
  

  

Abstract— This paper examines the problem of optimizing the 
charge trajectory of a plug-in hybrid electric vehicle (PHEV), 
defined as the timing and rate with which the PHEV obtains 
electricity from the power grid.  Two objectives are considered 
in this optimization.  First, we minimize the total cost of fuel 
and electricity consumed by the PHEV over a 24-hour 
naturalistic drive cycle.  We predict this cost using a 
previously-developed stochastic optimal PHEV power 
management strategy.  Second, we also minimize total battery 
health degradation over the course of the 24-hour cycle.  This 
degradation is predicted using an electrochemistry-based 
model of anode-side resistive film formation in Li-ion batteries. 
The paper shows that these two objectives are conflicting, and 
trades them off using a non-dominated sort genetic algorithm, 
NSGA-II.  As a result, a Pareto front of optimal PHEV charge 
trajectories is obtained. The effects of electricity price and trip 
schedule on the Pareto front are analyzed and discussed. 

 

I. INTRODUCTION 

 his paper examines plug-in hybrid electric vehicles 
(PHEVs), defined as vehicles that can use both fuel and 
battery electricity for propulsion, and can obtain the 

latter either through onboard generation or by plugging into 
the grid. The paper’s overarching goal is to optimize the 
charge trajectory of such PHEVs, defined as the timing and 
the rate which they obtain electric energy from the grid.  We 
perform this optimization with two objectives in mind, 
namely, (i) minimizing the overall cost of daily PHEV 
energy consumption and (ii) minimizing the concurrent 
damage to PHEV batteries. Such optimization is an 
important step towards achieving the potential economic and 
environmental benefits of PHEVs envisioned by the 
scientific community [1-5]. Moreover, the optimal charge 
trajectories can be used to build a spatiotemporal predictive 
model for the PHEV load on the grid, assuming that 
consumers will adopt these optimal charging strategies. 
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The literature has examined PHEV charge trajectories 
from a number of different perspectives. The most common 
conjecture in this respect is the overnight charging scenario, 
which assumes PHEVs will start charging late at night, e.g., 
10 p.m. or midnight [4-6]. Evening charging is another 
scenario which has also been examined [5]. More 
sophisticated trip- and price-dependent strategies such as 
“immediate end of travel”, “optimized to off-peak”, and 
“opportunity charging” have also been assumed and used for 
the prediction of PHEV load [6]. This paper optimizes 
PHEV charging in a way that takes into account, for the first 
time, the combined effects of total energy cost, battery 
health, electricity pricing, and the PHEV’s driving pattern. 
The charge trajectories obtained through this optimization 
are substantially different from those optimized for energy 
cost or battery health alone. 

One of the necessary and most expensive elements of 
PHEVs is their high-capacity battery storage system which 
tends to degrade with time and cycling [7-9]. This paper 
focuses specifically on PHEVs that use Lithium-ion batteries 
for such storage. The literature on the modeling of Li-ion 
batteries is essentially divided into two main categories: (i) 
Empirical models that are built upon the experimental 
observations of battery input/output behavior, such as 
equivalent circuit models [10, 11], and (ii) high-fidelity 
models that are derived from the first principles of battery 
electrochemistry [12, 13]. The modeling of capacity fade 
and life degradation has been more extensively pursued 
under the second category. This paper adopts a first-
principles electrochemistry-based battery model developed 
by Doyle et al. [12] and Fuller et al. [13], and later expanded 
by Ramadass et al. [14] through the addition of a capacity 
fade component. In this model, the battery degradation 
mechanism is governed by a side reaction within the 
negative electrode (anode), resulting in the formation of an 
irreversible solid electrolyte interface (SEI) film on the 
electrode, and the loss of cyclable lithium ions. Although 
there are several other degradation mechanisms for the Li-
ion batteries, such as overheating, overcharging, deep 
discharging, etc. [15], in this paper we only consider the SEI 
film formation as the primary cause of battery degradation. 
The approach we adopt in this effort is generalizable to other 
mechanisms as well. 

