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Abstract— This paper examines the problem of optimizing the
charge trajectory of a plug-in hybrid electric vehicle (PHEV),
defined as the timing and rate with which the PHEVobtains
electricity from the power grid. Two objectives ae considered
in this optimization. First, we minimize the total cost of fuel
and electricity consumed by the PHEV over a 24-hour
naturalistic drive cycle. We predict this cost usig a
previously-developed stochastic optimal PHEV  power
management strategy. Second, we also minimize tbtaattery
health degradation over the course of the 24-hourycle. This
degradation is predicted using an electrochemistrypased
model of anode-side resistive film formation in Liion batteries.
The paper shows that these two objectives are coiafing, and
trades them off using a non-dominated sort genetialgorithm,
NSGA-Il. As a result, a Pareto front of optimal PHEV charge
trajectories is obtained. The effects of electricyt price and trip
schedule on the Pareto front are analyzed and disssed.

|. INTRODUCTION
his paper examinegplug-in hybrid electric vehicles

The literature has examined PHEV charge trajectorie
from a number of different perspectives. The mashimon
conjecture in this respect is the overnight chaygicenario,
which assumes PHEVs will start charging late ahnig.g.,

10 p.m. or midnight [4-6]. Evening charging is drat
scenario which has also been examined [5]. More
sophisticated trip- and price-dependent strategigsh as
“immediate end of travel”, “optimized to off-peakgnd
“opportunity charging” have also been assumed aed dor
the prediction of PHEV load [6]. This paper optigsz
PHEV charging in a way that takes into account tter first
time, the combined effects of total energy costiterp
health, electricity pricing, and the PHEV’s drivimattern.
The charge trajectories obtained through this aptitron
are substantially different from those optimized émergy
cost or battery health alone.

One of the necessary and most expensive elements of
PHEVs is their high-capacity battery storage systemch
tends to degrade with time and cycling [7-9]. Thisper
focuses specifically on PHEVs that use Lithium-atteries

(PHEVs), defined as vehicles that can use both fuel arfdr such storage. The literature on the modelind-iebn

battery electricity for propulsion, and can obtafre
latter either through onboard generation or by ging into
the grid. The paper’s overarching goal is to optanthe

batteries is essentially divided into two main gatées: {)
Empirical models that are built upon the experiraént
observations of battery input/output behavior, suah

charge trajectory of such PHEVs, defined as the timing andequivalent circuit models [10, 11], andi)(high-fidelity

the rate which they obtain electric energy fromghd. We
perform this optimization with two objectives in mdi

models that are derived from the first principldsbattery
electrochemistry [12, 13]. The modeling of capadiygle

namely, (i) minimizing the overall cost of daily PHEV and life degradation has been more extensively ugars

energy consumption andii) minimizing the concurrent
damage to PHEV batteries. Such optimization
important step towards achieving the potential eatin and
environmental
scientific community [1-5]. Moreover, the optimaharge
trajectories can be used to build a spatiotempmedictive

under the second category. This paper adopts & firs

is aprinciples electrochemistry-based battery modeletiged

by Doyleet al. [12] and Fulleret al. [13], and later expanded

benefits of PHEVs envisioned by théy Ramadasst al. [14] through the addition of a capacity

fade component. In this model, the battery degradat
mechanism is governed by a side reaction within the

model for the PHEV load on the grid, assuming thategative electrode (anode), resulting in the foromaodf an

consumers will adopt these optimal charging stiateg
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irreversible solid electrolyte interface (SEIl) filmn the
electrode, and the loss of cyclable lithium iondthdugh
there are several other degradation mechanismthéoL.i-
ion batteries, such as overheating, overchargingepd
discharging, etc. [15], in this paper we only cdesithe SEI
film formation as the primary cause of battery delation.
The approach we adopt in this effort is generalezéb other
mechanisms as well.

To the best of the authors’ knowledge, there arecatly
no published articles in the PHEYV literature thatimmize the
charge trajectory of PHEVs for both energy cost bhatiery
health. Thus, this paper is the first to analyze groblem.
Since we deal with optimizing two objectives whiehe



