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This paper derives linear quadratic regulator (LQR) results
for boundary controlled parabolic partial differential equa-
tions (PDEs) via weak-variations. Research on optimal con-
trol of PDEs has a rich 40-year history. This body of knowl-
edge relies heavily on operator and semigroup theory. Our
research distinguishes itself by deriving existing LQR results
from a more accessible set of mathematics, namely weak-
variational concepts. Ultimately, the LQR controller is com-
puted from a Riccati PDE that must be derived for each PDE
model under consideration. Nonetheless, a Riccati PDE is
a significantly simpler object to solve than an operator Ric-
cati equation, which characterizes most existing results. To
this end, our research provides an elegant and accessible
method for practicing engineers who study physical systems
described by PDEs. Simulation examples, closed-loop sta-
bility analyses, comparisons to alternative control methods,
and extensions to other models are also included.

1 Introduction
1.1 Problem Statement and Motivation

This paper derives finite-time linear quadratic regula-
tor (LQR) results for boundary controlled parabolic partial
differential equations (PDEs) via weak-variations. A broad
spectrum of physical engineering systems exhibit dynamics
described by parabolic PDEs. Examples include structural
acoustics [1], fixed-bed reactors [2], multi-agent coordina-
tion control [3], stock investment models [4], and fluid mix-
ing in channel flows [5]. A subset of these systems limit
control to the boundaries, such as thermal/fluid flows [6],
chemical reactors [7], and advanced batteries [8–10]. Opti-
mal control of these PDE systems is particularly challenging

since actuation is limited to the boundary and the dynamics
are notably more complex than ODE systems.

Although optimal boundary control of PDEs is a histor-
ically well-studied topic [2, 11–16], existing results are of-
ten difficult to apply in practice. Specifically, these results
require users to have a notable background in semigroup
theory and functional analysis. Moreover, one needs to ul-
timately solve operator Riccati equations - a conceptually
difficult task. Motivated by these facts, this paper’s over-
all goal is to develop optimal boundary control results for
parabolic PDE systems that engineers with traditional math-
ematical backgrounds can easily derive and apply in practice.
To begin, we focus on diffusion-reaction PDEs with Dirich-
let actuation. We later extend the concepts to a general class
of parabolic PDEs.

1.2 Brief Summary of Relevant Literature
Optimal control of PDE systems has a rich history

[2, 11–16]. One can generally place this research into two
categories. The first category projects the PDEs onto a finite-
dimensional subspace to render the system into a series of or-
dinary differential equations (ODEs). This enables engineers
to apply finite-dimensional optimal control results [17–21].
This method necessarily couples the control problem with
the projection technique. The second category of research
applies semigroup theory to represent PDE systems as ODE
systems over Hilbert spaces. From here the classical optimal
control results are extended to infinite-dimensional (Hilbert)
spaces [11–14]. Ultimately, these techniques produce so-
called operator Riccati equations (OREs), which have sim-
ilarities to the results presented here. However OREs are a
considerably more difficult object to solve [22] than the Ric-



cati PDEs derived in this article.

1.3 New Contributions
The main goal of this paper is to bridge the gap between

the aforementioned two categories. Namely, we wish to sep-
arate the discretization techniques from the control design by
maintaining the analysis in the infinite-dimensional domain.
Secondly, we bypass semigroup theory and the associated is-
sues with solving operator Riccati equations by applying the
weak-variations concept directly to the PDEs. Consequently,
this paper’s most important new contribution is a method
to derive Riccati PDEs for the LQR problem in boundary-
controlled PDEs. This paper extends the authors’ previous
work [23] on diffuion-reaction systems by (i) supplying the
proofs in full detail, (ii) computing the closed-loop spectrum,
(iii) performing a stability robustness analysis, (iv) provid-
ing a comprehensive comparative analysis to existing results,
and (v) deriving LQR results for a broad class of parabolic
PDEs. Ultimately, this paper provides an optimal control re-
sult that is widely-accessible, constructive, and elegant for
practicing engineers who develop control systems for physi-
cal systems described by PDEs.

