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Battery-Health Conscious Power Management
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Abstract— This paper develops techniques to design plug-in
hybrid electric vehicle (PHEV) power management algorithms
that optimally balance lithium-ion battery pack health and energy
consumption cost. As such, this research is the first to utilize
electrochemical battery models to optimize the power manage-
ment in PHEVs. Daily trip length distributions are integrated
into the problem using Markov chains with absorbing states. We
capture battery aging by integrating two example degradation
models: solid–electrolyte interphase (SEI) film formation and the
“Ah-processed” model. This enables us to optimally tradeoff
energy cost versus battery-health. We analyze this tradeoff to
explore how optimal control strategies and physical battery
system properties are related. Specifically, we find that the
slope and convexity properties of the health degradation model
profoundly impact the optimal charge depletion strategy. For
example, solutions that balance energy cost and SEI layer growth
aggressively deplete battery charge at high states-of-charge
(SoCs), then blend engine and battery power at lower SoCs.

Index Terms— Batteries, electrochemical modeling, optimal
control, plug-in hybrid vehicles, power management, stochastic
control.

I. INTRODUCTION

A. Motivation

THIS paper develops techniques to design supervisory
control algorithms that manage the tradeoff between

battery pack health and energy consumption cost in plug-in
hybrid electric vehicles (PHEVs). The mechanisms responsible
for battery degradation are widely-varying, complex, and not
universally captured into one simple, accurate model [1]. As
such, we pursue techniques for power management that incor-
porate a class of degradation models. This paper leverages both
stochastic control theory and reduced electrochemical battery
models to achieve its goal. Given experimentally validated
degradation models, these algorithms have the potential to

Manuscript received April 25, 2011; accepted July 19, 2011. Manuscript
received in final form February 28, 2012. This work was supported in part
by the National Science Foundation Graduate Research Fellowship Program.
Recommended by Associate Editor S. Varigonda.

S. J. Moura is with the Mechanical and Aerospace Engineering Department,
University of California San Diego, San Diego, CA 92093-0411 USA.

J. L. Stein is with the Department of Mechanical Engineering, University
of Michigan, Ann Arbor, MI 48109-2133 USA.

H. K. Fathy is with the Department of Mechanical and Nuclear Engi-
neering, Penn State University, University Park, PA 16802 USA (e-mail:
hkf2@psu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2012.2189773

increase the useful life and long-term energy capacity of bat-
tery packs. This is critically important for large-scale battery
energy storage systems - ranging from PHEVs to stationary
grid-scale storage - where replacement cost, bulk, and cycle
life are inhibiting factors associated with the uncertainty in
maintaining safe operation. As such, this paper’s overall goal
is to design tools for solving power management algorithms
that manage battery-health degradation in some optimal sense.
We pursue this goal specifically for a power-split hybrid
configuration with a battery pack consisting of lithium-ion
cells. Moreover, daily trip length distributions are explicitly
accounted for the problem formulation by applying Markov
chains with absorbing states.

Managing degradation is particularly challenging for two
reasons. First, the most critical damage mechanisms are still
not fully understood. As such, we pursue power manage-
ment formulation techniques that incorporate broad ranges of
degradation models. Second, the dynamics are simulated using
computationally intensive electrochemistry-based models that
are inconducive to control design. This fact is underscored in
the context of this paper, which leverages dynamic program-
ming techniques and the associated “curse of dimensionality.”
Moreover, PHEV power management is, by itself, a non-
trivial problem that requires the solution of an optimal control
problem with multiple inputs, stochastic dynamics, state and
control constraints. Therefore, we extend our previous research
on PHEV power management [2], [3] and lithium-ion battery-
health degradation simulation and model reduction [4] to solve
the present problem with an electrochemical battery model.
The resulting control algorithms tradeoff energy consumption
cost with battery life by combining, for the first time, dynamic
PHEV models, stochastic drive cycle models with trip length
knowledge, and reduced electrochemical battery degradation
models.

B. Summary of Prior Literature

Two general categories of research provide the back-
ground for battery-health conscious hybrid vehicle power
management.

1) Electrochemical Battery Modeling: First, a large body
of literature exists on modeling degradation in lithium-ion
batteries, including phenomena such as solid–electrolyte inter-
face (SEI) film formation [5], [6], lithium plating [7], thermal
damage [8], and mechanical degradation [9], [10]. Excellent
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reviews by Aurbach [6] and Hatzell [11] survey these various
mechanisms in depth. The key challenge to developing a singu-
lar, comprehensive, experimentally valid degradation model is
the shear multiplicity of complex and interconnected degrada-
tion phenomena. As such, we seek to develop tools for design-
ing the power management algorithms for battery-health.

As a case study, we examine a model particularly well-
suited for model reduction and control applications that
account for lithium diffusion dynamics, intercalation kinetics,
and electrochemical potentials developed by Doyle, Fuller, and
Newman [12], [13]. Ramadass et al. [5] added a degradation
component to this model by including an irreversible solvent
reduction reaction at the anode-side SEI that generates a
resistive film, which consumes cyclable lithium. This mech-
anism has been identified as one of the chief contributors
to capacity and power fade, whose effect is also represen-
tative of other mechanisms. We also consider the so-called
“Ah-processed” model, which has been empirically identified
as an accurate representation of battery-health for LiFePO4
cells under certain cycling conditions [14], [15]. Since accurate
battery-health modeling is an ever-evolving field, we develop a
battery-health-conscious power management framework that is
adaptable to a class of models and investigate SEI layer growth
and Ah-processed as two particular case studies in this paper.

2) Vehicle Power Management: The second relevant body
of research considers the general HEV power management
problem. A broad spectrum of optimal control techniques
has been developed to solve the power management problem.
Examples include equivalent consumption minimization strat-
egy [16], model predictive control [17], deterministic dynamic
programming [18], [19], and stochastic dynamic programming
[2], [20]. These strategies are optimized for objectives, such as
fuel consumption [16]–[20], emissions [21], drivability [22],
and/or combined fuel/electricity consumption [2]. For PHEVs,
several studies (e.g., [19] have identified that the optimal strat-
egy rations battery charge such that it reaches the minimum
value exactly when the trip terminates. However, exact a priori
knowledge of drive cycle behavior and length is typically not
available.

Our focus is to connect these two previously disparate bod-
ies of literature. Specifically, we combine stochastic dynamic
programming with degrading electrochemical battery models
and distributions of daily trip lengths. Several more recent
studies have considered the HEV power management problem
for extending battery life. These studies focus on depth of dis-
charge control [23], [24], power electronics management [25],
and temperature management [26]. To present, however, no
studies have applied models that explicitly account for specific
electrochemical degradation mechanisms in the context of an
optimal control framework, to the authors’ knowledge.