conflicting (as will be explained in the paper), wee a and the supervisory power management algorithm. The
multiobjective optimization algorithm, namely, thaon- supervisory power management algorithm attempt¢et
dominated sorting genetic algorithm Il (NSGA-II)wédoped drive cycle power demand by adjusting three coritmolts:
by Debet al. [16]. Our goal is to obtain an optimal Paretcengine torque, electric motor/generator 1 (M/G1jte, and
front that trades off the two objectives. To quigntihe daily M/G2 torque. These inputs are determined by a nealti
energy cost, we use a mid-size sedan PHEV modaél avit static feedback law, which depends functionally emgine
previously-developed optimal on-road power managémespeed, vehicle velocity, battery SOC, and poweratem
strategy [17, 18], and a naturalistic 24-hour digyele with The vehicle model consists of five components shown
two (morning and afternoon) half trips. Moreovehet schematically in Figure 1: the engine, motor/getuesa
measure of battery degradation is obtained throagh planetary gear set, longitudinal vehicle dynamiesyd
reduced order representation of the electrocheyrligised battery pack. The engine and motor/generator modeds
battery model discussed above. To account for #nmtion  steady-state maps that respectively output fueswoption
of the electricity price, we use the pricing poliof DTE rate and power efficiency as functions of speed tangue.
Energy Company for electric vehicles in the State drhe drive cycle is modeled as a first order Markowocess.
Michigan [19]. Putting all the described elemerdgether, Models for the remaining components can be grouped
we finally optimize the PHEV charge trajectory, astddy terms of the inertial dynamics, road loads, andepatSOC
various solutions from the obtained Pareto front. dynamics. The inertial dynamics form state equatifmn the
The reminder of the paper is organized as folld®extion speeds of the engine, M/G1, and M/G2 (directly prtipnal
Il provides a brief review of the PHEV model witptonal to vehicle velocity). These three speeds must fgatis
on-road power management strategy followed by kinematic constraint created by the planetary gedr The
simulation study. In Section Ill, we review theibn battery road loads represent forces acting against the P$EV
degradation model. Section IV formulates the chargeertia, including rolling resistance, viscous dirag, and
trajectory optimization problem. In Section V, vaview the wheel/axle bearing friction. For the purposes ohtoal
NSGA-II for multiobjective optimization. In Sectiovil, we optimization, the battery pack is idealized by aerm circuit
optimize the PHEV charge trajectories using NSGAahd voltage in series with an internal resistance. Bdtery pack
provide extensive discussions. Finally, Section VIBEOC dynamics are determined by integrating batpergk

summarizes the paper’s main conclusions. current.
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Therefore, modeling PHEV on-road power managemnt i,
an important prerequisite to charge trajectory rojzation.

On-road power management can be optimized using
number of different methods, including determimisti
dynamic programming (DDP), when the drive cycle is!

i Driver Cycle

known [20, 21], and stochastic dynamic programming; ! Power Demand [ DRIVE -
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authors in a previous study [17] as well as theaad power

management algorithm optimized for that PHEV ussmp. Fig. 1. PHEV model components, supervisory corerplind signal flow.
We describe both brieﬂy below Note that the signal flow forms a state feedbacakrob architecture.
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A. PHEV Mode B. Smulations of Optimal Power Management in PHEVs

The PHEV model is based on a power-split mid-size Figure.2 depicts a sample_suburbgn naturalistiy daive
sedan, similar in configuration, dynamics, and giegb the CYCle With two separate trips. Using the model ahd
2002 Toyota Prius, but with an 8 kWh Li-ion battgrgck. °Ptimal power management strategy developed in ghid}
The supervisory power management algorithm, WhicﬁXIOIaIned above, We examine the pattery dlschaega\t_)or,
determines the optimal split of engine and batteswer, is and fuel and. eIectr!cny consumption cpsts, as \thkicle
developed using SDP. We summarize the PHEV modtl afp!lows the given drive cycle (only the first segmef the
associated optimal supervisory control strategye har drive cyclg is considered for the simulations a§ thection).
comprehensiveness, but readers are encourageddd1ré] The electr|C|-ty a”‘?' the fue! prices are set to QIED/kWh
for complete details. (representative price for M|dwest in the year 2088) 3.44

Figure 1 presents a conceptual map of the keydatiens USD/ngIon (representative value for the year 2008)
between the PHEV examined in this paper, the drixge, respectively.



Figure 3 depicts the simulation results for thréféedent
initial battery charge levels. Comparing the enepst
trajectories in Figure 3 implies that higher iritlaattery
SOC results in higher electricity cost, but lowekelf and
total energy cost at the end of the trip. Thisdréndue the
use of a less costly energy source (i.e., elettyidor a
longer portion of the trip, when the battery SOGigher.
Therefore, we can conclud&he higher the initial battery
SOC for a given trip, the less the total energy cost at the end
of that trip, assuming that all the stored electricity is

consumed.

