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ABSTRACT
Recent advances in lithium ion battery modeling suggest

degradation may be reduced by permitting unequal but con-
trolled charging of individual cells, delayed until immediately
prior to discharge. Hence, this paper compares anode-side film
formation for a standard equalization scheme versus unequal
charging through switches - controlled by deterministic dynamic
programming (DDP) and DDP-inspired algorithms. A static
model for film growth rate is derived from a first-principles bat-
tery model adopted from the electrochemical engineering litera-
ture. Coupled with this model, we consider two cells connected
in parallel via relay switches. The key results we demonstrate
are: (1) Enabling unequal charging and (2) delaying charging
until immediately prior to discharge indeed reduces film buildup.
(3) A near optimal control method can be implemented using
heuristic rules designed from the DDP solution and convexity
properties of film growth rate. Simulation indicates the heuris-
tic rule achieves near optimal performance relative to the DDP
solution, and over 50% reduction in film growth compared to
charging both cells equally.

NOMENCLATURE
F Faraday’s constant [C/mol]
i0 Battery pack current [A]

i0,s
Exchange current density

[A/m2]for side reaction
i1, i2 Cell current [A]
hpenalty Quadratic penalty function [pm/m2]

∗Address all correspondence to this author.

J Cost functional [pm/m2]

J1
Intercalation current between

[A/m3]solid and solution
Jp Terminal state penalty function [pm/m2]
Jtot Total intercalation current [A/m3]
Js Current density of side reaction [A/m3]

MP
Molecular weight of product [mol/kg]from side reaction

Q Battery cell charge capacity [A·h]
q1,q2 Contactor switch position
R Universal gas constant [J/K/mol]

R f ilm
Total film resistance at

[Ω· m2]electrode/electrolyte interface
Rint Battery cell internal resistance [Ω]

RSEI
Resistance of solid electrolyte

[Ω/m2]interphase (SEI)

Us,re f
Equilibrium potential of [V]side reaction

V Value function [pm/m2]
v Battery pack voltage [V]
x Spatial coordinate [m/m]
z Battery cell state of charge [C/C]

∆φ
Local potential difference between [V]solid and solution at anode

δ f ilm Resistive film thickness [pm/m2]
ηs Over potential driving side reaction [V]
κP Conductivity of electrolyte [1/m/Ω]
ρP Density of product from side reaction [kg/m2]



1 INTRODUCTION
This paper examines health management algorithms for re-

ducing film buildup in battery packs, consisting of two modules
connected in parallel. Battery health improvement represents one
of the key opportunities for catalyzing the integration of plug-
in electric vehicles with the electricity infrastructure (vehicle-to-
grid, or V2G) [1]. Moreover, improving battery lifetime may
substantially reduce the required size (manufacturers might cur-
rently oversize batteries to compensate for capacity fade) and re-
placement period of high-capacity battery packs. This is partic-
ularly important for ensuring the financial feasibility of plug-in
electric vehicles and, more generally, energy storage solutions
for the electric grid. Therefore we seek to design battery pack
management algorithms that control degradation in some opti-
mal sense. In this paper we consider lithium ion chemistries,
which have been identified as a promising battery technology for
achieving high energy and power densities, among other ben-
efits [2]. Managing degradation is particularly challenging be-
cause the associated mechanisms, including resistive film growth
at the anode, are typically simulated using computationally in-
tensive electrochemistry-based models. Moreover, it is currently
impractical to directly access and control the mechanisms caus-
ing degradation inside the cell. To reconcile these issues, we
propose a nearly optimal feedback control algorithm for reduc-
ing degradation that utilizes a simple degradation model with ex-
isting relays in high energy capacity battery packs. At the cell-to-
cell level, researchers have proposed charge equalization circuits
that protect cells connected in series strings from over-charging
or over-discharging due to capacity imbalances [3, 4]. This pa-
per proposes an additional battery health management algorithm
at the cell module level. Namely, we consider the potential ad-
vantages of allowing unequal charge values across modules con-
nected in parallel. Hence, this paper extends research on battery
health management by adding four important and original con-
tributions. First, we utilize a high fidelity physics-based electro-
chemical model of film growth to generate a reduced model for
control. Second, we propose to utilize existing relay switches in
battery packs, typically designed for thermal runaway, for active
control of film growth. Third, we pose an optimal control prob-
lem that seeks to minimize total battery pack film growth through
appropriate relay switching sequences. Fourth, we demonstrate
that a nearly optimal control policy can be implemented as a set
of heuristic rules, designed from the optimal control results and
convexity properties of film growth rate. Literature on lithium
ion batteries contains several models for capacity and power
fade. However, this paper uses an electrochemical-based model
that considers a specific and important source of degradation -
anode-side film growth. Physics-based mathematical models of
health degradation in Li-ion cells have been studied extensively
in the electrochemical literature. A popular model for capturing
the lithium diffusion dynamics and intercalation phenomena was
developed by Doyle, Fuller, and Newman in [5, 6]. This model
is particularly appealing because it is generalizable to differ-
ent cathode materials and physical parameters, for anodes com-
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Figure 1. STRUCTURE OF THE ELECTROCHEMICAL LITHIUM-ION
BATTERY CELL MODEL.

