
  

  

Abstract— This paper examines the identification of the 

parameters of the Doyle-Fuller-Newman electrochemistry-based 

Lithium-ion battery model from voltage and current cycling data.  

The battery used in this study has a lithium iron phosphate 

cathode chemistry intended for high-power applications such as 

plug-in hybrid electric vehicles.  The variables optimized for 

model identification include parameterizations of the model’s 

anode equilibrium potential, cathode equilibrium potential, and 

solution conductivity.  A genetic algorithm is used to optimize 

these model parameters against experimental data.  The resulting 

identified model fits two experimental data sets used for system 

identification, as well as separate validation data sets 

corresponding to five different vehicle drive cycles.  These drive 

cycles simulate the current a battery would undergo while used in 

a plug-in hybrid vehicle battery pack.  The accuracy of the 

parameters is investigated using various validation data sets.  

This is believed to be the first attempt at fitting nearly all of the 

parameters and functions in the DFN model simultaneously 

using only voltage and current data.  Computational logistics of 

using a genetic algorithm to identify 88 parameters of an 

electrochemistry-based model for 7.5 hours of cycling data are 

discussed.  In addition, a detailed analysis of local parameter 

identifiability is presented.  

I. INTRODUCTION 

HIS paper examines the problem of identifying the 

parameters of the electrochemical battery model 

developed by Doyle, Fuller, and Newman (DFN) [1-2] 

using noninvasive voltage-current cycling experiments.  The 

paper uses a genetic algorithm to match the model’s voltage 

predictions to experimental measurements, for a given input 

current profile.  This genetic algorithm optimizes 88 

parameters of the DFN model, including parameterizations 

of the anode and cathode equilibrium potential functions as 

well as a parameterized solution conductivity function.  The 

end result is an identified model that predicts cell voltage 

and power within 5% relative error for all of the 

identification and validation data sets examined in this work. 

For all of the validation cycles aggregated together the 50
th
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percentile of voltage error is 18.2mV and the 90
th

  percentile 

of voltage error is still only 54.8mV.  This high level of 

accuracy justifies the use of the DFN model for the lithium-

iron-phosphate (LiFePO4) chemistry examined in this work.  

All of the validation data sets are based on simulated 

currents that a Plug-in Hybrid Electric Vehicle (PHEV) 

battery pack would experience during driving.  Additionally, 

this paper presents a study of the local identifiability of the 

DFN model parameters along with the computational 

logistics involved in using a Genetic Algorithm (GA) for 

parameter identification.  

 The literature already examines battery parameter 

identification using a number of different models, 

identification methods, and parameter sets.  Santhagopalan et 

al., for instance, successfully identify a subset of the DFN 

model parameters using extended Kalman filtering [3].  

Speltino et al. successfully identify the parameters of a 

Single Particle Model (SPM) of battery dynamics by 

splitting these parameters into two sets and identifying these 

sets sequentially [4].  Schmidt et al. also successfully 

identify an SPM battery model, with several extensions that 

incorporate temperature information and relate solid 

diffusion to state of charge [5].  The study by Schmidt et al. 

also examines parameter identifiability using Fisher 

information [5].  Finally, Hu et al. successfully identify the 

parameters of an equivalent circuit battery model using a GA 

[6].   

 The above studies have all either identified a small subset 

of parameters from the DFN model or a simplified version of 

the model.  In contrast, our overarching goal in this paper is 

to identify the full DFN model from input-output voltage and 

current data.  This is believed to be the first attempt at fitting 

nearly all of the parameters and functions in the DFN model 

simultaneously using only voltage and current data.  We 

pursue this goal for an ANR26650M1A battery cell with a 

LiFePO4 cathode intended for transient power applications 

such as PHEV propulsion.  We perform the fitting using two 

sets of experimental data: (i) a Constant Current Constant 

Voltage (CCCV) charge/discharge sequence and (ii) a 

charge/discharge profile corresponding to a naturalistic 

PHEV drive cycle.  We then validate the resulting identified 

model using five additional charge/discharge profiles 

obtained by simulating a PHEV powertrain for both 

naturalistic and certification drive cycles.  Current was 

treated as the input to both the battery experiments and DFN 

model in all of these tests, and voltage was treated as the 

output.   
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 Successfully matching a given battery cell’s voltage 