C. Main Contributions of this Paper

The main goal of this paper is to extend and connect
the above research on battery-health management and PHEV
power management by adding three important and original
contributions. First, we directly model daily vehicle trip
lengths using a Markov chain with a terminal state, iden-
tified from real-world survey data. Second, we formulate a

TABLE I

GENERAL PHEV MODEL PARAMETERS

Vehicle
EPA classification Midsize Sedan
HEV configuration Power-split
Base curb Weight 1471 kg

Engine

Type Gasoline Inline 4-cylinder
Displacement 1.5 L
Max power 57 kW @ 4500 RPM
Max torque 110 N-m @ 4500 RPM

Machines
Type Permanent Magnet AC
M1 Max power 30 kW @ 3000–5500 RPM
M2 Max power 35 kW @ 1040–5600 RPM

Battery pack

Cell chemistry LiFePO4
Energy capacity 5 kWh for pack
Charge capacity 2.3 Ah per cell
Number of cells 660

multiobjective optimal control problem that seeks to manage
power flow in a power-split PHEV to minimize both health
degradation and energy consumption cost. Third, we analyze
the fundamental tradeoffs between energy consumption cost
and battery-health degradation for two important degradation
models. This paper extends our previous work [3] by incorpo-
rating an electrochemical model into the control design process
(Section II-B1) and studying the charge-processed degradation
model (Section VI). The results of this research provide useful
insight into health-conscious power management of lithium-
ion battery storage systems.

D. Outline

The outline of this paper is as follows. Section II develops
the system models, including the PHEV, battery, health degra-
dation mechanisms, and drive cycle dynamics. Section III for-
mulates the optimal control problem. Section IV describes the
control synthesis and analysis procedure. Sections V and VI
present and discuss the main results for the two respective
case studies, SEI layer growth, and Ah-processed. Finally,
Section VII summarizes this paper’s main contributions and
conclusions.

II. MODEL DEVELOPMENT

The PHEV modeled in this paper has a power-split configu-
ration based upon THS-II [27], with a lithium-ion battery pack
enlarged to a 5-kWh energy capacity for plug-in operation
[28]. General parameters for the vehicle are provided in
Table I. A schematic of the PHEV system, the supervisory
controller, and the relevant signals is given in Fig. 1. The state
variables include engine speed, vehicle speed, battery state-of-
charge (SoC) and acceleration. Acceleration is governed by a
Markov chain, which captures drive cycle dynamics, described
in Section II-E. We design this Markov chain to explicitly
account for real-world daily trip length distributions - which
is relevant for PHEVs that will potentially recharge overnight.
In addition, we also include a battery-health degradation model
based upon an electrochemical anode-side film formation
mechanism and Ah-processed. In the following sections, we
summarize the dynamic phenomena and governing equations
for these models. Please reference the nomenclature section in
the appendix for variable definitions.
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Fig. 1. PHEV powertrain system model. The supervisory controller provides
the optimal engine, M1, and M2 torque inputs as a function of the PHEV states
to minimize energy consumption and battery degradation.

A. PHEV Model

1) Mechanical Subsystem: The planetary gear set is at the
heart of the power-split configuration. This three-port device
couples the engine, machine 1 (M1), and machine 2 (M2)
crankshafts. The dynamic-algebraic equations, that describe
this device, are governed by Euler’s law and a kinematic
constraint relating component speeds [29]

⎡
⎢⎢⎣

Ie 0 0 R + S
0 IM1 0 −S
0 0 I ′

M2 −R
R + S −S −R 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ω̇e

ω̇M1
ω̇M2
Fg

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Te

TM1
T ′

M2
0

⎤
⎥⎥⎦ . (1)

The terms I ′
M2 and T ′

M2 are effective inertia and torques

I ′
M2 = IM2 + (Iw + m R2

tire)

K 2 (2)

T ′
M2 = TM2 + Froad Rtire

K
(3)

Froad = 0.5ρCd Afrv
2 + μrollmg (4)

where Froad includes viscous aerodynamic drag and rolling
friction forces.

Liu [29] demonstrated that the differential-algebraic equa-
tions that govern all possible power-split designs satisfy a
universal matrix format. This format has the special property
that one may analytically solve for the state variables without
explicitly determining the gear force F or inverting the matrix
on the LHS of (1). This process results in two degrees-of-
freedom, since there exist three ordinary differential equations
and one algebraic constraint.

The control inputs include engine torque Te and M1 torque
TM1. The engine is allowed to shutoff by considering an
“engine off” torque input command, which causes the engine
speed to drop to zero within the span of one supervisory
control time step (one second in this case). When positive
torque is commanded from the engine while it is in the shutoff
state, the engine is brought back to idle speed within one

supervisory control time step. During both engine-on and
engine-off modes, and transitions in between, the equations
in (1)–(4) must be respected. For example, ω̇e = 0 when
the engine remains off. When the engine is commanded to
turn on, then ω̇e must equal the appropriate value such that
it reaches idle speed in the next simulation time step. M2
torque TM2 is determined by the states and control inputs,
since ω̇M2 is proportional to the acceleration state a according
to ω̇M2 = aK/Rtire. Complete details on the modeling of
engine startup and shutdown are described in [30].

2) Electric Subsystem: Both M1 and M2 interface with the
battery pack, as shown in Fig. 1. These devices are modeled
by power efficiency maps supplied by the Argonne National
Laboratory’s Powertrain System Analysis Toolkit [31]. The
machine inertial dynamics are accounted for in (1), while their
significantly faster inductive dynamics are approximated as
instantaneous. The electrical powertrain also consists of power
electronics. However, their dynamics are also ignored since
they exceed the 1-Hz bandwidth typically considered in power
management studies. Nonetheless, their power transfer losses
are accounted for in the machine efficiency maps. Hence, the
governing equations for the electric subsystem are given by

Pbatt = TM1ωM1η
kM1
M1 + TM2ωM2η

kM2
M2 (5)

ki =
{

−1, Tiωi > 0

1, Tiωi ≤ 0
for i = {M1, M2}. (6)

B. Battery Models

Two battery models are considered in the control design and
analysis process. A high-fidelity electrochemical-based model
is used for constraint satisfaction and closed-loop simulation.
A low-order equivalent circuit model is used for control
optimization, since it has one state variable. The parameters of
both models have been identified experimentally on a custom-
built hardware-in-the-loop setup, for commercial Li-ion cells
containing LiFePO4 cathode chemistries [32]. Interested read-
ers may refer to [33] for further details on the genetic
optimization procedure used to identify the parameters of the
electrochemical model. In the following, we summarize the
electrochemical battery model and equivalent circuit model.

1) Electrochemical Battery Model: The electrochemical
battery model captures the spatiotemporal dynamics of
lithium-ion concentration, electrode potential in each phase,
and the Butler–Volmer kinetics that govern the intercalation
reactions. A schematic of the model is provided in Fig. 2.
This cross section displays three regions: a negative elec-
trode (typically a lithium-carbon material), the separator, and
a positive electrode (typically a lithium-metal-oxide). Each
region is denoted by the subscript j ∈ {n, s, p} represent-
ing the negative electrode, separator, and positive electrode,
respectively. The positive electrode material varies widely
across manufacturer designs. However, lithium iron phosphate
(LiFePO4) cells were used to identify this electrochemical
model. Each electrode region contains two phases, the porous
solid and electrolyte. The separator has an electrolyte phase
only.
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Fig. 2. Structure of the electrochemical lithium-ion battery cell model.

Mathematically, the electrochemical model structure is a
coupled set of partial differential-algebraic equations. Diffu-
sion of lithium ions in the solid c1, j (r, t) is idealized by spher-
ical diffusion. Diffusion of lithium ions across the electrolyte
c2, j (x, t) is modeled by linear diffusion. Respectively, these
phenomena are represented mathematically by

∂c1, j (r, t)

∂ t
= D1, j

r2

∂

∂r

(
r2 ∂c1, j

∂r

)
(7)

ε2, j
∂c2, j (x, t)

∂ t
= De f f

2
∂2c2, j

∂x2 + 1 − t+

F
Jj (8)

where the variable Jj represents the local volumetric transfer
current density due to Li-ion intercalation at the SEI.