1.4 Problem Statement
Consider the following class of linear parabolic

diffusion-reaction partial differential equations:

ut(x, t) = uxx(x, t)+ cu(x, t) (1)
u(0, t) = 0 (2)
u(1, t) = U(t) (3)
u(x,0) = u0(x) (4)

The first term in (1) represents diffusion and the second term
models linear reaction phenomena. Non-unity diffusivity co-
efficients, lengths, input gains, etc. can be accounted for by
non-dimensionalizing the system into the form given above.
Suppose we can control the boundary value u(1, t) = U(t)
(Dirichlet control) and nothing else. Moreover, suppose we
have noiseless measurements of the state available through-
out the spatial domain. Our goal is to develop a state-
feedback controller that optimally regulates the system to
the origin. Specifically, we wish to minimize the following
quadratic objective over a finite time-horizon:

J =
1
2

∫ T

0

[
〈u(x, t),Q(u(x, t))〉+RU2(t)

]
dt +

1
2
〈u(x,T ),Pf (u(x,T ))〉 (5)

The symbols Q, R, and Pf are weighting kernels that re-
spectively weight the state, control, and terminal state of
the closed loop system. We assume that Q ≥ 0, R > 0,
Pf ≥ 0, thus producing a convex cost functional. The con-
dition on R is strictly positive to ensure bounded control sig-
nals. First, we derive the necessary conditions for optimality

of the open-loop finite-horizon control problem using weak
variations. Instead of obtaining coupled ordinary differential
equations with split initial conditions for finite-dimensional
LQR, we obtain coupled partial differential equations with
split initial conditions. Next, we postulate the open-loop con-
trol signal can be written in state-feedback form and derive
the associated Ricatti equation for the feedback linear opera-
tor. This Ricatti equation is a 2-D spatial, 1-D temporal PDE.
We then demonstrate the LQR result in simulation, analyze
its properties, compare it to existing PDE control-theoretic
results, and generalize the class of models under considera-
tion.

1.5 Organization
The remainder of the paper is organized as follows:

Section 2 presents linear quadratic regulator results for
diffusion-reaction PDEs with Dirichlet boundary control.
This includes the open loop control problem, state-feedback,
and numerical examples. Section 3 computes the spectrum
of the closed-loop system and analyzes stability robustness
for the infinite-time LQR controller. Section 4 compares and
contrasts the Riccati PDE results with operator Riccati equa-
tions and the backstepping method for PDEs. Section 5 pro-
vides the Riccati PDEs for various other plant boundary con-
ditions and a more general reaction-advection-diffusion PDE
model. Finally, Section 6 summarizes the key results of this
paper.

2 Linear Quadratic Regulator Results
2.1 Open Loop Control

We start by deriving the first order necessary conditions
for the open loop finite-time horizon problem.

Theorem 1. Consider the linear diffusion-reaction PDE
described by (1)-(4) defined on the finite-time horizon t ∈
[0,T ] with quadratic cost criterion (5). Let u∗(x, t), U∗(t),
and λ(x, t) respectively denote the optimal state, control, and
co-state that minimize the quadratic cost. Then the first order
necessary conditions for optimality are:

u∗t (x, t) = u∗xx(x, t)+ cu∗(x, t) (6)
−λt(x, t) = λxx + cλ(x, t)+Q(u∗(x, t)) (7)

with boundary conditions

u∗(0, t) = 0 u∗(1, t) =U∗(t) (8)
λ(0, t) = 0 λ(1, t) = 0 (9)

and split initial/final conditions

u∗(x,0) = u0(x) λ(x,T ) = Pf (u∗(x,T )) (10)

and the optimal control input is

U∗(t) =
1
R

λx(1, t) (11)
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Fig. 1. A visualization of the weak variations concept for optimal
state and control trajectories.

