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ABSTRACT
This paper focuses on developing a partial differential equa-

tion (PDE)-based model and parameter identification scheme for
heterogeneous populations of thermostatically controlled loads
(TCLs). First, a coupled two-state hyperbolic PDE model for ho-
mogenous TCL populations is derived. This model is extended to
heterogeneous populations by including a diffusive term, which
provides an elegant PDE control-oriented model. Second, a
novel parameter identification scheme is derived for the PDE
model structure, which utilizes only boundary measurements and
aggregated power measurements. Simulation results against a
Monte Carlo model of a large TCL population demonstrate the
usefulness of the approach. The proposed model and parame-
ter identification scheme provide system critical information for
advanced demand side management control systems.

1 INTRODUCTION
One of the main challenges in achieving significant pene-

tration of renewables in modern energy supply systems is their
inherent variability. To this end, demand side management has
been gaining attention in recent years as a means of achieving
better balance between supply and demand in modern power
grids, in the presence of intermittent power sources [1–3].In par-
ticular, control of aggregated thermostatically controlled loads
(TCLs) provides a promising opportunity to mitigate the mis-
match between power generation and demand, thus enhancing
grid reliability and enabling renewable energy penetration [4–6].
However, to exploit the full potential of demand side manage-
ment, one requires mathematical models that describe the dy-
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namical behavior of the TCL population as accurately as possi-
ble [5, 7–11].

Indeed, to manipulate the individual units’ power consump-
tion, an entity interested in using TCLs for power demand/supply
balancing—e.g., a utility company—in principle requires mea-
surements of all states in the system. Moreover, they require a
means of either forcing or coercing the consumers to consume
more or less power. Thus, controlling individual units typically
requires detailed local measurement and feedback of current en-
ergy and power demands [12]. Implementing such infrastructure
has been shown to be feasible in practice for limited numbers of
units [13].

For large portfolios of consumers, however, controlling indi-
vidual units directly is bound to lead to a heavy communication
and computational burden on the system. Rather than attempt-
ing to control every consumer individually, methods for model-
ing, estimating and controlling the behavior of large populations
of consumers have come into focus recently [4–6]. Under this
paradigm one manipulates the operating conditions of the entire
population to shape total power demand, while avoiding user dis-
comfort.

In this paper, we examine modeling and real-time identi-
fication of the distribution of temperature states in aggregated
TCL populations. This information can be utilized to accurately
manipulate the temperature set points to shape the aggregated
TCL power consumption. Given accurate and timely informa-
tion about how the power consumption of a population of TCLs
can be adjusted, it becomes possible to use the population as a
fast “virtual power plant” that can provide auxiliary services to
the grid. This includes provision of frequency control reserves
and peak shaving (in reaction to unforeseen disturbances) to a



more market-based mode of operation, where portions of energy
(in the form of shifted consumption) can be traded on electric-
ity spot markets. Obviously, more precise information about the
storage reserves available provides the operator with greater flex-
ibility in terms of providing such services in a reliable and timely
manner without causing discomfort to the consumers.

To this end, we consider a large population of TCLs and
derive a partial differential equation-based model of the temper-
ature evolution. This model does not assume a constant “duty
cycle” of the loads. More precisely, we present two PDE models
of TCL populations. The first model assumes all TCLs are iden-
tical. The second model includes a diffusion term to account for
the actual heterogeneity amongst the TCL parameters (e.g., ther-
mal time constants, temperature dead-band limits). In doing so,
we expand upon existing PDE-based TCL models which either
do not take heterogeneity explicitly into account [10], or model
heterogeneity using Markov Chains [14, 15]. We also present a
novel scheme for identifying the parameters in the PDE model
based on measurements of aggregated power consumption and
the rate at which loads switch on/off.

The outline of the paper is as follows. We start in Section 2
by deriving a model for populations of identical TCLs. Then we
extend this model to heterogeneous populations by including a
diffusive term. Section 3 presents a novel identification scheme
for the PDE models. Section 4 presents simulation studies of
the identification scheme, whereupon Section 5 summarizes the
main contributions of this work.

