
Constraint Management in Li-ion Batteries:
A Modified Reference Governor Approach

S. J. Moura, N. A. Chaturvedi, and M. Krstić

Abstract— This paper addresses the problem of satisfying
state constraints in Li-ion batteries, to maintain safe operation
and prolong battery life. Mathematically, these constraints
are formulated from a first principles electrochemical model.
Consequently, the constraints explicitly model specific degra-
dation mechanisms, such as lithium plating, lithium depletion,
overheating, and stress fracture. The critical challenges, how-
ever, are that (i) these states evolve according to a system
of nonlinear partial differential equations, and (ii) the states
are not physically measurable. This paper focuses on the first
challenge by utilizing the reference governor concept. The
results demonstrate how electrochemical model state informa-
tion can be utilized to ensure safe operation, while providing
opportunities to enhance energy capacity, power, and charge
times in Li-ion batteries.

I. INTRODUCTION

This paper develops a reference governor-based approach
to operating lithium-ion batteries at their safe operating limits.

Battery energy storage is a key enabling technology for
portable electronics, electrified transportation, renewable
energy integration, and smart grids. A crucial obstacle to the
proliferation of battery energy storage is cost. Specifically,
battery packs are typically oversized and underutilized to
ensure longevity and robust operation. Indeed, oversizing
mitigates several degradation mechanisms, such as lithium-
plating, lithium depletion/over-saturation, overheating, and
stress fractures by reducing C-rates. However, oversizing
can be overly conservative. This paper seeks to eliminate
this conservatism by developing reference governor-based
tools that enable smaller-sized batteries whose states satisfy
operating constraints that explicitly model degradation mech-
anisms. This is in contrast to the traditional approach, which
utilizes voltage and current constraints that do not necessarily
correspond to the internal degradation mechanisms.

A reference governor (RG) is an effective tool for con-
trolling a system within pointwise-in-time constraints. This
add-on device attenuates the command signal (electric current,
in our case) such that state constraints are satisfied while
maintaining tracking performance [1], [2]. This method has
been applied to a variety of systems, including electrochem-
ical energy conversation devices. For example, Sun and
Kolmanovsky developed a robust nonlinear RG to protect
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Fig. 1. Schematic of the Doyle-Fuller-Newman model [8]. The model
considers two phases: the solid and electrolyte. In the solid, states evolve in
the x and r dimensions. In the electrolyte, states evolve in the x dimension
only. The cell is divided into three regions: anode, separator, and cathode.

against oxygen starvation in fuel cell systems [3]. In [4],
Vahidi et al. adopted a so-called “Fast” RG approach for fuel
cells to protect against compressor surge/chock and oxygen
starvation. In battery systems, Plett designed an algorithm
to determine power limits in real-time [5]. This approach
considers an equivalent circuit model and terminal voltage
constraints. Smith et al. recently utilized a reduced-order,
linearized electrochemical model for state estimation and
prediction of maximum, safe current draw [6]. Klein et al.
use detailed electrochemical model with nonlinear model
predictive control to determine optimal charging trajectories,
in the presence of state constraints [7].

In this paper, we seek to design a scheme which governs a
commanded electrical current, in the presence of constraints
on the electrochemical states. As such, this paper provides
two important designs for constraint management in batteries:
(i) a nonlinear modified RG which utilizes an electrochemical
model, and (ii) a linear modified RG which utilizes a
linearized electrochemical model. These algorithms enable
us to ensure safe operation, while providing possibilities for
enhancing performance.

The remainder of this paper is structured as follows. Section
II summarizes the electrochemical model and presents two
motivating examples. Sections III and IV develop the nonlin-
ear and linearized modified RGs, respectively. Conclusions
are summarized in Section V.



II. ELECTROCHEMICAL MODEL
& MOTIVATING EXAMPLES

A. Doyle-Fuller-Newman Model

We consider the Doyle-Fuller-Newman (DFN) model in
Fig. 1 to predict the evolution of lithium concentration in
the solid c±s (x, r, t), lithium concentration in the electrolyte
ce(x, t), solid electric potential φ±s (x, t), electrolyte electric
potential φe(x, t), ionic current i±e (x, t), molar ion fluxes
j±n (x, t), and bulk cell temperature T (t) [8]. The governing
equations are given by

∂c±s
∂t

(x, r, t) =
1

r2
∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(x, r, t)

]
, (1)

εe
∂ce
∂t

(x, t) =
∂

∂x

[
εeDe

∂ce
∂x

(x, t) +
1− t0c
F

i±e (x, t)