The electric potential of each phase (solid: φ1, j , elec-
trolyte: φ2, j ) within each region is determined by a parameter-
distributed form of Ohm’s law. In the solid and electrolyte, this
is given, respectively, by

Jj (x, t) = ∂

∂x

(
σ eff

j
∂φ1, j

∂x

)
(9)

Jj (x, t) = ∂

∂x

(
κeff ∂φ2, j

∂x

)
+ ∂

∂x

(
κ

∂ ln c2, j

∂x

)
. (10)

The first terms in each equation above represent the flux due
to potential gradients. The second term in (10) represents the
flux due to ionic concentration gradients in the electrolyte.

The intercalation current Jj is governed by Butler–Volmer
kinetics in (11), where η j is the local overpotential defined
by (12)

Jj (x, t) = a j i0, j sinh

(
αa, j F

RgasT
η j

)
(11)

η j (x, t) = φ1, j − φ2, j − Uref, j (θ j ) − Jj

an
Rfilm. (12)

The term Uref, j is the reference potential of the corresponding
electrode, and is a function of the bulk electrode SoC θ j . Note
that many comparable models utilize surface SoC as the argu-
ment for reference potential [34]–[37]. Extensive simulation
analysis reveals this ultimately produces negligible difference
in cell voltage within the allowable PHEV SoC range consid-
ered here: (0.25 ≤ SoC ≤ 0.95). From a supervisory control

systems perspective, we define the total battery SoC to be the
spatially averaged SoC of the anode.

The model causality (i.e., input/output variables) is deter-
mined by the boundary conditions. For example, in galvano-
static mode, the input to this model is current I (t), which
enters as a Neumann boundary condition on the solid potential
at the current collectors, as shown in (13). The output is
terminal voltage Vcell(t), given by the potential difference
between the cathode and anode at the current collectors, as
shown in (14)

I (t) = −Aσ eff ∂φ1

∂x

∣∣∣∣
x=0

= Aσ eff ∂φ1

∂x

∣∣∣∣
x=L

(13)

Vcell(t) = φ1(L, t) − φ1(0, t). (14)

In potentiostatic mode, voltage serves as the input by applying
(14) as the boundary condition and measuring (13) as the
output. In this manner, the causality can be switched according
to which boundary condition is externally defined.

Numerically, the model is solved by the following four
steps.

1) Represent the solid diffusion PDEs (7) using Padé
approximation, which reduces the model dynamic order.

2) Quasilinearize the nonlinear Butler–Volmer equation
(11) around the overpotential at each time step, which
reduces the index order.

3) Represent all PDEs as a set of ODEs using finite
differences.

4) Solve the resulting system of linear differential-algebraic
equations. Readers interested in the complete details of
the electrochemical battery model reduction and numer-
ical solution should consult [33], [38].

2) Equivalent Circuit Model: Although the electrochemical
model accurately predicts the spatiotemporal concentration
and potential dynamics of a battery cell, its complex structure
is not easily conducive to optimal control. This fact motivates
the use of a reduced equivalent circuit model with a single
state. This model idealizes the battery as an open-circuit
voltage source in series with an internal resistance. Both elec-
trical elements are continuous functions of SoC. Electric power
at the battery terminals Pbatt is the input. The conservation of
power law indicates

Voc I = I 2 Rbatt + Pbatt (15)

and current is related to SoC through an integrator
˙SoC = −I/Qbatt. Using the quadratic equation results

in the following dynamical battery systems:

˙SoC = − Voc − √
V 2

oc − 4Pbatt Rbatt

2Qbatt Rbatt
. (16)

Note that (15) has two solutions for I . However, only one
of these two solutions is physically feasible for negative
power demands and provides the desired current with minimal
resistive losses for nonnegative power demands. We, therefore,
adopt this unique solution for battery current in (16).

To calculate the current I and voltage Vcell across each
cell, one must know the battery pack configuration. That
is, how many cells are arranged in series to produce the
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desired pack voltage, and how many parallel strings exist
to achieve the desired energy capacity. Here, we assume the
use of 2.3 Ah 26650 format cells to be consistent with the
experimental batteries used to identify the parameters of the
electrochemical model in Section II-B1 (see [33] for details on
the parameter identification process). The battery pack consists
of ns = 110 cells in series, and n p = 6 parallel strings

I = ˙SoC · Qbatt

n p
(17)

Vcell = (Voc − I Rbatt)

ns
. (18)

Each cell is assumed to be identical or properly balanced
through appropriate charge equalization schemes [39]. The
current through each cell is used to calculate the anode-
side film growth rate discussed in Section II-C. The voltage
calculation is used to ensure each cell does not exceed safe
operating limits - which we implement mathematically as
constraints in the problem formulation in Section III.

Temperature dynamics and their impact on battery-health
is also a critical factor to consider [40]–[42]. In this paper,
we constrain the scope to batteries whose temperature is con-
trolled around 25 °C through appropriate thermal management
systems. Future work will investigate thermal estimation [43]
and supervisory control strategies, which split power among
the electric machines and cooling systems using coupled
thermal-electrochemical battery models.

C. Anode-Side SEI Growth Model of Battery Aging

One important degradation mechanism that impacts battery-
health is the formation of a resistive film at the SEI in the
anode [5], [6], [44]. This mechanism effectively consumes
cyclable lithium ions and increases the internal impedance.
The exact chemical-side reaction depends on the chemistry of
the electrode and electrolyte. Equations (19)–(24), developed
by Ramadass et al. [5] argue that a simple and general method
for modeling capacity loss is to assume an irreversible solvent
reduction reaction of the following form:

S + Li+ + e− → P (19)

where S denotes the solvent species and P is the
product.

As a result of this irreversible-side reaction, the products
form a film at the solid/electrolyte interface, which has a
time and spatially varying thickness δfilm(x, t) across the
anode. This irreversibly formed film combines with the SEI
resistance RSEI to compose the total resistance at the SEI as
follows:

Rfilm(x, t) = RSEI + δfilm(x, t)

κP
(20)

where κP , denotes the conductivity of the film, x is the spatial
coordinate, and t is time. The state equation corresponding
to the growth of film thickness, due to the unwanted solvent
reduction described in (19), is given by

∂δfilm(x, t)

∂ t
= − MP

anρP F
Jsd(x, t). (21)

In (21), MP , an , ρP , and F represent the product’s molecular
weight, specific surface area, mass density, and Faraday’s con-
stant, respectively. The term Jsd denotes the local volumetric
current density for the side reaction, which is governed by
Butler–Volmer kinetics. If the solvent reduction reaction is
irreversible and the variation of Li-ion concentration in the
electrolyte is small, then we may approximate Jsd by the Tafel
equation [45]

Jsd(x, t) = −i0,sane

( −0.5F
RgasT ηsd(x,t)

)
. (22)

In (22), i0,s , R, and T , respectively, denote the exchange
current density for the side reaction, universal gas constant,
and cell temperature. The term ηsd represents the side reaction
overpotential, which drives the solvent reduction reaction in
(19). The overpotential is calculated according to

ηsd(x, t)=φ1(x, t)− φ2(x, t)− Uref,s − Jtot(x, t)

an
Rfilm(x, t).