2 MODELS OF POPULATIONS OF TCLs
We first consider the following lumped thermal mass, hy-

brid ODE model of a single TCL. For the i’th consumer let the
controlled thermal zone and ambient temperature (living spaces,
refrigerators, cold storages etc.) be denoted by Ti and T∞,i, re-
spectively. Assume the hardware is purely on/off-regulated. The
temperature dynamics are governed by

Ṫi(t) =
1

RiCi
(T∞,i−Ti(t)− si(t)RiPi), i = 1,2, . . . ,N (1)

si(t) =


0 if si(t− ε) = 1, Ti(t)≤ Tmin,i

1 if si(t− ε) = 0, Ti(t)≥ Tmax,i

si(t−) otherwise
(2)

where Ci ∈ R+ is the thermal capacitance (kWh/◦C), Ri ∈ R+ is
the thermal resistance (◦C/kW) and Pi ∈R is the (constant) heat-
ing/cooling power supplied by the hardware when switched on.
Thus, 1/RiCi is the thermal time constant of the i’th TCL. Vari-
able si ∈ {0,1} is binary-valued and determines whether or not
the hardware is turned on. In practice, it switches status when-
ever the internal temperature encounters the limits of a pre-set
temperature span [Tmin,i,Tmax,i]⊂ R.

Limits Tmin,i and Tmax,i are related to the i’th TCL’s setpoint

Tsp,i through the fixed relations

Tmin,i = Tsp,i−
Θi

2
, Tmax,i = Tsp,i +

Θi

2

where Θi is the width of the temperature interval. Furthermore,
the cumulative power consumption of the TCL population at any
given time t can be computed as

P(t) =
N

∑
i=1

Pisi(t)
ηi

(3)

where ηi is the coefficient of performance for the i’th heat-
ing/cooling unit. Assuming that it is possible to adjust the set-
point Tsp,i for a large number of consumers, it becomes possible
to shape the aggregated power consumption. Thus, Tsp,i is of
interest for control purposes. In this paper we focus on model-
ing and identification, however, and will not include the setpoint
explicitly in the following models.

2.1 Homogeneous population
Consider a large population of N TCLs, satisfying the

dynamics described above. Let the continuously differen-
tiable functions u(T, t) and v(T, t), both defined on the spaces
[Tmin,Tmax]×R+→R, denote the distributions of loads (relative
to N) at temperature T and time t in the on and off states, respec-
tively. By considering the ‘flow’ of TCLs along the temperature
axis in either the positive or negative directions, and taking lim-
its, it is possible to derive the following PDE model of homoge-
neous populations of TCLs.

For modeling purposes, we initially assume that all param-
eters, including Tmin,i and Tmax,i, are equal for all TCLs; i.e., all
the TCLs are assumed to be identical. Let R̄, P̄ and C̄ denote the
population-wide values of Ri,Pi and Ci, respectively. Consider
a specific temperature T ∈ [Tmin,i,Tmax,i]. The “flux” of TCLs
traversing this temperature at time t in the increasing and de-
creasing direction can be written as

φ(T, t) = u(T, t)
dT
dt

∣∣∣
s=1

and ψ(T, t) = v(T, t)
dT
dt

∣∣∣
s=0

respectively. Using (1) we get

φ(T, t) =
1

R̄C̄
(T∞−T (t)− R̄P̄)u(T, t) (4)

ψ(T, t) =
1

R̄C̄
(T∞−T (t))v(T, t) (5)

Consider the small control volume of width δT shown in Fig. 1.
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Figure 1. Illustration of transport PDE representation of temperature dis-
tributions; u(T, t) is the on state distribution, while v(T, t) is the off state
distribution. The bottom part of the figure shows a zoom on a small control
volume of width δT , in which v(T, t) is assumed to be constant.

Using limit arguments, we get the relation

∂v
∂t
(T, t) = lim

δT→0

[
ψ(T +δT, t)−ψ(T, t)

δT

]
=

∂ψ

∂T
(T, t)

= − 1
R̄C̄

[T∞−T (t)]
∂v
∂T

(T, t)+
1

R̄C̄
v(T, t) (6)

for the TCLs in the off state and, correspondingly,

∂u
∂t

(T, t) = − ∂

∂T

[
1

R̄C̄
(T∞−T (t)− R̄P̄)u(T, t)

]
= − 1

R̄C̄
[T∞−T (t)− R̄P̄]

∂u
∂T

(T, t)+
1

R̄C̄
u(T, t) (7)

for the TCLs in the on state.