]
,

(2)
∂φ±s
∂x

(x, t) =
i±e (x, t)− I(t)

σ±
, (3)

∂φe
∂x

(x, t) = − i
±
e (x, t)

κ
+

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t), (4)

∂i±e
∂x

(x, t) = asFj
±
n (x, t), (5)

j±n (x, t) =
1

F
i±0 (x, t)

[
e
αaF
RT η±(x,t) − e−

αcF
RT η±(x,t)

]
,

(6)

ρavgcP
dT

dt
(t) = hcell [Tamb(t)− T (t)] + I(t)V (t)

−
∫ 0+

0−
asFjn(x, t)∆T (x, t)dx, (7)

where De, κ, fc/a are functions of ce(x, t) and

i±0 (x, t) = k±
[
c±ss(x, t)

]αc [
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
,

(8)

η±(x, t) = φ±s (x, t)− φe(x, t)
− U±(c±ss(x, t))− FR±f j

±
n (x, t), (9)

c±ss(x, t) = c±s (x,R±s , t)., (10)

∆T (x, t) = U±(c±s (x, t))− T (t)
∂U±

∂T
(c±s (x, t)), (11)

c±s (x, t) =
3

(R±s )3

∫ R±
s

0

r2c±s (x, r, t)dr (12)

Along with these equations are corresponding boundary
and initial conditions. For brevity, we only summarize the
equations here. However, further details, including notation
definitions, can be found in [8], [9]. The parameters are taken
from the publicly available DUALFOIL model, developed by
Newman and his collaborators [10]. The simulations provided
here correspond to a LiCoO2 cell. However, the techniques
are broadly applicable to any Li-ion chemistry.

B. Constraints

During operation it is critical to maintain the battery within
a safe operating regime. This protects the battery against

failure and maintains longevity. Towards this end, we consider
several constraints,

Imin ≤ I(t) ≤ Imax, (13)

θ±min ≤ c±s (x, r, t)

c±s,max
≤ θ±max, (14)

c±s,r,min ≤ ∂c±s
∂r

(x, r, t) ≤ c±s,r,max, (15)

ce,min ≤ ce(x, t) ≤ ce,max, , (16)
Tmin ≤ T (t) ≤ Tmax, (17)

ηs(x, t) = φs(x, t)− φe(x, t)− Us ≥ 0. (18)

Equation (13) signifies that the power electronics provide
finite current. Equation (14) protects the solid active material
from lithium depletion or over-saturation. Equation (15)
constrains mechanical stress induced by spatial concentration
gradients, which is known to cause particle fracture [11].
Equation (16) protects the electrolyte from lithium depletion
or over-saturation. Equation (17) protects against excessively
cold or hot temperatures, which accelerates cell aging. Finally,
Eqn. (18) is a side reaction overpotential constraint. This con-
straint avoids regimes where unwanted side reactions occur,
including lithium plating and solid/electrolyte interphase film
formation [9].

C. Numerical Implementation

Numerical solution of the coupled nonlinear PDAE (1)-(12)
is, by itself, a nontrivial task. In fact, a body of literature
exists on this singular topic (see, e.g. [12]–[14]). In our work
the PDEs governing Fickian diffusion in the solid phase, (1),
are discretized in the r-dimension via Padé approximates [14].
All the remaining PDEs are discretized in the x dimension
via the central difference method [15], such that the mass
of lithium is conserved. This ultimately produces a finite-
dimensional continuous-time differential-algebraic equation
(DAE) system

ẋ(t) = f(x(t), z(t), I(t)), (19)
0 = g(x(t), z(t), I(t)), (20)

where

x =
[
c±s , ce, T

]T
, z =

[
φ±s , i

±
e , φe, j

±
n

]T
. (21)

This DAE model is then propagated forward in time via
an implicit numerical scheme. In particular, the nonlinear
discretized equations are solved via Newton’s method, at
each time step. A crucial step is to provide the scheme
with analytic expressions for the Jacobian, which ensures
fast convergence and accurate simulations. These Jacobians
are also used for the linearized modified reference governor
design in Section IV.