response to input currents does not guarantee that all the 

parameters of the DFN model are identified correctly.  This 

paper uses local identifiability analysis to show that 60 of the 

DFN model’s 88 parameters are locally identifiable (with a 

condition number of 10
-15

) given the parameter values at the 

end of the optimization and the specific current histories 

used for optimization.  The fact that these 60 parameters are 

identifiable means that they affect the DFN model’s input-

output behavior in unique and significant ways that make it 

possible to identify them from experimental data.  The 

remaining 28 parameters lack this identifiability property: a 

fact that has two key implications.  First, the values of these 

unidentifiable parameters cannot be correctly estimated from 

the experiments used in this study.  Second, errors in the 

values of these unidentifiable parameters do not affect the 

validity of the identified DFN model for the input-output 

conditions examined in this study.   

 In summary, this paper makes two novel contributions to 

the literature.  It identifies the parameters of the DFN model 

using noninvasive current-voltage measurements, for the first 

time.  Furthermore, it uses a rigorous local identifiability 

analysis to assess the accuracy of the resulting parameter 

values.  The remainder of the paper is structured as follows.  

Section II describes the experiments used for identifying the 

DFN model.  Section III summarizes the model and 

describes the approach used for simulating it.  Sections IV 

and V describe the genetic optimization of the model and 

parameter set used in this optimization, respectively.  Section 

VI presents validation studies for the identified model.  

Finally, Section VII presents the local identifiability analysis 

and Section VIII summarizes the paper’s conclusions.  

II. EXPERIMENTAL SETUP 

 Fitting and validation data sets have been collected 

experimentally for ANR26650M1A battery cells with 

LiFePO4 cathode material.  These cells have a 2.3A-h 

nominal capacity when fresh, a nominal voltage of 3.3V, and 

a maximum continuous discharge current of 70A (30.4 C-

rate).  The cells are intended for transient high-power 

applications including commercial PHEVs, PHEV 

conversion kits, and portable power tools.    

 Experimental cycling data have been collected using a 

custom-built battery tester.  This tester is capable of highly 

transient current/voltage profiles and can switch quickly 

between charging and discharging.  These characteristics 

make it ideal for testing batteries under conditions similar to 

those experienced in PHEV battery packs.  Additionally, this 

setup is capable of battery-in-the-loop experimentation, 

which will be advantageous for future battery control and 

estimation studies [8].   

 The above battery tester combines three major hardware 

components: an electric load (SLH-60-120-1200), a power 

supply (DSC20-50E), and a Real-Time (RT) controller and 

I/O board (DSC1104).  Figure 1 is a photograph of the 

battery tester, and Fig. 2 is a schematic of the setup where all 

signal lines are connected to the I/O board.  The power 

supply and electric load handle battery charging and 

discharging, respectively.  The RT I/O board coordinates the 

electric load, power supply, and switching board.  In 

addition, the RT I/O board records sensor signals including 

voltage, current, and temperature.  These signals are 

exchanged among the setup’s various components in a 

variety of formats, including the analog, digital, PWM, 

SMBus, RS-232, and TTL formats.  The switch board 

switches the setup between charging and discharging by 

swapping the battery’s connection between the power supply 

and load.  The Schottky diode protects the power supply 

from absorbing battery energy.  The battery sensor board 

measures battery voltage through a voltage-isolating 

differential op-amp, and measures battery current via a bi-

directional ±20A Hall effect sensor (ACS714).  An infrared 

thermopile (MLX90614) measures battery temperature.  