To the best of the authors’ knowledge, there are currently 
no published articles in the PHEV literature that optimize the 
charge trajectory of PHEVs for both energy cost and battery 
health. Thus, this paper is the first to analyze this problem. 
Since we deal with optimizing two objectives which are 
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conflicting (as will be explained in the paper), we use a 
multiobjective optimization algorithm, namely, the non-
dominated sorting genetic algorithm II (NSGA-II) developed 
by Deb et al. [16]. Our goal is to obtain an optimal Pareto 
front that trades off the two objectives. To quantify the daily 
energy cost, we use a mid-size sedan PHEV model with a 
previously-developed optimal on-road power management 
strategy [17, 18], and a naturalistic 24-hour drive cycle with 
two (morning and afternoon) half trips. Moreover, the 
measure of battery degradation is obtained through a 
reduced order representation of the electrochemistry-based 
battery model discussed above. To account for the variation 
of the electricity price, we use the pricing policy of DTE 
Energy Company for electric vehicles in the State of 
Michigan [19]. Putting all the described elements together, 
we finally optimize the PHEV charge trajectory, and study 
various solutions from the obtained Pareto front.  

The reminder of the paper is organized as follows: Section 
II provides a brief review of the PHEV model with optimal 
on-road power management strategy followed by a 
simulation study. In Section III, we review the Li-ion battery 
degradation model. Section IV formulates the charge 
trajectory optimization problem. In Section V, we review the 
NSGA-II for multiobjective optimization. In Section VI, we 
optimize the PHEV charge trajectories using NSGA-II, and 
provide extensive discussions. Finally, Section VII 
summarizes the paper’s main conclusions. 

II. PHEV MODEL AND OPTIMAL POWER MANAGEMENT 

The two objectives optimized in this paper, namely, energy 
cost and battery health, depend not only on PHEV charging, 
but also on how the given PHEV operates on the road. 
Therefore, modeling PHEV on-road power management is 
an important prerequisite to charge trajectory optimization. 
On-road power management can be optimized using a 
number of different methods, including deterministic 
dynamic programming (DDP), when the drive cycle is 
known [20, 21], and stochastic dynamic programming 
(SDP), when a statistical drive cycle description is available 
[17, 18]. This paper adopts a PHEV model used by the 
authors in a previous study [17] as well as the on-road power 
management algorithm optimized for that PHEV using SDP. 
We describe both briefly below. 

A. PHEV Model 

The PHEV model is based on a power-split mid-size 
sedan, similar in configuration, dynamics, and design to the 
2002 Toyota Prius, but with an 8 kWh Li-ion battery pack. 
The supervisory power management algorithm, which 
determines the optimal split of engine and battery power, is 
developed using SDP. We summarize the PHEV model and 
associated optimal supervisory control strategy here for 
comprehensiveness, but readers are encouraged to read [17] 
for complete details.  

Figure 1 presents a conceptual map of the key interactions 
between the PHEV examined in this paper, the drive cycle, 

and the supervisory power management algorithm. The 
supervisory power management algorithm attempts to meet 
drive cycle power demand by adjusting three control inputs: 
engine torque, electric motor/generator 1 (M/G1) torque, and 
M/G2 torque. These inputs are determined by a nonlinear 
static feedback law, which depends functionally on engine 
speed, vehicle velocity, battery SOC, and power demand. 

The vehicle model consists of five components shown 
schematically in Figure 1: the engine, motor/generators, 
planetary gear set, longitudinal vehicle dynamics, and 
battery pack. The engine and motor/generator models are 
steady-state maps that respectively output fuel consumption 
rate and power efficiency as functions of speed and torque. 
The drive cycle is modeled as a first order Markov process. 
Models for the remaining components can be grouped in 
terms of the inertial dynamics, road loads, and battery SOC 
dynamics. The inertial dynamics form state equations for the 
speeds of the engine, M/G1, and M/G2 (directly proportional 
to vehicle velocity). These three speeds must satisfy a 
kinematic constraint created by the planetary gear set. The 
road loads represent forces acting against the PHEV’s 
inertia, including rolling resistance, viscous air drag, and 
wheel/axle bearing friction. For the purposes of control 
optimization, the battery pack is idealized by an open circuit 
voltage in series with an internal resistance. The battery pack 
SOC dynamics are determined by integrating battery pack 
current.  