D. Motivating Examples

Next, we consider two motivating examples: lithium plating
and lithium depletion in the electrolyte. In Fig. 2 we
consider a 10 sec, 3C pulse charging cycle at 90% SOC
as an example scenario when lithium plating may occur.
In addition to the voltage response, Fig. 2 displays the
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Fig. 2. Motivating example of Li plating during 10sec 3C pulse charging.
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Fig. 3. Motivating example of lithium depletion in the electrolyte during
10sec 10C pulse discharging. The model is invalid after ce(0+, t) < 0.

side reaction overpotential response at the anode/separator
interface, ηs(L−, t). Note that ηs(L−, t) < 0 over several
time periods. This induces lithium plating, leading to dendrite
formation that may potentially short-circuit the electrodes.

Figure 3 displays responses for 10 sec, 10C pulse discharg-
ing cycle at 60% SOC. Under this scenario, Li is eventually
depleted at the cathode/current collector interface, denoted by
ce(0

+, t). The model becomes invalid when ce(0+, t) < 0.
In the following sections, we design an algorithm to protect

the battery from entering these unsafe regions.

III. MODIFIED REFERENCE GOVERNOR (MRG)

A. MRG Design

We utilize the reference governor concept to handle
constraint satisfaction in batteries. A reference governor is
an add-on system that guarantees constraint satisfaction and
maintains a desired level of reference tracking. It operates in

Battery 

Cell

I r I V

y

Modi!ed 

Reference 

Governor

Fig. 4. Block diagram of modified reference governor with direct
measurements of the constrained variables y.

a discrete-time domain, since the computations may not be
feasibly performed in real-time. In our “modified” reference
governor approach, the applied current I(t) and reference
current Ir(t) are related according to

I[k + 1] = β[k]Ir[k], β ∈ [0, 1], (22)

where I(t) = I[k] for t ∈ [k∆t, (k + 1)∆t), k ∈ Z, and
similarly for Ir[k]. We define the admissible set

O = {(x(t), z(t)) : y(τ) ∈ Y,∀τ ∈ [t, t+ Ts]} , (23)

where

ẋ(t) = f(x(t), z(t), βIr), (24)
0 = g(x(t), z(t), βIr), (25)

y(t) = C1x(t) + C2z(t) +D · βIr + E. (26)

The output variables y = [I, c±s , ce, T, ηs]
T must exist in set

Y , characterized by inequalities (13)-(18). The goal is to find
the maximum value of β which maintains the state in O

β∗[k] = max {β ∈ [0, 1] : (x(t), z(t)) ∈ O} , (27)

where (x(t), z(t)) depends on β via (23)-(26).
To determine parameter β∗ at each time instant, the model

is simulated forward over the time interval [t, t+ Ts], where
Ts is the simulation horizon. If the constraints are violated
for a given value of β, then β is reduced and the model is
re-simulated to ascertain constraint satisfaction of the new
value of β. If the constraints are satisfied, then β is increased
to reduce tracking error between I(t) and Ir(t). This process
is iterated according to the bisection algorithm [15].

Remark 1: We refer to (22) as a “modified” reference
governor to distinguish it from the conventional reference
governor concept

I[k + 1] = I[k] + β[k] (Ir[k]− I[k]) , β ∈ [0, 1], (28)

which inserts a low-pass filter between the reference and
applied inputs [1], [2]. In the battery application, we find that
(22) provides less conservative and more robust performance
than (28), since it directly modifies the current as opposed
to filtering it. A similar concept is used for batteries in [6].

B. Simulations

We consider the case when the constrained output variables,
y, are measurable, as shown in Fig. 4. In practice, one needs
to estimate these variables from measurements of current and
voltage, as done in [16]. This section analyzes performance
under the hypothetical situation of output variable feedback.
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Fig. 5. Evolution of current I(t), reference current Ir(t), and side reaction
overpotential ηs(L−, t) for a 10sec 3C pulse charging scenario, with a
modified reference governor.
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Fig. 6. Evolution of current I(t), reference current Ir(t), and electrolyte
concentration ce(0+, t) for a 10sec 8C pulse discharging scenario, with a
modified reference governor.

In the following, we apply the MRG to the scenarios
described in Section II-D. Figure 5 displays the current
I(t), reference current Ir(t), and side reaction overpotential
ηs(L

−, t) for a 10sec 3C pulse charging scenario. Note how
the MRG attenuates the current to satisfy ηs > 0. Similarly,
Fig. 6 displays the system responses for a 10sec 8C pulse
discharging scenario. Again, I(t) is attenuated such that
lithium is not depleted in the electrolyte.