As the temperatures of TCLs in the on state reach Tmin, they
switch to the off state, and vice versa at Tmax. After some finite
time, no TCLs will exist outside the interval [Tmin,Tmax], in which
case the couplings indicated in Fig. 1 can be stated as

φ(t,T−max)+ψ(t,Tmax) = 0 (8)
ψ(t,T+

min)+φ(t,Tmin) = 0 (9)

or

u(t,Tmax) = −
T∞−Tmax

T∞−Tmax− R̄P̄
v(t,Tmax)

v(t,Tmin) = −
T∞−Tmin− R̄P̄

T∞−Tmin
u(t,Tmin)

To summarize, the homogeneous TCL population model is:

ut(T, t) = αλ(T )uT (T, t)+αu(T, t) (10)
vt(T, t) =−αµ(T )vT (T, t)+αv(T, t) (11)

u(Tmax, t) = q1v(Tmax, t) (12)
v(Tmin, t) = q2u(Tmin, t) (13)

where subscripts (·)T and (·)t denote partial derivatives of (·)
with respect to temperature and time, respectively. The parame-
ters α,λ(T ),µ(T ),q1,q2 are given by

α =
1

R̄C̄
> 0 (14)

λ(T ) = −(T∞−T − R̄P̄)> 0 (15)
µ(T ) = T∞−T > 0 (16)

q1 = − T∞−Tmax

T∞−Tmax− R̄P̄
(17)

q2 = −T∞−Tmin− R̄P̄
T∞−Tmin

(18)

Note that, unlike [10], we have retained the temperature variation
around the setpoint, which ultimately produces the reaction terms
in (10)-(11).

The power consumption of the total population may be ob-
tained by integrating the distribution of TCLs in the on-state:

P(t) =
P̄
η

∫ Tmax

Tmin

u(T, t)dT (19)

where P̄ is the (constant) power delivered to each TCL in the on
state and η is the coefficient of performance for the TCLs.

Figure 2 demonstrates the aggregated behavior for 50 iden-
tical TCLs. The left plots show how the TCLs alternate between
the on and off states while remaining within the operation band.
The TCLs were initiated at random temperatures, normally dis-
tributed around 20◦C, all in the off state. As can be seen, the
power drawn by the population oscillates with a constant ampli-
tude, since the TCLs have identical duty cycles. We say that the
TCLs are synchronized.

The right plots in Fig. 2 show a similar situation, however
now the individual TCL time constants are drawn from a ran-
dom distribution, thus making the population heterogenous. The



Figure 2. Evolution of temperature for 50 TCLs from (a) homogeneous and (b) heterogeneous populations. In each case, the population was initialized
with all TCLs in the off state, with temperature distributed according to u0(T ),v0(T ) in Table 1. Note the TCLs remain in synchrony for the homogenous
population. In contrast, the temperature distribution diffuses in the heterogeneous case. This observation motivates the heterogeneous model in Section
2.2.

corresponding total power consumption exhibits damped oscil-
lations, due to different time constants that cause the individual
TCLs to gradually de-synchronize. Similar behaviors occur if
other parameters such as Θi or T∞,i are allowed to vary across the
TCL population.

2.2 Heterogeneous population
Motivated by the damping phenomenon (so-called de-

synchronization) observed in the Monte Carlo simulations of het-
erogeneous populations, we propose to add a diffusion term to
the advection model (10)-(11):

ut(T, t) = αλ(T )uT (T, t)+αu(T, t)+βuT T (T, t) (20)
vt(T, t) =−αµ(T )vT (T, t)+αv(T, t)+βvT T (T, t) (21)

u(Tmax, t) = q1v(Tmax, t) (22)
v(Tmin, t) = q2u(Tmin, t) (23)

In order to preserve well-posedness of the PDE system, two more
boundary conditions are required. These extra conditions are se-
lected to reflect the fact that the number of TCLs, N, which can
be expressed in terms of u and v by

N(t) =
∫ Tmax

Tmin

u(T, t)dT +
∫ Tmax

Tmin

v(T, t)dT (24)

must be conserved over time. That is, they must satisfy the model
property Ṅ(t) = 0. This yields the extra conditions

uT (Tmin, t) =−vT (Tmin, t) (25)
vT (Tmax, t) =−uT (Tmax, t) (26)

Figure 3 illustrates the improved modeling capabilities of adding
the diffusive term.
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Figure 3. Comparison of aggregate TCL power for the homogeneous
and heterogeneous populations, using the 1,000 individual TCLs in the
Monte Carlo (MC) model, and the PDE models. The heterogeneous PDE
model captures the damped oscillations exhibited by the 1,000 individual
TCL models.