Proof. The necessary conditions are derived via weak vari-
ations [24]. Suppose u∗(x, t) and U∗(t) are the optimal
state and control inputs. Let u(x, t) = u∗(x, t) + εδu(x, t),
U(t) = U∗(t)+ εδU(t) and δu(x,0) = 0 represent perturba-
tions from the optimal solutions. See Fig. 1 for a visualiza-
tion of the weak variations concept. Consequently, the cost
is

J(u∗+ εδu,U∗+ εδU) =

1
2

∫ T

0

[
〈u∗+ εδu,Q(u∗+ εδu)〉+R(U∗+ εδU)2]dt

+
1
2
〈u∗(T )+ εδu(T ),Pf (u∗(T )+ εδu(T ))〉 (12)

Define g(ε) to be the cost functional above combined with
the system dynamics constraint (1), using the method of La-
grange multipliers as follows:

g(ε) := (13)
1
2

∫ T

0

[
〈u∗+ εδu,Q(u∗+ εδu)〉+R(U∗+ εδU)2]dt

+
1
2
〈u∗(T )+ εδu(T ),Pf (u∗(T )+ εδu(T ))〉

+
∫ T

0
〈λ(x, t),u∗xx + εδuxx + cu∗+ εcδu− ∂

∂t
(u∗+ εδu)〉dt

where λ(x, t) is the Lagrange multiplier (a.k.a. the co-state
in the context of optimal control). Then the necessary condi-
tion for optimality is dg(ε)/dε|ε=0 = 0. Differentiating g(ε)
gives:

dg
dε

(ε) =
∫ T

0
[〈δu,Q(u∗+ εδu)〉+R(U∗+ εδU)δU ]dt

+ 〈δu(T ),Pf (u∗(T )+ εδu(T ))〉

+
∫ T

0
〈λ(x),δuxx + cδu− ∂

∂t
(δu)〉dt (14)

We simplify the term 〈λ(x),δuxx〉 in the third line of (14)
by applying integration by parts twice. Specifically, one can

show that

〈λ(x),δuxx(x)〉 = λ(1)δux(1)−λ(0)δux(0)
−λx(1)δu(1)+λx(0)δu(0)
+〈λxx(x),δu(x)〉 (15)

The boundary conditions for δu(x, t) are δu(0, t) = 0 and
δu(1, t) = δU(t), resulting in

〈λ(x),δuxx(x)〉 = λ(1)δux(1)−λ(0)δux(0)−λx(1)δU(t)

+〈λxx(x),δu(x)〉 (16)

One can also use integration by parts to show that:

∫ T

0
〈λ(x), ∂

∂t
(δu)〉dt = 〈λ(T ),δu(T )〉−〈λ(0),δu(0)〉

−
∫ T

0
〈λt ,δu〉dt (17)

Note that δu(x,0) = 0 by definition. Therefore

∫ T

0
〈λ(x), ∂

∂t
(δu)〉dt = 〈λ(T ),δu(T )〉−

∫ T

0
〈λt ,δu〉dt(18)

At this point we plug (16) and (18) into (14) and collect
like perturbation terms

dg
dε

(ε) =
∫ T

0
[〈Q(u∗+ εδu),δu〉+ 〈λxx + cλ+λt ,δu〉]dt

+
∫ T

0
[R(U∗+ εδU)−λx(1)]δUdt

+
∫ T

0
[λ(1)δux(1)−λ(0)δux(0)]dt

+〈Pf (u∗(T )+ εδu(T ))−λ(T ),δu(T )〉 (19)

Now we evaluate the previous expression at ε = 0 and set it
equal to zero.

dg
dε

(ε)|ε=0 =
∫ T

0
[〈Q(u∗)+λxx + cλ+λt ,δu〉]dt

+
∫ T

0
[RU∗−λx(1)]δUdt

+
∫ T

0
[λ(1)δux(1)−λ(0)δux(0)]dt

+〈Pf (u∗(T ))−λ(T ),δu(T )〉= 0 (20)

For the previous equation to hold true for all arbitrary
δu(x, t),δU(t),δu(x,T ), the following conditions are suffi-



cient:

−λt(x, t) = λxx(x, t)+ cλ(x, t)+Q(u∗(x, t)) (21)
λ(0, t) = 0 λ(1, t) = 0 (22)

λ(x,T ) = Pf (u∗(x,T )) (23)

U∗(t) =
1
R

λx(1, t) (24)

These conditions represent the co-state’s PDE dynamics,
boundary conditions, final condition, and the optimal bound-
ary control, respectively. Coupled together with the plant
model (1)-(4), these conditions verify the first order neces-
sary conditions of optimality, which completes the proof.

