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Abstract

A state feedback boundary control law that stabilizes fluid flow in a 2D thermal convection loop is presented. The fluid is enclosed between
two cylinders, heated from above and cooled from below, which makes its motion unstable for a large enough Rayleigh number. The actuation
is at the boundary through rotation (direct velocity actuation) and heat flux (heating or cooling) of the outer boundary. The design is a new
approach for this kind of a coupled PDE problem, based on a combination of singular perturbation theory and the backstepping method for
infinite dimensional linear systems. Stability is proved by Lyapunov method. Though only a linearized version of the plant is considered in the
design, an extensive closed loop simulation study of the nonlinear PDE model shows that the result holds for reasonably large initial conditions.
A highly accurate approximation to the control law is found in closed form.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A feedback boundary control law is designed for a thermal
fluid confined in a closed convection loop, which is created by
heating the lower half of the loop and cooling the upper half.
Imposing a temperature gradient induces density differences,
which creates a motion that is opposed by viscosity and thermal
difussivity. For a large enough Rayleigh number, which is a
function of physical constants of the system, geometry and
temperature difference between the top and the bottom, the
plant develops an instability that the control law is able to stop.

Other controllers have been designed for this problem,
including an LQG controller by Burns et al. [2] who formu-
lated the problem, and a nonlinear backstepping design for a
discretized version of the plant [1]. The present design is
simpler than the former, not needing a solution of Ricatti
equations, only a linear hyperbolic equation, which can be ex-
plicitly solved by means of a successive approximation series;
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and more rigorous than the latter, which does not hold in the
limit when the discrete grid approaches the continuous domain.

Our controller is designed for the linearized plant using a
combination of singular perturbation theory and the backstep-
ping method for infinite dimensional linear systems. Singular
perturbation theory is a mature area [5] with a wealth of con-
trol applications, while backstepping for infinite dimensional
linear systems has just been recently developed [8].

By combining both methods it is possible to design a bound-
ary state feedback control law which stabilizes the closed loop;
this is proved for a large enough Prandtl number, which is the
ratio between kinematic viscosity and thermal difussivity. In
this problem, the inverse of the Prandtl number plays the role
of the singular perturbation parameter.

We start the paper stating the mathematical model of the
convection loop (Section 2) and transforming it into a suitable
form for application of singular perturbation methods. In Sec-
tion 3 we introduce the main assumption of this paper which
allows for the application of singular perturbation theory. The
quasi-steady-state and the reduced model are then found for
this problem, and the state feedback controller for velocity is
set. Section 4 is divided into several subsections, and deals with
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Fig. 1. Convection loop.

the reduced system using backstepping to stabilize the PDE.
A coordinate transformation (infinite dimensional, represented
by a linear Volterra operator) is introduced to transform the
original PDE into a stable linear PDE (a heat equation, to be
exact). Finding the kernel of the transformation is the main de-
sign task. For this we derive a linear hyperbolic PDE which is
satisfied by the kernel, and an equivalent integral equation. Ei-
ther of them can be used to numerically or symbolically find the
kernel. The temperature feedback control law is then presented
in terms of this kernel and the state and a highly accurate ap-
proximation to the control law is found in closed form. Finally,
the inverse transformation is derived in terms of the direct back-
stepping transformation. In Section 5 we present the main result
of the paper, a detailed proof of stability based on both singu-
lar perturbation and infinite dimensional backstepping theory.
The theoretical result is finally supported by a simulation study,
presented in Section 6, in which computations of the evolution
of the closed loop plant and control effort are shown. In these
simulations the Rayleigh number is large enough for the plant
to go open loop unstable, but the controller is able to overcome
the instability.