posed of ethylene carbonate. However, the initial versions did
not consider the mechanisms causing capacity loss and power
fade. Consequently, Ramadass et al. [7] extended this model
by hypothesizing an irreversible solvent reduction reaction at the
anode-side electrode/electrolyte interface that generates a resis-
tive film by consuming cyclable lithium. Since this process is
considered one of the chief contributors to capacity fade and
power loss, this paper uses the model presented in [7] to study
battery health management.

Although there have been few publications on controlling
battery battery health, the concept of modeling battery degra-
dation in terms of charge capacity fade and increased inter-
nal resistance spawned a body of research known as state-of-
health (SOH) estimation. Research on SOH estimation generally
uses empirical equivalent circuit battery cell models to estimate
charge capacity and internal resistance, using a variety of algo-
rithms, such as batch data reconciliation, moving-horizon pa-
rameter estimation [8], recursive least squares [9], and extended
Kalman filtering [10–12]. Recently, Smith, Rahn, and Wang [13]
used a standard Kalman filter to estimate the internal spatial-
temporal states of an electrochemical model derived from [5, 6];
however this work does not estimate SOH-related parameters.

The aim of this paper is to extend dynamic systems battery
health research into the arena of lithium-ion film growth control.
As such, the remainder of this paper is organized as follows: Sec-
tion 2 reviews an electrochemical model for film growth devel-
oped by Ramadass, et al. [7], the reduced model utilized in this
paper, and a simple battery pack design. Section 3 formulates
a deterministic dynamic programming (DDP) problem for mini-
mizing total film growth in the battery pack under consideration.
Section 4 analyzes the DDP results and interprets the solution
via the convexity properties of film growth rate. This analysis
motivates the design of a suboptimal heuristic feedback control
law. Section 5 characterizes the performance of the heuristic al-
gorithm vis-a-vis the DDP solution and standard charge equal-
ization scheme. Finally, Section 6 summarizes the paper’s main
conclusions.



2 MODEL DEVELOPMENT
2.1 Electrochemical Capacity Fade Mechanics

In this paper, a function mapping cell state of charge (SOC)
and current to film growth rate is extracted from a first-principles
electrochemical Li-ion battery cell model developed in [7]. This
model simulates phenomena such as lithium ion diffusion and
intercalation to determine the potential and concentration gradi-
ents in the solid and solution sections of the anode, cathode, and
separator. A schematic of the cell model is provided in Fig. 1,
where Ramadass et al. argue that a resistive film builds up on
the anode electrode/electrolyte interface [7]. The exact chemi-
cal side reaction depends on the chemistry of the electrode and
electrolyte. Equations (1)-(6), developed by Ramadass et al. ar-
gue that a very simple and general method for modeling capacity
loss is to assume an irreversible solvent reduction reaction of the
following form

S +Li+ + e−→ P (1)

where S denotes the solvent species and P is the product.
As a result of this irreversible side reaction, the products

form a film at the electrode/electrolyte interface. This film has
a time and spatially varying thickness δ f ilm(x, t), which, com-
bined with the solid electrolyte interphase (SEI) resistance RSEI ,
models the total resistance at the electrode/electrolyte interface
as follows