Now that we have shown the effects of battery ohang
vehicle operating cost, we review a high-fidelity-ian
battery model in the next section to demonstragedtffiects
of battery charge on its life degradation charasties.
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Fig. 2. A sample suburban naturalistic daily digyele with two trips.
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lll.  HIGH-FIDELITY LI-ION BATTERY MODEL

The performance and long-term viability of PHEM® a
highly dependent on their electrochemical
Irreversible health degradation is a negative factathese
components that must be well understood prior toroping
the charge trajectory. Efficient and accurate satioh of
battery is a necessity, particularly in VehicleGad
applications.

The simulations in this paper are based a pseudo-2[2 °

electrochemical model that includes degradatioeces$f[12-
14], where the main degradation cause is an ansidie
reaction. As a result of this reaction, a resisfilra builds
up in the anode which increases the internal easist of
battery and leads to capacity loss. This appearsetthe
model of lowest complexity that can both predicalte

batteries

degradation and work on a very wide range of cy(des to
its 1st principles nature). Simpler models haverbesed to
monitor battery SOC and State-of-Health (SOH) [B2-2
However, these models have been developed to dsigree
the battery degradation effect, not to predictHénce, we
cannot use them for battery health simulation and
optimization.

The following section briefly reviews the batteryodel
used in this paper for PHEV charge trajectory oation.
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Fig. 3. Simulations of optimal PHEV power managet@rd energy cost
trajectories for different starting SOCs: (a) SA@§ (b) electricity costs,
(c) fuel costs, and (d) total energy costs.



A. Battery Model Review where U,«; is the SOC-dependent equilibrium potential of

Li-ion batteries store electric energy by shufflilithium ~ the main reactionRn is the side film resistance in anode,
ions between low and high potential energy statesavset andUrew is the equilibrium potential for the side reaction.
of electrochemical processes. Lithium ions haeeltwest ~ In the solution phase, lithium ions are governed ab
energy when they are in the cathode and the highesgy Fick’s law of diffusion combined with an intercata
when they are in the anode. During charging, eslerncurrent density term transferring ions between sbkition
current forces lithium ions to move from the catldd the @and the solid:
anode. During discharge, ions naturally move frame t oc, of

: e R +
anode to the cathode, creating a useful curretttiurm ions & ot . [QDZ DCZ) J (8)

movement is governed by two diffusion processed, @ where ¢, represents the volume fraction of the solution
electrochemical reactions driven by overpotentidlsese pnase Def denotes the effective diffusion coefficient of
reactions allow the lithium ions to transfer betweelid and ., . . .

lithium in the solution phase, and’ stands for the

solution phases via intercalation currents.
This paper adopts the Li-ion battery model oridinal transference number.

: The solid phase concentration is governed by aalgdi
developed by Doyle, Fuller and Newman [12, 13] wdth svmmetric spherical diffusion:
degradation model added later by Ramadasal. [14]. Y IC sphert usion:
Based on this model, the governing equations of slase ac, - D, a r2 ac,
and solution phase potentials (denoted &y and ¢,, ot rz or or
respectively) are given by Ohm’s law as follows

1-t*

9)

_ whereD; is the diffusion coefficient of lithium in the sdli
D[ﬂaf” D@,j)—J =0,j=n,p (1) phase, and is the sphere radius. This occurs at every point
o _ in the anode and the cathode, and is connectechdo t

H EQK D%) 0 EQKDD In (CZ)) *J=0 (2) solution via the intercalation current density.

whereajeﬁ is the effective conductivity of electrofiéwhere Finally, a resistive film builds up in the anodg aresult

n stands for the negative, apdfor the positive electrode), Of Side reaction:

k*and «, respectively represent the concentration- 9% - _‘]dep (10)
dependent effective and diffusional conductivitiet the ot a,0,F
solution phase, and = J; + Jy is the total intercalation with dym being the thickness of the resistive film, avig
current density calculated from the main reactiweng by: andp, representing the molecular weight and densitshef
. a. F a F . side reaction product, respectively. This resultsesistance
J, =ajiy;| expl —=—n, |-exp ——=—n, || .i=n p (3) increase of the side film:
RT RT P
where Rim = Re + }glm (11)
H — max _ ~S @i s \%.i Ay, - p
lo,; =k, (Clyi Clyi) (Cld) (CZ) c1=np @) where Ry denotes the initial solid electrolyte interface
and a side reaction governed by: resistance, and, represents the conductivity of the side
] a, F reaction product, respectively.
Ja = —lou@, €XP — RT Mg (5) Equations (1)-(11) form a set of differential algab