2. Problem statement

For the convection loop we employ the model derived in [1].
The geometry of the problem is shown in Fig. 1, and consists
of fluid confined between two concentric cylinders standing in
a vertical plane. The main assumption of this model is that the
gap between the cylinders is small compared to the radius of
the cylinders, i.e. R2 − R1>R1 < R2. Then, introducing the
Boussinesq approximation, other standard assumptions for the
velocity in this 2D configuration, and integrating the momen-
tum equation along circles of fixed radius r, the following plant
equations are derived

vt = �

2�

∫ 2�

0
T (t, r, �) cos � d�

+ �
(
− v

r2
+ vr

r
+ vrr

)
, (1)

Tt = − v

r
T� + �

(
T��

r2
+ Tr

r
+ Trr

)
, (2)

where v stands for velocity, which only depends on the ra-
dius r, T for the temperature, which depends on both r and the

angle �, � is the kinematic viscosity, � the thermal diffusivity,
and � = g�, with g representing the acceleration due to gravity
and � the coefficient of thermal expansion. The boundary con-
ditions for velocity are v(t, R1)=0 and v(t, R2)=V (t), where
V (t) represents actuation by rotating the outer boundary, while
the temperature has Neumann boundary conditions, namely
Tr(t, R1, �)=K sin � and Tr(t, R2, �)=K sin �+U(t, �), with
K a constant parameter representing the imposed heating and
cooling in the boundaries. Through U(t, �) we actuate the heat
flux in the outer boundary, which is more realistic than direct
temperature actuation. Note that integrating in the angle, the
total heat flux entering through each boundary is zero if U =0.

Defining � = T − Kr sin � we shift the equilibrium to the
origin and bring the open loop boundary conditions to zero.
Then, we introduce nondimensional coordinates and variables,
r ′ = r/d, t ′ = t�/d2, v′ = vd/�, V ′ = V d/�, �′ = �/�T , U ′ =
Ud/�T , Ra = (1/C)��d3/2��, P = �/�, where d =R2 −R1,
�T =−(4/�)K(R1 +R2/2), C is a constant to be defined, and
Ra and P are, respectively, the Rayleigh and Prandtl numbers.
The nondimensional plant equations are, dropping primes, as
follows:

vt = 1

�
PRaC

∫ 2�

0
�(t, r, �) cos � d�

+ P
(
− v

r2
+ vr

r
+ vrr

)
, (3)

�t = d�

2(R1 + R2)
v cos � − v

r
�� + ���

r2

+ �r

r
+ �rr . (4)

The boundary conditions are:

v(t, R1) = 0, (5)

v(t, R2) = V (t), (6)

�r (t, R1, �) = 0, (7)

�r (t, R2, �) = U(t, �) (8)

where V and U are, respectively, the nondimensional velocity
and temperature controls, and the boundary conditions for � are
periodic in angle �.

Following the lines of the stability study of these equations
in [1], the value of C is set so the system is stable for Rayleigh
numbers less than unity and unstable otherwise.

Defining 	=P −1, A1 =RaC/�, A2 =d�/2(R1 +R2), drop-
ping time dependence, and neglecting the nonlinear term, the
linearized plant equations are the following:

	vt = A1

∫ 2�

0
�(r, �) cos � d� − v

r2
+ vr

r
+ vrr , (9)

�t = A2v cos � + ���

r2
+ �r

r
+ �rr , (10)

with the same boundary conditions (5)–(8).
We will make the equilibrium at zero exponentially stable (in

the sense of Lyapunov), therefore stabilizing—at least locally—
the full nonlinear plant.
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3. Reduced model

For dealing with this plant assume that the parameter 	 is
small enough so we can use singular perturbation theory.

For obtaining the value for the quasi-steady-state, we set 	=0
and solve (9):

0 = A1

∫ 2�

0
� cos � d� − v

r2
+ vr

r
+ vrr . (11)

The general solution for (11) is [7]:

v = R2

r

r2 − R2
1

R2
2 − R2

1

(
V (t) + A1

2

×
∫ R2

R1

∫ 2�

0

R2
2 − s2

R2
cos ��(s, �) ds d�

)

− A1

2

∫ r

R1

∫ 2�

0

r2 − s2

r
cos ��(s, �) ds d�. (12)

This is the quasi-steady-state, and substituted into (10), gives
the reduced system, which will be stabilized via the backstep-
ping method. For this procedure to be applicable we need the
quasi-steady-state to have a strict integral feedback form, i.e.,
v(t, r) should not depend on �(s, ·) for s > r . Based on this
consideration we set the velocity actuation:

V = −A1

2

∫ R2

R1

∫ 2�

0

R2
2 − s2

R2
cos ��(s, �) d� ds, (13)

and then the final expression for the quasi-steady-state is

v = −A1

2

∫ r

R1

∫ 2�

0

r2 − s2

r
cos ��(t, s, �) d� ds, (14)

which plugged into (10) renders the following reduced system:

�t = − A12

∫ r

R1

∫ 2�

0

r2 − s2

r
cos � cos ��(s, �) d� ds

+ ���

r2
+ �r

r
+ �rr , (15)

where A12 = A1A2/2, with boundary conditions (7)–(8). Note
that the reduced system has an integral term which is in the
desired strict feedback form.