R f ilm(x, t) = RSEI +
δ f ilm(x, t)

κP
(2)

where κP, denotes the conductivity of the film, x is the spatial
coordinate, and t is time. The state equation corresponding to the
growth of film thickness, due to the unwanted solvent reduction
described in Eq. (1), is given by

∂δ f ilm(x, t)
∂t

=− MP

anρPF
Js(x, t) (3)

In Eq. (3), MP, an, ρP, and F represent, the product’s molec-
ular weight, specific surface area, mass density, and Faraday’s
constant, respectively. The term Js denotes the local volumet-
ric current density for the side reaction, which is governed by
Butler-Volmer kinetics. If we assume the solvent reduction reac-
tion is irreversible and the variation of Li-ion concentration in the
solution is small, then we may approximate Js by the following
Tafel equation [14].

Js(x, t) =−i0,sane(−0.5F
RT ηs(x,t)) (4)

In Eq. (4), i0,s, R, and T respectively denote the exchange current
density for the side reaction, universal gas constant, and cell tem-
perature. The term ηs represents the side reaction overpotential,

which drives the solvent reduction reaction in Eq. (1). This vari-
able is expressed by the following equation, based on Kirchoff’s
voltage law.

ηs(x, t) = ∆φ(x, t)−Us,re f −
Jtot(x, t)

an
R f ilm(x, t) (5)

The variable ∆φ represents the difference in potentials between
the solid and solution. The symbol Us,re f denotes the equilibrium
potential of the solvent reduction reaction, which we assume to
be constant. The total intercalation current Jtot models the flow
of charge exchanged with the anode-side solution. Specifically,
the total intercalation current Jtot is given by the sum of current
between the solid and solution (J1), and the solvent reduction
reaction and solution (Js), that is

Jtot = J1 + Js (6)

Equations (2)-(6) encompass the film growth subsystem of
the Li-ion battery cell model, adopted from [7]. This subsystem
connects to the remainder of the battery model through the to-
tal intercalation current Jtot and potential difference ∆φ. Since
these variables vary with respect to space (across the electrodes
and separator) and time, they are determined by solving cou-
pled partial differential equations and algebraic constraints repre-
senting the concentration and potential distributions in the solid
and solution of the anode, cathode, and separator (see [5, 6] for
details). Although this model accurately predicts electrochemi-
cal phenomena such as diffusion dynamics and film growth, its
complexity makes control design for health management diffi-
cult. Therefore, the present research seeks to use the high fidelity
model to generate simpler models for the purposes of control de-
sign. To acquire insight on the relationship between battery cell
SOC, current, and film growth rate, consider a fresh cell, that is
δ f ilm(x,0) = 0. Also assume all the intercalation currents, over-
potentials, and concentration profiles are constant with respect
to space and correspond to zero applied current. Under these as-
sumptions, we simulate the electrochemical battery cell model
to compute a static relationship mapping cell SOC and applied
current to the spatially averaged film growth rate δ̇ f ilm, shown in
Fig. 2. The map indicates that film growth rate increases with
cell SOC. The film growth rate also increases as the discharge
current becomes increasingly negative, i.e. for increasing charge
current. Finally, film grows when zero current is applied, indi-
cating that aging occurs even when the cells are not in use. A key
question we revisit after obtaining the optimal control solution is
what insight can be extracted from this map to design controllers
that reduce film formation in battery packs?

2.2 Battery Pack Model
Switched capacitor circuits [3, 4] are typically applied to

equalize individual SOC levels for cells connected in series. In
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Figure 2. STATIC APPROXIMATION OF FILM GROWTH RATE VS.
CELL CURRENT AND SOC FOR FRESH CELL (i.e. δ f ilm = 0). POSI-
TIVE CURRENT CORRESPONDS TO DISCHARGE.

this paper, we examine the potential advantages of allowing un-
equal charge levels for battery modules connected in parallel. A
simple method to independently control module charge levels
uses switches in protection circuits [15] (e.g. solid state relays
or contactors). These devices are primarily designed to discon-
nect the battery in case of imminent catastrophic behavior, such
as thermal runaway [16]. When multiple modules are arranged
in parallel, individual solid state relays can be connected in se-
ries with each parallel branch. These relays may serve as one
potential opportunity for individually controlling battery module
SOC, and will be the topology we consider henceforth.