Next we demonstrate the benefits of utilizing a MRG
for charging. Figure 7 compares the standard charging
protocol, constant charging-constant voltage (CCCV), to a
reference governor-based charging. In both cases, we consider
a constant 1C charging current. The CCCV protocol applies
1C charging until the terminal voltage reaches a “maximum
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Fig. 7. Comparison of CCCV and modified reference governor (MRG)
charging. The MRG regulates ηs near its limit, thereby achieving 95%SOC
in 24min vs. 38min for CCCV, despite voltage exceeding 4.2V.

safe voltage level,” 4.2V in this case. This occurs near the
18 min mark. At this point, CCCV regulates terminal voltage
at the maximum value, 4.2V, while the current diminishes
toward zero. The maximum value of 4.2V is selected such that
lithium plating does not occur due to overcharging. Indeed, the
side reaction overpotential does not fall below zero. However,
this approach is conservative. Specifically, the side reaction
overpotential can be regulated closer to its limit. The MRG
applies 1C charging subject to the constraint ηs(L−, t) ≥ 0.
In Fig. 7 the MRG maintains ηs ≥ 0 despite voltage exceeding
4.2V. Moreover, the cell attains 95% SOC in 24min vs 38min
for CCCV. Also note that CCCV reaches an equilibrium SOC
of 96%, whereas the RG achieves 100% SOC. Consequently,
charging time is decreased by 37% and energy capacity is
increased by 4%.

IV. LINEAR MODIFIED REFERENCE GOVERNOR

The nonlinear MRG developed in the previous section
achieves guaranteed constraint satisfaction at the expense of
computational effort. Computational complexity, however,
is often the deciding factor on which design ultimately
reaches implementation. Next we design and evaluate a
computationally efficient MRG based upon a linearized model.
The critical benefit of the linear MRG is that the parameter
β can be determined by an explicit expression. In contrast,
the nonlinear MRG requires simulations and optimization.

A. Linear MRG Design

At each time step we linearize the model around the state
and input values from the previous time step: (x0, z0, u0) =



0

1

2

3
C

u
rr

en
t 

[C
−

ra
te

]

 

 

MRG, I (t)

LMRG, I (t)

I r(t)

0 20 40 60 80 100 120
−0.05

0

0.05

0.1

0.15

S
id

e 
R

x
n

 O
v

er
p

o
te

n
ti

al
 [

V
]

Time [sec]

 

 

MRG ηs(L
−, t)

LMRG ηs(L
−, t)

ηs = 0

Fig. 8. Comparison of modified reference governor (MRG) and linear
modified reference governor (LMRG). The signals depict the evolution
of current I(t), reference current Ir(t), and side reaction overpotential
ηs(L−, t) for a 10sec 3C pulse charging scenario. Note that the LMRG
violates the constraint, due to modeling errors induced by linearization.

(x[k − 1], z[k − 1], I[k − 1]) to obtain evolution equations

˙̃x = A11x̃+A12z̃ +B1Ĩ , (29)
0 = A21x̃+A22z̃ +B2Ĩ , (30)

where x̃ = x − x0, z̃ = z − z0, Ĩ = βIr − I0 and
A11, A12, A21, A22, B1, B2 are the Jacobian terms of the
nonlinear state equations (24)-(25), evaluated at (x0, z0, u0).
Since this DAE system is linear, we can explicitly solve for
z̃ and write the system as

˙̃x = Ax̃+BĨ (31)

where A = A11 − A12A
−1
22 A21 and B = B1 − A12A

−1
22 B2.

Under this representation, the states after a simulation horizon
horizon of Ts, can be computed explicitly. That is,

x̃(t+ Ts) = eATs x̃(t) +

∫ t+Ts

t

eA(t+Ts−τ)BĨdτ, (32)

z̃(t+ Ts) = −A−122

[
A21x̃(t+ Ts) +B2Ĩ

]
. (33)

The constrained output variables after Ts time units are then
given by

y(t+ Ts) = C1

[
x0 + x̃(t+ Ts)

]
+ C2

[
z0 + z̃(t+ Ts)

]
+D · βIr + E ≤ 0 (34)

where C1, C2, D,E are matrices which incorporate inequal-
ities (13)-(18). We also assume the reference current Ir is
constant over the simulation horizon - a typical assumption in
RG design [1]–[4], [6]. We are now positioned to formulate
the linearized MRG problem. Given the current states and
reference current (x(t), z(t), Ir(t)), solve

max
β∈[0,1]

