental to the

thermodynamic properties of the anode in the battery cell. An Ah-focused controller

depletes SOC extremely conservatively since it avoids battery power demands with

large magnitudes.

The modeling, control design, and analysis procedure presented in this chapter

represents a fundamental framework for analyzing power-management of systems

with multiple energy stores/conversion devices, stochastic inputs, multiple objectives,

complex physics, and state/control constraints.
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Chapter 4

Optimal Switching Control of
Parallel Connected Batteries

Recent advances in lithium ion battery modeling suggest unequal but controlled and

carefully timed charging of individual cells may reduce degradation. This chapter

compares anode-side SEI layer formation for a standard equalization scheme versus

unequal charging through switches controlled by deterministic dynamic programming

(DDP) and DDP-inspired heuristic algorithms. The control optimization utilizes a

reduced order model for SEI growth, developed in Section 2.1.3. Using this model, we

consider two cells connected in parallel via relay switches. The key results are: (1)

Optimal unequal and delayed charging indeed reduces film buildup; (2) A near-optimal

state feedback controller can be designed from the DDP solution and film growth rate

convexity properties. Simulation results indicate the heuristic state-feedback controller

achieves near optimal performance relative to the DDP solution, with significant

reduction in SEI growth compared to charging both cells equally, for several film

growth models. Moreover, the algorithms achieve similar SEI reduction on the full

electrochemical model. These results correlate with the convexity properties of the

film growth map. Hence, this chapter demonstrates that controlled unequal charging

may indeed reduce SEI growth in parallel connected batteries, given that certain

convexity properties exist. Broadly speaking, these techniques introduce a new control

paradigm for battery management systems which may significantly improve battery

pack life.

4.1 Battery Pack Charge Management Techniques

Existing research on battery management systems (BMS) generally addresses three tiers

of objectives. First, researchers have developed cell-to-cell charge equalization circuits

that protect cells connected in series strings from over-charging or over-discharging
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due to capacity imbalances [147, 148, 112, 111]. Second, researchers have developed

thermal models and management systems to ensure cell temperature remains within

an optimal efficiency range [103, 125, 104, 102]. These first two tiers usually consider

phenomenological lumped parameter models of cells to protect them from abuse. The

third tier of health-conscious BMS objectives considers electrochemical-based models,

which can potentially predict physical degradation mechanisms with higher fidelity

[149]. BMS algorithms within this tier are at a relatively nascent stage, since electro-

chemical battery models are significantly more complex than their phenomenological

counterparts. Our proposed heterogeneous charging scheme falls within this third tier

of objectives. Specifically, we consider the potential advantages of allowing unequal

charge values across modules connected in parallel, and allow flexibility in determining

the timing of the charge process. The goal is to leverage this flexibility to suppress

capacity fade.

4.2 Problem Formulation

The control objective is to determine the optimal switching sequence that minimizes

the total resistive film growth in the battery pack described in Section 2, given a

current trajectory, i0, known a priori. We formulate this as a finite horizon constrained

optimal control problem

min
(q1,q2)

J =
N∑
k=0

[
2∑
j=1

δ̇film(zj,k, ij,k) + gz(zk)

]
+αN‖zN − 0.95‖2

2 (4.1)

subject to

zk+1 = f(zk, ik) (4.2)

ik = h(qk, i0,k) (4.3)

z0 = zic (4.4)
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where

(q1, q2) ∈ {0, 1} × {0, 1} (4.5)

gz(zk) = αz

[∑
i=1,2

max {0.05− zi,k, 0, zi,k − 0.98}

]2

+

αv

[∑
i=1,2

max {2.0− vi,k, 0, vi,k − 3.6}

]2

(4.6)

zk = [z1,k z2,k]
T (4.7)

ik = [i1,k i2,k]
T (4.8)

where the function δ̇film maps SOC and current to average film growth rate according to

the relationship depicted in Fig. 2.6. The function gz(zk) denotes soft constraints that

limit cell SOC and cell voltage to protect against over-charging and over-discharging.

However, for the simulation described in this article, these constraints never become

active due to the modest charging rate employed. A terminal constraint with weight-

ing αN is provided to ensure the battery pack charges to the SOC corresponding

to the desired final voltage. The function f(zk, ik) represents the dynamic equation

in (2.29)-(2.30). The function h(qk, i0,k) maps the switch position and battery pack

current to cell current in (2.31)-(2.32). Finally, we impose a fixed initial condition zic.

To solve the optimization problem in (4.1)-(4.8), we re-express the equations as

a dynamic programming problem by defining a value function as follows [115]: Let

Vk(zk) represent the minimum total film growth from discrete time k to the end of

the time horizon, given that the cell SOC in the present time step k is given by the

vector zk. Then the optimization problem can be written as the following recursive

Bellman optimality equation and boundary condition.

Vk(zk) = min
(q1,q2)

{ ∑2
j=1 δ̇film(zj,k, ij,k)

+gz(zk) + Vk+1(zk+1)

}
(4.9)

VN(zN−1) = min
(q1,q2)

{
αN‖zN − 0.95‖2

2

}
(4.10)

The above dynamic programming problem is solved via a full enumeration algo-

rithm. That is, we compute a family of optimal trajectories for a set of fixed initial

conditions. This approach enables us to analyze an ensemble of trajectories to gain

insight on how DDP minimizes total film growth.
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Figure 4.1 Time responses for optimal charging pattern identified by DDP, given a 1C
battery pack charge rate.

4.3 Solution Analysis

4.3.1 Analysis of Optimal Trajectories

To acquire insight on the optimal switching sequence for minimizing resistive film

growth, we consider a constant 1C (2.3 A) charge rate applied to the battery pack.

Note that while the battery pack experiences a constant current charge rate, the

individual cells will have time-varying charge rates. Time responses for an initial SOC

of 0.1 for each cell are provided in Fig. 4.1. Figure 4.2 demonstrates the optimal

trajectories for a set of initial battery cell SOC conditions. These figures indicate that

the optimal switching sequence follows a consistent pattern:
1. Leave the battery pack uncharged for as long as possible. This minimizes

the duration of time over which the pack’s cells have large SOC values and,
consequently, large film buildup rates.

2. Charge the cell with greater initial SOC.
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Figure 4.2 Optimal trajectories for various initial conditions, given a 1C battery pack
charge rate.

3. Charge the cell with less SOC until both cells approximately equalize.
4. Charge both cells together, at approximately equal current values, until the final

state is reached.

The key question is why does DDP identify the pattern in Steps 2-4 above as the

optimal switching sequence for minimizing film growth?

4.3.2 The Energy Storage-Film Growth Tradeoff

First, consider the result that film growth is minimized by leaving the battery pack

uncharged for as long as possible. This is, film growth is minimized if battery packs

are charged only immediately before use. This result was also found in a recent study

on charge trajectory optimization for plug-in hybrid electric vehicles [150]. The reason

for this result can be seen by observing that the film growth rate increases with SOC

in Fig. 2.6. Therefore, maintaining each cell in a low SOC reduces the overall film

buildup. However, this requires a priori knowledge of when the battery pack will be
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Figure 4.3 Convexity analysis of spatially-averaged film growth rate for zero applied
current.

used. Moreover, if the battery is discharged sooner than expected, only a fraction of

the total energy capacity is available for use. This suggests a fundamental tradeoff

between electric energy storage and reducing anode-side film growth.

4.3.3 Convexity Analysis of Film Growth Rate

To answer the fundamental question of why DDP identifies the particular charging
pattern described above, let us focus on the switching pattern exhibited by the optimal
solution when charging does occur. Consider the film growth rate for varying SOC and

zero current input, as portrayed in Fig. 4.3. For small SOC values, δ̇film is concave.
Along this portion of the curve, the total film growth rate for two cells at different
SOC values is less than the total film growth rate for two cells at the same SOC value.