-~ equations (DAEs) that must be solved numerically to
wherea andk are the specific area of the porous electrodgy late the model. There are two major difficuitie
and the rate constant of electrochemical reactioQggociated with these DAES) the existence of a very large
respectively, anda; are the anodic and cathodic transfep mper of state variables (reasonable discretizstf the
coefficients of electrochemical reactiof, R, and T  gqyations can yield tens of thousands of statebkes), and
respectively denote the Faraday’'s constant, uraVegas (jjy the presence of a large set of nonlinear algebrai
constant and the temperature; and ¢ represent the constrains, i.e., Equations (1)-(7), that must beved at
lithium concentration in the solid phase, and isximum every point along the electrodes in every instdutinae.
limit; ip andips are the exchange current densities for the To resolve the computational issues with the bgptter
main and the side reactions, respectively ,;aaddyy are  model, we use two model reduction methods develaped

the corresponding overpotentials, given by: [26] to simplify the battery model. A quasi-linesation
J ) strategy is adopted for linearizing the constrairged a

m=@-¢"Uaq, _;Rfilm’ I=np (6)  family of analytic Padé approximations is usededuce the

number of states associated with the sphericalusigh

Ng =@ -%-U, J Riim (7) process. These methods enable simulating the nwdefs

of magnitude faster than real-time without comprging
accuracy much. The details of these methods aretemmi

" List of all parameter values and the boundary conditions for the partial ~ here for brevity but can be found in [26].
differential equations, i.e. (1), (2), (8) and (9), can be found in [26] .



B. Battery Model Smulations the charging begins with a constant-current phasd, if
In this section, we provide a simulation of thelueed  the voltage reaches to the upper limit of 4.2 voike
battery model to obtain a useful map that can tatalely ~ applied current decreases in a controlled way tmtaia
describe the battery degradation behavior. To okgach a  the voltage constant.
map, we first initialize the battery SOC at differdevels * To simulate the system during the discharge phiase,
through initializing the concentration of lithiuroris in the ~ the vehicle model is simulated for the given droyele.
electrodes, and then apply input current signaldifégrent Then, the electric current signal to the motorseiorded
rates to charge and discharge the battery. We orotiie  and applied to the electrochemistry-based battergetto
average resistance growth rate in the anode at the fiegp s Obtain the trajectories of SOC, voltage, and r@sfiiim
of the simulation, and then plot it as a functidrS®C and  growth during the trip.
the input current rate. It is also important to note that the SOC-dependent
Figure 4 depicts the obtained map in a SOC rangs%f degradation trend of the battery model (e.g., highe
to 85% and a charging rate of Gxo 2C, with negative sign degradation at higher SOCs) is consistent withetkisting
indicating dischargeC-rate is a standard unit for batteryempirical trends obtained for Li-ion batteries 8T,
charge and discharge, representing the ratio ofagied  In the next section, we will use the PHEV modeletbgr
current (in Amp) to the rated capacity of batteiry Amp-  Wwith battery model in a multiobjective genetic opization
hour). For instance, at the charge rate 6f the battery can algorithm to obtain the PHEV optimal charge trapeits.
be fully charged in one hour, whereas & # only takes
half hour to charge the battery for a full SOC mng IV. PHEV CHARGE TRAJECTORYOPTIMIZATION

We pursue two objectives for the optimization of BH
charge trajectory. One objective is to minimize togal
energy cost of PHEV for a given daily drive cycdmd the
other is to reduce the amount of resistive filmvgioin the
battery anode, and hence improve its useful lifieorder to
parameterize the charge trajectory for the optitiona we
T assign variables indicating th&rte’, the “amount”, and the

- “rate” at which battery receives electricity from thewsr
-~ “y grid before each trip. The CCCV charging strategy i
P o4 08 imposed, unless the battery reaches either to shigraed
Charge rate (C) 20 02 soc charge level or to 85% SOC. This particular SOC ap
Fig. 4. Battery degradation map. imposed to avoid excessive damages to the battezytal

From Figure 4 we see that at higher SOCs and high(éyerchargipg. ) . Lo
charge rates the battery tends to degrade fasieticiarly, For a drlve cycle withN separate trips the optimization
when the applied current is zero (which indicateshattery problem is formulated as:
is at rest,) a substantial degradation can sthe talace _