Finally, all the battery interface electronics are implemented 

on custom-build Printed Circuit Boards (PCBs) to maximize 

overall setup reliability, especially for long-term tests.  

 

 
Fig. 1.  Photograph of Experimental Battery Tester 

 

 
Fig. 2.  Schematic of Experimental Battery Tester 

 

 Seven battery cycling tests were conducted using the 

above setup: two for model identification, and five for 

validation.  All of the tests involved initializing battery state 

of charge to 90% (3.35V relaxed), then subjecting the battery 

to a given current profile and measuring the resulting battery 

voltage.  In the first identification data set, the current profile 



  

consisted of “Chirp” sequence of three CCCV 

charge/discharge patterns between 2.0V and 3.6V, with 

charge/discharge rates of 5C, 2.5C, and 1C.  In all six 

remaining tests, the current profile was generated by 

simulating a PHEV powertrain for some given vehicle drive 

cycle (i.e., velocity-versus-time profile).  Two of these 

vehicle drive cycles corresponded to the morning and 

evening commutes of a real human driver in a naturalistic 

driving study by the University of Michigan Transportation 

Research Institute (UMTRI) [9].  We will denote the 

corresponding battery tests by Naturalistic1 and 

Naturalistic2, respectively.  Each of the remaining 4 battery 

tests corresponded to multiple repetitions of a standard 

vehicle certification drive cycle.  We will denote these 

battery tests by UDDSx2, US06x3, SCO3x4, and LA92x2, 

where the number in “x#” refers to the number of drive 

cycle repetitions.  For each of these drive cycle-based battery 

tests, we simulated a mid-size power-split sedan PHEV with 

a previously-optimized power management algorithm [10] to 

translate the vehicle drive cycles to battery current profiles.  

The PHEV’s battery pack size was set to 5kWh for 

consistency with existing PHEV conversion kits.  Due to 

sensor limitations, drive cycles that produced current 

magnitudes greater than 20A were scaled down to 20A: 

US06x3, SCO03x2, and LA92x2.  Finally, we applied the 

resulting current profiles to the battery cell, thereby 

obtaining rich data sets for identification and validation.  

III. THE DOYLE-FULLER-NEWMAN BATTERY MODEL 

 The DFN model is an electrochemical battery model that 

models concentration and potential distributions across the 

width of the cell as well as concentration profiles in the 

porous electrodes of the anode and cathode.  Spatial 

distributions across the width of the cell play an important 

role in high-rate charge and discharge dynamics, typical of 

PHEV cycles.  The model is described thoroughly in [1-2].  

The remainder of this section will provide a brief overview 

of the mathematics involved in this model.   

 The diffusion of Lithium ions within the electrolyte is 

governed by Fick’s law of linear diffusion combined with an 

intercalation current density term, J, transferring Li-ions 

between the solution and solid:  

   ( )2
2 2 2
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∂
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The above intercalation current density, J, also acts as an 

input to the dynamics of Li-ion diffusion within the solid.  

This diffusion occurs at every point in the anode and cathode 

and can be modeled using a spherical, radially symmetric 

diffusion law as follows: 
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 The total intercalation current density, J, equals the main 

intercalation reaction current density, J1, plus any additional 

intercalation current density Jsd representing side reactions in 

the battery.  We neglect such side reactions in this paper, 

thereby equating J and J1.  The main intercalation reaction 

current density, J1, is driven by potential differences between 

the solid and electrolyte solution, and governed by the 

Butler-Volmer equation:  
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 The overpotentials in the above equations equal the 

differences between the solid and solution potentials minus 

the reference potentials for the main intercalation reaction, 

which in turn depend on the local states of charge.  In other 

words, the overpotentials are given by: 

   
1 2p prefuη φ φ= − −   (5) 
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 Since the above potentials/overpotentials can change much 

faster than the Li-ion concentrations, they are typically 

assumed to respond instantaneously.  The solid potential is 

governed by Ohm’s law with a term governing the charge 

transfer due to intercalation:  