β (35)

subject to βF ≤ G (36)
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Fig. 9. Comparison of modified reference governor (MRG) and linear
modified reference governor (LMRG). The signals depict the evolution of
current I(t), reference current Ir(t), and electrolyte concentration ce(0+, t)
for a 10sec 10C pulse discharging scenario. Note that the LMRG violates
the constraint, due to modeling errors induced by linearization.

where F,G are vectors that incorporate the constraints (13)-
(18) and depend on x(t) and Ir(t) as follows

F =
[
C1L− C2A

−1
22 (A21L+B2) +D

]
Ir, (37)

G = −E − C1

[
x0 + Φ(x(t)− x0)− LI0

]
− C2

[
z0 −A−122

[
A21(Φ(x(t)− x0)−B2I

0
]]
, (38)

where

Φ = eATs , L =

∫ t+Ts

t

eA(t+Ts−τ)Bdτ. (39)

The optimization problem (35)-(36) is a one-dimensional
linear program. Consequently, it can be solved explicitly as

Hi =

{
Gi/Fi if Fi > 0

−Gi/Fi else
i = 1, 2, ..., Nc, (40)

β∗ = min {1, Hi | i = 1, 2, ..., Nc} , (41)

where Gi and Fi denote the ith element of G and F ,
respectively, and Nc is the total number of elements.

B. Simulations

Next we evaluate simulations of the linear MRG to ascertain
the trade off between computational efficiency and constraint
satisfaction.

Figure 8 compares the linear modified reference governor
(LMRG) to the nonlinear MRG, for the 10sec 3C pulse
charging scenario. Note that in the LMRG, ηs(L−, t) violates
the constraint over several time periods, due to modeling
errors induced by linearization. In practice, one could apply a
more conservative constraint to offset any potential constraint
violation. A similar result is portrayed in Fig. 9, for the 10sec
10C pulse discharging scenario, where ce(0

+, t) violates
the constraint over several time periods. Nonetheless, the
magnitude of constraint violation is relatively small and the



TABLE I
COMPARISON OF CPU TIME FOR NONLINEAR AND LINEAR MRGS.

Scenario MRG Linear MRG

10sec 3C charging 4.27min (100%) 1.03min (24%)
10sec 10C discharging 4.99min (100%) 1.13min (23%)

LMRG would be effective at mitigating degradation and
prolonging battery life.

The critical advantage of the LMRG, however, is the
increased computational efficiency. That is, the LMRG
computes β via the explicit expressions (40)-(42), whereas
the nonlinear MRG requires nonlinear simulations and
optimization. We consider the CPU time for each MRG as
one indication of computational efficiency. The data provided
in Table I indicates that the linear MRG reduces CPU
time by over four-fold on a 2.7 GHz dual-core laptop with
4GB of RAM. Further improvements are possible via code
optimization.

Remark 2 (Current Limits & Power Capacity): The lin-
ear MRG also provides real-time estimates of the maximum
safe current and power capacity. The limiting current is given
by

Ilim(t) = Ir(t) ·min {Hi | i = 1, 2, ..., Nc} , (42)

and the corresponding instantaneous power capacity is

Pcap(t) = Ilim(t)V (t). (43)

These variables are useful for feedback to higher-level
supervisory control systems [5], [6], [17], [18].

V. CONCLUSION

This paper develops a reference governor-based approach
to satisfying state constraints in batteries. Ultimately, this
approach maintains the battery within a safe operational
envelope, as defined by the electrochemical states. In addition,
it enables one to enhance power capacity, energy capacity,
and charging speed by eliminating the conservatism imposed
by traditional operating constraints (e.g. voltage and current
limits). The key ingredients to this approach are the following.
First, we utilize a first principles electrochemical model to
predict and constrain the evolution of physical degradation
mechanisms. Second, a nonlinear modified reference governor
(MRG) algorithm is developed assuming measurements of
the constrained variables. Third, a linearized MRG is devel-
oped, which replaces simulations with an explicit function
evaluation at the expense of possible constraint dissatisfaction.

In this paper we have assumed full state measurements
and known parameters. Future work will combine the MRGs
developed here with state and parameter estimates generated
by the adaptive PDE observer developed in [16]. This output-
feedback system will (i) guard against harmful operating
regimes, (ii) increase energy capacity, power capacity, and

charging speed, and (iii) monitor state-of-charge and state-
of-health, all from measurements of voltage, current, and
temperature. Finally, we plan to quantify the aforementioned
benefits by comparing these electrochemical-based algorithms
against traditional battery management systems, on plug-in
hybrid electric vehicle-like charge/discharge cycles.
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