However, for large SOC values δ̇film is convex. This implies that the total film growth
rate for two cells at different SOC values is greater than the total film growth rate for
two cells at equal SOC values. If one assumes the solution is infinitely greedy, these
observations for reducing film growth can be applied as follows:

1. In the concave region of δ̇film, drive the individual SOC values apart.

2. In the convex region of δ̇film, equalize the individual SOC values.

In other words, charge each module one-by-one through the concave region and then

charge them all simultaneously.
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Figure 4.4 DDP-inspired heuristic rule for charging, with optimal state trajectories
superimposed.

These results indicate that a reduction in total film growth can be achieved by

allowing individual modules to have unequal SOC values - particularly within concave

regions of film growth. Additionally, the optimal policy follows a consistent pattern

that may be closely approximated by a heuristic feedback control law, which leaves

the battery discharged for the maximum allowable time.

4.3.4 DDP-inspired Heuristic Control

Inspired by these results, and the convexity analysis presented in Section 4.3.3, we

examine a heuristic control scheme for minimizing film growth, depicted in Fig. 4.4.

The advantage of a heuristic control scheme over the optimal trajectories computed by

DDP is that the former can be implemented in a time-invariant feedback loop. Addi-

tionally, one expects the heuristic scheme to achieve nearly optimal performance, due

to the consistent pattern exhibited by the DDP solutions. The process of converting

optimal trajectories into an explicit feedback map has been studied in the context of
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DDP [36, 53] and model predictive control theory [151] before. These concepts are

potentially applicable here, but a simpler less formal approach is used in this initial

study. Note that the switching pattern defined by the heuristic rule should not be

initiated until the last possible opportunity. In this example, each cell has a 1.8 A-h

charge capacity and thus the total pack charge capacity is 3.6 A-h. Therefore charging

both cells from 0.1 SOC to 0.95 SOC at a 1C (1.8 A) rate requires about 100 minutes.

As a result, we initiate the heuristic charging scheme 100 minutes prior to the final

time.

The design of the heuristic control law follows two steps: First, we simulate the

optimal trajectories from a family of initial conditions, such as shown in Fig. 4.2.

Second, we identify regions of the state-space corresponding to a certain switch config-

uration. For regions in which the optimal state trajectories do not enter, we select

a switch configuration that steers the state toward an optimal trajectory. This step

is required, because for the 1C charge rate input studied here, feasible trajectories

do not cover the entire state-space. The final result of this procedure is depicted in

Fig. 4.4, where several optimal state trajectories are superimposed on the proposed

heuristic rule. Note how the heuristic controller follows the general guidelines of SOC

separation and equalization in the respective concave and convex regions of Fig. 4.3.

4.4 Comparative Analysis and Sensitivity Studies

To evaluate the performance of the proposed heuristic controller, we compare it to

the optimal DDP-based and standard equalization schemes (i.e. both switches closed

during charging). We perform this study by simulating the closed loop battery pack

degradation control system for a 1C (2.3 A) constant current charge rate cycle. This

study is performed on both the equivalent circuit model and static map of film growth

rate (which was used for optimization, and henceforth is referred to as the “Control”

model) and the full electrochemical model. In both cases the initial cell SOC values

are 0.1 each. In practice, the standard charge method is to apply constant current to

every cell in the pack until the voltage reaches a maximum value, then the voltage is

held constant at this maximum value until the applied current reaches some minimal

level. This is known as a constant current, constant voltage (CCCV) charge cycle

[7]. Here, we only investigate the potential improvements incurred during the period

when the cells charge up to a maximum voltage limit, corresponding to 0.95 SOC

in our simulations. Subsequently, we report on similar results obtained for constant
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Figure 4.5 SOC trajectories for each control scheme, superimposed on the heuristic control
map.

current discharge inputs. Finally, we analyze optimal switch patterns for alternative

film growth maps, created using different assumption sets or model parameters. The

latter analysis is motivated by the fact that accurately modeling aging in lithium

batteries is extremely difficult - due to the extensive array of degradation mechanisms

and materials within lithium-ion batteries. Regardless of these differences, the link

between convexity properties and unbalanced cells remains in our studies.

4.4.1 Control Model Charge Cycle Simulation

The cell SOC trajectories for each control scheme simulated on the Control model are

provided in Fig. 4.5, superimposed on the heuristic rule. Observe that the standard

charging scheme maintains each cell at equal SOC values as the battery pack charges.

In contrast, the trajectories corresponding to DDP and the heuristic rule follow tra-

jectories similar to Fig. 4.2 and 4.4. Namely, both methods charge one cell at a

time in the concave region of δ̇film, and then apply charge equalization in the convex

90



0 50 100 150
0

0.5

1

C
el

l S
O

C
 

 

Standard
DDP
Heuristic

0 50 100 150
3.1

3.2

3.3

3.4

C
el

l V
ol

ta
ge

 [V
]

0 50 100 150
0

1

2

3

4

F
ilm

 B
ui

ld
up

 [m
Ω

/m
2 ]

Time [min]

Cell 1

Cell 2

Cell 1
Cell 2

(c)

(b)

(a)

Figure 4.6 Time responses for each control scheme.

region of δ̇film. Also observe that trajectories for DDP and the heuristic controller

match closely, indicating that the proposed heuristic controller closely approximates

the optimal solution for the trajectory shown here.

Time responses for the cell SOC, current, and battery pack voltage are provided

in Fig. 4.6. Here we see that the heuristic rule is initiated approximately 50 minutes

into the simulation, allowing 100 minutes of charging time. Figure 4.6(a)-(c) further

demonstrate how closely the heuristic controller and DDP solution match, with respect

to time. Since the standard method initiates charging immediately, the cells remain

idle at 0.95 SOC once charging is complete. This is important because film builds up

at a faster rate for high SOC relative to low SOC, which is the intuitive reason why

delayed charging significantly reduces total film buildup. The impact of this property

can be seen in Fig. 4.6(c). Figure 4.6(b) demonstrates each cell’s voltage, which

increases only when that particular cell is charging. Note that all schemes maintain
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Figure 4.7 Film Buildup for each control scheme, simulated on the control model and
full electrochemical model.

the cell voltage within the safety range of 2.0V to 3.6V.

4.4.2 Film Buildup Validation on Full Electrochemical Model

To this point, all simulation results have been performed on a reduced equivalent

circuit model and static film growth rate map in Fig. 2.6 used for control optimization.

In this subsection we study (1) if optimal switching indeed reduces film buildup for a

high-fidelity electrochemical battery model, and (2) if the static approximation of film

growth reasonably matches the film model prediction. Towards this goal, we apply

all three controllers (standard, DDP, and heuristic) on the full electrochemical model

(Full).

The aggregated film buildup for the Control and Full models, simulated using

each control scheme, are provided in Fig. 4.7. This figure indicates that the DDP

and heuristic control schemes indeed reduce film buildup on the full electrochemical

model, despite being synthesized for the Control model. Specifically, the open-loop

DDP control and closed-loop heuristic controller reduced buildup by 49.5% and 48.7%,

respectively. Moreover, the total film growth predicted by the Control model differ

from the Full model by less than 10% for all control schemes. Therefore, we conclude

that the reduced order model, taking the form of a static nonlinear map, enables the
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accurate minimization of film growth for the charge cycles studied here.

4.4.3 Performance Results

A comparison of the performance for each control scheme is provided in Table 4.1.

