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Abstract—This paper presents a practical extension to ABS control, and bioreactors [5]). During this merithere

extremum seeking control systems
asymptotic convergence through a Lyapunov-based stghing

scheme. In contrast, traditional extremum seeking ®thods
enter a limit cycle around the optimal set-point, ace identified.

The proposed approach converges to the optimal spbint by

exponentially decaying the sinusoidal perturbatiorsignal once
the system enters a neighborhood around the extremu To

analyze the performance characteristics of this mabd, we
apply this algorithm to the maximum power point tracking

(MPPT) problem in photovoltaic systems. Simulationresults

indicate that our approach is self-optimizing in the presence of
varying environmental conditions and produces higheenergy

conversion efficiencies than traditional MPPT methds under

typical operating scenarios.

. INTRODUCTION

EXTREMUM seeking (ES) deals with the problem o 3 i )
regulating a system to an unknown optimal set-poinf"d MPPT bodies of literature. First,
Since we assume the cost function that maps input
performance output is unknown, a periodic pertudoat

signal is typically used to probe the space. Howewace
the closed-loop system has identified the optinetip®int,
most methods enter a limit cycle around this paast
opposed to converging to it exactly. Hence, onghefmain
challenges with ES is guaranteeing asymptotic cayeree
to the optimal set-point — not in the average sehsé the
exact sense. This paper investigates a novel Lyaphased

which guarantees have been several innovations that have improvesl th

practicability of ES by increasing convergence speed
eliminating limit cycles. For example, Krétisuggests the
addition of dynamic compensators within the ES et
loop to improve convergence speed [6]. Earal. analyze
various periodic perturbation signals to improve
convergence speed [7]. Adetola and Guay, who hgsith

a dynamic plant with no direct measurement of thieative
function, guarantee asymptotic convergence using a
sufficient richness condition on the reference st [8],
thus eliminating limit cycles.

This study focuses on asymptotic convergence fer th
case of a static nonlinear map which is unknavmiori. As
such, this paper extends the aforementioned rdsesnd
adds the following two new contributions to the &trol
we introduae
gwitching method for ensuring asymptotic converget@
the optimal operating point in extremum seeking tiain
systems, based on Lyapunov stability theory. Sdgomee
demonstrate this algorithm in simulation for MPR®Bldems
in PV systems — which itself introduces a novel aadtrol
theoretic alternative to traditional MPPT methods.

This paper is organized as follows: Section Il dibss
the extremum seeking control design and our novel
Lyapunov-based switching strategy. Section Il d&ses a

switched extremum seeking (Lyap-ES) approach th&8S€ study of the proposed ES method on MPPT for PV

guarantees asymptotic convergence to the optintgiaset.
The proposed concept is demonstrated on a wellestugbt
important problem: maximum power point tracking (R1P
in photovoltaic (PV) systems.

systems. Finally, Section IV presents the main kegns.

Il.  EXTREMUM SEEKING CONTROL

This paper investigates a simple yet widely studied

Prior to the nonlinear and adaptive control theorgxtremum seeking (ES) scheme [1], [5] for statiolimear
developments in the 1970’s and 1980’s, extremunkisge maps, shown in Fig. 1, with extensions that guamant

was proposed as a method for identifying the mimmmar

asymptotic convergence. Before embarking on ailddta

maximum of an equilibrium map. Since then, resesnsh discussion of this method, we give an intuitive laration
have extended extremum seeking to the general dfssOf how extremum seeking works, which can also hadbin

nonlinear dynamical plants (see e.g. [1], [2]) apglied the
algorithm to a wide variety of applications (e.dgr #ow
control in fuel cells [3], wind turbine energy cam [4],
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[1] and [5], but is presented here for completenbiext we
discuss the ES feedback loop design. Finally, werekthe
proof presented in [1] to allow the excitation sijto decay
exponentially when the system enters a ball arotived
extremum, using a Lyapunov function. If the optimuatue
shifts, the Lyapunov function will automaticallyrse the
disturbance and re-enable the sinusoidal pertunbato
converge to the new optimal value.