Remark. In general weak-variations provide the necessary
conditions for optimality and the Hamilton-Jacobi-Bellman
equation provides the sufficient condition for optimality.
However, both methods provide necessary and sufficient
conditions when considering a strictly convex cost func-
tional, as we do in this paper [13].

2.2 State-Feedback Control
Now let us consider the state-feedback problem. That

is, let us postulate that the co-state λ is related to the states
according to the time-varying linear transformation:

λ(x, t) = Pt(u(x, t)) =
∫ 1

0
P(x,y, t)u∗(y, t)dy (25)

The superscript on Pt indicates the linear operator is time-
dependent.

Theorem 2. The optimal control in state-feedback form is:

U∗(t) =
1
R

∫ 1

0
Px(1,y, t)u∗(y, t)dy (26)

where the time-varying linear transformation Pt must satisfy
the following Riccati-like PDE:

−Pt = Pxx +Pyy +2cP+Q− 1
R

Py(x,1)Px(1,y) (27)

with boundary conditions

P(0,y, t) = P(1,y, t) = P(x,0, t) = P(x,1, t) = 0 (28)

and final condition

P(x,y,T ) = Pf (x,y) (29)

Proof. The proof consists of evaluating each λ term in (7),
(9), and (10) using the postulated form in (25) and applying

integration by parts. Let us begin by evaluating each term in
(7):

λt =
∫ 1

0
[Pt(x,y, t)u∗(y, t)+P(x,y, t)u∗t (y, t)]dy

=
∫ 1

0

[
Pt(x,y, t)u∗(y, t)+P(x,y, t)u∗yy(y, t)

+cP(x,y, t)u∗(y, t)]dy (30)

λxx =
∫ 1

0
Pxx(x,y, t)u∗(y, t)dy (31)

cλ =
∫ 1

0
cP(x,y, t)u∗(y, t)dy (32)

Q(u(x, t)) =
∫ 1

0
Q(x,y)u∗(y, t)dy (33)

Now we apply integration by parts to the second term in (30):

∫ 1

0
P(x,y, t)u∗yy(y, t)dy = P(x,1)u∗y(1)−P(x,0)u∗y(0)

−Py(x,1)u∗(1)+Py(x,0)u∗(0)

+
∫ 1

0
Pyy(x,y, t)u∗(y, t)dy (34)

Now apply the boundary condition u∗(0) = 0 in (8) and
boundary control u∗(1) = U∗(t) = 1

R
∫ 1

0 Px(1,y)u∗(y, t)dy in
(11), where the second equality comes from the postulated
form in (25). Plug (30)-(34) into the PDE for the co-state,
which will be verified under the following conditions:

−Pt = Pxx + Pyy +2cP+Q− 1
R

Py(x,1)Px(1,y) (35)

P(x,1, t) = 0 (36)
P(x,0, t) = 0 (37)

Next we apply the postulated form (25) to the boundary con-
ditions of the co-state PDE in (9). These equations will be
verified under the following conditions for P(x,y, t):

P(0,y, t) = 0 (38)
P(1,y, t) = 0 (39)

Finally, we apply the postulates form (25) to the final time
condition of the co-state PDE in (10) which gives

P(x,y, t) = Pf (x,y) (40)

and completes the proof.

Remark. Proving the well-posedness of the Riccati PDE
(27)-(29) remains an open question. The key difficulty is
the nonlinear nature (specifically the quadratic term) of this
PDE. For the cases used to generate simulation results in Sec-
tion 2.3, the Riccati PDE is well-posed.
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Fig. 2. Simulation example of state trajectories for the (a) open-loop and (b) closed-loop systems.