For the 2.3A rate charge cycle studied in this article, the heuristic controller produces

an additional 20 µΩ/m2 (0.8%) of resistive film buildup over the DDP solution on

the full electrochemical model. Hence, the heuristic scheme exhibits nearly identical

performance to the optimal control design. Both DDP and the heuristic controller

reduce film buildup by about 50%, for this charge cycle. It is important to note that

the reduction in film buildup is a function of the particular charge cycle and time

horizon. That is, cycles that remain within the concave region of δ̇film may experience

greater improvement, because the switched scheme proposed in this article has the

greatest advantage in this domain. Moreover, the bulk of film reduction occurs due to

delaying the charging process to the end of the time horizon. For the example studied

here, 48% of film buildup reduction is due to delaying charging until the final 100

minutes.

4.4.4 Optimal Trajectories for Discharge

Throughout this chapter we have considered optimally charging battery cells in parallel

with relay switches to minimize total film growth - under charging events only. Here

we consider constant current discharge events. The problem is formulated exactly as

before, except now we apply a 2.3A discharge current input. The optimal switch, SOC,

and voltage trajectories are provided in Fig. 4.8, with the battery pack initialized at

95% SOC for each cell. Optimal SOC trajectories for various initial conditions are

provided in Fig. 4.9. Under a discharging scenario, these results indicate the optimal

constant current discharging trajectories follow a consistent pattern.
1. Discharge the pack immediately. This moves the system away from regions of

fast film growth - so less interfacial film accumulates over time.
2. Equalize both cells as they discharge.
3. Continue to discharge both cells at equal charge levels, until a certain point.
4. Discharge each cell individually until the battery pack is fully discharged.

In essence, these discharge trajectories follow the optimal charge trajectories back-

wards. Moreover, the breakpoint between charge equalization and unequalization is

approximately the same - 60% for both cells. Convexity arguments for infinitely greedy

trajectory optimization solutions can be applied, once again, to interpret these results.
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Figure 4.8 Time responses for optimal discharging pattern identified by DDP, given a 1C
battery pack discharge rate.

Hence, allowing unequal charge levels in battery management systems may provide

long-term health benefits when concavity properties exist in the aging mechanics.

4.4.5 Sensitivity to Alternative Film Growth Parameteriza-
tions

Anode-side film growth has been recognized as a significant contributor to lithium-ion

battery health degradation [30]. However a plethora of other difficult-to-model aging

mechanisms can contribute to capacity and power fade. Moreover, modeling and accu-

rately parameterizing these models across a wide range of lithium-ion cell chemistries

and manufacturers can be difficult. This motivates the sensitivity analysis presented

here. Specifically, we consider alternative film growth maps to evaluate the generality

of unbalanced charging to varying model assumptions and parameterizations.

The first map, shown in Fig. 4.10(a), is equivalent to Fig. 2.6 except we enforce
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Figure 4.9 Optimal trajectories for various initial conditions, given a 1C battery pack
discharge rate.

Assumption 2 of [7] which states that film growth occurs only during charging events,

i.e. zero growth during rest and discharge conditions. The optimal charge trajectories

for a 1C constant current rate are shown in Fig. 4.11(a). In this case the optimal

solution charges each cell individually and in succession. This result can be understood

by noting that one cell charged at 1C and the other at rest (no growth) produces

less total film growth than two cells charged simultaneously at 0.5C. Also note that

although Fig. 4.11(a) shows a delayed charging strategy, delaying charging provides

equivalent film growth as immediate charging since zero film growth occurs during

rest. Therefore when Assumption 2 of [7] holds true, unbalanced charging provides

a 53% reduction in total film growth, which is a greater reduction from unbalanced

charging when using the original film growth map.

The second map, shown in Fig. 4.10(b), is based upon the same model equations

used for Fig. 2.6 but with an alternative parameter set. This parameter set has

been identified to produce capacity fade trends that match the manufacturer’s cycling
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Figure 4.10 Film growth maps for alternative electrochemical model parameterizations:
(a) No film growth occurs during discharge or rest conditions, which follows Assumption 2
of [7]; (b) Preliminary parameterization to match the manufacturer’s cycling and storage
performance data.

and storage data [150]. The two parameter sets used for each map are provided in

Appendix D. The optimal charge trajectories for a 1C constant current rate are shown

in Fig. 4.11(b). Unlike the previous two cases the optimal solution does not unequalize
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the cells’ charge levels. This result can be interpreted through the convexity arguments

of Section 4.3.3 by observing that Fig. 4.11(b) contains no concave regions. Thus

charge balancing minimizes film growth. However, delayed charging still provides

benefits by maximizing the time spent to low SOC levels, where film growth is slow.

4.5 Summary

This chapter investigates battery health management in Li-ion battery packs using

relay switches for modules connected in parallel. To facilitate control design and

analysis, we consider the electrochemical battery cell model with irreversible solvent

reduction reaction dynamics at the anode, developed by Ramadass et. al. [7] from

Chapter 2. From this high fidelity model, we approximate film growth rate as a

static map that functionally depends on cell SOC and applied current. Using this

map, we formulate an optimal control problem to minimize total battery pack film

growth for a constant current charge trajectory. Inspired by the optimal trajectories,

and the convexity properties of the film growth map, we design a heuristic rule base

that produces nearly optimal performance. Further optimization results for constant

current discharge trajectories and alternative film growth models demonstrate the

generality of charge unequalization to varying input profiles, model assumptions, and

parameterizations.

The key result demonstrated by this work is that health degradation due to film

growth can be reduced by: (1) Allowing battery modules connected in parallel to

attain unequal SOC values when concavity features exist; and (2) Delaying charging

until immediately before discharging. Indeed, the optimal solution approximately

separates SOC in the concave region and equalizes SOC in the convex region of film

growth rate at the end of the time horizon. This process can be implemented using

a heuristic static feedback controller designed from optimal trajectories computed

via dynamic programming. Individual control of module SOC is achieved via relay

switches typically used for safety precautions. Within each module, individual cell

SOC may be equalized via traditional switched capacitor circuits [111, 112] to protect

against over-charging or over-discharging. Simulation results indicate this approach

may significantly reduce total battery pack film growth, if one can identify concavity

features in the degradation performance map. This motivates future work focused

in two directions. First, experimentally identifying a data-driven degradation map

similar to Fig. 2.6 may enable significant improvements in lithium ion battery lifetime
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through controlled unequal charging schemes. This effort is currently underway within

the laboratory using the multi-channel tester described in Section 2.1.3 and Fig.

2.7. Second, experimental verification of these algorithms designed from data-driven

degradation models will provide the ultimate proof-of-concept. Controlled switching

equipment has already been designed and fabricated for this purpose, as shown in Fig.

4.12.
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Table 4.1 Controller Performance Comparison on Control Model and Full Electrochemical
Model.

Control Model Full Model

Control
Scheme

Resistance of
Total Film
Buildup

Reduction
in Film
Buildup

Resistance of
Total Film
Buildup

Reduction
in Film
Buildup

Control vs.
Full Error

Standard 3.20 mΩ/m2 0% 2.95 mΩ/m2 0% 8.47%
DDP 1.55 mΩ/m2 51.8% 1.49 mΩ/m2 49.5% 4.03%
Heuristic 1.56 mΩ/m2 51.2% 1.51 mΩ/m2 48.7% 3.31%
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Figure 4.11 Time responses of optimal charging trajectories for the alternative film
growth maps. (a) Response for map in Fig. 4.10(a). This map suggests charging the battery
pack one cell at a time. (b) Response for map in Fig. 4.10(b). This map suggests charge
equalization is optimal.
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Figure 4.12 Printed circuit board of controlled relay switches to test the charge unequal-
ization concept.
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Chapter 5

Conclusion

5.1 Dissertation Summary

The optimal control and electrochemical modeling framework proposed in this disserta-

tion provides a systematic methodology for formulating, solving, and analyzing power

management problems in battery-electric systems. In particular, we apply these tech-

niques to lithium-ion battery pack health in plug-in hybrid electric vehicles (PHEVs).