A. An Intuitive Explanation
The control scheme applies a periodic perturbation

(e-mail: gsin(wt) to the control signali, whose signal estimates the



Unknown Static Nonlinearity TABLE |

; EXTREMUM SEEKING PARAMETERS
f(”) y*
u )
Parameter Description Value
u*
@ Perturbation frequeuncy 250 Hz
EN Perturbation amplitude 0.015
! ) k Gradient update law gain 1
: Low Pass Fil gh Pas: . .
) Integrator . ow Pass Filter .H)‘IIP"SSFIIIH wh High-pass filter cut-off freq. 50 Hz
N U k < 9 el s w Low-pass filter cut-off freq. 50 Hz
_S o s sta; stay,
fnial) DiemumSeckng} - tyning process [3]. However, the above guidelines a
\i/ extremely valuable for effective calibration. TheS E
o< o , parameter values used in this report are providdable I.
. m/ A(;‘eragmg
ocla [ lem: perer C. Averaging Stability Analysis
s Function H H PR . H
dinal) Swih | Extremum seek_lng using p_enodlc perturbations is
particularly appealing because it converges to Il
Lyapunov-Based Switching Scheme

optimum (in the average sense) of a static nonliye&n
real-time, withouta priori knowledge of the nonlinearity
optimal control inputs’. This control input passes throughitself. Moreover, ES is self-optimizing in the peese of
the unknown static nonlinearit¢d + assin(wt)), which may disturbances that alter the static nonlinearity weleer, a
be a static approximation of a dynamic plant, todpice a general drawback of ES is that once the optimunuevas
periodic output signay. The high-pass filter s/(&#) then determined, ES causes the system to enter a liyaie c
eliminates the DC component gf and will be in or out of around this value, as opposed to converging to it
phase with the perturbation sigragbin(wt) if G is less than asymptotically. To eliminate this limit cycle weoapose a
or greater thanu’, respectively. This property is importantswitching control scheme that effectively decayse th
because when the signal; is multiplied by the perturbation amplitude of the periodic perturbation once theteyshas
signal sinft), the resulting signal has a DC componengonverged within the interior of a ball about thetimal
greater than or less than zerdiifis less than or greater thanvalue. The switch criterion is determined using fhyaov
u’, respectively. This DC component is extractedHgylow- stability methods. That is, we leverage a Lyapufunction
pass filter w/(stw;) and represents the sensitivitg,¥2) designed from an averaged, linearized model obtiginal

&flou (). We may use the gradient update 1aw= k(a2/2) ES feedback system to estimate the proximity to the
affou () to forced to converge tal". equilibrium point’ Once the Lyapunov function value falls

below a threshold, the perturbation decays expaaibntif
B. ESControl Design the Lyapunov function value rises above the thriestdue
The synthesis process for an extremum seekingaltertr to an external disturbance for example, the peatioh
requires proper selection of the perturbation fesmpy v, reengages. Allowing the perturbation to decay erptally
amplitudea,, gradient update law gak and filter cut-off is not new [2], however it is the first applicatitotated in a
frequenciesw, and w;. The perturbation frequency must beswitched scheme, to the authors’ knowledge.
slower than the slowest plant dynamics to ensugeptant ~ We start with the proof proposed by Késtind Wang [1],
appears as a static nonlinearity from the viewpoirthe ES Which uses averaging theory to approximate the ys&em
feedback loop. Mathematically, this can be enforégd behavior, linearizes it about the optimum, and tsbows
ensuringe << min{eig(A)}, where A is the state matrix the resulting Jacobian is Hurwitz. From this pramiy new
from linearizing the plant. Large values fay andk allow contribution is to develop a Lyapunov function tisehses
faster convergence rates, but respectively incressiglation  proximity to the equilibrium point.
amplitude and sensitivity to disturbances. Theesfasne The state equations for the closed-loop ES syst@mbe
typically increases these parameter values to mbtavritten as follows:
maximum convergence speed for a permissible amofint
oscillation and sensitivity. The filter cut-off fje@encies G=k¢& (1)
must be designed in coordination with the pertudnat £ = —wlf—wllysin(wt)+w| f (u)sin(wt) )
n
u

Fig. 1. Block diagram of switched extremum seekingtrol system.

frequency w. Specifically, the high-pass filter must not
attenuate the perturbation frequency, but the lasspfilter
should — thus bounding the cut-off frequencies fralmove.
Mathematicallyo, < @ and w; < w. Moreover, the filters
should have sufficiently fast dynamics to responitk]y to

perturbations in the control input, thereby bougdine cut- ! The inspiration for this switched controller cafrem Homework #9 in
off frequencies from below. Professor Jessy Grizzle's EECS 562 Nonlinear Systerd Control course

at the University of Michigan, Ann Arbor. In thisgblem set, we use the
same concept to stabilize a pendulum on a cart.