(23)

The variables φ1 and φ2 represent solid and electrolyte poten-
tials, respectively. The symbol Uref,s denotes the equilibrium
potential of the solvent reduction reaction, which we assume
to be constant. The total intercalation current Jtot represents
the flow of charge exchanged with the anode-side electrolyte.
Specifically, the total intercalation current Jn in the anode is
given by the sum of current between the solid and electrolyte
(J1), and the solvent reduction reaction and electrolyte (Jsd),
that is

Jtot = Jn + Jsd. (24)

Equations (20)–(24) encompass the film growth subsystem
of the Li-ion battery cell model, adopted from [5]. This subsys-
tem connects to the remainder of the battery model (7)–(14)
through the total intercalation current Jn and potentials φ1
and φ2.

Although this model captures complex physical phenomena,
such as coupled diffusion, intercalation, and film growth
processes, its complexity makes control design for health
management difficult. Therefore, the present research seeks
to use the high fidelity model to generate simpler models for
the purposes of control design. In the following, the anode-
side film growth degradation dynamics will be approximated
by a nonlinear static function, which enables optimal control
design. Once the optimal control laws are derived from this
approximate model, we simulate the closed-loop system with
the full electrochemical model.

To acquire insight on the relationship between battery cell
SoC, current, and film growth rate, consider an ideal fresh
cell, that is δfilm(x, 0) = 0. Suppose all the intercalation
currents, overpotentials, and concentration profiles are constant
with respect to space and correspond to zero initial applied
current. Starting from these initial conditions, we simulate the
electrochemical battery cell model for different initial SoCs
and applied current levels and measure the instantaneous film
growth rate. From this data, we produce a static relationship
mapping cell SoC and applied current to the spatially averaged
film growth rate δ̇film, shown in Fig. 3. This particular model
was derived from previously reported experimental results in
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Fig. 3. Static approximation of film growth rate versus battery pack current
and SoC utilized for PHEV power management control synthesis.

the literature [5]; however, the authors are currently pursuing
their own models from experimentally obtained empirical data.
The map indicates that film growth rate increases with cell
SoC. The film growth rate also increases as the discharge cur-
rent becomes increasingly negative, i.e., for increasing charge
current. Finally, film grows when zero current is applied,
indicating that aging occurs even when the cells are not in use -
a fact previously reported in the literature [44] and commonly
seen in practice. A key question, we revisit after obtaining the
optimal control solutions is what insight about the structural
properties of this map can be leveraged to design supervisory
power management controllers that reduce film formation in
PHEV battery packs?

D. Charge-Processed Model of Battery Aging

In this section, we consider battery-health degradation
in terms of a commonly seen empirical result found in
numerous experimental studies [14], [15]. Specifically, this
model assumes battery SOH degrades in direct proportion to
the “charge-processed” through the battery. Physically, this
implies that capacity fade mechanisms are insensitive to local
SoC levels, depth of discharge, or electrode lithiation rates.
Instead, these mechanisms progress in proportion with the inte-
grated number of lithium ions intercalated or de-intercalated
into the electrode. Generally speaking, this model suggests
batteries degrade as their “mileage” increases. Mathematically,
this means

Capacity/Power Fade ∝
∫ t

τ=0
|I (τ )| dτ. (25)

Both experimental studies [14] and [15] utilized C-LiFePO4
cells, which is the chemistry we mostly focus on in this
paper. However, they also cycled these cells under relatively
mild conditions. These conditions are summarized in Table II.
In this table, one can see that Peterson et al. [14] applied
scaled PHEV driving cycle loads. However, these loads were
limited between −3C and +1C, which is significantly less than
the 30C maximum continuous discharge rate quoted by the
manufacturer [32]. Low C-rates (namely C/2) also characterize
the experimental results found by Wang et al. [15], which use

TABLE II

CYCLING CONDITIONS FOR EXPERIMENTAL STUDIES ON C-LiFePO4

CELLS RELATING Ah-PROCESSED AND CAPACITY FADE

Reference C-rate Depth of
discharge Temperature

Peterson
et al. [14]

Scaled PHEV
drive cycle loads

with C-rates
ranging from
−3C to +1C

34 to 97%
Ambient room

temp.
(24–27 °C)

Wang
et al. [15]

Constant current
at C/2 10 to 90% 60 °C

cells from the same manufacturer. In contrast to the first inves-
tigation, this paper cycled the cells at an elevated temperature
of 60 °C, which will induce accelerated capacity fade.

Although, it remains an open question whether capacity
fade is correlated with SoC or depth of discharge for high
C-rates, we consider Ah-processed as a very simple model for
battery-health degradation. That is, in Section VI we design
PHEV supervisory control algorithms which optimally blend
fuel and battery energy in a manner that minimizes the total
Ah-processed through each cell.

E. Drive Cycle Model

An important new contribution, we apply toward plug-in
HEV power management is to model drive cycles with a first-
order Markov chain containing a terminal state. Namely, the
terminal state can represent “vehicle off,” which signifies when
the drive cycle terminates and no more cost accrues. This
allows us to model distributions of drive cycle length directly.
As demonstrated by O’Keefe and Markel [19], drive cycle
length is critically important for the plug-in HEV power man-
agement. They demonstrate that the optimal strategy rations
battery charge through blending engine and battery power
such that SoC reaches the minimum level exactly when the
trip terminates, if the drive cycle is known a priori. This is
in contrast to HEV power management, where battery SoC
is typically sustained around a fixed value. This modeling
approach is not new, and has been applied in the context of
HEV power management [22]. Yet, its utility is particularly
well suited for plug-in applications.

Mathematically, the Markov chain is given by

pijm = Pr(ak+1 = j |ak = i, vk = m) (26)

pitm = Pr(ak+1 = t|ak = i, vk = 0) (27)

1 = Pr(ak+1 = t|ak = t, vk = 0) (28)

which maps acceleration-velocity pairs to a probability
distribution over acceleration in the next time step (26), (27).
These transition probabilities are identified from certification
cycles and real-world micro-trip data [2]. Fig. 4 visually
demonstrates the transition probabilities at zero vehicle speed
where there exists non-zero transition probabilities to the
absorbing state for certain velocity-acceleration pairs. When
acceleration reaches the terminal state t , it remains in that
state with probability one (28) and no further cost is incurred.
In other words, the vehicle is off and the trip is over.
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Fig. 5 demonstrates the distribution of trip length for the
Markov chain, in which the transition probabilities pitm in
(27) have been optimized to fit data from the 2009 National
Household Travel Survey (NHTS) [46]. Specifically, the prob-
ability of transition to “vehicle off” is zero unless the vehicle
is completely stopped (vk = 0) and has zero or small negative
acceleration. Indeed, it is not possible to match the Markov
chain to an arbitrary distribution of trip length without adding
distance as a state (note some modeling error for low-trip
lengths). If a distance-state variable was added, then it would
produce an exponential increase in computational complexity.
This approach integrates a reasonably accurate representation
of real-world trip lengths without requiring an extra state - a
key benefit.