   ( )1, 0eff

j j Jσ φ∇⋅ ∇ − =  (7) 

Similarly, the solution potential is governed by Ohm’s law, 

intercalation current density, and the charge carried by the 

ions in solution:  

   ( ) ( )( )2 2ln 0eff

DJ cκ φ κ∇ ⋅ ∇ + + ∇ ⋅ ∇ =  (8) 

 The above system of equations governs the dynamics of 

charging and discharging in the Li-ion cell.  From a dynamic 

systems perspective, it is a system of Differential Algebraic 

Equations (DAEs), where the differential equations govern 

the diffusion dynamics and the algebraic equations constrain 

the potentials and intercalation current accordingly. 

IV. PARAMETER OPTIMIZATION SCHEME 

 Two of the battery tests described in Section II were used 

for the DFN model parameter identification results in this 

paper: Chirp and Naturalistic1.  The Chirp cycle makes 

SoC-dependent and rate-dependent parameters easier to 

identify by sweeping through the full range of battery states 

of charge at different charge/discharge rates.  Furthermore, 

the Naturalistic1 cycle makes parameters associated with 

battery transients easier to identify due to its relatively rich 

frequency content.  A previous publication by the authors 

presented preliminary DFN parameter identification results 

obtained by performing identification using only part of the 



  

Chirp cycle [11].  This paper is unique compared to that 

publication in its focus on battery parameter identification 

and its use of richer data sets to obtain a more accurate 

parameterization of the DFN model.  

 The parameter identification objective in this study was to 

minimize the L
2
 error between the experimentally measured 

voltage traces and the DFN-generated voltage traces.  We 

optimized this objective using a genetic algorithm that varied 

88 of the DFN model’s parameters.  Genetic algorithms are 

well-suited for such large-scale optimization, especially 

when gradient information is either impossible or difficult to 

obtain numerically.  We ensured the robustness of the 

genetic algorithm to model failures by using exception 

handling to remove population members that induced such 

failures.  An example of such a failure is the computation of 

complex-valued intercalation currents caused by local 

overfilling of lithium.  

 The GA used in this study performed optimal parameter 

identification as follows.  First, it created an initial 

population of parameter sets randomly.  Then it simulated 

the DFN model for each member of this population (i.e., 

each parameter set) and assigned a fitness value to this 

member based on how well it minimized the error between 

the experimental and simulated voltage traces.  Population 

members were then eliminated randomly through a roulette 

game weighted by fitness.  Elitist selection was used to 

ensure that the single fittest member was never eliminated.  

Then new population members were created through the 

binary mutation and crossover operators.  Parents were 

chosen randomly for crossover, with a selection probability 

weighted by their fitness.  Finally, the new population 

members’ fitness values were computed through DFN model 

simulation, and the GA iterated till convergence [7].  

 The above optimization process occurred in the R
88

 

Eucledian space, with each parameter quantized at 16 bits.  

This is a very large optimization space, comprising 

7.083*10
423

 possible parameter sets.  Compounding matters, 

function evaluations required up to 63 seconds each 

(function evaluations that failed took less time).  The GA 

was parallelized at the level of simulation function calls, with 

one server program coordinating multiple quad core 

computers.  This is a typical Master-Slave arrangement.  

Custom Java computer code handled information exchange 

over the TCP/IP network within a MATLAB implementation 

of the GA and DFN model.  In practice it took five quad 

cores (Intel Q8200) about three weeks to perform this 

optimization.   Use of parallel processing was necessary to 

make this parameter identification problem practical from a 

numerical standpoint.  