 
Fig. 1. PHEV model components, supervisory controller, and signal flow. 

Note that the signal flow forms a state feedback control architecture. 

B. Simulations of Optimal Power Management in PHEVs 

Figure 2 depicts a sample suburban naturalistic daily drive 
cycle with two separate trips. Using the model and the 
optimal power management strategy developed in [17] and 
explained above, we examine the battery discharge behavior, 
and fuel and electricity consumption costs, as the vehicle 
follows the given drive cycle (only the first segment of the 
drive cycle is considered for the simulations of this section). 
The electricity and the fuel prices are set to 0.08 USD/kWh 
(representative price for Midwest in the year 2008) and 3.44 
USD/gallon (representative value for the year 2008), 
respectively. 



  

Figure 3 depicts the simulation results for three different 
initial battery charge levels. Comparing the energy cost 
trajectories in Figure 3 implies that higher initial battery 
SOC results in higher electricity cost, but lower fuel and 
total energy cost at the end of the trip. This trend is due the 
use of a less costly energy source (i.e., electricity) for a 
longer portion of the trip, when the battery SOC is higher. 
Therefore, we can conclude: The higher the initial battery 
SOC for a given trip, the less the total energy cost at the end 
of that trip, assuming that all the stored electricity is 
consumed. 

Now that we have shown the effects of battery charge on 
vehicle operating cost, we review a high-fidelity Li-ion 
battery model in the next section to demonstrate the effects 
of battery charge on its life degradation characteristics. 

 

 
Fig. 2. A sample suburban naturalistic daily drive cycle with two trips. 

III.  HIGH-FIDELITY LI-ION BATTERY MODEL 

 The performance and long-term viability of PHEVs are 
highly dependent on their electrochemical batteries. 
Irreversible health degradation is a negative factor in these 
components that must be well understood prior to optimizing 
the charge trajectory. Efficient and accurate simulation of 
battery is a necessity, particularly in Vehicle-to-Grid 
applications. 

The simulations in this paper are based a pseudo-2D 
electrochemical model that includes degradation effects [12-
14], where the main degradation cause is an anodic side 
reaction. As a result of this reaction, a resistive film builds 
up in the anode which increases the internal resistance of 
battery and leads to capacity loss. This appears to be the 
model of lowest complexity that can both predict health 

degradation and work on a very wide range of cycles (due to 
its 1st principles nature).  Simpler models have been used to 
monitor battery SOC and State-of-Health (SOH) [22-25]. 
However, these models have been developed to only observe 
the battery degradation effect, not to predict it. Hence, we 
cannot use them for battery health simulation and 
optimization.  

The following section briefly reviews the battery model 
used in this paper for PHEV charge trajectory optimization. 

    

 

 
Fig. 3. Simulations of optimal PHEV power management and energy cost 
trajectories for different starting SOCs: (a) SOC plots, (b) electricity costs, 

(c) fuel costs, and (d) total energy costs. 
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A. Battery Model Review 

 Li-ion batteries store electric energy by shuffling lithium 
ions between low and high potential energy states via a set 
of electrochemical processes.  Lithium ions have the lowest 
energy when they are in the cathode and the highest energy 
when they are in the anode. During charging, external 
current forces lithium ions to move from the cathode to the 
anode. During discharge, ions naturally move from the 
anode to the cathode, creating a useful current. Lithium ions 
movement is governed by two diffusion processes, and two 
electrochemical reactions driven by overpotentials. These 
reactions allow the lithium ions to transfer between solid and 
solution phases via intercalation currents. 