In the main results presented in Sections V and VI, we
evaluate each controller across a library of 1000 drive cycles
generated from the Markov chain. This process enables us to
quantify the performance metrics across a distribution of drive
cycle characteristics, rather than single certification cycles.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The control objective is to synthesize a static function,
which maps the PHEV state variables to the engine and M1
torque inputs such that both energy consumption cost (i.e.,
fuel and grid electricity) and battery-health degradation are
minimized. We formulate this as a shortest-path1 stochastic
dynamic programming problem

min: J g = lim
N→∞ E

[
N∑

k=0

c(xk, uk)�t

]
(29)

s.t. xk+1 = f (xk, uk , wk) (30)

x ∈ X (31)

u ∈ U(x) (32)

1The shortest-path term [47] is used for Markov decision processes that
contain a terminal state in the Markov chain, such as our drive cycle model.
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Fig. 5. Trip length distribution for 2009 NHTS data and the identified Markov
chain.

where J g is the cost for a given control policy g, c(xk, uk)
is a function that maps the state and control vectors to an
instantaneous cost, and �t is the time step size. The system
dynamics summarized in discrete-time by (30) are provided
in Section II, with a one-second time step (�t = 1). This
optimization is subject to sets of state and control constraints,
X and U(x), respectively, described in detail in Section III-B.
Our objective is to solve for the optimal control policy g∗,
which satisfies

g∗ = arg inf
g∈G

J g (33)

where G denotes the set of all feasible control policies.

A. Objective Function

The minimization of the both energy consumption cost
and battery-health is, generally speaking, a multiobjective
optimal control problem. For simplicity, we combine both
objectives into a scalar objective with linear weighting α, given
mathematically by

c(xk, uk) = α · cE (xk, uk) + (1 − α) · cH (xk, uk) + cSoC(xk)

(34)

where the individual objective functions are given by

cE (xk, uk) = βWfuel + −VocQbatt ˙SoC

ηEVSE
(35)

cH (xk, uk) = δ̇film(I, SoC) OR

∣∣∣∣
I

Imax

∣∣∣∣ (36)

cSoC(xk) =
{

αSoC(SoCcs−SoC)
SoCmax−SoCcs

, SoC ≤ SoCcs

0, else.
(37)

Equation (35) represents the instantaneous energy
consumption cost in USD, which includes both fuel
and grid charging costs. The first term of (35) quantifies
PHEV fuel consumption, while the second term quantifies
electricity consumption, both in terms of MJ per time
step. The coefficient β makes it possible to carefully study
tradeoffs between the two. Specifically, Wfuel represents the
fuel consumption rate in grams per time step. Similarly, the
second term of (35) represents the instantaneous rate of change
of the battery’s internal energy. Dividing this change in stored
battery energy by a constant charging efficiency ηEVSE = 0.98
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(which represents losses from the power electronics in the
electric vehicle supply equipment) furnishes an estimate of the
amount of energy needed from the grid to replenish the battery
charge consumed during the trip. Note that the second term
is positive when the PHEV uses stored battery energy and
negative during regeneration. Hence, there exists a reward for
regeneration that offsets the need to consume grid electricity.
The magnitude of this reward depends on the parameter β,
which represents the relative price of gasoline per MJ to the
price of grid electricity per MJ is defined as follows:

β = Price of Gasoline per MJ

Price of Grid Electricity per MJ
. (38)

We refer to this parameter as the “energy price ratio,” and
use it to examine the tradeoffs between fuel consumption and
electricity consumption in PHEVs. Throughout this paper, we
use β = 0.8, consistent with the average energy prices in
June 2010, namely $2.73 USD per gallon of gasoline [48]
and $0.094 USD per kWh of electricity [49].

Equation (36) represents one of the two types of battery-
health models: the instantaneous anode-side SEI film growth,
characterized by the map depicted in Fig. 3, or the normalized
magnitude of applied current in a single battery cell. In the
following sections, we consider PHEV power management
controllers that minimize both of these measures of health
degradation. In principle, other degradation models may also
be included here. Additionally, both objectives are normalized
by scaling the range of their natural values to values between
zero and one.

Equation (37) invokes a linear penalty when the SoC falls
below the charge sustaining threshold, SoCcs. The parameter
αSoC is a penalty weight. The inclusion of this term produces
the charge sustaining behavior, we desire once the minimum
SoC value is reached.

We vary the weighting α in (34) between zero and one to
obtain the convex subset of the Pareto optimal control policies.
The complete Pareto optimal set would require multiobjective
dynamic programming techniques, such as those developed
in [50]. Henceforth, we refer to the convex subset of Pareto
optimal solutions as, simply, the Pareto set - although this is
admittedly an abuse of terminology.

B. Constraints

In addition to minimizing the aforementioned objectives,
the power management algorithm satisfies constraints on both
the states and control actions. These constraints correspond
to physical operating limits, zones of safe operation, and
actuation limits. Rate of change constraints are not considered
here, although they can be easily added in this formulation.
The state constraints are given by

ωe,min(Te) ≤ ωe ≤ ωe,max (39)

ωM1,min ≤ ωM1 ≤ ωM1,max (40)

ωM2,min ≤ ωM2 ≤ ωM2,max (41)

SoCmin ≤ SoC ≤ SoCmax. (42)

Minimum engine speed is equal to idle speed when the engine
is on, which is typically enforced for combustion stability,

noise, vibration, and harshness. Minimum engine speed is zero
otherwise. The minimum M1 speed constraint also produces an
interesting effect in a power-split configuration. If the engine
is off, then ωM1 will violate its minimum value if vehicle
speed, which is proportional to ωM2, is sufficiently high, due
to the kinematic relationship in (1). Consequently the engine
must turn on for vehicle speeds greater than 36 mph, even
when sufficient battery charge exists to run in all-electric
mode. This constraint partly motivates the need for a dual-
model power-split where all-electric operation is possible at
high speeds [29].

The control constraints are given by the following:
Te,min ≤ Te ≤ Te,max(ωe) (43)

TM1,min(ωM1) ≤ TM1 ≤ TM1,max(ωM1) (44)

TM2,min(ωM2) ≤ TM2 ≤ TM2,max(ωM2) (45)

Vcell,min ≤ Vcell ≤ Vcell,max (46)

Icell,min ≤ Icell ≤ Icell,max. (47)

The minimum M2 torque is determined by two constraints:
saturation limits on M2 and the maximum battery pack volt-
age, which can be violated if too much regenerative power is
supplied to the battery at, for example, high SoC levels. Hence,
the minimum M2 torque is a function of several states and
control inputs TM2,min = TM2,min(SoC, ωM1, TM1, ωM2). The
residual M2 torque after applying these constraints is provided
by hydraulic braking.

To enforce both the state and control constraints, we apply
the following methods. For all state and control pairs, we
simulate the subsequent state using (30) and the full elec-
trochemical model. If any constraints are violated then the
corresponding control inputs are removed from the set of
admissible controls, for the given state. This process generates
the set of admissible controls U(x) for each state, which can
be computed offline from the stochastic dynamic programming
algorithm, as described in Section IV.

C. Numerical Techniques

This section presents the numerical techniques used to
derive the SDP feedback controllers.