4. Backstepping controller for temperature

For stabilization of the reduced system we apply the back-
stepping technique for parabolic PDEs [8], which allows for
compensation of integral terms like the one that appears in
(15). This methods consists in finding a transformation of the
original system (15) into an exponentially stable target system
which has to be defined; the control law is then set in a way
that is compatible with the transformation.

4.1. Target system

For the transformation to be invertible, the target system must
keep essentially the same structure as the original system (not
changing the parabolic character and the number of dimensions).

We choose the most obvious candidate, a heat equation:

wt = w��

r2
+ wr

r
+ wrr , (16)

with periodic boundary conditions in � and the following
boundary conditions in r: wr(R1) = 0, wr(R2) = qw(R2),
where q is a negative real number, which is used for tweaking.
Note that this system is exponentially stable if q is negative,
which follows from a standard argument taking as a Lyapunov
functional the L2 norm of w. The (exponential) rate of decay
will depend on q.

4.2. Backstepping transformation

For transforming (15) into (16) we are going to use the fol-
lowing change of variables:

w(r, �) = �(r, �) −
∫ r

R1

∫ 2�

0
k(r, �, s, �)�(s, �) d� ds. (17)

For calculating the kernel, we introduce (17) into (16) and then
we apply integration by parts to arrive at an ultra-hyperbolic
PDE [3] which must be satisfied by the kernel,

krr = − k��

r2
− kr

r
+ k��

s2
− ks

s
+ kss + k

s2

+ A12

(∫ r

s

∫ 2�

0
k(r, �, 
, �)


2 − s2




× cos � d� d
 − r2 − s2

r
cos �

)
cos �, (18)

with periodic boundary conditions in both � and �, and the
following boundary conditions in the radial variables:

ks(r, �, R1, �) = k(r, �, R1, �)

R1
, (19)

k(r, �, r, �) = 0. (20)

By inspection of (18) and looking for a solution, we insert the
following particular shape of the kernel:

k(r, �, s, �) = cos � cos �k̄(r, s), (21)

which satisfies the periodic boundary conditions, and substi-
tuted in (18) renders:

k̄rr = k̄

r2
− k̄r

r
− k̄s

s
+ k̄ss − A12

(
r2 − s2

r

−�
∫ r

s

k̄(r, 
)

2 − s2



d


)
, (22)

completely eliminating the angular dependence. Also, introduc-
ing k̄ = √

s/rk̂(r, s) in the last equation we get:

k̂rr − k̂ss = 3

4

(
1

r2
− 1

s2

)
k̂ − A12

(
r2 − s2

√
rs

−�
∫ r

s

k̂(r, 
)

2 − s2

√

s

d


)
, (23)
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a hyperbolic partial integro-differential equation (PIDE), in the
region T = {(r, s) : R1 �r �R2, R1 �s�r} with boundary
conditions:

k̂s (r, R1) = k̂(r, R1)

2R1
, (24)

k̂(r, r) = 0. (25)

The kernel in this form can be calculated numerically, using
a simple finite difference scheme, or rewritten into an integral
equation. For this we introduce new coordinates � = r + s,
 = r − s, and denote

G(�, ) = k̂(r, s) = k̂

(
� + 

2
,
� − 

2

)
, (26)

transforming the problem into the following PIDE:

G� = 3

(
�

(�2 − 2)2

)
G − A12

⎛
⎜⎝ �

2
√

�2 − 2

− �
∫ 2

0
G
(
� + 


2
,  − 


2

)

× (
 + � − )2 − (� − )2

2
√

(
 + � − )(� − )
d


⎞
⎟⎠ . (27)