Remark. The infinite-time horizon LQR controller is given
by the steady-state solution of the Riccati PDE. Namely,

P∞
xx +P∞

yy +2cP∞ +Q− 1
R

P∞
y (x,1)P∞

x (1,y) = 0 (41)

with the homogenous boundary conditions (28). The solu-
tion of this algebraic Riccati PDE, denoted P∞(x,y), pro-
duces the time-invariant state-feedback control law

U∗(t) =
1
R

∫ 1

0
P∞

x (1,y)u∗(y, t)dy (42)

2.3 Simulation Example
In this section we present simulation examples of the

linear quadratic regulator. Until now the presented results
are independent of the specific numerical scheme used to
implement the controller. In this paper we use the central-
difference method in space to solve PDEs. Throughout these
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Fig. 3. Boundary control input for the LQR controller.

examples we consider the class of linear parabolic partial dif-
ferential equation systems described by (1)-(4).

First, let us examine the plant in open-loop, i.e. when
U(t) = 0. In open-loop one may use separation of variables
to show the exact solution is given by

u(x, t) = 2
∞

∑
n=1

e(c−π2n2)t sin(πnx)
∫ 1

0
sin(πnx)u0(x)dx (43)

The structure of this solution demonstrates that the eigenval-
ues are given by c−π2n2 for n = 1,2, .... Since the largest
eigenvalue is given by c−π2, we see that the plant is open-
loop unstable for c > π2.

Here we demonstrate the linear quadratic regulator re-
sults, where the optimal control is given by (26), and the
time-varying linear operator P(x,y, t) is the unique solution
of the Riccati PDE (27)-(29). The parameters for this exam-
ple are shown in Table 1. Note that the plant contains one
unstable eigenvalue at 12−π2 ≈ 2.

The evolution of the state for the open and closed-loop
systems are displayed in Fig. 2(a) and (b), respectively. Fig-
ure 2(a) visually demonstrates the unstable character of the

Table 1. Parameter Values for LQR Simulation Examples

Parameter Value

Reaction coefficient c = 12

State weight kernel Q(x,y) = 150sin(πx)sin(πy)

Control weight
kernel

R = 1

Final state weight
kernel

Pf (x,y) = sin(πx)sin(πy)

Time Horizon T = 1
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open-loop system. The state grows exponentially and takes
the form of the eigenfunction corresponding to the unstable
eigenvalue, namely sin(πx). In Fig. 2(b) the implemented
LQR controller successfully regulates the state to the origin.
Observe that the noisy initial condition is rapidly smoothed
out in both cases, due to the diffusion operator. The optimal
boundary control signal is shown in Fig. 3

3 Analysis of Infinite-Time LQR
3.1 Closed-loop Spectrum

Using separation of variables, one may show that the
closed-loop spectrum for the infinite-time LQR controlled
system is given by

λlqr = c−β
2 (44)

where β is given by the solutions of

0 =
1
R

∫ 1

0
P∞

x (1,y)sin(βy)dy− sin(β) (45)

where P∞(x,y) is the solution to the Riccati PDE (41) corre-
sponding to the infinite-time LQR problem. Mathematically,
one can see the eigenvalues have zero imaginary parts and
negative real parts (for closed-loop stability). Moreover, the
eigenvalues roughly increase toward −∞ quadratically with
index number, but need to be solved numerically. Figure
4 portrays this relationship graphically, for the infinite-time
LQR controlled closed-loop system with parameters in Table
1.

3.2 Stability Robustness
Next we study if the LQR controller is robust to plant

model uncertainty at the input. To this end, consider the
open-loop transfer function from the plant’s input U(t) to
the controller’s output U(t), as shown in Fig. 5. To obtain
the transfer function from U(t) to U(t), we apply the Laplace

Plant

LQR Controller

U(t) U(t)

u(x,t)

-

-1

Fig. 5. Block Diagram for open-loop transfer function in negative
feedback form to study stability robustness to uncertainty at the plant
input.
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Fig. 6. Nyquist plot of G(s), defined in (46).

transformation to the plant model PDE (1), solve the result-
ing second order ODE in x, and then apply the boundary con-
ditions (2) and (42). The end result is

G(s) =
U(s)
U(s)

=

∫ 1
0 P∞

x (1,y)sin(
√

c− sy)dy
Rsin(

√
c− s)

(46)

The Nyquist plot of G(s), using parameters from Table
1, is provided in Fig. 6. Recall from Section 2.3 that the plant
contains one unstable eigenvalue at 12−π2 ≈ 2. Therefore,
according to the Nyquist Stability Criterion [25], the Nyquist
plot of G(s) must encircle the critical point −1+0 j once in
the counter-clockwise direction for the closed-loop system to
be stable. Indeed, this holds true in Fig. 6.