= -+, f(u) ®)
=0 +a,sin(at) 4)

Generally, proper selection of the ES parameters is



where each equation respectively represents tlegratior,

low-pass filter, high-pass filter, and perturbedtcol input.
Now define a new coordinate system that shifts t

equilibrium/optimal operating point to the origin

a=u0-u" (5)
A=n-f (uD) (6)
resulting in the following translated system
d=ké& ()
é=-wé-afsin(at)-a f (u”)sin(at) ®)

+q f (U+uD+ aosin(a)t))sin(a)t)
h=-wf-awf (uD)+whf (G+uD+aosinwt) C)

To investigate the stability properties of this teys, we
consider the averaged system, as done in [1]. frakes
intuitive sense because extremum seeking injects
sinusoidal perturbation into the system. Therefsttelying

h(a+a,sin(at)) = f (a+u”+a, sin(at))- f (u”) (15)

h"f}he functionh(d + agsin(wt)) translates the extremum of

the static nonlinearity to the origin. Let us appnaate this
function by a quadratic:

h(l]+a0 Sin(wt)): b0+b1(l]+a0 sin(wt)) (16)

+b, (0 + aosin(curt))2

Since the origin is located at the optimumz= 0,b; = 0, and
b, < 0. As we shall see later, the quadratic apprakion
need only satisfy these conditions to prove the imam
operating point is exponentially stable. That is, amly need
to capture the fact that the static nonlinearitgasacave and
stationary at the maximum operating point (i.e. firgt and
second order necessary conditions for optimalifgiygp In
other words, a quadratic approximation is suffiti¢n
achieve our immediate goal.

aSubstituting the quadratic approximation for ttensiated
nonlinear map and applying the averaging definitygglds

the averaged behavior is a appropriate approacke T#e following nonlinear system

averaged state variables are defined as follows [9]

w
X, =

w (11)
do2m

J':iﬂx(r)dr

where the period of the signal is/@. Hence, our immediate
goal is to use the notion of an average systemwestigate
the stability properties of the closed loop systépplying
the definition of averaging yields the followingssgm

k¢, (12)
~wé, - (7sin(at)),
+a) ((f (U+uD+aosin(a)t))— f (uD)) sin(a)t))

N =~ ], + o, (f (a+u”+a,sin(at))+ f (uD))a (14)

i -
b= (13)

a

(17)
(18)

e

a =Ké,

Céa =-wé, + o (%blao + bzaoa)

A= -o, v, b, rbd, 10l + 2bas| (19

The Jacobian of this system evaluated at the oisgin

0 k 0
J= szao — 0 (20)
w,b, 0 -w,

The Jacobian is Hurwitz precisely whien< 0, which is true
if and only if the static nonlinearity is concawe the case of
estimating the minimum of a convex static map, pick O

where Oa denotes the averaging operation given by th@nd b2 > 0, and the reSUlting Jacobian is Hurwitz. Ineoth

definition in (11). To simplify this system, thellfmwing
properties are useful:
* (sin(t)),=0
* (Y)a
state variables is approximately equal to the pcodiithe
average. This result arises from taking the DC terma
Fourier series expansion [10] — which is approprifatr
the present averaging analysis.
These properties imply the second term of (13)qisaé to
zero, and will help us evaluate the third termi8)(and the
second term of (14). Note that these terms areequél to
zero due to the static nonlinearity.
Let us first evaluate the second term of (14)(f(G+
u* +agsin(wt)) - f(u*)),. For ease of notation, define

words, the extremum seeking approach
exponentially to both local maxima and minima.
Since the Jacobian is Hurwitz, the averaged system

Xa Y. That is, the average of the product of twdeXponentially stable according to Theorem 4.7 odlKIf9].

This also satisfies the conditions of Theorem 1df.Khalil

[9], which states that the original system has agus
exponentially stable periodic orbit about the optirpoint.
Therefore the ES control system is stable in thesedhat
the averaged system converges exponentially to

extremum. We leverage this fact to design the Lyapu
based switching criterion, described next.