Consider a battery pack architecture consisting of two mod-
ules connected in parallel through two switches, where each
module contains one cell for simplicity (Fig. 3). The goal is
to determine the optimal switching strategy that minimizes the
total film growth of both cells, given an exogenous current trajec-
tory i0. Due to the computational complexity of the distributed
parameter electrochemical cell model described in Section 2.1,
and the curse of dimensionality imposed by dynamic program-
ming [17], we require a simplified model for control design.
As such, we utilize an equivalent circuit model [11, 18], writ-
ten in discrete time, with a ten second time step (∆T = 10 sec).
This equivalent circuit model consists of an open circuit voltage
source OCV in series with an internal resistor Rint . Open circuit
voltage and internal resistance are nonlinear functions of SOC,
that is OCV (zi) and Rint(zi) where i = 1,2. The state variables
z1 and z2 represent the SOC of battery cells 1 and 2 respectively.
The dynamic equations for each cell are based on integrating cur-
rent i1, i2 to obtain charge, and then dividing by the total charge

Figure 3. CIRCUIT DIAGRAM OF BATTERY PACK.

capacity of the cell Q.

z1,k+1 = z1,k−
i1,k

Q
∆T (7)

z2,k+1 = z2,k−
i2,k

Q
∆T (8)

The currents i1, i2 are determined by the configuration of the
switches and exogenous current demand on the battery pack
i0. The currents are given by Kirchoff’s current law, where the
switching signals q1 and q2 equal zero and one when the corre-
sponding switch is respectively open or closed:

i1,k = q1,k(1−q2,k)i0,k

+
OCV (z1,k)−OCV (z2,k)+ i0,kRint(z1,k)

2Rint(z1,k)
q1,kq2,k (9)

i2,k = (1−q1,k)q2,ki0,k

+
OCV (z2,k)−OCV (z1,k)+ i0,kRint(z2,k)

2Rint(z2,k)
q1,kq2,k (10)

The first terms on the right-hand side of (9), (10) model one cell
connected at a time. The second terms model both cells con-
nected at the same time. Note that the battery does not charge
(i.e. experiences zero current) when both q1 and q2 equal zero.
The parameters OCV and Rint for the equivalent circuit model
are identified from the full electrochemical model described in
Section 2.1. Similar to the film growth rate map in Fig. 2, these
parameters assume constant potential and concentration distribu-
tions for a given SOC value. The open circuit voltage is given by
the potential in the solid portion of the cathode, at the positive
terminal, for zero applied current, shown in (11). The internal
resistance is computed via Ohm’s law in (12). Each cell has a
charge capacity of Q = 1.8 Ah.

OCV (z) = ∆φcathode(x = L) (11)

Rint(z) =
(∆φcathode(x = L)−OCV (z))

iapp
(12)



The symbol L denotes the length of the cathode, iapp is the cur-
rent applied to the battery cell, and each electrode is initialized at
concentration levels corresponding to a cell SOC level of z. Us-
ing these measurements, we fit OCV and Rint with the following
polynomial regression models:

OCV (z) = 9.62z5−27.7z4 +30.4z3

−15.4z2 +3.90z+3.37 (13)
Rint(z) = −0.319z5 +0.989z4−1.15z3

+0.645z2−0.188z+0.114 (14)

3 OPTIMAL CONTROL PROBLEM FORMULATION
The control objective is to determine the optimal switching

sequence that minimizes the total resistive film growth in the bat-
tery pack described in Section 2, given a current trajectory, i0,
known a priori. We formulate this as a finite horizon constrained
optimal control problem

min
q1,q2

J =
N

∑
k=1

[
δ̇ f ilm(z1,k, i1,k)+ δ̇ f ilm(z2,k, i2,k)+gz(zk)