Gain and phase margins can be computed from the
Nyquist plot. In the case of Fig. 6, the positive gain mar-
gin is 1.34 or 2.5 dB, the negative gain margin is 0.23 or
-12.7 dB, and the phase margin is ±25.2◦. Note that the
LQR controller for this diffusion-reaction PDE has smaller
stability margins than the guaranteed stability margins (in-
finite positive gain margin and 60◦ phase margin) imposed
by the return difference equality in finite-dimensional LQR
controlled systems [26].



4 Relation to Existing Results
The LQR results derived in this paper have strong con-

nections to existing results in PDE control. First, we discuss
how the Riccati PDE (27)-(29) can be derived from the more
general operator Riccati equation result. Secondly, we com-
pare the proposed LQR results with PDE backstepping con-
troller designs. Although these two control methods achieve
similar results, the design paradigm is considerably different.

4.1 Operator Riccati Equations
A well-established result in optimal control for PDEs

is the operator Riccati equation (ORE) [11–14]. This result
begins by formulating the PDE model as a state-space system
on an infinite-dimensional Hilbert space Z in the following
form:

ż(t) = Az(t)+BU(t) (47)
z(0) = u(x,0) (48)

where the operator A : L2(0,1) → Z generates a C0-
semigroup on Z. The operator B : R→ Z maps the space of
boundary control inputs into the Hilbert space Z and is gen-
erally unbounded. The optimal state-feedback control w.r.t.
the cost functional (5) is given by:

U∗(t) =−B∗Π(t)z(t) (49)

and Π(t) = Π∗(t) is the solution to the ORE

− d
dt

Π(t) = A∗Π(t)+Π(t)A +Π(t)BR−1B∗Π(t)+Q
(50)

Π(T ) = P f (51)

where Q and P f are appropriately defined operators corre-
sponding to Q and Pf , respectively.

It is possible to show the Riccati operator Π(t) has a
representation of the form

[Π(t)u](x, t) =
∫ 1

0
P(x,y, t)u(y, t)dy (52)

where the kernel P(x,y, t) satisfies a Riccati PDE. Lions [11]
shows this result using the Schwartz Kernel Theorem for sev-
eral specific systems and cost functionals with distributed
and Neuman boundary control. Hulsing [15] later extended
this result to systems with Dirichlet and Robin boundary con-
trol by appropriately defining the operators A and B and sub-
stituting the functional representation (52) into the ORE (50).

Following the methods of Hulsing [15], one may derive
the Riccati PDE (27)-(29) from the ORE (50). This pro-
cess relies heavily upon concepts from functional analysis.
In contrast, the weak-variational approach introduced in this
paper derives Riccati PDEs directly from the PDE model
and cost functional without requiring the abstract operator-
theoretic notions associated with OREs.
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Fig. 7. Feedback control gains for the infinite-time LQR (solid lines)
and backstepping (dashed) controllers. Parameter q corresponds to
the state penalty: Q(x,y) = qsin(πx)sin(πy). Parameter γ is the
reaction coefficient in the backstepping target system (55).

4.2 Backstepping
In this section we compare the LQR results to a well-

established boundary control technique - backstepping [16].
The heart of backstepping involves the design of a linear
Volterra transformation that forces the closed-loop dynamics
to an exponentially stable target system. The target system
usually has a structure similar to the plant (e.g., the diffusion-
reaction PDE for parabolic PDEs) with homogeneous bound-
ary conditions. Like the methods presented here, backstep-
ping ultimately involves the solution of a PDE related to the
gain kernels. This so-called kernel PDE is usually linear,
whereas the Riccati PDE is always quadratic. Explicit solu-
tions to the backstepping kernel PDE can be found in some
cases, whereas the Riccati PDE must always be solved nu-
merically.