This paper adopts the Li-ion battery model originally 
developed by Doyle, Fuller and Newman [12, 13] with a 
degradation model added later by Ramadass et al.  [14]. 
Based on this model, the governing equations of solid phase 
and solution phase potentials (denoted by ϕ1 and ϕ2, 
respectively) are given by Ohm’s law as follows*: 
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(1) 

 
( ) ( )( )2 2ln 0eff

D c Jκ φ κ∇ ⋅ ∇ + ∇ ⋅ ∇ + =
               

(2) 

where eff
jσ  is the effective conductivity of electrode j (where 

n stands for the negative, and p for the positive electrode), 
effκ and Dκ  respectively represent the concentration-

dependent effective and diffusional conductivities of the 
solution phase, and J = J1 + Jsd is the total intercalation 
current density calculated from the main reaction given by:                                              
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and a side reaction governed by: 
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where a and k are the specific area of the porous electrode 
and the rate constant of electrochemical reaction, 
respectively; αa and αc  are the anodic and cathodic transfer 
coefficients of electrochemical reaction; F, R, and T 
respectively denote the Faraday’s constant, universal gas 
constant and the temperature; c1 and max

1c  represent the 

lithium concentration in the solid phase, and its maximum 
limit; i0 and i0,sd are the exchange current densities for the 
main and the side  reactions, respectively , and η and ηsd  are 
the corresponding overpotentials, given by: 
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* List of all parameter values and the boundary conditions for the partial 

differential equations, i.e. (1), (2), (8) and (9), can be found in [26]. 

where Uref,j is the SOC-dependent equilibrium potential of 
the main reaction, Rfilm is the side film resistance in anode, 
and Uref,sd  is the equilibrium potential for the side reaction. 
 In the solution phase, lithium ions are governed by a 
Fick’s law of diffusion combined with an intercalation 
current density term transferring ions between the solution 
and the solid: 
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where ε2 represents the volume fraction of the solution 
phase, 2

effD denotes the effective diffusion coefficient of 

lithium in the solution phase, and t+ stands for the 
transference number. 

The solid phase concentration is governed by a radially 
symmetric spherical diffusion: 
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where D1 is the diffusion coefficient of lithium in the solid 
phase, and r is the sphere radius. This occurs at every point 
in the anode and the cathode, and is connected to the 
solution via the intercalation current density. 
 Finally, a resistive film builds up in the anode as a result 
of side reaction: 
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with δfilm  being the thickness of the resistive film, and Mp 
and ρp  representing the molecular weight and density of the 
side reaction product, respectively. This results in resistance 
increase of the side film: 

film
film SEI

p

R R
K

δ
= +                           (11) 

where RSEI denotes the initial solid electrolyte interface 
resistance, and Kp represents the conductivity of the side 
reaction product, respectively.  

Equations (1)-(11) form a set of differential algebraic 
equations (DAEs) that must be solved numerically to 
simulate the model. There are two major difficulties 
associated with these DAEs: (i) the existence of a very large 
number of state variables (reasonable discretizations of the 
equations can yield tens of thousands of state variables), and 
(ii) the presence of a large set of nonlinear algebraic 
constrains, i.e., Equations (1)-(7), that must be solved at 
every point along the electrodes in every instant of time.  

To resolve the computational issues with the battery 
model, we use two model reduction methods developed in 
[26] to simplify the battery model. A quasi-linearization 
strategy is adopted for linearizing the constraints, and a 
family of analytic Padé approximations is used to reduce the 
number of states associated with the spherical diffusion 
process. These methods enable simulating the model orders 
of magnitude faster than real-time without compromising 
accuracy much. The details of these methods are omitted 
here for brevity but can be found in [26].  