V. PARAMETER SET 

 This section summarizes the DFN model parameters 

identified in this paper, and explains some of the constraints 

placed on these parameters during identification.  Altogether, 

88 parameters were varied by the genetic algorithm.  Five of 

these parameters pertain to cell geometry, namely, the anode 

thickness Ln, separator thickness Ls, cathode thickness Lp, 

anode particle radius Rn, and cathode particle radius Rp.  

These five parameters govern how quickly concentrations 

can redistribute themselves in the cell.  Three parameters 

govern ion diffusion rates, namely, the solid diffusivity d1n 

in the anode, solid diffusivity d1p in the cathode, and solution 

diffusivity d2.  One parameter governs the fraction of the 

intercalation current carried by Li-ions, namely, the 

transference number t
+
.  Two parameters govern rate 

kinetics, namely, the k-rates kn in the anode and kp in the 

cathode.  These multiplicatively affect the current densities 

generated by the electrochemical reactions.  One parameter 

scales the solution conductivity and diffusivity to their 

effective values, namely, the Brugman number b.  Three 

parameters summarize the cell’s porosity, namely, the 

solution volume fractions ε2n for the anode, ε2s for the 

separator and ε2p for the cathode.  One parameter captures 

the effective impedance of the anode-side solid electrolyte 

interphase layer, namely, RSEI.  The last scalar parameter 

was the initial concentration of the solution, c2, which 

reflects the amount by which the battery is lithiated.  

 In addition to the above 17 scalar parameters, the GA also 

optimized the parameters of three curve-fitted functions in 

the DFN model.  Two of these functions were the 

equilibrium potential functions, unref and upref, of the anode 

and cathode, respectively.  We represented these functions 

using 33 control points each, and used monotonic splines to 

interpolate between these points [12].  The last curve-fitted 

function was κeff
, which determines the effective 

conductivity of the solution as a function of solution 

concentration.  We represented this function using five 

control points spaced linearly from 0 mol/m
3
 to 4000 

mol/m
3
, and interpolated between these control points using 

conventional cubic splines with natural end conditions [13].  

 Several constraints were placed on the above parameters in 

the genetic algorithm.  First, we constrained the capacity of 

each electrode to equal exactly 2.7Ah.  This constraint 

provided three key benefits.  It eliminated the need for 

including the maximum concentration c1max in the 

optimization by making it a function of solid volume 

fraction, sheet area and electrode width.  Furthermore, it 

created two 0.2 A-h buffers in each electrode, which 

improved the numerical stability of the DFN model.  These 

buffers add 0.2 A-h of capacity to the maximum and 

minimum values of the electrodes.  This allows the GA to 

tolerate minor local over and under filling of electrodes as it 

searches for the correct parameter values.  Finally, it 

eliminated the interplay between changes in electrode charge 

capacity and changes in equilibrium potential functions 

versus capacity.  The second optimization constraint was to 

force the three electrode widths (Ln, Ls, Lp) and the area of 

the sheet rolled up inside the battery to collectively fit within 

the volume of the battery cell.  Constraining the sheet area is 

particularly important because it acts as a multiplicative 

scale factor relating applied current to internal current 

density.  The third constraint was to set the volume fractions 

e1 and e2 in the anode and cathode to sum to exactly one.  

This implies that the vast majority of the battery material 



  

corresponds to either the solid or the solution – which is 

typical.  The final constraint set the solid conductivities σ1n 

and σ1p to equal 100.  This is justified since both 

conductivities have absolutely zero effect on the voltage 

trajectory (so long as they are both positive).  Not all of these 

constraints are fully physically justified: a fact that reflects 

the presence of underlying identifiability issues.  This 

motivates the identifiability analysis in Section VII.  

VI. VALIDATION RESULTS 

 The major result of this paper is a set of GA fitted 

parameter values that match all five validation cycles with 

high accuracy; see Fig. 3 and Table I.  The values of the 

fitted parameters are given in Tables III and IV.  Additional 

parameters necessary to run the model but not optimized are 

given in Table II.   
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Fig. 3. Probability density plot of voltage error and the percentiles 

of absolute voltage error for all five of the validation cycles. 
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PARAMETERS NOT INVOLVED IN GA 
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GA optimized parameter values for the DFN model.  Identifiability 

is given with respect to various condition numbers, I – identifiable, 

U – unidentifiable. 