]
+αN‖zN−0.95‖2

2 (15)
subject to

zk+1 = f (zk, ik) (16)
ik = h(qk, i0,k) (17)
z1 = zic (18)

where
(q1,q2) ∈ {0,1}×{0,1} (19)

gz(zk) = αz

[
∑

i=1,2
max

{
0.05− zi,k,0,zi,k−0.98

}]2

+

αv

[
∑

i=1,2
max

{
2.0− vi,k,0,vi,k−4.3

}]2

(20)

zk = [z1,k z2,k]T (21)
ik = [i1,k i2,k]T (22)

where the function δ̇ f ilm maps SOC and current to average
film growth rate according to the relationship depicted in Fig.
2. The function gz(zk) denotes soft constraints that limit cell
SOC and cell voltage to protect against over-charging and over-
discharging. However, for the simulation described in this pa-
per, these constraints never become active due to the modest
1C charging rate employed. A terminal constraint with weight-
ing αN is provided to ensure the battery pack charges to the
SOC corresponding to the desired final voltage. The function
f (zk, ik) represents the dynamic equation in (7)-(8). The func-
tion h(qk, i0,k) maps the switch position and battery pack current
to cell current in (9)-(10). Finally, we impose a fixed initial con-
dition zic.
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Figure 4. OPTIMAL TRAJECTORIES FOR VARIOUS INITIAL CONDI-
TIONS, GIVEN A 1C BATTERY PACK CHARGE RATE.

To solve the optimization problem in (15)-(22), we re-
express the equations as a dynamic programming problem by
defining a value function as follows [17]: Let Vk(zk) represent
the minimum total film growth from discrete time k to the end
of the time horizon, given that the cell SOC in the present time
step k is given by the vector zk. Then the optimization problem
can be written as the following recursive optimality equation and
boundary condition.

Vk(zk) = min
q1,q2

{
δ̇ f ilm(z1,k, i1,k)+ δ̇ f ilm(z2,k, i2,k)

+gz(zk)+Vk+1(zk+1)

}
(23)

VN(zN−1) = min
q1,q2

{
αN‖zN−0.95‖2

2
}

(24)

The above dynamic programming problem is solved via a
full enumeration algorithm. That is, we compute a family of
optimal trajectories for a set of fixed initial conditions. This ap-
proach enables us to analyze an ensemble of trajectories to gain
insight on how DDP minimizes total film growth.

4 SOLUTION ANALYSIS
4.1 Analysis of Optimal Trajectories

To acquire insight on the optimal switching sequence for
minimizing resistive film growth, we consider a constant 1C (1.8
A) charge rate applied to the battery pack. Note that while the
battery pack experiences a constant current charge rate, the indi-
vidual cells will have time varying charge rates. Figure 4 demon-
strates the optimal trajectories for a set of initial battery cell SOC
conditions. Time responses for an initial SOC of 0.1 for each cell
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Figure 5. TIME RESPONSES FOR OPTIMAL CHARGING PATTERN
IDENTIFIED BY DDP, GIVEN A 1C BATTERY PACK CHARGE RATE.

are provided in Fig. 5. These figures indicate that the optimal
switching sequence follows a consistent pattern:

1. Leave the battery pack uncharged for as long as possible.
2. Charge the cell with greater initial SOC.
3. Charge the cell with less SOC until both cells approximately

equalize.
4. Charge both cells together, at approximately equal SOC val-

ues, until the final state is reached.

The key question is why does DDP identify the aforementioned
pattern as the optimal switching sequence for minimizing film
growth?

4.2 The Energy Storage-Film Growth Tradeoff
First, let us focus our attention on the result that film growth

is minimized by leaving the battery pack uncharged for as long
as possible. In other words, film growth is minimized if battery
packs are charged only immediately before use. The reason for
this result can be seen by observing that the film growth rate in-
creases with SOC in Fig. 2. Therefore, maintaining each cell in
a low SOC reduces the overall film buildup. However, this re-
quires a priori knowledge of when the battery pack will be used.
Moreover, if the battery is discharged sooner than expected, only
a fraction of the total energy capacity is available for use. This
suggests a fundamental tradeoff between electric energy storage
and reducing anode-side film growth.