Consider the diffusion-reaction PDE model in (1)-(4).
The backstepping method seeks to find the coordinate trans-
formation

w(x, t) = u(x, t)−
∫ 1

0
k(x,y)u(y, t)dy (53)

along with the feedback control

U(t) =
∫ 1

0
k(1,y)u(y, t)dy (54)

which renders the model (1)-(4) into the target system

wt(x, t) = wxx(x, t)− γw(x, t) (55)
w(0, t) = 0 (56)
w(1, t) = 0 (57)

It has been shown in [16] that the backstepping control law



is

U(t) =−
∫ 1

0
(c+ γ)y

I1(
√

(c+ γ)(1− y2))√
(c+ γ)(1− y2)

u(y)dy (58)

In Figure 7 the backstepping and infinite-time LQR con-
trol gains are shown for different values of γ and q, respec-
tively. The two control gains have notably different charac-
teristics. As γ and q increase, the magnitude of both control
gains increases, since the state penalty in the optimization
objective and stabilizing reaction term in the backstepping
target system increase. Zero gain near x = 0 is logical due to
the boundary condition u(0) = 0.

The critical difference between these two approaches lie
in their design and computation. Namely, LQR design con-
siders weighting kernels on the state and control, while back-
stepping designs a transformation that acheives a desirable
target system. Computationally, LQR requires the solution
of a quadratic PDE while backstepping requires the solution
of a linear PDE.

5 Extensions to Other Plant Models
We now consider LQR designs for a broader class of

PDE plant models. First, we consider diffusion-reaction sys-
tems with alternative boundary conditions. Table 2 summa-
rizes the LQR results for these models. Next we consider
the general reaction-advection-diffusion equation. Through
an appropriate state transformation and scaling of time, we
can render the reaction-advection-diffusion equation into the
mathematical form we studied in Section 2. These exten-
sions demonstrate how the LQR control design via weak-
variations can be applied to a broad class of parabolic PDEs.

5.1 Alternative Boundary Conditions
To this point we have considered Dirichlet boundary

conditions at the controlled and uncontrolled ends. In many
physical problems Neumann boundary conditions are the ap-
propriate modeling choice. Examples include thermal and
chemical systems, where heat flux or ionic current densities
are controlled. Combinations of Dirichlet and Neumann con-
ditions are also physically meaningful, important plant mod-
els. LQR controllers for these systems can be derived using
the same weak-variational approach in Section 2. The critical
difference between each calculation is the evaluation of the
appropriate boundary conditions when applying integration
by parts. A summary of the Riccati PDEs corresponding to
reaction-diffusion systems with various boundary conditions
is provided in Table 2. For Dirichlet control or Neumann
control the Riccati PDE remains the same, irrespective of
the conditions at the uncontrolled end. The Riccati PDE’s
boundary conditions do change, however.

5.2 Reaction-Advection-Diffusion Equation
Next we demonstrate that it is possible to design an LQR

controller for a general class of reaction-advection-diffusion

systems. Specifically, consider the following PDE, boundary
conditions, and initial conditions:

ut(x, t) = εuxx(x, t)+bux(x, t)+ cu(x, t) (59)
u(0, t) = 0 (60)
u(1, t) = U(t) (61)
u(x,0) = u0(x) (62)

We shall transform (59)-(62) into a form that is equiva-
lent to the PDE (1)-(4) studied in Section 2. Specifically, we
first eliminate the advection term by performing a state vari-
able transformation found in the handbook by Polianin [27].
Then we scale time to elimate the diffusion coefficient. The
end result is a reaction-diffusion PDE, where the advection
term and diffusion coefficient are absorbed into the reaction
term coefficient.