  

B. Battery Model Simulations 

 In this section, we provide a simulation of the reduced 
battery model to obtain a useful map that can qualitatively 
describe the battery degradation behavior. To obtain such a 
map, we first initialize the battery SOC at different levels 
through initializing the concentration of lithium ions in the 
electrodes, and then apply input current signals at different 
rates to charge and discharge the battery. We monitor the 
average resistance growth rate in the anode at the first step 
of the simulation, and then plot it as a function of SOC and 
the input current rate. 

Figure 4 depicts the obtained map in a SOC range of 5% 
to 85% and a charging rate of -2 C to 2 C, with negative sign 
indicating discharge. C-rate is a standard unit for battery 
charge and discharge, representing the ratio of the applied 
current (in Amp) to the rated capacity of battery (in Amp-
hour). For instance, at the charge rate of 1 C the battery can 
be fully charged in one hour, whereas at 2 C it only takes 
half hour to charge the battery for a full SOC range.  

 
Fig. 4.  Battery degradation map. 

From Figure 4 we see that at higher SOCs and higher 
charge rates the battery tends to degrade faster. Particularly, 
when the applied current is zero (which indicates the battery 
is at rest,) a substantial degradation can still take place 
(follow the highlighted line on the surface). Thus, a 
reasonable strategy for charging Li-ion batteries (based on 
the degradation model adopted in this paper) is to delay 
charging toward the time of use such that the battery 
receives only the needed charge, right before the time of use. 
This way, we can minimize the duration in which battery 
stays at high SOC; thus we can reduce its degradation. This 
strategy, namely, delayed charging, will be discussed with 
more detail in Section 6. 

Before moving to the next section, i.e., PHEV charge 
trajectory optimization, we provide a few important remarks 
about the battery model:   
• In our simulations, battery voltage corresponds to the solid 

phase potential at the rightmost point of the cathode (right 
collector); SOC represents the spatial average of lithium 
ions concentration in the anode divided by its maximum 
value; and, the resistive film growth rate corresponds to 
the spatial average of SEI growth rate in the anode. 

• For the battery charging simulation, a constant-current 
constant-voltage (CCCV) strategy is implemented. That is, 

the charging begins with a constant-current phase, and, if 
the voltage reaches to the upper limit of 4.2 volts, the 
applied current decreases in a controlled way to maintain 
the voltage constant.  

• To simulate the system during the discharge phase, first 
the vehicle model is simulated for the given drive cycle. 
Then, the electric current signal to the motors is recorded 
and applied to the electrochemistry-based battery model to 
obtain the trajectories of SOC, voltage, and resistive film 
growth during the trip.  

It is also important to note that the SOC-dependent 
degradation trend of the battery model (e.g., higher 
degradation at higher SOCs) is consistent with the existing 
empirical trends obtained for Li-ion batteries [7, 8]. 

In the next section, we will use the PHEV model together 
with battery model in a multiobjective genetic optimization 
algorithm to obtain the PHEV optimal charge trajectories.  

IV.  PHEV CHARGE TRAJECTORY OPTIMIZATION  

We pursue two objectives for the optimization of PHEV 
charge trajectory. One objective is to minimize the total 
energy cost of PHEV for a given daily drive cycle, and the 
other is to reduce the amount of resistive film growth in the 
battery anode, and hence improve its useful life. In order to 
parameterize the charge trajectory for the optimization, we 
assign variables indicating the “time”, the “amount”, and the 
“rate” at which battery receives electricity from the power 
grid before each trip. The CCCV charging strategy is 
imposed, unless the battery reaches either to the assigned 
charge level or to 85% SOC. This particular SOC cap is 
imposed to avoid excessive damages to the battery due to 
overcharging. 

For a drive cycle with N separate trips the optimization 
problem is formulated as: 
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(12) 

where Jfuel  and Jelec are the instantaneous fuel and electricity 

dollar costs per unit time, 24hr
filmR is the final resistance of the 

anode side film (averaged spatially over the electrode) at the 
end of the 24-hr simulation, representing the battery 
degradation, and x is the vector of optimization variables 
corresponding to the charge trajectory. The upper and lower 



  

bounds of the variables related to the charge time are set to 
cover the entire time span between the trips.      