Moreover, the results demonstrate what control opportunities exist in PHEVs, given

certain mathematical structural properties in the battery health degradation physics.

As a consequence, the proposed algorithms may improve the useful life of battery

packs. This is critically important for large-scale battery energy storage systems -

ranging from PHEVs to stationary grid-scale storage - where replacement cost, bulk,

and cycle life are inhibiting factors associated with the uncertainty in maintaining

operation within safe limits.

In Chapter 2, three types of models were presented to study optimal PHEV and

battery pack energy management. First, a dynamic model for the mechanical and

electrical subsystems of a PHEV drivetrain was presented. These include inertial

dynamics of the vehicle, engine, and motor/generators coupled together though a

planetary gear set in a power-split configuration. Second, a Markov chain model

for drive cycle dynamics was presented. This model has a special feature useful for

capturing the distribution of daily trip lengths - namely a terminal state associated

with “vehicle off”. Finally, a detailed electrochemistry-based battery cell model was

presented. This model captures Li-ion diffusion dynamics, intercalation kinetics, and

electrode thermodynamics. This chapter also presents two important types of battery

health degradation models: a physics-based solid electrolyte interphase (SEI) layer

film growth model and an empirically-based “Ah processed” model. Together these

models constitute the essential elements for studying supervisory control in PHEVs
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and battery pack charge management.

Chapter 3 investigates supervisory control algorithms that manage the tradeoff

between battery pack health and energy consumption cost in plug-in hybrid electric

vehicles (PHEVs). This study leverages both stochastic control theory and reduced

electrochemical battery models to achieve its goal. First, a multiobjective stochas-

tic control problem is formulated and solved via stochastic dynamic programming

techniques. To contextualize the multiobjective battery-health conscious results, we

first analyze the single objective control results which consider energy consumption

cost only. This analysis describes the underlying advantages of a blended strategy

versus charge depletion, charge sustenance. A sensitivity analysis is then performed

to understand the impact of variations in battery pack size, daily trip length, and

fuel/electricity price. Next we consider battery-health conscious power management

control algorithms to minimize two quantitative metrics of capacity fade: SEI layer

film growth and Ah processed. Control results for SEI layer film growth model quickly

deplete battery SOC to escape the regions of fast film growth. Control results for the

Ah-processed model are extremely tentative to consume battery energy, and therefore

rely more heavily on engine power.

Chapter 4 introduces a novel concept in the arena of battery management systems

- charge unequalization. Specifically, this chapter analyzes the potential health advan-

tages of allowing unequal yet controlled charge levels across batteries connected in

parallel. Towards this goal, we consider two cells connected in parallel in which charge

levels are controlled via relay switches. The control problem is then to determine

the optimal sequence of switch configurations which minimize the total battery pack

SEI layer film growth. In general the optimal solutions unequalize SOC at low values

and equalize SOCH at high values. This result is directly related to the convexity

properties of SEI layer film growth. To analyze the impact of variations in the battery

health model, we consider two alternative SOH degradation models. Ultimately, we

find the existence of concavity in the SOH model is what leads directly to charge

unequalization.

In summary, the research reported in this dissertation advances knowledge on

managing power and energy flow in energy storage and conversion systems by com-

bining optimal control and electrochemical battery models, for this first time. This

dissertation has demonstrated this is critically important for enhancing the useful

battery lifetime, replacement costs, and power efficiency in energy storage systems. In

particular, these developments take steps towards increasing the wide-spread adoption

of lithium-ion batteries for systems in which energy storage is the linchpin enabling
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technology.

5.2 Summary of Contributions

This dissertation provides four distinct and original contributions toward optimal

energy management control for Li-ion battery health in PHEVs.

1. A coupled PHEV powertrain and electrochemistry-based Li-ion battery model

was presented for supervisory control design studies. Although this model is

generally too complex for solving optimal control, it provides a high fidelity

platform to test and analyze controllers based upon reduced order models. An

experimental battery-in-the-loop test system was also developed to identify the

parameters of the battery model. (Chapter 2)

2. A multi-objective stochastic optimal control approach was presented for study-

ing the tradeoffs between energy consumption cost and battery health. This

problem formulation utilizes the PHEV drivetrain model, the stochastic drive

cycle model, and reduced-order battery models which include various SOH degra-

dation metrics (i.e. SEI layer growth and Ah-processed). Mathematically, the

problem is solved as a shortest-path stochastic dynamic program. Nonetheless,

the framework is general and application to many scenarios characterized by

multiple objectives, stochastic processes, and various levels of model complexity.

(Chapter 3)

3. A novel charge unequalization concept for battery pack management systems

was proposed, designed, and analyzed. This concept explores the battery health

benefits of allowing unequal yet controlled charge levels in batteries connected

in parallel via relay switches. This concept is also generalizable to heterogeneous

groups of batteries and more advanced interface topologies. (Chapter 4)

4. Opportunities for novel control techniques were identified given certain mathe-

matical structural properties in the battery degradation physics (i.e. slope and

convexity). Clearly, these properties vary depending on the battery chemistry,

mechanical design, manufacturing process, environmental conditions, operating

scenarios, etc. The critical contribution of this thesis is to understand which

properties are important to identify for enabling opportunities that enhance

battery health through control. (Chapters 3 and 4)
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5.3 Perspectives on Future Extensions

The proposed control problem formulations and resulting algorithms make notable

steps towards developing PHEVs with enhanced lithium-ion battery lifetime. Nonethe-

less, there exist several opportunities to advance the work presented here. These are

presented in three categories (modeling, power management, and battery management)

described below.

5.3.1 Electrochemical Modeling

Temperature[152, 92, 94] and intercalation-induced stress [26] have critical impacts on

the capacity and power fading characteristics of lithium-ion batteries. Several recent

studies have constructed coupled thermo-electrochemical [153, 154] and mechanical-

electrochemical [26, 27, 155] models. Similar modeling efforts could be utilized in the

battery-health conscious power management framework considered here.

Opportunities exist for improved model reduction techniques for the PDAE-based

electrochemical model. In particular, control-oriented “proper” models which balance

predictive ability and simplicity are desired [156]. Towards this goal, there exists a

burgeoning body of research on electrochemical battery model reduction. These tech-

niques include the single particle model [157], residue grouping [65], modal expansions

[158, 159, 160], volume averaging [158, 159, 67], constant electrolyte concentrations

[67], proper orthogonal decomposition [161], electrode averaged models [162, 163],

quasi-linearization and Padé approximations [99]. Nonetheless, these models are not

completely commensurate with the broad spectrum of control design problems, thus

motivating further research.

5.3.2 Optimal Power Management

Opportunities exist for improvements in the dynamic programming formulation. These

include true multi-objective DP [128, 164], two-time scale DP [165, 166], and adaptive

algorithms. These improvements are especially relevant toward power management of

energy conversion systems where multiple objectives (e.g. energy consumption, battery

health) and dynamic time scales (battery SOC, battery degradation) are present.

Another interesting extension might provide a more thorough investigation of the

interaction between control and design. Theoretical [167, 168] and applied approaches

[169] provide interesting pathways. Moreover, the framework provided in this dis-
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sertation would be generally applicable to alternative hybrid design configurations,

such as series hydraulic [117], parallel [37], series-parallel [48, 44], and output-split

architectures [170].

Ultimately, PHEVs will interact with the electric grid while plugged in. Analysis,

design, and control of the dynamic coupling between PHEVs and electric power

systems remains a relatively open research question [171, 82, 83, 172, 173].

5.3.3 Battery Management

In theory, the switching control concept for unequal charging proposed in this dis-

sertation may mitigate the SEI layer film growth. It would be of great interest to

demonstrate this result experimentally, using the battery-in-the-loop hardware pre-

sented in Appendix A for example. Extensions of this concept might also consider

more advanced power electronics topologies [174, 175] and adaptive algorithms.