The SDP problem, which is framed as an infinite-horizon
shortest-path problem, is solved via modified policy iteration,
where the policy evaluation step is approximated through
successive value iterations. This algorithm has the property
that convergence to the optimal policy occurs in finite time
[47]. The approach begins with a uniform discretization of
the admissible state and control input sets, X and U(x). This
discretization makes the optimal power management problem
amenable to computer calculations, but generally produces
suboptimal results. For a very thorough study of various
discretization techniques, interested readers are referred to
[51]. We use the symbols X and U(x) to refer to both the
continuous- and discrete-valued state and control input sets
for ease of reading. Given the discrete-valued sets, we apply
a modified policy iteration algorithm to compute the optimal
power management cost function and policy. This algorithm
consists of two successive steps, namely, policy evaluation
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and policy improvement, repeated iteratively until conver-
gence. For each possible PHEV state, the policy iteration step
approximates the corresponding “cost-to-go” J , which may
be intuitively interpreted as the expected cost function value
averaged over a stochastic distribution of drive cycles starting
at that state. The policy improvement step then approximates
the optimal control policy g∗, corresponding to each possible
PHEV state. This process iterates until convergence. More
details on the implementation of this algorithm can be found
in [30]. The following sections present the policy iteration and
policy improvement steps in further detail.

1) Policy Evaluation: The policy evaluation step computes
the cost-to-go for each state vector value, x , given a control
policy, g. This computation is performed recursively as shown
in (48)

Jn+1(x) = c(x, u) + Ea [Jn( f (x, u))] . (48)

The cost-to-go J is guaranteed to be finite because the system
will reach the absorbing state (i.e., vehicle-off) in finite-
time with probability one and incur zero cost henceforth.
The expectation is taken over vehicle acceleration a, whose
dynamics are governed by a Markov chain representing drive
cycle behavior (see Section II-E). The index n in the above
recurrence relation represents an iteration number, and the
recurrence relation is evaluated iteratively for all state vector
values in the discretized set of admissible states, X . In general,
the cost-to-go values within the expectation operator must be
interpolated because f (x, u) will never generate the exact
values in the discrete-valued state set X . The true cost-to-
go for a given control policy must satisfy Jn = Jn+1. As
such, we iterate (48) until one of the two possible conditions
are satisfied: 1) the infinity-norm of the normalized difference
between Jn and Jn+1 fall below a threshold value and 2) a
finite number of iterations are reached. This truncated policy
evaluation approach, used in combination with the policy
improvement step below, converges to the optimal control
policy regardless of the maximum number of iterations. See
[47] for the theory underlying this method.

2) Policy Improvement: Bellman’s principle of optimality
indicates that the optimal control policy for the stochastic
dynamic programming problem in (29)–(32) is also the control
policy that minimizes the cost-to-go function J (x) in (48).
Thus, to find this control policy u∗, we minimize cost-to-
go over all admissible controls for a given state U(x) for
each state vector value x , given the cost-to-go function J (x).
Mathematically, this minimization is represented by

u∗(x) = arg min
u∈U (x)

{
c(x, u) + Ea[J (x)]

}
. (49)

Equation (49) imposes the state and control input set con-
straints from Section III-B by minimizing over the admissible
control set U(x).

After both policy evaluation and policy improvement are
completed, the optimal control policy is passed back into the
policy evaluation step and the entire procedure is repeated
iteratively. The process terminates when the infinity norm of
the difference between two consecutive steps is less than 1%,
for both the cost and control functions.

Battery Model Legend

Loop for each α

Find set of admissible
controls U(x)

Solve SDP problem
for given α

Generate drive
cycle library from

Markov chain

Stored
Admissible
Control U(x)

Library of
1,000 drive

cycles

Simulate closed-loop
controller across each
drive cycle in library

Record
performance

characteristics

Full
electrochemical
model

Equivalent
circuit model

=

=

Fig. 6. Flowchart of the design and analysis procedure. Note that the full
electrochemical model is used to compute the admissible control set and
simulate the closed-loop system after the SDP problem has been solved. The
reduced equivalent circuit model is used to solve the SDP problem, since it
contains only one state.

IV. CONTROL SYNTHESIS AND ANALYSIS PROCEDURE

This section examines the performance of supervisory con-
trol algorithms that optimally tradeoff battery aging with
energy consumption cost. To obtain a measure of controller
performance across a variety of drive cycle behavior (as
opposed to single certification cycles), we apply the process
outlined in Fig. 6. This can be summarized as follows.

1) The set of admissible controls is determined for each
state using the electrochemical model.

2) The Pareto optimal set of controllers is synthesized
via the stochastic dynamic program formulated in
Section III by sweeping α and considering the reduced
equivalent circuit model.

3) A library of 1000 drive cycles is generated from the
Markov chain described in Section II-E.

4) Each controller in the Pareto set is simulated for all drive
cycles in the library with the full electrochemical model.

5) Performance characteristics, including battery-health
metrics and energy cost, are recorded.

Subsequently, we analyze three controllers, of interest, from
the Pareto set on single certification cycles to obtain a
fundamental understanding of how to optimally tradeoff
battery-health and energy consumption through proper SoC
management.

At this point we wish to highlight Step 1, where the set
of admissible controls is determined for each state using the
electrochemical model. This step is critical for three reasons.

First, computing admissible controls for each state offline
guarantee that the constraints are always satisfied. In other
words, they are implemented as hard constraints. A typical
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alternative in hybrid vehicle power management applications is
to apply penalty functions when constraints are violated - a soft
constraint approach [20], [21], [29]. The latter has been shown
to cause numerical difficulties due to the interpolation leakage
of the penalty function values into the admissible region [52].

The second critical reason for computing admissible con-
trols offline is that it ensures the controllers satisfy the
constraints on the full electrochemical model, despite being
optimized on the reduced equivalent circuit model. This point
is crucial for integrating electrochemical models into stochas-
tic dynamic programming - a key contribution of this paper.

Finally, computing admissible controls offline can dramat-
ically reduce the control space, one needs to consider during
the online SDP calculation. For the results provided in this
paper, 86% of the control space was eliminated.

The results from computing the admissible controls are
saved into a database, which SDP uses to determine the set
over which to optimize controls for each state. This offline
calculation does not depend on the specific optimization objec-
tive, and can thus be performed once. As such, the database
of admissible controls is used to minimize SEI layer growth
and Ah-processed in the subsequent sections.

TABLE III

PERFORMANCE OVER VARIOUS CERTIFICATION CYCLES

Energy
economy

[km/USD]

Film growth
[μ�/m2 /km]

Drive cycle SEI Mixed Energy SEI Mixed Energy
α =
0.00

α =
0.84

α =
1.00

α =
0.00

α =
0.84

α =
1.00

3 × FTP 46.5 187 434 14.0 17.9 22.4
3 × US06 37.1 80.7 88.3 5.25 6.01 6.58
6 × SC03 50.0 170 312 13.2 16.2 20.0

3 × HWFET 44.9 173 266 5.15 6.48 7.96
3 × LA92 39.6 150 263 10.6 13.0 16.2
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Fig. 9. SoC trajectories for SEI film growth (α = 0), mixed (α = 0.84), and
energy (α = 1.0) optimal controllers simulated on two concatenated FTP-72
cycles.

V. OPTIMAL BLENDING TO MINIMIZE SEI LAYER

A. Energy Consumption Versus Film Growth

Performance results for the Pareto set of controllers that
optimally tradeoff SEI layer film growth (per battery cell)
with energy consumption costs are presented in Fig. 7. This
is achieved by sweeping the weighting parameter α in (34)
from zero to one. A distribution of performance metrics is
obtained for simulating the controllers across the entire library
of drive cycles. As such, Fig. 7 indicates the average values
as well as the 25/75% quantile ranges. The horizontal axis
reports the SEI layer growth resistance per km, while the
vertical axis indicates energy economy in km/USD (analogous
to miles per gallon). The utopia point is located in the
upper-left, which indicates the individually achievable optimal
performance metrics [53].