However, while it was in theory possible to compute the pa-
rameters in the heterogeneous model if one had access to knowl-
edge of C̄, R̄ and P̄, it is not possible to compute the parameters
in (20)–(21) in a similar manner. Therefore, we instead develop a
system identification scheme to determine the parameters based
on online system measurements.

3 PARAMETER IDENTIFICATION
Consider the aggregated power consumption of the TCL

population given by (19). Differentiating (19) with respect to

Table 1. Model parameter values

Parameter Value Description

R̄ 2 ◦C/kW Mean thermal resistance

C̄ 10 kWh/◦C Mean thermal capacitance

P̄ 14 kW Mean thermal power

T∞ 32 ◦C Mean ambient temperature

Tsp 20 ◦C Temperature setpoint

Θ 1 ◦C Temperature deadband width

η 2.5 Coefficient of performance

β 0.0145 Diffusivity

u0(T ) 0 Initial distribution of on TCLs

v0(T ) N (20◦C,(0.2◦C)2) Initial distribution of off TCLs

time, followed by integration by parts yields

η

P̄
Ṗ(t) =

∂

∂t

∫ Tmax

Tmin

u(T, t)dT

=
∫ Tmax

Tmin

[αλ(T )uT (T, t)+αu(T, t)+βuT T (T, t)]dT

= α

[
λ(T )u(T, t)

∣∣∣Tmax

Tmin
−

∫ Tmax

Tmin

(λT (T )−1)u(T, t)dT
]

+βuT (T, t)
∣∣∣Tmax

Tmin
(27)

Inserting λ(T ) = T + R̄P̄−T∞ and λT (T ) = 1 into (27) and rear-
ranging, we get

η

P̄
Ṗ(t) = α [Tmaxu(Tmax, t)−Tminu(Tmin, t)]

+αb [u(Tmax, t)−u(Tmin, t)]

+β [uT (Tmax, t)−uT (Tmin, t)] (28)
= αφ1(t)+αbφ2(t)+βφ3(t) (29)

where b = R̄P̄− T∞ and φ1,φ2,φ3 are given by the respective
bracketed terms. Equation (29) provides a parametric model that
is linear in the uncertain parameters α, α ·b, and β.

To utilize this parametric model, we require measurements
u(Tmin, t),u(Tmax, t),uT (Tmin, t),uT (Tmax, t). In the TCL applica-
tion, this means TCLs announce themselves when they turn on
and off, thus providing measurements of u(Tmin, t) and u(Tmax, t).
For uT (Tmin, t) and uT (Tmax, t), we use finite differences. That is,
TCLs must also announce themselves when their temperature is
slightly below (and slightly above) the upper (and lower) limit of
their deadband, when cooling (and when heating).

Since the parametric model contains time derivatives of
measured signals, we employ the standard technique of filtering
to avoid direct differentiation (see, e.g. Sec. 2.4.1 of [16]):

χ̇1 = −aχ1 +
η

P̄
P(t) (30)

χ̇2 = −aχ2 +φ1(t) (31)
χ̇3 = −aχ3 +φ2(t) (32)
χ̇4 = −aχ4 +φ3(t) (33)

where a > 0 is a constant chosen by the user. This constant is
chosen large enough to satisfy a standard persistency of excita-
tion condition, yet small enough to attenuate measurement noise.
The filtered version of (29) becomes

−aχ1 +P(t) = αχ2 +αbχ3 +βχ4 (34)

We choose the parameter vector

θ̂ =
[
α̂ α̂b β̂

]T
(35)



Note that (α̂, b̂, β̂) can be uniquely determined from (α̂, α̂b, β̂).
We define the regressor as

φ =
[
χ2 χ3 χ4

]T (36)

These definitions permit us to rewrite the parametric model (34)
into the form

−aχ1 +P(t) = θ̂
T

φ(t) (37)

and deploy the following standard least squares estimator with
normalization [16]:

ε = −aχ+P(t)− θ̂
T

φ (38)

˙̂
θ =

1
1+ γφT φ

Γφε (39)

Γ̇ = − 1
1+ γφT φ

Γφφ
T

Γ, Γ(0) = Γ0 = Γ
T
0 (40)

where γ > 0 and Γ0 > 0 are user-determined constants.