 

Relative error in voltage and – consequently – power never 

exceeds 5% for any of the validation cycles.  As shown in 

Table I, the 50
th

 percentile of voltage error is 18.2mV.  Thus, 

the DFN model can accurately simulate the ANR26650M1A 

cell for PHEV applications by using this set of parameter 

values. 

 The accuracy results of the Naturalistic2 and LA92x2 

validation cycles are representative of the set of five cycles.  

Naturalistic2 is based on recorded data from a real driver’s 



  

evening commute.  Naturalistic1 (which was used for fitting) 

is a morning commute.  Figure 5 shows traces of voltage 

error and Fig. 6 shows traces of power error.  Voltage error 

never exceeds 128.6mV and the 50
th

 percentile of voltage 

error is 12.6mV.  Figure 7 is a probability density plot of the 

errors along with a percentile plot of errors.   
 

TABLE IV 

SECOND HALF OF OPTIMIZED PARAMETERS 
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GA optimized parameter values for the DFN model.  Identifiability 

is given with respect to various condition numbers, I – identifiable, 

U – unidentifiable. 

 

   The results for LA92x2 are very similar to those for 

Naturalistic2.  Figures 8 and 9 give the voltage and power 

trajectories along with their relative and absolute errors.  

Voltage error never exceeds 160.3mV and the 50
th

 percentile 

of voltage error is 31.3mV. Figure 10 is a probability density 

plot of the errors along with a percentile plot of errors.   
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Fig. 5.  Voltage Response for Naturalistic2. 
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Fig. 6.  Power Response for Naturalistic2. 
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Fig. 7.  Probability Density Plot of Voltage Error and the 

Percentiles of Absolute Voltage Error for Naturalistic2 



  

   None of the cycles have voltage errors linearly 

correlated with input current, which implies that the 

identified model captures at least internal battery resistance 

very well.  Correlation between model error and SoC is low 

except for Naturalistic2 which shows some slight correlation 

(R
2
 = 0.577).  As a point of comparison the predicted and 
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Fig. 8.  Voltage Response for LA92x2. 
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Fig. 9.  Power Response for LA92x2. 

 

measured voltage for Naturalistic2 have an R
2
 correlation of 

0.832.  This SoC is the “system” SoC (as opposed to the 

“chemical” SoC which would be calculated based on the 

quantity of lithium in the anode) and is calculated for the 

battery by integrating and scaling current and knowing that 

each experiment was initialized at 90% SoC.  This implies 

that the identified model captures the dependence of battery 

dynamics on SoC well.  Table V presents the R
2
 correlation 

values for each of the validation cycles.   

 In summary, this section shows that the DFN model, 

together with the parameter values identified in this paper, 

accurately simulates battery cells under the loading 

characteristics of PHEVs.  This accuracy is evident from the 

small errors in the voltage – and consequently, power – 

traces of the DFN model compared to experimental data.  

The parameter values in this paper make it possible to 

accurately simulate the ANR26650M1A cell for PHEV 

applications.   
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Fig. 10. Probability Density Plot of Voltage Error and the 

Percentiles of Absolute Voltage Error for LA92x2. 
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VII. PARAMETER IDENTIFIABILITY 

 Given the high accuracy of the identified DFN model’s 

voltage and power responses, one might assume that all of 

the fitted parameter values are the correct physical values.  

This assumption is incorrect.  Some of the parameters of the 

DFN model are locally unidentifiable for the experimental 

data sets considered in this study.  The fact that these 

parameters are unidentifiable implies that they do not affect 

the model’s input-output characteristics in unique and 

significant ways.  This, in turn, implies that the DFN model 

identified in this study can accurately predict battery cell 

behavior for the input-output conditions examined in this 

study, but must be used with caution for other applications 

(e.g., non-PHEV applications).   