The explained optimization problem suffers from two 
conflicting objectives. While minimizing the total energy 
cost requires high SOC at the beginning of the trips, battery 
tends to degrade faster at higher SOCs. Therefore, a single 
optimal point does not exist; instead, an Optimal Pareto front 
can be obtained. The next section briefly presents a modified 
genetic algorithm developed for multiobjective optimization 
problems, which will be applied in this paper to obtain 
optimal PHEV charge trajectories. 

V. NON-DOMINATED SORTING GENETIC ALGORITHM 

Several modified genetic algorithms have been developed 
for multiobjective optimization problems. Niche genetic 
algorithm [27, 28] and non-dominated sorting genetic 
algorithm II (NSGA-II) [16] are among the most widely 
used methods. Particularly, NSGA-II has several advantages 
in terms of computational efficiency and elitism, which 
makes it a suitable choice for our optimization problem here.  

NSGA-II follows the fundamentals of basic genetic 
algorithm with a difference in the selection criterion. In this 
algorithm, the fittest solutions are selected based on their 
non-domination ranking and crowding distance. The non-
domination ranking of an individual is determined by 
comparing it to the other individuals in the same generation 
and counting the number of individuals that dominate it 
along all objectives. Figure 5 demonstrates an initial 
population distribution in a double-objective optimization 
problem. If we consider minimizing both objectives, the 
non-domination ranking of a solution can be determined by 
counting the number of solutions entrapped in its lower left 
area (or the domination zone). For example, the solutions 
with non-domination rank of 1 have no other solutions in 
their domination zone. Similarly, a solution with the non-
domination rank of 6 has 5 solutions entrapped in its 
domination zone. Solutions belonging to the same non-
domination rank divide the population into multiply layers 
of equally-ranked members.         

 
Fig. 5. Determining the non-domination rank of solutions in a population. 

In every generation of NSGA-II, only half of the 
parents/children population can proceed to the next 
generation. Once the fronts are sorted according to their non-

domination rank, those with better rank proceed to the next 
level. There might, however, be a marginal front whose 
members exceed the number of remaining open slots. In that 
case, another criterion, namely, the crowding distance, is 
used to select the succeeding solutions. The crowding 
distance measures the average distance of a solution from its 
neighboring solutions along each of the objectives. In a 
marginal front, the solutions with larger crowding distance 
are ranked better. This leads to obtaining a more uniform 
distribution of the Pareto front. Once the selection process is 
over, usual binary tournament selection, recombination and 
mutation operators are used to create the next generation. 
Interested readers are encouraged to study [16] for more 
details of NSGA-II.  

VI.  PHEV CHARGE TRAJECTORY OPTIMIZATION  

Having set up all the necessary tools for PHEV simulation 
and optimization, we can implement NSGA-II to obtain the 
PHEV optimal charge trajectories. According to the 
optimization formulation, Eq. (12), three optimization 
variables are dedicated for each active segment of a given 
drive cycle. The simulations in this section are based on the 
24-Hr naturalistic drive cycle with two half trips shown in 
Figure 2, resulting in six optimization variables.  

To calculate the amount of electric energy price for every 
charging schedule, the pricing policy of the DTE Energy 
Company is used [19]. For the electric vehicles, this policy 
breaks into two periods over a year and two on-peak and off-
peak segments. For the period of June to September and 
during the on-peak hours (10.00 am until 7.00 pm) the 
electricity rate is 0.099 USD/kWh, while during the off-peak 
hours this rate reduces to 0.035 USD/kWh. The on-peak 
electricity rate changes to 0.047 USD/kWh during the period 
of October through May. In this study, we choose the pricing 
policy of June to September.  