The battery management control algorithms considered in this work limit their

scope outside of state/parameter estimation [149]. A future direction might consider

output-feedback algorithms using recently developed control and estimation theory

for linear parabolic PDEs [84, 176, 177].
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Appendix A

Fabrication of an Experimental
Battery-in-the-Loop Test System

Experimental data has been collected using a custom built battery tester. This tester

is capable of highly transient current/voltage profiles and quickly switching between

charging and discharging. These characteristics make it ideal for testing batteries

under conditions similar to those experienced in PHEV battery packs. Additionally,

this setup is capable of Hardware-In-the-Loop (HIL) experimentation which will be

advantageous for future battery control and estimation studies [178].

This battery tester is a combination of three major components: an electric load

(SLH-60-120-1200), a power supply (DCS20-50E), and a Real-Time (RT) controller

and I/O board (DS1104). A photo of the battery tester was shown in Fig. 2.5.

Figure A.1 is a schematic of the setup where all signal lines are connected to the I/O

board. The power supply and electric load handle battery charging and discharging

respectively. The RT I/O board coordinates the electric load, power supply and

switching board. In addition, the RT I/O board records sensor signals including

voltage, current, and temperature, obtained from a custom built battery sensor board

shown in Fig. A.2. The battery sensor board measures battery voltage through a

voltage isolating differential op-amp and battery current via a bi-directional 20A Hall

effect sensor (ACS714). An infrared thermopile (MLX90614) measures temperature.

An electrical schematic and PCB layout of this board designed in EAGLE are shown

in Fig. and , respectively. The switch board switches the setup between charging and

discharging by swapping the battery’s connection between the supply and load. A

photo of this switch board is shown in Fig. A.5. The Schottky diode protects the

power supply from absorbing battery energy. Using printed circuit boards (PCBs) has

greatly improved the reliability and accuracy of the sensor electronics and switch/diode

combination. A variety of signals interface the battery tester’s components, including:

analog, basic digital, PWM, SMBus, RS-232, and TTL. A list of the main components,
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their manufacturers/model numbers, and general features are provided in Table A.1

Table A.1 Components of the Battery-in-the-Loop Tester

Component Manufacturer/Model General Features

Li-ion Battery Cells A123 Systems
ANR26650M1A

2.3 Ah, 3.3V nominal
voltage, 70C max.
continuous discharge

Power Supply (PS) Sorenson DSC20-50E 0-20V, 0-50A range

Electronic Load (EL) Sorenson
SLH-60-120-1200

0-60V, 0-120A, 1.2 kW
range

Real-time control and
measurement

dSPACE DS1104 PowerPC 603e CPU, 32
MB SDRAM, PCI
interface, 8 ch. 16/12-bit
ADC, 8 ch. 16-bit DAC,
Digital I/O, Serial

Voltage sensor Custom-built voltage
isolating differential
op-amp

0-5V range

Current sensor Allegro Microsystems
ACS714

± 20A range

Temperature sensor Melexis MLX90614
Infrared thermopile

-40◦C to 85◦C

Voltage regulator Maxim MAX666 5V output, 2V-18V input

PS blocking diode S60HC3 Schottky Barrier
Diode

60A forward current, 30V
reverse voltage

PS-to-EL Relay Panasonic CB1-P-12V 12 VDC power, 30A load

Switch for PS-to-EL
Relay

Panasonic AQV101
Optical Relay

700mA load, 50mA LED
current
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Figure A.1 Schematic of battery-in-the-loop hardware configuration.
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Figure A.2 Custom designed battery cell sensor board. Components include an A123
Systems 26650 2.3Ah cell, an isolated voltage sensor, a 20A current sensor, and infrared
temperature sensor.

Figure A.3 Circuit schematic of battery cell sensor board created in EAGLE.
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Figure A.4 Board layout of battery cell sensor board created in EAGLE.
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Figure A.5 Custom designed switch/diode board used to switch between the power supply
and electronic load. The Schottkey diode blocks current from flowing into the power supply.
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Appendix B

ME 499/599: Battery Systems and
Control

This appendix describes a new course on battery systems and control (ME 499/599).

This course has served as a vehicle to disseminate knowledge obtained from this

dissertation to the community - a unique feature of any doctoral research project.

The objective is to provide to undergraduate, graduate, and professional students the

technical skills necessary for developing a new generation of green vehicle technology.

Emphasis is placed upon systems-level modeling, design, and control, oriented towards

solving issues relevant for new vehicle development. The battery course specifically fo-

cuses on system-level modeling, model order reduction from electrochemical models to

surrogate models for load control, estimation, on-board identification and diagnostics

for lithium-ion batteries. Ultimately this course aims to transform the automotive

industry’s workforce into the leading experts on vehicle electrification technologies.

This course is a single component of a much broader educational program funded

by a 2.5 million USD grant from the America Recovery and Reinvestment Act

(ARRA) [11], supported through the Department of Energy. This program is entitled

“Transportation Electrification Education Partnership for Green Jobs and Sustainable

Mobility”. Three universities within the state of Michigan are involved: the University

of Michigan - Ann Arbor, the University of Michigan - Dearborn, and Kettering

University. The project scope is to educate the next generation of engineers and

workers and develop an outreach program in electrified transportation. An overview

of the course and laboratory hierarchy within this program is provided in Fig. B.1.

The program’s scope spans vertically across educational levels (K-12 to professionals)

and horizontally across academic disciplines (e.g. electric machines to green manu-

facturing). The battery systems and control course represents one course within this

larger effort.

The course enrollment numbers for the Winter 2010 and Winter 2011 terms are
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Pubic & Private Seminars,              
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Figure B.1 Hierarchy of DOE ARRA Green Vehicle Technologies Educational Program.

summarized in Table B.1. The on-campus students include undergraduates (ME 499)

and graduate students (ME 599) from a wide variety of academic backgrounds such

as mechanical engineering, chemical engineering, energy systems engineering, physics,

electrical engineering, computer science, materials science, and mathematics). The

off-campus students are generally working professionals in industry from organizations

such as General Motors, Tesla Motors, Roush, Denso Corp., General Dynamics, U.S.

Army TARDEC, etc. The breadth of backgrounds and experience demonstrates the

broad impact of this course.

Table B.1 Course Enrollment to date.

Term On-campus Off-campus Total

Winter 2010 54 5 59
Winter 2011 24 26 50

The outline of this appendix is as follows: In Section B.1 we discuss the course’s

primary goals and desired outcomes. In Section B.2 we provide an overview of the

covered topics. Section B.3 describes some example homework problems, including
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state-of-charge estimation and charge balancing control, to illustrate the course content.

Finally Section B.4 summarizes the course objectives and planned improvements. A

portion of the material presented here is based upon a previously published conference

paper written by the course instructors [85].

B.1 Course Goals and Outcomes

Course Statement

This course covers battery modeling, control and diagnostic methodologies associated

with battery electric and battery hybrid electric vehicles. Emphasis is placed upon

system-level modeling, model order reduction from micro-scale to macro-scale and

surrogate models for load control, estimation, on-board identification and diagnostics

for Lithium Ion batteries. The electrochemical, electrical, and transport principles

for battery modeling are reviewed. Spatiotemporal models of coupled concentration,

potential, and thermal phenomena are introduced. Simulation of the resulting partial

differential equations using software tools will be introduced with selected topics on nu-

merical issues. Model order reduction techniques, parameter estimation, filtering, and

control theory will be covered and applied to state of charge estimation. Additionally,

electric-circuit battery models, DC/DC converters, and other vehicle implementation

issues of power management and balancing will be introduced.

Desired Outcomes

The desired course outcomes are constructed to align with the various levels of Bloom’s

Taxonomy [179] as follows:

Knowledge: Students will be able to identify high-level technical challenges

related to battery systems, especially as applied to vehicle electrification.