This plot indicates that, indeed, there exists a fundamental
tradeoff between anode-side SEI film growth in battery packs
and energy consumption costs. Namely, average SEI film
growth can be reduced by 20% relative to an “energy-only”
controller, but at the sacrifice of a 72% decrease in average
energy economy. The reason for the distributions of film
growth stretch left of the mean is related to the distribution
of trip length. As trips become longer, more battery SoC
is depleted and film growth rate decreases. Normalizing this
effect against longer distances traveled produces a long tail
toward the left side of Fig. 7.
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Fig. 10. Operating points on anode-side SEI film growth rate map for SEI layer (α = 0), mixed (α = 0.84), and energy (α = 1.0) optimal controllers
simulated on two concatenated FTP-72 cycles.

One method for analyzing the combined optimality of
each controller is to consider the relative optimality analysis
depicted in Fig. 8. This figure reports on the optimality of
each controller with respect to the Utopia point defined in
Fig. 7. Note that the relative optimality is nearly (but not
exactly) a monotonic function of controller weighting α. This
is because the stochastic dynamic programming procedure
optimizes with respect to the reduced-order equivalent circuit
battery model, whereas these results are calculated from the
full electrochemical model (see Fig. 6). One can see that the
controller corresponding to α = 0.84 provides the minimum
two-norm distance from the Utopia point, and in this specific
sense, is the best balance between both objectives. In the
following analysis, we discuss the two extreme solutions
(α = 0 and α = 1) and the “best mix” (α = 0.84).

B. Analysis and Discussion

To acquire physical insight into the structural properties
of the optimal controllers, we analyze three solutions from
the Pareto set, α = 1.0, 0.84, and 0. Generally speaking
these, respectively, correspond to emphasizing energy only,
balancing energy and SEI layer growth, and SEI layer growth
only. The controller corresponding to α = 0.84 is chosen
because it represents the best balance between both objectives,
measured in terms of the normalized two-norm distance from
the utopia point in Fig. 7. These controllers are simulated
on two concatenated FTP-72 cycles, which produces perfor-
mance characteristics representative of the extreme behavior.
Performance results for various other drive cycles are reported
in Table III.

Fig. 9 demonstrates the SoC trajectories for each controller.
The energy-only controller (α = 1.0) conservatively rations
battery charge by blending engine and battery power. This
process reduces the time spent in charge sustenance mode,
where fuel must be consumed to meet power demand and
sustain battery charge [2]. Put simply, charge sustenance mode

is extremely expensive relative to charge depletion, and should
be avoided, if possible, to reduce energy consumption cost. If
the drive cycle was known beforehand, the optimal strategy
would blend engine and battery power so battery SoC reaches
its minimum level exactly when the trip terminates. Recall
that trip length distributions are directly implemented into the
problem formulation through the terminal state of the Markov
chain, as described in Section II-E. Hence the controller is
trip length-conscious. In contrast, the SEI layer-only controller
(α = 0) aggressively depletes battery charge to avoid the
high SEI film growth rates seen in Fig. 3. This results in
a strategy that mimics electric-only operation, followed by
charge sustenance. Interestingly, the mixed (α = 0.84) con-
troller’s characteristics are more similar to α = 0 than α = 1
during the first 300 seconds (see the zoom-in in Fig. 9). The
reason can be understood by analyzing the gradient properties
of the film growth map. Namely, the steep gradient at high
SoC values indicates significant benefits in accumulated film
growth can be achieved by quickly depleting charge. This
is in spite of heavily weighting energy costs over battery-
health, since instantaneous energy cost as defined in (35) is
relatively insensitive to SoC. Conversely, SEI film growth is
very sensitive to SoC. Mathematically, this is shown from (35)
and (36)

∂cH

∂SoC
	 ∂cE

∂SoC
(50)

⇔ ∂δ̇film(I, SoC)

∂SoC
	 − Q batt ˙SoC

ηEVSE

dV oc(SoC)

dSoC
≈ 0 (51)

where the RHS of (51) is approximately zero because a typical
Li-ion battery has nearly constant open-circuit voltage with
respect to SoC, in the allowable SoC range.

This result is clearly illustrated in Fig. 10, which indicates
the operating points of each controller superimposed on the
film growth map from Fig. 3. Observe that adding a small
consideration for SEI layer growth (e.g., α = 0.84) to an
energy-only objective (e.g., α = 1.0) dramatically changes
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Fig. 11. Pareto set of optimal controllers for Ah processed and energy
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the operating point behavior. Namely, it induces the controller
to escape high-film growth rate regions by depleting battery
charge quickly until it reaches a lower SoC level (between
50–60%). However, it leaves enough available battery energy
to blend power until the trip ends, without entering charge
sustenance (near 25% SoC). In summary, a PHEV power man-
agement strategy that considers SEI film growth in addition
to energy consumption will, in general: 1) deplete battery
charge quickly to reduce film growth rates and 2) blend engine
and battery power to avoid charge sustenance, at least for the
models considered in this paper.

The property that batteries degrade faster at higher SoC
influences the results presented here. Experimental validation
of this result has been reported several times in the literature
[44], [54], [55]. Moreover, analysis of the physics-based
models reveals this property is true if and only if the anode
equilibrium potential decreases with bulk anode SoC, which is
a thermodynamic property of lithiated carbon electrodes [56].
In this paper, we focus on one particular battery degradation
mechanism - anode-side film growth. In truth, a myriad
of mechanisms exists that cause capacity fade in lithium-
ion batteries, although film growth has been identified as
one of the most significant [6]. A comprehensive review of
these mechanisms can be found in [6] and the references
therein. From a systems-level perspective, degradation can be
associated with SoC, temperature, depth of discharge, cycling,
etc. Experiments identifying several of these relationships are
currently underway in our laboratory. Nonetheless, the key
contribution of this paper is to elucidate how the mathematical
structure of health degradation dynamics relates to enhanced
battery-health conscious power management in PHEVs.

VI. OPTIMAL BLENDING TO MINIMIZE AH-PROCESSED

In this section, we examine the performance of supervisory
control algorithms that optimally tradeoff Ah processed with
energy consumption cost. The analysis follows the exact same
procedure outlined in the previous section (Section V) and
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Fig. 12. Relative optimality of each controller depicted in Fig. 11 with
respect to each individual objective. The stems are proportional to the two-
norm distance from the Utopia point in Fig. 11.

Fig. 6. In particular, we analyze the Pareto frontier of optimal
solutions and their relative optimality. For additional insight,
we consider the controllers that optimize each objective indi-
vidually and compare their performance on three concatenated
US06 cycles, which produces performance characteristics rep-
resentative of the extreme behavior.

A. Energy Consumption Versus Ah Processed

Performance results for the Pareto set of controllers that
optimally tradeoff Ah processed (per battery cell) with energy
consumption costs are presented in Fig. 11. As before, this is
achieved by sweeping the weighting parameter α in (34) from
zero to one. A distribution of performance metrics is obtained
for simulating the controllers across the entire library of drive
cycles. As such, Fig. 7 indicates the average values as well
as the 25/75% quantile ranges. The horizontal axis reports the
Ah processed per km, while the vertical axis indicates energy
economy in km/USD (analogous to miles per gallon). The
utopia point is located in the upper-left, which indicates the
individually achievable optimal performance metrics [53].