D. Lyapunov-Based Switching Scheme

The linearization of the average system about the

extremum produces a Jacobian that approximatesydtem

converges



dynamics near the equilibrium. We now use this B&coto
develop a quadratic Lyapunov function for the shiitg Ny PV Array
control, by solving the following Lyapunov equatifor P \\\ /[T

Solar irradiation
& temperature
disturbances

Voltage
& current
measurements

to DC/AC

inverter
DC/DC

—
Converter

PWM control

(21)

PIJ+J"P=-Q

L Switched ES

| MPPT Control

whereQ is taken to be a symmetric matrix (e.g. identity).
This results in the following quadratic Lyapunowétion

1 - e LT Fig. 2. Photovoltaic (PV) system comprised of a BWay, DC/DC
\% (Xa) = 5 Xa PX, where  x, = [Ua $a ’7a] (22) converter, and the proposed switched ES MPPT daalgorithm.
TABLE I
which we use for the following switched control taw PHOTOVOLTAIC ARRAY PARAMETERS
Parameter Description Value
G+ a,sin(wt) if V(x,)>e
R . (23) A Ideality factor 1.92
_ G+ asin(wt) .
u(t) = therwi Es Band gap energy for silicon 111 eV
da (t) =-ya (t) a(O) =a, otherwise lor Reference reverse saturation current 20°%A0
dt lscr Reference short-circuit current 252A
ki Short-circuit temperature coefficient 0.0017 A/K
whose conditions are evaluated only when asin(equals Boltzmann’s constant 1.38x #bC
zero to ensure the control signal remains contisuodime. Number of PV cells arranged in series 36
Note the dynamics in the decaying amplitude stegestable g Electron charge 1.6x 1C
because the perturbation amplitude has stable dgsaimat Parallel resistance Q
are decoupled from the remainder of the system [11] R Series resistance 0.0009
This quadratic Lyapunov function estimates howselp T, Reference temperature 301.18 K

the averaged system converges to the extremum. i¥hat
V(X)) — 0 asx, — 0. Once extremum seeking converges PV systems, where disturbances may include shading,

sufficiently close to the optimum, the sinusoidaftprbation
decays exponentially to zero and the control irgrutes at

solar irradiation, and temperature shifts.
Note that to evaluate the Lyapunov functig(x,), one

the optimal valueu'. If external disturbances cause theneeds to calculatg, and therefore know the optimal control

Lyapunov function value to increase above the tiolkek

inputu’. In this paper we apply an estimateugfwhich can

value ¢, then the original amplitude, is used until the often be obtained in practice, and demonstratelthap-ES

system converges to the new extremum. This switchégdeed converges to the extremum. For sufficiently

control approach has the following advantageoupgmt@s:  inaccurate estimates aof the switching condition may never

be satisfied and the algorithm degenerates intolaedeS, in

1. The proposed scheme eliminates the limit cyclesclwhi the worst case. However this can be avoided byompiate
characterize traditional ES algorithms with sindsbi parameter selections for the thresholhd gairy [11].
excitation signals. Instead, the system converges
exponentially to the extremum. In the case of maxim M.
power point tracking of PV systems, which we stuly
the following section, the proposed algorithm does
oscillate around the maximum power point — a litidta
of some existing methods.

CASE STUDY: PHOTOVOLTAIC SYSTEMS

In this section, we investigate the properties and
performance of the proposed Lyapunov-based switched
extremum seeking scheme on a MPPT problem for PV
. systems, shown in Fig. 2. Solar energy represenkgya
2. The sub-level se®. = {x, LI R* | V() < c} with V (X) <  opportunity for increasing the role of renewablergy in

0 is positively invariant, meaning a solution stegtinQ.  the electric grid. However, high manufacturing and

remains inQ for allt > 0. In other words, the LyapunovV installation costs have limited the economic vidpibf PV-

function will be decreasing monotonically in time,based energy production [12]. Therefore, it is Iita
therefore eliminating chattering behavior. important to maximize the energy conversion efficie of

3. Under external disturbances the state vegtanay shift PV arrays. This problem is particularly difficuliedause
away from the origin and produce an instantaneousigh fidelity PV models require detailed semicoriuc
increase in the Lyapunov function. This causes thghysics, which are highly dependent on environmenta
perturbation to reengage, and ES proceeds to fied tconditions, such as incident solar radiation, terapee, and
new extremum. Hence, the proposed switched contrehading effects. As such, we desire control théoret
scheme is self-optimizing with respect to distude® techniques that mathematically guarantee asymptotic

This situation is illustrated in the following castidy on  convergence to the maximum power point (MPP), while



—> / V= ncellvcell (28)