4.3 Convexity Analysis of Film Growth Rate
Next, let us focus on the switching pattern exhibited by the

optimal solution when charging does occur. Consider the film
growth rate for varying SOC and zero current input, as portrayed
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GROWTH RATE FOR ZERO APPLIED CURRENT.

in Fig. 6. For small SOC values, δ̇ f ilm is concave. Along this
portion of the curve, the total film growth rate for two cells at
different SOC values is less than the total film growth rate for
two cells at the same SOC value. However, for large SOC values
δ̇ f ilm is convex. This implies that the total film growth rate for
two cells at different SOC values is greater than the total film
growth rate for two cells at equal SOC values. If one assumes
the solution is infinitely greedy, these observations for reducing
film growth can be applied as follows:

1. In the concave region of δ̇ f ilm, drive the individual SOC val-
ues apart.

2. In the convex region of δ̇ f ilm, equalize the individual SOC
values.

These results indicate that a reduction in total film growth
can be achieved by allowing individual modules to have unequal
SOC values. Additionally, the optimal policy follows a consis-
tent pattern that may be approximated by a heuristic feedback
control law, which leaves the battery discharged for the maxi-
mum allowable time.

4.4 DDP-inspired Heuristic Control
Inspired by these results, and the convexity analysis pre-

sented in Section 4.2, we examine a heuristic control scheme
for minimizing film growth, depicted in Fig. 7. The advan-
tage of a heuristic control scheme over the optimal trajectories
computed by DDP is that the former can be implemented in a
feedback loop. Additionally, one expects the heuristic scheme
to achieve nearly optimal performance, due to the consistent pat-
tern exhibited by the DDP solutions. The process of converting
optimal trajectories into an explicit feedback map has been stud-
ied extensively in model predictive control theory [19]. These
concepts are potentially applicable here, but a simpler less for-
mal approach is used in this initial study. Note that the switching
pattern defined by the heuristic rule should not be initiated until
the last possible opportunity. In this example, each cell has a 1.8
A-h charge capacity and thus the total pack charge capacity is 3.6
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A-h. Therefore charging both cells from 0.1 SOC to 0.95 SOC
at a 1C (1.8 A) rate requires about 100 minutes. As a result, we
initiate the heuristic charging scheme 100 minutes prior to the
final time.

The design of the heuristic control law follows two steps:
First, we simulate the optimal trajectories from a family of ini-
tial conditions, such as shown in Fig. 4. Second, we identify
regions of the state-space corresponding to a certain switch con-
figuration. For regions in which the optimal state trajectories do
not enter, we select a switch configuration that steers the state
toward an optimal trajectory. This step is required, because for
the 1C charge rate input studied here, feasible trajectories do not
cover the entire state-space. The final result of this procedure is
depicted in Fig. 7, where several optimal state trajectories are
superimposed on the proposed heuristic rule.

5 SIMULATION RESULTS
To evaluate the performance of the proposed heuristic con-

troller, we compare it to the optimal DDP-based and standard
equalization schemes (i.e. both switches closed during charg-
ing). We perform this study by simulating the closed loop bat-
tery pack degradation control system for a 1C (1.8 A) constant
current charge rate cycle. The initial cell SOC values are 0.1
each. In practice, the standard charge method is to apply con-
stant current to every cell in the pack until the voltage reaches a
maximum value, then the voltage is held constant at this maxi-
mum value until the applied current reaches some minimal level.
This is known as a constant current, constant voltage (CCCV)
charge cycle [7]. Here, we only investigate the potential im-
provements incurred during the period when the cells charge up
to a maximum voltage limit, corresponding to 0.95 SOC in our
simulations.
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5.1 Charge Cycle Simulation
The cell SOC trajectories for each control scheme are pro-

vided in Fig. 8, superimposed on the heuristic rule. Observe that
the standard charging scheme maintains each cell at equal SOC
values as the battery pack charges. In contrast, the trajectories
corresponding to DDP and the heuristic rule follow trajectories
similar to Fig. 4 and 7. Namely, both methods charge one cell
at a time in the concave region of δ̇ f ilm, and then apply charge

equalization in the convex region of δ̇ f ilm. Also observe that
trajectories for DDP and the heuristic controller match closely,
indicating that the proposed heuristic controller closely approx-
imates the optimal solution for the trajectory shown here. Time
responses for the cell SOC, current, and battery pack voltage are
provided in Fig. 9. Here we see that the heuristic rule is initiated
50 minutes into the simulation, allowing 100 minutes of charg-
ing time. All three subplots further demonstrate how closely
the heuristic controller and DDP solution match, with respect to
time. Since the standard method initiates charging immediately,
the cells remain idle at 0.95 SOC once charging is complete. This
is important because film builds up at a faster rate for high SOC
relative to low SOC. The impact of this property can be seen in
the third subplot. The second subplot demonstrates each cell’s
voltage, which increases only when that particular cell is charg-
ing. Note that all schemes maintain the cell voltage within the
safety range of 2.0V to 4.3V.