(follow the highlighted line on the surface). Thug,  ygii oo [fl(x)‘zjh qud(xvt)d”z!h Jdec(x’t)dtj
reasonable strategy for charging Li-ion batterieaséd on X ' o '

the degradation model adopted in this paper) isldtay &(fz(x) :Rﬁlmr(x))

charging toward the time of use such that the batte X = [X, X1 Xg1 oo X, |

receivesonly the needed charge, right before the time of use. A

o~

w

=

Resistance growth (Ohm/Sec)
N

NO

This way, we can minimize the duration in whichtegat Xi-201=12,. N (€X X, - Xq01 ) (12)
stays at high SOC; thus we can reduce its degmadafiis charge start time fore trip
strategy, namely, delayed charging, will be disedswith X 11,2, N (X%, Xgy.o Xgy_1)

more detail in Section 6.
Before moving to the next section, i.e., PHEV clearg )

trajectory optimization, we provide a few importaemarks X, 1=1,2,..N (€% X; ,-Xqay )

about the battery model: charge amount fore trip (up to 85% SOC)

* In our simulationsbattery voltage corresponds to the solid yhereJ;,y andJy. are the instantaneous fuel and electricity
phase potential at the rightmost point of the cdéh@ight . S0
collector); SOC represents the spatial average of Iithiun%jOIIar costs per unit timeRj,
ions concentration in the anode divided by its mmaxin  anode side film (averaged spatially over the etefe) at the
value; and, theesistive film growth rate corresponds to end of the 24-hr simulation, representing the Iyatte
the spatial average of SEI growth rate in the anode degradation, and is the vector of optimization variables

« For the battery charging simulation, a constantenir corresponding to the charge trajectory. The uppedrlawer
constant-voltage (CCCV) strategy is implementecatTis

charge rate fore trip (between O ai@l 1 )

is the final resistance of the



bounds of the variables related to the charge timeset to
cover the entire time span between the trips.

domination rank, those with better rank proceethtonext
level. There might, however, be a marginal frontosda

The explained optimization problem suffers from twanembers exceed the number of remaining open $itothat

conflicting objectives. While minimizing the totanergy
cost requires high SOC at the beginning of thestrigattery
tends to degrade faster at higher SOCs. Therefosingle
optimal point does not exist; instead, an Optinwiefo front
can be obtained. The next section briefly presamtsdified
genetic algorithm developed for multiobjective omtation
problems, which will be applied in this paper totab
optimal PHEV charge trajectories.

V. NON-DOMINATED SORTING GENETIC ALGORITHM

Several modified genetic algorithms have been apes
for multiobjective optimization problems. Niche g@gtic

algorithm [27, 28] and non-dominated sorting gemeti

algorithm Il (NSGA-Il) [16] are among the most wige
used methods. Particularly, NSGA-Il has severabathges
in terms of computational efficiency and elitismhieh
makes it a suitable choice for our optimizationigeon here.

case, another criterion, namely, the crowding dista is
used to select the succeeding solutions. The craydi
distance measures the average distance of a sofutim its
neighboring solutions along each of the objectivies.a
marginal front, the solutions with larger crowdidistance
are ranked better. This leads to obtaining a maigoum
distribution of the Pareto front. Once the selatiiwocess is
over, usual binary tournament selection, recomtnaand
mutation operators are used to create the nextraime.
Interested readers are encouraged to study [16]}miore
details of NSGA-II.

VI. PHEV CHARGE TRAJECTORYOPTIMIZATION

Having set up all the necessary tools for PHEV &itmn
and optimization, we can implement NSGA-II to obt#ie
PHEV optimal charge trajectories. According to the
optimization formulation, Eq. (12), three optimimat

NSGA-II follows the fundamentals of basic geneticvariables are dedicated for each active segmeiat gifen

algorithm with a difference in the selection criver. In this
algorithm, the fittest solutions are selected basmdtheir
non-domination ranking and crowding distance. Tlo@-n

drive cycle. The simulations in this section aredzhon the
24-Hr naturalistic drive cycle with two half tripghown in
Figure 2, resulting in six optimization variables.