Comprehension: Students will be able to distill high-level challenges into tech-

nical, solvable engineering problems through strong fundamental understanding of

battery systems.

Application: Students will be able to apply their fundamental knowledge about

battery physics and control systems to solve concrete problems.

Analysis: Students will be able to analyze and model battery systems via theo-

retical electrochemical physics and experimental characterization techniques.
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Synthesis: Students will be able to formulate and design control algorithms to

manage battery systems. These include state-of-charge estimation, thermal manage-

ment, hybrid vehicle power-split control between engine and battery power, etc.

Evaluation: Students will be able to evaluate their models and control systems

through simulation-based and experimental-based investigations.

Further detail on the course goals and outcomes is included in the ABET course

profile provided in Fig. B.7 at the end of this appendix.

B.2 Course Topics

An outline of course topics is provided in Table B.2. The pedagogical approach

throughout this course is to (1) examine high-level technical challenges and applica-

tions, (2) focus in on fundamental tools and theory necessary to solve specific problems,

and (3) allow students to exercise these tools on practical issues through application

driven homework assignments and projects. In the following discussion we provide an

overview of each chapter’s content.

B.2.1 Introductory Material

The course opens with a broad overview of global issues associated with energy stor-

age. These include the spatial mismatch between resources and demand, and the

intermittency of renewable energy. The performance characteristics of batteries are

placed in context with other energy storage & conversion devices by their specific

power and energy density, as demonstrated by the Ragone plot in Fig. B.2. The

sloped lines indicate the relative time required to extract and/or store energy from

the device. This figure demonstrates that batteries and have high theoretical specific

energy, but lower power density when compared to conventional internal combustion

(IC) engines. For this reason, batteries are often combined with high specific power

devices to form “hybrid” vehicle propulsion systems that achieve the desirable power

characteristics. Batteries, by themselves, also encompass a broad range of energy and

power densities depending on their chemistry (e.g. lead acid, Ni-Cd, NiMH, Li-ion,

Li-ion polymer) and cell packaging (pouch, cylindrical, prismatic).

Several fundamental topics are also introduced to provide the necessary foundation

for future course material. These include Kirchhoff’s voltage and current laws, battery

test procedures (e.g. constant current, constant voltage, impedance measurements,
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Table B.2 Outline of Course Topics

Chapter 1: Introduction
• Overview of chemistries, technologies, and challenges
• Kirchhoff’s Laws
• Equivalent circuit models
• Test methods and parameter identification

Chapter 2: Physics-Based Models
• Material properties and electrode thermodynamics
• Butler-Volmer kinetics
• Diffusion and electric potential
• Numerical techniques
• Model Reduction

– Single particle model
– Padè Approximations
– Quasi-linearization
– Projections onto Legendrè polynomials

Chapter 3: Battery Management Systems
• State of charge estimation

– Coulomb counting
– Estimation theory
– Kalman filters

• State of health estimation
– Overview of degradation mechanisms
– Electrochemical impedance spectroscopy

• Charge balancing
– Passive techniques
– Active balancing

• Thermal dynamics and models
• Thermal management

Chapter 4: Vehicle Power Management
• Electric architectures
• Hybrid vehicle power management
• Interaction between electrified transportation and power grids

capacity tests, pulse tests), and parameter identification techniques (e.g. least squares).

All of these tools will return within the context of upcoming course material.

Next, we introduce the simplest category of mathematical battery models - equiva-
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Figure B.2 Ragone plot of various energy storage/propulsion devices and their “charge”
times. Adapted from US Defense Logistics Agency Report [8].

lent circuits. These models seek to capture the salient physical phenomena through

representative electric circuit elements. Examples include the OCV-R, OCV-R-RC,

and impedance model, depicted in Fig. B.3. The OCV element is a variable voltage

source whose value depends on cell SOC. It represents the equilibrium voltage of a

battery at various charge levels. The R element represents the internal resistance,

and can be a function of SOC and current direction. The RC element captures the

relaxation effect. That is, immediately following a charge/discharge event one sees the

terminal voltage slowly fall/raise as concentration gradients slowly reach equilibrium.

The RC element produces the same behavior. The impedance model separates dynamic

phenomena by their frequency range. For example, a resistor in series RΩ typically

captures the electrolyte and current collector resistance. An RctCdl-pair represents the

charge-transfer dynamics which occur at the solid particle surface. Finally, a Warburg

element ZW models semi-infinite linear diffusion. Its properties include a constant

phase of 45◦. In total, these models represent the simplest category of battery models.

Their simplicity is a key advantage, as it easily facilitates analysis and control design.

However, the model parameters are non-physical and difficult to generalize to other
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(a)
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(c)

OCV-R

OCV-R-RC

Impedance

Figure B.3 Various equivalent circuit models: (a) OCV-R, (b) OCV-R-RC, (c) Impedance-
based.

chemistries.

B.2.2 Physics-Based Models

Mathematical models of electrochemical propulsion devices span a spectrum - from

high-fidelity physics-based models to simplified phenomenological models. The ap-

propriate balance between model accuracy and simplicity depends on the specific
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modeling objective. For example, if one desires to design improved material structural

properties for a battery or fuel cell electrode, it may be important to account for

particle-level mechanical stresses and electrochemical kinetics. However, if the aim

is to analyze life cycle carbon footprints, then a relatively simple phenomenological

model may suffice.

In the introductory material, we introduced equivalent circuit models which are

phenomenological in nature. In this chapter, we focus on physics-based models.

This material is strongly based upon Section 2.1 of this dissertation. Specifically,

we discuss how material properties can be used to calculate theoretic cell voltage,

charge capacities, and energy densities. Next we focus on deriving the Butler-Volmer

equation through the fundamental kinetic principles of reduction-oxidation reactions.

The next topic covers diffusion, in both spherical and Cartesian coordinates, and

electric potential manifested by distributed form versions of Ohm’s law. To unify these

principles, we demonstrate how all these phenomena integrate to form a complete

electrochemical battery model.

In total the physics-based battery model is a coupled set of partial differential

algebraic equations, where the controllable inputs and measurable outputs are rep-

resented by boundary conditions. This model is well-suited toward high accuracy

simulation and validation. However, this model is not easily implementable on a

real-time on-board electronic control unit for automotive applications. As such, we

introduce the students to approximation methods that preserve important system

dynamics while eliminating unnecessary complexity within the context of the control

objective. This process, known as model reduction, is fundamental to almost all

practical system-level modeling and control problems.

Several battery model reduction techniques are discussed in the class, including

the single particle model [163], Padé approximations, constraint linearization [180],

and projections onto Legendre polynomials. For several assignments we consider

the following example: Suppose our battery system does not experience extreme

charge/discharge loads such that the concentration distributions along the length of

the electrodes and separator remain fairly constant. In this case, it may be reasonable

to approximate the spatial distributions by their average values. This produces the

so-called single particle model shown schematically in Fig. B.4. The reduced model

equations that result after applying this concept produce a state-space system with

linear dynamics and a nonlinear output equation. The linear dynamics correspond

to spherical diffusion in the solid material of the electrodes. The output equation

computes cell voltage, which is nonlinear due to the thermodynamic and kinetic
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Figure B.4 Conceptual description of the single particle model, which approximates each
electrode as a single porous particle immersed in a zero-dimensional electrolyte.

properties of the battery. The structure of this reduced model is extremely appealing

for control applications, rendering it amenable to a vast range of control and estimator

design techniques. In Section B.3 we describe how students utilize this model to design

a Kalman filter for SOC estimation.