Towards this goal, we first consider the following
change of variables [27]:

v(x) = u(x)e
b
2ε

x (63)

After taking temporal and spatial derivatives, it is easy to
show that v(x) must verify the following PDE:

vt(x, t) = εvxx(x, t)+
(

c− b2

4ε

)
v(x, t) (64)

v(0, t) = 0 (65)

v(1, t) = e
b
2ε U(t) =V (t) = control (66)

v(x,0) = u0(x)e
b
2ε

x (67)

The second step is to scale time as follows:

t = εt (68)

which gives

vt(x, t) = vxx(x, t)+
(

εc−b2

4ε2

)
v(x, t) (69)

v(0, t) = 0 (70)

v(1, t) = e
b
2ε U(t) =V (t) = control (71)

v(x,0) = u0(x)e
b
2ε

x (72)

As a result, we arrive at a PDE whose form is identical to (1)-
(4). As such, we can apply the exact same techniques to de-
velop an infinite-dimensional LQR state feedback control for
V (t). Note that the cost functional (73) in the v-coordinate
system retains its quadratic nature, but the weighting kernels
take new definitions:

J =
1
2

∫ T

0

[
〈v(x, t),Q(v(x, t))〉+RV 2(t)

]
dt +

1
2
〈v(x,T ),P f (u(x,T ))〉 (73)



Table 2. Riccati PDEs for Reaction-Diffusion Plant with Dirichlet and Neumann Boudary Control

DIRICHLET CONTROL NEUMANN CONTROL

Plant PDE Riccati PDE Plant PDE Riccati PDE

ut = uxx + cu −Pt = Pxx +Pyy +2cP+Q−
1
R Py(x,1)Px(1,y)

ut = uxx + cu −Pt = Pxx +Pyy +2cP+Q−
1
R P(x,1)P(1,y)

Plant B.C.’s Riccati PDE B.C.’s Plant B.C.’s Riccati PDE B.C.’s

u(0) = 0, u(1) =U(t) P(0,y, t) = P(1,y, t) =
P(x,0, t) = P(x,1, t) = 0

u(0) = 0, ux(1) =U(t) P(0,y, t) = Px(1,y, t) =
P(x,0, t) = Py(x,1, t) = 0

ux(0) = 0, u(1) =U(t) Px(0,y, t) = P(1,y, t) =
Py(x,0, t) = P(x,1, t) = 0

ux(0) = 0, ux(1) =U(t) Px(0,y, t) = Px(1,y, t) =
Py(x,0, t) = Px(x,1, t) = 0

Final State Penalty Riccati PDE Final Condition Final State Penalty Riccati PDE Final Condition

Pf (x,y) P(x,y,T ) = Pf (x,y) Pf (x,y) P(x,y,T ) = Pf (x,y)

where

Q(x,y) = e−
b
2ε

xQ(x,y)e−
b
2ε

y (74)

R = e−
b
ε R (75)

P f (x,y) = e−
b
2ε

xPf (x,y)e−
b
2ε

y (76)

and satisfy the LQR assumptions Q(x,y) ≥ 0, R > 0,
P f (x,y) ≥ 0. The final step is to apply the inverse transfor-
mations U(t) = e−

b
2ε V (t/ε). Consequently, we have shown

that the optimal control methods developed in this article ap-
ply to a broad class of parabolic systems, including reaction-
advection-diffusion PDEs with constant coefficients.

6 Conclusions
This paper presents a method for designing finite-time

optimal controllers for boundary-controlled linear parabolic
PDEs, oriented toward applied control engineers. The re-
sulting Riccati PDEs are independent of the numerical im-
plementation scheme and do not require semigroup theoretic
notions. The critical conceptual tool we exploit to derive
these results is a weak-variations principle. To begin, the
paper focuses on diffusion-reaction systems with Dirichlet
actuation. These results are demonstrated through simula-
tion. We also analyzed the closed-loop characteristics of
the infinite-time LQR controller and compared it to exist-
ing, well-established methods. Finally, we demonstrate how
the Riccati PDE results are derived for a broad class of lin-
ear parabolic PDE systems. In this paper we restrict the
presentation to LQR control of parabolic PDEs. However,
the weak-variations derivation method is general to alterna-
tive PDE models, e.g. hyperbolic, wave, beam, etc. Future
work may consider adaptive versions [28] of the controllers
presented here. Ultimately, this paper provides fundamen-
tal optimal control methods that are accessible, constructive,
elegant, computationally tractable, and intuitive to tune for
practicing control engineers who study physical systems de-
scribed by parabolic PDEs.
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