5.2 Discussion of Performance Results
A comparison of the performance for each control scheme is

provided in Table 1. For the 1C rate charge cycle studied in this
paper, the heuristic controller produces an additional 7 pΩ/m2 of
resistive film buildup over the DDP solution. Hence, the heuris-
tic scheme exhibits nearly identical performance to the optimal
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control design. Both DDP and the heuristic controller reduce
film buildup by over 50%, for this charge cycle. It is important
to note that the reduction in film buildup is a function of the par-
ticular charge cycle and time horizon. That is, cycles that remain
within the concave region of δ̇ f ilm will experience greater im-
provement, because the switched scheme proposed in this paper
has the greatest advantage in this domain. Moreover, the bulk of
film reduction occurs due to delaying the charging process to the
end of the time horizon. For the example studied here, 48% of
film buildup reduction is due to delayed charging and 2% due to
the unequal charging pattern. More importantly, the conclusion
that battery SOC should remain low to minimize film buildup in-
troduces an interesting tradeoff between electrochemical energy
storage and battery health. Finally, we note that although the
switched schemes reduce total film buildup, they sacrifice some
power efficiency. In particular, the DDP and heuristic scheme
reduce power efficiency by over 1%. This result occurs due to
increased i2R losses that occur when applying greater current
values through each cell’s internal resistance. Hence, there ex-
ists a tradeoff between long term battery degradation and short

Table 1. CONTROLLER PERFORMANCE COMPARISON.

Control
Scheme

Resistance of
Total Film
Buildup

Reduction
in Film
Buildup

Average
Power
Efficiency

Standard 2182 pΩ/m2 0% 98.0%

DDP 1058 pΩ/m2 51.5% 96.8%

Heuristic 1065 pΩ/m2 51.2% 96.8%

term power efficiency.
Although the degradation reduction techniques demon-

strated in this paper are admittedly preliminary, the analysis mo-
tivates several health management ideas currently under investi-
gation. For example, this work assumes cell current can only be
controlled through relay switches, thus constraining current to
take on values in a discrete set. However, we are currently con-
sidering more advanced circuitry that enables a continuous split
of current between parallel cells, thus allowing greater freedom
in navigating the film growth map. Secondly, the distributed pa-
rameter nature of the electrochemical cell model enables the use
of theory developed for boundary control of PDE’s [20]. Finally,
model reduction techniques (e.g. [21]) are currently under con-
sideration for properly balancing model fidelity with amenability
to control design.

6 CONCLUSIONS
This research investigates battery health management in

lithium ion battery packs using relay switches for modules con-
nected in parallel. To facilitate control design and analysis, we
consider an electrochemical battery cell model with irreversible
solvent reduction reaction dynamics at the anode, developed by
Ramadass et. al. [7]. From this high fidelity model, we approx-
imate film growth rate as a static map that functionally depends
on cell SOC and applied current. From this map, we formu-
late an optimal control problem to minimize total battery pack
film growth for a constant current charge trajectory. Inspired by
the optimal trajectories, and the convexity properties of the film
growth map, we design a heuristic rule base that produces nearly
optimal performance.

The key results demonstrated by this work is that health
degradation due to film growth can be reduced by: (1) Allow
battery modules connected in parallel to attain unequal SOC val-
ues. (2) Delay charging until immediately before discharging.
Indeed, the optimal solution approximately separates SOC in the
concave region and equalizes SOC in the convex region of film
growth rate at the end of the time horizon. Individual control of
module SOC is achieved via relay switches typically used for
safety precautions. Within each module, individual cell SOC
may be equalized via traditional switched capacitor circuits [3,4]
to protect against over-charging or over-discharging. Simulation
results indicate this approach may reduce film growth by over
50%.
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