B.2.3 Battery Management Systems

This chapter focuses on cell and pack-level control systems. These control systems

include state of charge estimation, state of health estimation, charge balancing, and

thermal management. During the lectures we introduce the problem background and

fundamental tools required to design each control system. Students then apply this

knowledge in the homework assignments. The results of Chapter 4 provide a portion

of this section’s content.

The state of charge estimation problem is introduced and contextualized against

various applications (e.g. hybrid vehicles, plug-in vehicles, space vehicles, etc.). We

discuss the various categories of estimation methods, including coulomb counting, volt-

age inversion, impedance measurements, and Kalman filters. In particular, we focus

attention to Kalman filter estimation theory and its application to the single particle

model discussed above. Homework problems are assigned to progressively build the

single particle SOC estimation scheme and explore Kalman filters, as described in

Section B.3.

Next we cover state of health (SOH) estimation. First, we provide an overview
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of the salient degradation mechanisms in Li-ion batteries. Then we formulate the

SOH estimation problem as a parameter identification problem. That is, we postulate

that parameters within equivalent circuit models change slowly over time. Our goal is

to identify those parameter values from measurement data using, for example, least

squares identification.

The next topic is charge balancing. Charge balancing is motivated by the desire

to ensure individual cells connected in series do not over-charge or over-discharge.

This situation arises when one can only afford to monitor and control groups of cells,

as opposed to each individual cell. Moreover, the characteristic behavior may vary

slightly from cell to cell. This is especially true for high energy capacity battery

packs which can contain thousands of cells. As such, we introduce passive balancing

techniques (e.g. shunt-resistors or switched capacitors) and active balancing techniques

(e.g. SOC-polling or power electronics). To demonstrate these methods, an example

homework problem is included in Section B.3. We also discuss the charge balancing

concept from Chapter 4 of this dissertation.

The final section of this chapter discusses thermal modeling and management of

batteries. Thermal management is a critical challenge for vehicular battery systems

for several reasons. First, vehicles may encounter a wide range of environments, from

the freezing temperatures of Oslo, Norway to the scorching hot desert regions in the

Middle East. Second, the high charge/discharge rates and tight packaging associated

with vehicle systems can produce elevated temperature levels. Third, temperature has

a direct impact on health degradation and efficiency. Motivated by these challenges,

we introduce the students to lumped thermal models of individual cells. These models

are identified through least squares identification techniques. To close this chapter we

provide an overview of the various thermal management actuation methods and how

they scale from cells to packs.

B.2.4 Vehicle Power Management

The final chapter discusses vehicle power management. This chapter demonstrates how

battery systems integrate within vehicle powertrains. First we review various hybrid

and electric architectures. These include series, parallel, and power-split hybrids.

We also discuss the power electronics and electric motor topologies typically used in

electrified vehicles. Next we discuss hybrid vehicle power management, which seeks

to design control systems which manage the power split between batteries and other

power sources (e.g. IC engine, fuel cell, ultracapacitor). This component is strongly
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Figure B.5 Block diagram of SOC estimation scheme using the single particle model and
a Kalman filter.

based upon the models, problem formulation, and results described in Chapters 2

and 3 of this dissertation. The final topic covers the interaction between electrified

transportation and power grids. Specifically, we discuss consumer-side charge tra-

jectory optimization and power demand prediction for grid-connected PHEVs. The

PHEV/grid interaction material is also based upon an outgrowth of research from this

dissertation [82, 83].

B.3 Example Assignments

This section describes several homework problems which exercise the fundamental tools

developed in lecture. These assignments are the mechanism by which we execute the

third step of our pedagogical philosophy: exercise fundamental tools on application

relevant problems. In this appendix we describe the SOC estimation and charge

balancing problems.

B.3.1 The SOC Estimation Problem

In the battery course the students are instructed to solve the most prominent battery

estimation problem - SOC estimation. In many battery powered systems (e.g. laptops,
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electronic portable devices, and electric vehicles) one typically desires to know the

battery SOC level, which represents the remaining available energy. Unfortunately,

it is often impractical to implement sensors that directly measure the lithium-ion

concentration in the solid material of the electrodes. We do, however, typically have

access to voltage and current measurements. These measurements in combination

with a control-oriented battery cell model allow us to dynamically estimate SOC [163].

A block diagram of the estimation scheme is provided in Fig. B.5.

In this assignment the students apply a linearized version of the single particle

model described in section B.2.2 with a Kalman filter to estimate battery SOC. The

students then learn how Kalman filters can be tuned to tradeoff sensor noise with

modeling errors by injecting Gaussian noise into the measured signals and applying

incorrect initial conditions to the estimator. Consequently, the students learn about

Kalman filtering theory while simultaneously solving a very practical battery systems

problem using physical models developed in class.

B.3.2 The Charge Balancing Problem

A second battery systems and control problem relevant for vehicle applications is

charge balancing. This problem is motivated by the fact that cells connected in series

within battery packs may have unequal charge levels. This situation is problematic

because individual cells can be inadvertently overcharged or over-discharged because

the battery management system considers total battery pack voltage without knowl-

edge of individual cell voltage. The end result is accelerated battery pack degradation

and possibly catastrophic thermal runaway. This situation can be mitigated via a

charge balancing scheme. A survey of such schemes can be found in [101].

In this assignment the students design and simulate a battery management system

that utilizes shunt resistors to balance the voltage levels of two unbalanced cells

connected in series. A schematic of the balancing scheme is shown in Fig. B.6.

The students are instructed to use their creativity to design logic that compares

the individual voltage levels to actuate the switches in a manner that equalizes cell

voltage. Moreover, they are free to design the resistance value of the shunt resistors.

They use simulation results and mathematical arguments to analyze how the shunt

resistor method suffers from an inherent tradeoff between equalization time and power

efficiency. Finally, they discover how voltage balancing does not necessarily balance

SOC, motivating the application of SOC balancing schemes [181].
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Figure B.6 Circuit diagram of shunt resistor equalization circuit.

B.4 Conclusion

This appendix describes a newly developed course on battery systems and control

which has been directly impacted by the present dissertation. Like this dissertation,

the course is focused on system-level modeling, design, and control. The objective of

this courses is to educate a new generation of engineers capable of developing advanced

sustainable transportation systems powered by batteries.

For the first two offerings topics were covered in a conceptual manner. However, we

recognize that student engagement thrives on application case studies and hardware

experiments. In future terms we will add laboratory components to each course.

This equipment will be shared for instruction across multiple courses and research

across multiple teams/departments, thus financially benefiting from high-throughput.

Images of this equipment are provided in Fig. 2.7 and 2.8 of Section 2.1.3. We

envision that the students will solve homework problems via analysis and simulation

first, then apply their designs to the laboratory battery test system. Pedagogically,

these enhancements will marry conceptual analysis with hardware implementation

- effectively increasing the impact and accessibility of each course. Through these

efforts we anticipate a profound impact on job creation in sustainable transportation

systems through education.
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Appendix C

Nomenclature

Symbol Description Units

Afr Effective frontal area of vehicle [m2]

a Vehicle acceleration [m/s2]

an Specific surface area of anode [m2/m3]

Cd Aerodynamic drag coefficient [-]

c(·, ·) Instantaneous cost function

F Faraday’s constant [C/mol]

Fg Planetary gear force [N]

I Current through each cell [A]

Ie Engine inertia [kg·m2]

IM/G1 Motor/generator 1 inertia [kg·m2]

IM/G2 Motor/generator 2 inertia [kg·m2]

Iw Wheel inertia [kg·m2]

i0 Battery pack current [A]

i0,s Exchange current density for side reaction [A/m2]

i1, i2 Cell current [A]

Jg Optimal cost for control policy g [-]

Js Current density of side reaction [A/m3]

K Final drive ratio [-]

MP Molecular weight of product from side reaction [mol/kg]

m Vehicle mass [kg]

np Number of parallel strings of cells [-]

ns Number of cells in series per string [-]