Integrating and using the boundary conditions, we get a pure
integral equation:

G = − A12

⎛
⎜⎝∫ �

2R1+

∫ 

0

��

2
√

�2 − �2
d� d�

+
∫ 

0

∫ �

0
e(−�)/R1

(2R1 + �)�√
(2R1 + �)2 − �2

d� d�

⎞
⎟⎠

+
∫ �

2R1+

∫ 

0

(
3

(
��

(�2 − �2)2

)
G(�, �)

+
∫ 2�

0
A12�G

(
� + 


2
, � − 


2

)

× (
 + � − �)2 − (� − �)2

2
√

(
 + � − �)(� − �)
d


)
d� d�

+
∫ 

0

∫ �

0
e(−�)/R1

(
6G(�, �)

(2R1 + �)�

((2R1 + �)2 − �2)2

+
∫ 2�

0

(
 + 2R1 + � − �)2 − (2R1 + � − �)2

√
(
 + 2R1 + � − �)(2R1 + � − �)

× A12�G
(

2R1 + � + 


2
, � − 


2

)
d


)
d� d�. (28)

It is interesting to note that the first two lines of this expression,
which do not depend on G and are therefore the initial terms in
a successive approximation series for symbolically computing
G, can be found in an explicit form, just by integration:

G0 = − A12

[
1
6 (�3 − 3 − (�2 − 2)3/2)

−2R1
2 + 5

2

√
�R3

1e1+/R1

×
(

erf(1) − erf(
√

1 + /R1)
)

+R3
1

(
6e/R1 − 34/3

)
− 8R2

1

+ 5
3

√
R2

1 + R1(5R2
1 + 2R1)

]
. (29)

Using (28) and the same argument as in [8] the following result
holds:

Theorem 1. Eq. (23) with boundary conditions (24)–(25) has
a unique C2(T) solution.

Therefore a smooth solution exists for Eq. (18) with boundary
conditions (19)–(20).

4.3. Control law

Once the kernel is found, it is easy to derive the control
law. Substituting the backstepping transformation into the outer
boundary condition for the target system,

�r (R2, �) −
∫ R2

R1

∫ 2�

0
kr(R2, �, s, �)�(s, �) d� ds

−
∫ 2�

0
k(R2, �, R2, �)�(R2, �) d�

= q�(R2, �)

− q

∫ R2

R1

∫ 2�

0
k(R2, �, s, �)�(s, �) d� ds, (30)

and then the control law for the derivative of the temperature
at the outer boundary becomes

U(t, �) = q�(R2, �) − cos �
∫ R2

R1

∫ 2�

0

√
s cos �√

R2

×
((

q + 1

2R2

)
k̂(R2, s)

− k̂r (R2, s)

)
�(t, s, �) d� ds. (31)

Note that q is a design parameter that does not enter the
kernel equations at any point; it is set externally to enhance
stability.
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As we shall see in Section 6, k̂(R2, s) is close to G0(R2 +
s, R2 − s) and k̂r (R2, s) is close to �G0/��(R2 + s, R2 − s) +
�G0/�(R2+s, R2−s), where G0(�, ) is defined in (29). This
means that, introducing these approximations, we get explicit
control laws (31), (13).

4.4. Inverse transformation

Having found the backstepping change of variables, we also
look for the inverse of it, which will be needed later. Defining
it as

� = w(r, �) +
∫ r

R1

∫ 2�

0
l(r, �, s, �)w(s, �) d� ds, (32)

then, introducing the expression for w in terms of � an in-
tegral equation is found for this inverse kernel. As it was
done in the derivation of the direct transformation, it can be
assumed that

l(r, �, s, �) = cos � cos �l̄(r, s), (33)

eliminating the angular dependence. Then, the equation for the
inverse transformation is

l̄(r, s) = k̄(r, s) + �
∫ r

s

l̄(r, 
)k̄(
, s) d
. (34)

Using this integral equation a similar result to Theorem 1 holds
for the inverse kernel.