 The literature presents at least three definitions of 

parameter identifiability: global identifiability, structurally 

local identifiability, and local identifiability [14].  Our goal 

in this section is to determine which of the DFN model’s 

parameters are locally identifiable for the identification data 

sets used in this study.  To do this, we begin by simulating 

the DFN model’s output voltage response for the optimized 

parameter values and the identification test data.  We denote 

this voltage response by ynom, and denote the corresponding 

experimental voltage trace by yexper [14].  The next step is to 

create an orthogonal basis for the parameter space, inject a 

slight perturbation along every basis vector, and simulate the 

resulting perturbation in the DFN model’s output from ynom.  

This furnishes a set of numerical derivatives of the DFN 



  

model’s output with respect to its parameters.  These 

derivatives can be stacked into a matrix Y of column vectors 

– one for each perturbation direction.  Once this is achieved, 

the model’s entire parameter set is locally identifiable iff Y
T
Y 

has full column rank.  If this condition is not satisfied, then 

one can examine the eigenvalues of Y
T
Y and choose a cut off 

value to separate the identifiable and unidentifiable 

subspaces.  In this paper the cutoff value is based on the 

matrix condition number and four cases are investigated:   

10
-5

, 10
-10

, 10
-15

, and 10
-20

 (Fig. 11).  One can then project 

each parameter onto the identifiable subspace to see how 

much of this vector sits in the space.  This can then be used 

to categorize parameters as identifiable and unidentifiable 

(with respect to the condition number). 
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Fig. 11.  Eigenvalues of YTY and lines for the condition numbers 

10-5, 10-10, 10-15, and 10-20. 

 

  A semi-log plot of the eigenvalues of Y
T
Y is given in Fig. 

11.  If the projection of the parameter unit vector into the 

identifiable subspace has a length greater than 0.99 then the 

parameter was considered to be locally identifiable.  Tables 

III and IV present each parameter’s identifiability for all four 

of the condition numbers.  For the condition number 10
-15

 all 

of the scalar parameters are identifiable except for d1p, Rp 

and kp - all of which only involve the cathode.  For the 

cathode equilibrium potential, upref, 31 of the 33 control 

points were identifiable.  For the anode equilibrium 

potential, unref, only 12 of 33 control points were identifiable.  

For κeff
, the solution conductivity as a function of solution 

concentration, the three control points associated with lower 

concentrations are identifiable whereas the other two are not.   

Fortunately the presence of unidentifiable parameters does 

not affect the quality of the model's response.  However it 

does mean that special care must be taken when using these 

parameter values for input-output conditions substantially 

different from those examined herein. 

VIII. CONCLUSIONS 

 The DFN model’s parameters have been identified for the 

ANR26670M1A cell using experimental data based on 

PHEV applications.  This fit is accurate with maximum 

errors for all five validation cycles at less than 5% for power 

and voltage.  For all of the validation cycles aggregated 

together the 50
th

 percentile of voltage error is 18.2mV and 

the 90
th

  percentile of voltage error is still only 54.8mV. 

 The procedure presented makes it possible to find a set of 

parameter values for the DFN model noninvasively.  

Unfortunately, this noninvasiveness causes some parameters 

to lack identifiability.  While this does not affect the 

accuracy of the model response, it does mean that one must 

be careful when using these parameters in other contexts. 

 GAs combined with battery experiments have proven to be 

an effective method for identifying the DFN model’s 

parameter values.  This method avoids using invasive 

electrochemical experiments by using electrical experiments 

followed by using a computationally intensive GA.  As 

PHEV batteries continue to evolve having a means to 

identify the DFN parameter values for PHEV batteries will 

continue to be extremely valuable. 
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