Pbatt Power transfer from battery pack [W]

Qbatt Battery pack charge capacity [A·s]

128



Symbol Description Units

R Number of teeth on ring gear [-]

Rgas Universal gas constant [J/K/mol]

Rbatt Internal resistance of battery pack [Ω]

RSEI Resistance of solid electrolyte interphase (SEI) layer [Ω/m2]

Rtire Tire radius [m]

S Number of teeth on sun gear [-]

SOC Battery state of charge [-]

Te Engine torque [N·m]

TM/G1 Motor/generator 1 torque [N·m]

TM/G2 Motor/generator 2 torque [N·m]

Us,ref Equilibrium potential of side reaction [V]

U(x) Admissible set of controls

Vcell Voltage of individual battery cell [V]

Voc Battery pack open circuit voltage [V]

v Vehicle speed [m/s]

Wfuel Mass flow rate of fuel [g/s]

X Admissible set of states

x Spatial coordinate across cell [m/m]

α Linear objective weight [-]

β Energy price ratio [USD/USD]

(δfilm) δfilm (Spatially averaged) anode-side resistive film

thickness

[pm/m2]

ηgrid Grid-to-PHEV charging efficiency [-]

ηM/G1 Motor/generator 1 power efficiency [-]

ηM/G2 Motor/generator 2 power efficiency [-]

ηs Over potential driving side reaction [V]

κP Conductivity of electrolyte [1/m/Ω]

µroll Rolling friction coefficient [-]

ρ Air density [kg/m3]

ρP Side reaction product density [kg/m2]

φ1, φ2 Solid, electrolyte potential [V]

ωe Engine crankshaft speed [rad/s]

ωM/G1 Motor/generator 1 speed [rad/s]

ωM/G2 Motor/generator 2 speed [rad/s]
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Appendix D

Model Parameters

D.1 PHEV Model

The engine fuel rate, W (Te, ωe), in terms of g/s are provided in Fig D.1 as a function

of engine torque and speed. Figures D.2 and D.3 show the power efficiency contours

of M/G1 and M/G2 respectively as functions of torque and speed. In both plots

the dotted lines indicate torque limits as functions of speed. These constraints are

implemented as described in Section 3.1.2. These empirical models are adapted from

Argonne National Laboratory’s PSAT software program [9].
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Figure D.1 Empirical model of engine fuel rate versus engine speed and torque from
PSAT [9]
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Figure D.2 Empirical model of M/G1 (a.k.a. “generator”) power efficiency versus speed
and torque from PSAT [9]
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Figure D.3 Empirical model of M/G2 (a.k.a. “motor”) power efficiency versus speed and
torque from PSAT [9]
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D.2 Equilibrium Potentials of Battery Electrodes

Section 2.1.2 describes the electrochemical battery model, in which the term Uref,j(θj)

appears in the overpotential equation (2.18). This term represents the equilibrium

potential of each electrode (j ∈ {n, p} corresponds to the negative and positive elec-

trodes, respectively) as a function of that electrode’s bulk SOC, θj . These equilibrium

potential functions were identified from the genetic parameter identification procedure

described in [10] and are provided in Fig. D.4.
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Figure D.4 Equilibrium potentials of the (a) anode and (b) cathode as identified from
the genetic parameter identification procedure in [10].
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D.3 SEI Growth Model Parameters

Table D.1 provides parameter values for each SEI growth model analyzed in the

sensitivity analysis of Section 4.4.5. The first column of parameters shown in Table

D.1 are adopted from [7]. The second column of parameters have been identified to

produce capacity fade trends that match the manufacturer’s cycling and storage data

[150].

Table D.1 SEI Growth Model Parameters for Sensitivity Analysis in Section 4.4.5

Values for map depicted in
Symbol Fig. 2.6 & 4.10(a) Fig. 4.10(b)

i0,s 1.5× 10−6 A/m2 4× 10−8 A/m2

MP 73000 mol/kg 73000 mol/kg
RSEI 7.4 mΩ·m2 7.4 mΩ·m2

Us,ref 0.4 V 0.4 V
κP 1 (m·Ω)−1 1 (m·Ω)−1

ρP 2100 kg/m2 2100 kg/m2

Uref,n(θn) Adopted from [7] Adopted from [150]
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Appendix E

Distribution Convergence via the
Central Limit Theorem

The simulation method in Section 3.3 calculates the PHEV performance characteristics

across a number of randomly generated drive cycles. The stopping criterion in this

appendix seeks to answer the question: how many drive cycles are necessary to ensure

the distribution of simulated PHEV performance characteristics has converged to the

true distribution? Specifically, we seek convergence for the trip cost distribution. The

central limit theorem (CLT) allows us to approximate how many iterations n we must

simulate the study (see Section 3.3) in order that the sample mean is within a fraction

a of the population mean with probability of at least b [182]. Mathematically, the

main result is provided by the following proposition:

Proposition 2. Suppose Ci is a random variable representing the trip cost for the

ith drive cycle simulation. Furthermore, suppose that the Ci’s are independently and

identically distributed with mean E[C] and standard deviation std(C) for the true

population. Then the number of iterations n for which

Pr

(∣∣∣∣ 1
n

∑n
i=1Ci − E[C]

E[C]

∣∣∣∣ ≤ a

)
≥ b (E.1)

is satisfied is given by:

n ≥
[

std(C)

E[C]a
Φ−1

(
b+ 1

2

)]2

(E.2)

Proof. Let us attempt to re-write the left hand side of (E.1) to represent a random

variable with zero mean and unit variance, which will satisfy the key hypothesis of

134



the CLT. This can be accomplished through the following algebraic manipulations:

Pr

(
−a ≤

1
n

∑n
i=1Ci − E[C]

E[C]
≤ a

)
≥ b (E.3)

Pr

(
−anE[C] + nE[C] ≤

n∑
i=1

Ci ≤ anE[C] + nE[C]

)
≥ b (E.4)

Pr

(
−anE[C] ≤

n∑
i=1

(Ci − E[C]) ≤ anE[C]

)
≥ b (E.5)

Pr

(
−anE[C]

std(C)
≤

n∑
i=1

(
Ci − E[C]

std(C)

)
≤ anE[C]

std(C)

)
≥ b (E.6)

Pr

(
−aE[C]√
nstd(C)

≤ 1√
n

n∑
i=1

(
Ci − E[C]

std(C)

)
≤ aE[C]√

nstd(C)

)
≥ b (E.7)

Let us define the random variable in the center of the inequality to be equal to Yn,

which has zero mean and unit variance for all values of n.

Pr

(
−aE[C]√
nstd(C)

≤ Yn ≤
aE[C]√
nstd(C)

)
≥ b (E.8)

The CLT states limn→∞ FYn(y) = Φ(y), where Φ denotes the cdf of a zero mean, unit

variance normal distribution. Therefore, we may approximate the left hand side of

(E.8) by:

2Φ

(
aE[C]√
nstd(C)

)
− 1 ≥ b (E.9)

which uses the property of normal cdf’s Pr(−α ≤ Yn ≤ α) = 2Φ(α) − 1, for some

α ∈ R. Solving for n allows us to arrive at the following criterion:

n ≥
[

std(C)

E[C]a
Φ−1

(
b+ 1

2

)]2

(E.10)

where Φ−1 is the inverse of the zero-mean, unit variance normal cumulative distribution

function.

The exact derivation of (E.10) requires knowledge of the population’s mean E[C]

and standard deviation std(C) beforehand. However we approximate these values

by the sample mean and sample standard deviation since we do not know the true

population metrics exactly. In practice, we run 100 simulations before computing

the stopping condition (E.10) in order to obtain a reasonably accurate estimate and

avoid premature termination. The stopping criterion parameters used in this study
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are a = 0.05 and b = 0.95.
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