4 SIMULATION RESULTS
This section illustrates the parameter identification scheme

proposed above. First, we estimate the true parameters in a
model of the form (20)–(26) using only measurements of the
aggregate power and the boundary values (22)–(26). The true
parameters were set to α = .0496,b = 15.5 and β = .0145. The
result of executing (38)–(40) with Γ0 = 0.1I and a= 0.3 is shown
in Fig. 4 and 5. As can be seen, the two first parameter estimates
converge to the true values, whereas β̂ converges to a slightly
larger value than 0.0145. This is likely due to using first-order
finite-differences in the computation of uT (Tmax) and uT (Tmin),
which degrade the second-order accuracy of the Crank-Nicolson
scheme used to solve the PDE model.

Next, the same simulation is attempted with noisy measure-
ments. Gaussian white noise with a standard deviation of 1 per-
cent of the maximum amplitude of u(T, t) was added to u(T, t)
at all points in a grid with density δT = .02◦C, δt = 10−3 h. All
other parameters were identical to the previous simulation. The
parameter convergence is shown in Figure 6. As can be seen,
the parameters still converge to the true values, although some
high-frequency oscillations occur in the estimation of α̂ around
1 hour into the simulation. The estimation of Ṗ(t) is practically
indistinguishable from the previous case in Fig. 5.

Finally, we apply the identification scheme to a Monte
Carlo-simulation model of a large population of TCLs. We sim-
ulate 1000 TCLs with the parameter values given in Table 1, ex-
cept that Ci are drawn from a normal distribution with mean 10
kWh/◦C and standard deviation 1 kWh/◦C. The aggregate power
is measured according to (3). To obtain u(Tmin, t) and u(Tmax, t),
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Figure 4. Parameter estimation, noise-free case.
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Figure 5. Estimation of Ṗ(t) generated from a simulation of (20)–(26);
top: estimate and true signal; bottom: estimation error ε.

we measure the number of TCLs which switch on and off , re-
spectively. To obtain uT (Tmin, t) and uT (Tmax, t), we measure
the number of TCLs with temperature Ti ∈ [Tmin,Tmin +δT ] and
Ti ∈ [Tmax− δT,Tmax] and use first-order finite differences. The
result of estimating the time derivative of the aggregated power
and the corresponding parameter estimates are shown in Fig. 7
and 8, respectively.

The figures indicate that the parameter estimates are noisy,
although the model estimates Ṗ quite well. This may be at-
tributed to (i) the measurements themselves being very noisy,
indicating the need for effective filtering, and (ii) approximation
errors incurred by utilizing an aggregated PDE model. Neverthe-
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Figure 6. Parameter estimation, noisy PDE simulation.

less, the estimates are bounded and converge within some neigh-
borhood of the true values, whose size can be adjusted by tuning
a in (30)-(33), γ in (40), and Γ0 in (40).

5 CONCLUSION
This paper presents PDE-based models and a parameter

identification algorithm for aggregated heterogeneous popula-
tions of thermostatically controlled loads. First, a two-state
boundary-coupled hyperbolic PDE model for homogenous TCL
populations was derived, which was then extended to heteroge-
neous populations by including a diffusive term. Second, a novel
parameter identification scheme was derived for the PDE model
structure, utilizing only boundary measurements and aggregated
power measurements. Simulation results highlight the various
properties of the models and identification algorithm, including
application of the algorithm on data generated by Monte Carlo
simulation. From the experiments it is not easy to say anything
definite regarding the rate of convergence, but persistent exci-
tation does seem to be quite important for identification of the
diffusion coefficient.

This work may be extended in several interesting and impor-
tant ways. First, one may seek to derive other parameter identifi-
cation schemes using different measurement sets, e.g. aggregate
power only or full-state measurements. Second, estimation of
the PDE states u and v (i.e., state observer designs) are desir-
able for monitoring the TCL population with a minimal sens-
ing infrastructure. Third, ultimately feedback control schemes
must be developed to shape aggregate power demand, using the
aforementioned state and parameter estimates. Fourth, there is
currently a dearth of published results exemplifying such model-
based estimation and control algorithms on real-world data. Fi-
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Figure 7. Parameter estimation based on data from a population of
TCLs.
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Figure 8. Estimation of Ṗ(t) generated from a simulation of 1000 TCLs;
top: estimate and true signal; bottom: estimation error ε.

nally, the fundamental PDE-based modeling abstraction can be
extended to other flexible loads, such as charging/discharging of
aggregated plug-in electric vehicles [17, 18].
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