This plot indicates that a fundamental tradeoff also exists
between reducing energy consumption costs and Ah processed
in battery packs, for PHEVs. Specifically, the average Ah
processed can be reduced by 57% relative to an “energy-
only” controller, but at the sacrifice of an 82% decrease
in average energy economy. One method for analyzing the
combined optimality of each controller is to consider the
relative optimality analysis depicted in Fig. 12. This figure
reports on the optimality of each controller with respect to the
Utopia point defined in Fig. 11. One can see that the controller
corresponding to α = 0.85 provides the minimum two-norm
distance from the Utopia point, and in this specific sense, is
the best balance between both objectives.

B. Analysis and Discussion

As before, we acquire physical insight into the structural
properties of the optimal controllers by analyzing the three
solutions from the Pareto set, α = 0, 0.85 1.0. These three con-
trollers correspond to emphasizing minimum Ah-processed,
balanced Ah-processed and energy, and minimum energy
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consumption cost, respectively. These controllers are simulated
on three concatenated US06 cycles.

Fig. 13 portrays the SoC trajectories for each controller.
As before, the energy-focused controller rations battery charge
such that the PHEV reaches the minimum SoC over the course
of an average drive cycle. This effectively reduces the time
spent in charge sustenance mode, while completely utilizing
the relatively cheap electric energy store. In contrast to the
results shown in Fig. 9, the minimum Ah-processed controller
severely limits high C-rates and therefore consumes a very
small amount of battery energy (about 5% depth of discharge).

This behavior can be understood further by analyzing the
distribution of power demand on the engine and battery,
depicted in Fig. 14(a) and (b). This figure elucidates how the
minimum Ah-processed controller constraints the distribution
of battery power demand to a small range around 0 kW, which

limits the depth of discharge. The tradeoff is a larger number
of high engine power occurrences, as shown in Fig. 14(a), to
satisfy the total power demand. In contrast, the energy-focused
controller experiences a broad range of battery power demand
and a distribution of engine power more closely concentrated
toward lower values, which decreases total energy consump-
tion cost. Therefore, a PHEV supervisory control algorithm
that attempts to minimize the battery-health degradation by
reducing Ah-processed will be extremely cautious of using
the battery as a depletable energy store. Interestingly, this
action fundamentally opposes the key advantageous feature
of a PHEV - the depletable battery pack energy store.

VII. CONCLUSION

This paper develops techniques for the health-conscious
power management in PHEVs through electrochemical model-
ing and stochastic control. Namely, we formulate a multiobjec-
tive optimal control problem that optimally trades-off battery-
health with energy consumption cost (fuel and grid electricity).
The two battery-health metrics examined here include anode-
side resistive film formation and Ah processed. In addition,
we apply a shortest-path stochastic dynamic programming
formulation. This enables us to match the Markov chain drive
cycle model with real-world daily trip length distributions
reported by the National Household Travel Survey [46].

The main objective of this paper is to develop a framework
for designing battery-health optimized supervisory controllers.
To demonstrate this framework, we apply it to two existing bat-
tery degradation models in the literature - one based upon theo-
retical principles (SEI layer) and the other upon experimental
data (Ah processed). Nonetheless, the concepts are broadly
applicable to other degradation models/metrics, e.g., lithium
plating [34], temperature [40], mechanical stress [10], and
empirical relations based upon experimental data [15]. We note
that the degradation case studies provided in this paper have
two simplifying properties: 1) they do not add state-variables
and 2) they only require signals from an equivalent circuit
model. The critical challenge of incorporating other aging
mechanisms is overcoming the curse of dimensionality asso-
ciated with dynamic programming.

Our case studies demonstrate that a health-optimized
strategy for minimizing SEI-layer or Ah-processed will,
respectively, deplete battery charge quickly or ration it
conservatively. This contradiction underscores the impor-
tance of developing accurate, experimentally-validated, yet
control-oriented health degradation models in future work.
Complicating this effort is that varying material designs,
charge/discharge loads, environmental conditions, and man-
ufacturing processes can greatly affect battery degradation
properties. As such, a useful extension might consider adaptive
schemes [57], [58] that identify degradation dynamics online
and adjust the control strategy accordingly. Nonetheless, the
methods developed here provide the fundamental techniques to
integrate battery-health models with optimal control to design
the power management algorithms.
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APPENDIX

NOMENCLATURE

PHEV

Afr Effective frontal area of vehicle, [m2]
a Vehicle acceleration, [m/s2]
Cd Aerodynamic drag coefficient
Fg Planetary gear force, [N]
Ie Engine inertia, [kg·m2]
IM1 Machine 1 inertia, [kg·m2]
IM2 Machine 2 inertia, [kg·m2]
Iw Wheel inertia, [kg·m2]
K Final drive ratio
m Vehicle mass, [kg]
R Number of teeth on ring gear
Rtire Tire radius, [m]
S Number of teeth on sun gear
Te Engine torque, [N·m]
TM1 Machine 1 torque, [N·m]
TM2 Machine 2 torque, [N·m]
v Vehicle speed, [m/s]
ηM1 M1 power efficiency
ηM2 M2 power efficiency
μroll Rolling friction coefficient
ρ Air density, [kg/m3]
ωe Engine crankshaft speed, [rad/s]
ωM1 Machine 1 speed, [rad/s]
ωM2 Machine 2 speed, [rad/s]

BATTERY

an Specific surface area of anode, [m2/m3]
A Cell sheet surface area, [m2]
c1, c2 Ion concentration in solid, electrolyte, [moles/m3]
D1,D2 Diffusion coefficient in solid,

electrolyte, [m2/s]
F Faraday’s constant, [C/mol]
I Current through each cell, [A]
i0 Battery pack current, [A]
i0,s Exchange current density

for side reaction, [A/m2]
J Intercalation current density, [A/m3]
Jsd Current density of side reaction, [A/m3]
MP Molecular weight of product

from side reaction, [mol/kg]
n p No. of parallel strings of cells
ns No. of cells in series per string
Pbatt Power transfer from batt pack, [W]
Qbatt Battery pack charge capacity, [A·s]
r Radial coordinate in solid particles, [m]
Rgas Universal gas constant, [J/K/mol]
Rbatt Internal resistance of batt pack, [�]
Rfilm Total film resistance, [�/m2]
RSEI Resistance of solid electrolyte

interphase (SEI), [�/m2]
SoC Battery state of charge
t+ Transference number

Uref, j Equilibrium potential of solid, [V]
Uref,s Equilibrium potential of side reaction, [V]
Vcell Voltage of individual cell, [V]
Voc Batt. pack open circuit voltage, [V]
x Spatial coordinate across cell, [m/m]
(δfilm) (Spatially averaged) anode-side
δfilm SEI resistive film thickness, [pm/m2]
ηsd Side reaction overpotential, [V]
κeff , κ Conductivity of electrolyte, [1/m/�]
κP Conductivity of SEI product, [1/m/�]
ρP Side reaction product density, [kg/m2]
σ eff Effective solid conductivity, [1/m/�]
φ1, φ2 Solid, electrolyte potential, [V]

OPTIMIZATION

c(·, ·) Instantaneous cost function
J g Optimal cost for control policy g
SoCcs Charge sustaining SoC level
U(x) Admissible set of controls
Wfuel Mass flow rate of fuel, [g/s]
X Admissible set of states
α Linear weight
β Energy price ratio, USD/USD
ηEVSE EV supply equip. chg. efficiency
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