— R, The cell model is scaled to represent an arrayomgidering
\\\ S 36 cells in series (28). Since (23)-(27) are imphonlinear
functions of cell current and voltageV, they must be
Is¢ |:i| Va SZ R, § Ver solved numerically, using Newton's algorithm formmple.
The parameters for this model are adopted from Hrg]
provided in Table II.
The PV model is parameterized by environmental
'e) conditions - namely incident solar irradiatio8 and
temperaturdl. Figure 4 demonstrates that current and power
increase linearly with incident solar irradiatidremperature
rejecting disturbances due to changing environments has a more complex impact on current and power.sTioet
First, we summarize a popular equivalent circuitdelo cjrcuit current increases slightly with temperatunewever
for PV arrays and a low frequency DC/DC boost cotere the power (and the MPP) decreases as temperatusages.
model. Next we apply Lyap-ES to the PV system angh other words, PV cells operate best in full sginliand
analyze: (1) The asymptotic convergence and selfpid temperatures. As a result, we desire a cotdaop that
optimizing behavior under external disturbances doe automatically tracks the MPP under rapidly changing
varying environmental effects, and (2) the alganthmerits  environments to maximize energy conversion efficien
and drawbacks versus traditional ES and MPPT algna A DC/DC boost converter steps up the PV array Wta
A. PV System Model Development and provides a cgntrol actuator for MPPT, using PWM
(r:]?ntrol on the switches. At the output end of theodi
converter a capacitor maintains a roughly constaltage of
120V and is typically interfaced with the electgadd using

Fig. 3. Equivalent circuit model of PV cell [12],3].

For the purposes of MPPT we consider an equivale
circuit model [13], [14] of a PV cell shown in Fi§. This
model consists of an ideal current sourgén parallel with a

. . , : . . a three-phase DC/AC inverter [15]. In this papee, facus
diode and resistand®, all together in series with resistey, b [15] papee.
. : .on the boost converter only for the purposes of WP&hd
which models contactor and semiconductor materia ) .
. - . . assume the capacitor maintains a constant 120Vhat t
resistance. The ideal current source delivers ntrie

proportion to solar fluxS, and is also a function of output. Since the switching frequency is signifityrfaster

temperature T. The diode models the effects of thethan the extremum seeking control loop dynamicsimadel

semiconductor material, and also depends on teryperdn the boost converter by the following static relatio
total, the PV cell model equations are given by

V=V, (1-d) (29)
Vg = Ve TR, (24) . .
v whereV is the PV array voltagey;,, is the constant 120 V
=1 +1, (em _1j _\é_d (25)  capacitor voltage, andlis the duty ratio control input.
”S B. Smulation Results & Discussion
le = (1o, +k (T-T, ))m (26) In this section we demonstrate the proposed switd®
s MPPT control approach by (1) analyzing the impatt o
| = T exp[qES‘J 11 (27)  varying environmental conditions, and (2) comparingo
oo Ak (T, T traditional ES and MPPT methods. In the first pae
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how the operating point jumps from the 1000 W/m
characteristic curve to the 500 W/rurve during the step
change. Immediately after the step change, theatipgr
point is no longer at the MPP. The algorithm seribés
change and reengages the perturbation to findetheMiPP.

Time responses of power, duty ratio, voltage, amndent
are provided in Fig. 6. This figure demonstratesvHeS
injects sinusoidal perturbations into the duty aatio
determine the MPP, which occurs at a duty rati®.8685
for S = 1000W/mi and 0.8509 foiS = 500W/ni. Also, the
perturbations begin to decay exponentially at 3% and
the duty ratio converges to the optimal value. Otite
irradiation changes at 200 ms, the perturbatioengages to
search for the new MPP. Once it converges suffiljierose
to the optimal duty ratio, the perturbation ampml#gudecays
exponentially once again.

The switch behavior can be understood by analyEigg
7. At 36.5 ms, the Lyapunov function drops belove th
switching threshold and hence the perturbation yleedance
the solar flux step change occurs at 200 ms, tlezaged
states become excited and the Lyapunov functiomeval
exceeds the switch threshold. This resets the &urdpliof
the perturbation to the original valua,. Then, as the
Lyapunov function vanishes below the switch thréghthe
perturbation amplitude decays exponentially onaerag

2) Comparative Analysisto Existing Methods

This section compares the proposed ES algorithm to
standard ES and a traditional MPPT technique: per&u
observe [15], [16]. Although some traditional MPPT
methods are somewhat heuristic and may not appethlet
typical control theorist, they often produce satisbry

impose 1000 W/fof solar irradiation and then provide aresults and are simple to implement. However thak |
500W/nf step change at 200ms. This might model thguaranteed stability properties and have fundarhenta

transient effect of a passing cloud blocking inatdsunlight.
The duty ratio is initialized at a nominal valueGo®.