The optimization result is shown in Figure 6, where after 
60 generations of 80 populations, a Pareto front is formed 
from the initial distribution of the PHEV charge trajectories. 
The total energy cost ranges between $1.6 and $2.7 for the 
solutions belonging to the Pareto front. On the other hand, 
the amount of added battery resistance varies from 7.9 to 
13.5 milliohms. Hence, a wide range of feasible solutions 
exist for this problem. We choose three critical points from 
the Pareto front (marked by numbers in Figure 6) and plot 
their corresponding charge trajectories in Figure 7 for a 
qualitative comparison. We also plot the drive cycle and the 
electricity pricing profile in Figure 7.     

The first choice (marked by #1 in Figure 6) corresponds to 
the solution with the least battery degradation. There is no 
charge added to the battery, and SOC remains at the lowest 
level for the entire day. This is essential to keep the battery 
degradation minimal based on the discussion provided in 
Section III. Hence, the charge trajectory of the PHEV 
remains at zero for the entire day.   



  

 
Fig. 6. Pareto front type solution for the optimal charge trajectory of PHEV 

obtained through NSGA-II.   

 

 

 
Fig. 7. Optimal charge trajectories for PHEVs: (a) for the best battery 

health, (b) for a balanced tradeoff between battery health and energy cost, 
and (c) for the least energy cost.  

The second choice (marked by #2 in Figure 6) represents 
a balanced tradeoff between the battery health and the 
energy cost objectives. Figure 7(b) depicts the charge 
trajectory for this scenario. Charging starts before each trip 
at a high rate in such a way that the battery reaches its 

maximum SOC limit just before the trip starts. On the one 
hand, the battery has a high SOC at the beginning of the 
trips, thus the overall energy cost remains low at the end of 
the day. On the other hand, the PHEV depletes the battery 
charge immediately after the charging is finished. Thus, the 
high-rate resistive film growth takes place only for a short 
period of time. 

The last case of interest (the point marked by #3 in Figure 
6) corresponds to the charge trajectory with the least energy 
cost. In this solution, not only the battery receives sufficient 
charge before the trips, but also charging takes place during 
the off-peak hours, where the electricity price is low. The 
resulting charge trajectory is shown in Figure 7(c). Since the 
optimality of battery health is also taken into account, the 
second charging task is delayed until before the jump of 
electricity price. 

The charge trajectories shown in Figure 7(b) and 7(c) 
demonstrate a slow increase in the charge rate followed by a 
rapid drop towards the end of charging. This specific charge 
profile is due to the fact that during the constant-current 
phase of charging, the battery SOC adds up, increasing the 
open circuit potential of battery. Therefore, the instantaneous 
battery power demand increases accordingly. When the 
battery potential reaches its upper limit, the charging 
strategy turns to the constant-voltage phase, where the 
applied current drops in a controlled way to maintain the 
voltage constant. This results in the rapid drop of battery 
power demand at the end of charging.  

Although the results presented in this paper reveal some 
of the key features of PHEV optimal charge trajectories, 
further investigations are required to generalize the obtained 
results. In this respect, the future work of this study will 
include optimizing and analyzing the PHEV charge 
trajectory for different battery sizes, vehicle models, drive 
cycles, and pricing policies. Moreover, the developed 
methodology will be used for the prediction of aggregate 
PHEV power demand. 

VII.  CONCLUSION 

This paper investigates the problem of optimizing PHEV 
charge trajectory for simultaneous reduction of energy cost 
and battery degradation. A PHEV model, a battery 
degradation model, and a multiobjective genetic algorithm 
were used to optimize the PHEV charge trajectory for a 24-
hour naturalistic drive cycle. The optimization results in the 
formation of a Pareto front on which the objectives are 
traded off optimally. The comparison of different solutions 
from the Pareto front indicates that to effectively minimize 
battery degradation and energy costs, a delayed charging 
strategy must be used. We expect that the obtained optimal 
charging strategies will improve the long-term economic 
benefits of PHEVs, and enhance the prediction of PHEV-
related electric load on the power grid.  
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