domination ranking of an individual is determined b To calculate the amount of electric energy priaeefeery

comparing it to the other individuals in the sanemeration
and counting the number of individuals that domeénitt
along all objectives. Figure 5 demonstrates aniainit
population distribution in a double-objective opitiation
problem. If we consider minimizing both objectivebe
non-domination ranking of a solution can be detaadiby
counting the number of solutions entrapped inatser left
area (or the domination zone). For example, thetieols
with non-domination rank of 1 have no other solugidn
their domination zone. Similarly, a solution withet non-
domination rank of 6 has 5 solutions entrapped ts

charging schedule, the pricing policy of the DTEeEy
Company is used [19]. For the electric vehicless policy
breaks into two periods over a year and two on-@eekoff-
peak segments. For the period of June to Septeiter
during the on-peak hours (10.00 am until 7.00 pig t
electricity rate is 0.099 USD/kWh, while during tb#-peak
hours this rate reduces to 0.035 USD/kWh. The akpe
electricity rate changes to 0.047 USD/kWh during pleriod
of October through May. In this study, we choosefhcing
policy of June to September.

i The optimization result is shown in Figure 6, whafeer

domination zone. Solutions belonging to the same-no60 generations of 80 populations, a Pareto frorfoimed

domination rank divide the population into multiglyers
of equally-ranked members.
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Fig. 5. Determining the non-domination rank of $ioins in a population.

from the initial distribution of the PHEV chargejectories.
The total energy cost ranges between $1.6 andf$R.the
solutions belonging to the Pareto front. On theepthand,
the amount of added battery resistance varies ffd@nto
13.5 milliohms. Hence, a wide range of feasibleusohs
exist for this problem. We choose three criticaing® from
the Pareto front (marked by numbers in Figure @) plot
their corresponding charge trajectories in Figurdoi7 a
gualitative comparison. We also plot the drive eyahd the
electricity pricing profile in Figure 7.

The first choice (marked by #1 in Figure 6) coras to
the solution with the least battery degradationer€his no
charge added to the battery, and SOC remains dbowest
level for the entire day. This is essential to kéep battery
degradation minimal based on the discussion praoviite
Section Ill. Hence, the charge trajectory of the ERH

In every generation of NSGA-Il, only half of theremains at zero for the entire day.
parents/children population can proceed to the next

generation. Once the fronts are sorted accorditigetio non-
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The second choice (marked by #2 in Figure 6) remiss
a balanced tradeoff between the battery health ted
energy cost objectives. Figure 7(b) depicts thergsa
trajectory for this scenario. Charging starts befeach trip
at a high rate in such a way that the battery remdts

maximum SOC limit just before the trip starts. Qe ne
hand, the battery has a high SOC at the beginnfrieo
trips, thus the overall energy cost remains lowhatend of
the day. On the other hand, the PHEV depletes #tiery
charge immediately after the charging is finish€dus, the
high-rate resistive film growth takes place only o short
period of time.

The last case of interest (the point marked byr#Bigure
6) corresponds to the charge trajectory with tlastienergy
cost. In this solution, not only the battery reesisufficient
charge before the trips, but also charging takaseptiuring
the off-peak hours, where the electricity pricelde.. The
resulting charge trajectory is shown in Figure 78ihce the
optimality of battery health is also taken into @aat, the
second charging task is delayed until before thrapjof
electricity price.

The charge trajectories shown in Figure 7(b) anc) 7(
demonstrate a slow increase in the charge ratewetl by a
rapid drop towards the end of charging. This specifiarge
profile is due to the fact that during the constauntrent
phase of charging, the battery SOC adds up, inicrgdke
open circuit potential of battery. Therefore, thstantaneous
battery power demand increases accordingly. When th
battery potential reaches its upper limit, the ghay
strategy turns to the constant-voltage phase, wiieee
applied current drops in a controlled way to maintthe
voltage constant. This results in the rapid dropbaftery
power demand at the end of charging.

Although the results presented in this paper regeate
of the key features of PHEV optimal charge trajgef
further investigations are required to generalie dbtained
results. In this respect, the future work of thisdy will
include optimizing and analyzing the PHEV charge
trajectory for different battery sizes, vehicle rats] drive
cycles, and pricing policies. Moreover, the develbp
methodology will be used for the prediction of amgate
PHEV power demand.

VII. CONCLUSION

This paper investigates the problem of optimizirge®
charge trajectory for simultaneous reduction ofrgnecost
and battery degradation. A PHEV model, a battery
degradation model, and a multiobjective geneti®rdtigm
were used to optimize the PHEV charge trajectoryaf@4-
hour naturalistic drive cycle. The optimizationuks in the
formation of a Pareto front on which the objectiva®
traded off optimally. The comparison of differemtigions
from the Pareto front indicates that to effectivatinimize
battery degradation and energy costs, a delayedyidiga
strategy must be used. We expect that the obtapécdhal
charging strategies will improve the long-term emwic
benefits of PHEVs, and enhance the prediction oEYH
related electric load on the power grid.
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