1) Impact of Varying Environmental Conditions

Figure 5 demonstrates the current and power t@jest
superimposed on the PV array's characteristic kel B-V

limitations. First we review the workhorse MPPT huet,
perturb & observe. Further interested readers shaier to
the review paper [17] and references therein fomare
expansive analysis of MPPT techniques.

Perturb & observalgorithms are the most widely used

curves 6= 1000 W/m). These plots demonstrate that LyapMPPT control systems, where the basic idea is bswfs:
ES indeed achieves the maximum power of 38W angelt Periodically perturb the PV array terminal voltaged

and current values of 17V and 2.24A ®+= 1000W/, and
maximum power of 19.5W at voltage and current valok

measure the resulting power output. If the outpotver
increases, then perturb the voltage in the saneetin. If

18V and 1.09A forS = 500W/ni. Moreover, one can see Power output decreases, then reverse the pertorbadtiote
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analyze performance. The advantage of Lyap-ES over
traditional MPPT methods, e.g. P&O, is that theodthm
converges to the MPP asymptotically without entgrim
limit cycle. Moreover, the method is self-optimigirwith
respect to disturbances, such as varying solatiatian and
temperature shifts. It is also computationally @éint and
simple to implement in practice. Experimental shsdare

currently underway in collaboration with National
Instruments to demonstrate the model simulationfrotier
37.5-| Kasapee LR HRNERICR design, and real-time implementation capabilite$ o
% 35| RalBNY 3 YR R R R R LabVIEW. Finally, Lyap-ES also offers a systematiethod
g 32,5“&%]{"5 k' fi l ¢ i U f i ¥ {i ¥ !i U i U f i ¥ { ¥ to solve MPPT problems using systems and contearth
e 3u—l||r'|'.lﬁ”l
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Fig. 8. Comparison of Lyapunov-based switched extira seeking (Lyap-
ES) to basic extremum seeking (ES) and perturb senke (P&O).

that when the MPP is reached, the P&O algorithnillases
about this value, thus producing suboptimal energy
conversion efficiency. One may reduce the pertishagize |4
to improve efficiency during steady-state, but thégluces
convergence speed. Moreover, P&O cannot differentfaa
power increase is due to the voltage perturbationao 2l
disturbance. Therefore, an increase in solar iatadi or
drop in temperature will confuse the P&O algorithm.

Figure 8 compares Lyap-ES to two benchmarks: P&D a
basic ES (no switching). The scenario under conataba is
identical to the previous subsection, however we ndo
consider varying incident solar irradiation. Moreov
perturbation amplitudes and frequencies of P&O sateto
match Lyap-ES, to make the comparison fair.

Several key observations arise from this studystFES
and Lyap-ES are identical for the first 36.5 ms #meh the
switch condition is satisfied and Lyap-ES beginsdaverge
to the optimum. Secondly, P&O converges faster thap- g
ES, for the parameters considered here. Alternati\;el
parameter choices for Lyap-ES can close this gap, b
sacrifices sensitivity to noise. Finally, ES and®&scillate [°]
about the MPP whereas Lyap-ES converges to it kxact

: . [10]
thus producing greater power output as shown irséoend
subplot. This is significant because, for long pési of time,
the energy conversion efficiency will be much higlier
Lyap-ES than P&O and basic ES.

(3]
(4]

(5]
6l
(7]

[11]

[12]
IV. CONCLUSION

In this paper we propose a novel Lyapunov-baseggh
switched extremum seeking control method (Lyap-#@&}
provides a practical extension to existing researttS by 4]
eliminating limit cycles. Specifically, this appida
guarantees asymptotic convergence to the extremium 0O[15]
static map by exponentially decaying the pertudrati
amplitude once the algorithm reaches a neighborloddle [16]
extremum. This neighborhood is approximated via
Lyapunov stability analysis arguments that extemg t
stability proof originally presented in [1]. We dpfyap-ES (17
to the MPPT problem in a PV system as a case stody

Winter 2009 course “Grid Integration of Alternatiemergy
Sources,” which served as the inspiration for plaper.
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