5. Singular perturbation analysis for the entire system

Now that we have derived a control law for the reduced
system, we can drop the assumption that 	 = 0 and instead
consider it a small but nonzero parameter, and analyze the sta-
bility of the closed loop system. Now the quasi-steady-state
solution is no longer the exact solution of the v PDE, but still
plays an important role. Calling this previously calculated fast
solution vss ,

vss = −A1

2

∫ r

R1

∫ 2�

0

r2 − s2

r
cos ��(s, �) d� ds, (35)

an error variable z that measures the deviation of the velocity
from the fast solution can be introduced:

z(t, r) = v(t, r) − vss(t, r). (36)

We start by deriving the PDE that is satisfied by z:

	zt = − z

r2
+ zr

r
+ zrr + 	

A1

2

∫ r

R1

∫ 2�

0

r2 − s2

r

× cos ��t (s, �) d� ds, (37)

where we have used the fact that vss satisfies (11). This PDE
without the last term is usually referred to as the boundary layer
model; note that it is exponentially stable. The last term of

(37) can be expressed in terms of � introducing its differential
equation and applying integration by parts and the � boundary
conditions. We also employ the backstepping transformation
found in Section 4 to express the � PDE and all � dependence
in terms of w coordinate.

Then, the overall plant written in terms of (z, w) variables
has the form

	zt = − z

r2
+ zr

r
+ zrr + 	

(∫ r

R1

Qzz(r, s)z(s) ds

+
∫ r

R1

∫ 2�

0
Q1

zw(r, s, �)w(s, �) d� ds

+
∫ 2�

0
Q2

zw(r, �)w(r, �) d�

+
∫ 2�

0
Qzw0(r, �)w(R1, �) d�

)
, (38)

wt = w��

r2
+ wr

r
+ wrr + Q2

wz(r, �)z(r)

+
∫ r

R1

Q1
wz(r, s, �)z(s) ds, (39)

together with boundary conditions z(R1) = z(R2) = 0,
wr(R1, �) = 0, wr(R2, �) = qw(R2, �), and periodic angular
boundary conditions for w. For simplicity, we have denoted
the following kernels:

Qzz = A12�
r2 − s2

r
, (40)

Q1
zw = − A1

2
cos �

(
2�l̄(r, s)

+A12 cos �
r4 − s4 − 4r2s2 ln r/s

4r

)
, (41)

Q2
zw = A1 cos �, (42)

Q1
wz = − A2� cos �k̄(r, s), (43)

Q2
wz = A2 cos �, (44)

Qzw0 = A1

2

r2 + R2
1

rR1
cos �. (45)

For the stability proof we are going to use the following energy
Lyapunov functionals:

Ew(t) = 1

2

∫ R2

R1

∫ 2�

0
w2(t, s, �)s d� ds, (46)

Ez(t) = 1

2

∫ R2

R1

z2(t, s)s ds. (47)
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The time derivative of Ew can be bounded in the following way:

dEw

dt
� −

∫ R2

R1

∫ 2�

0

w2
�

s2
s d� ds

− 1

2

∫ R2

R1

∫ 2�

0
w2

r s d� ds

+
(

q + R2

4(R2 − R1)

)∫ 2�

0
R2w(R2, �)2 d�

− 1

4(R2 − R1)
2
Ew + 2�1

√
EwEz, (48)

where

�1 = √
2�

(
‖Q2

wz‖∞ +
√

(R2
2 − R2

1) ln
R2

R1

× ‖Q1
wz‖∞

)
. (49)

The time derivative of Ez has the following bound:

dEz

dt
� − 2

(
1

	R2
2

− �

)
Ez + 2�2

√
EwEz

+ �3

∫ 2�

0
w2(R2, �) d�

+ 1

2

∫ R2

R1

∫ 2�

0
w2

r (s, �)s d� ds, (50)

where

�2 = √
2�

(
‖Q2

zw‖∞

+
√

(R2
2 − R2

1) ln
R2

R1
‖Q1

zw‖∞

)
, (51)

�3 = − R2

2

(
q + R2

4(R2 − R1)

)
, (52)

� = �1 + 2�2 + �3

�3
, (53)

�1 =
√

(R2
2 − R2

1) ln
R2

R1
‖Qzz‖∞, (54)

�2 = �2(R2 − R1)
2‖Qzw0‖2∞R2, (55)

�3 = �2

2
(R2 − R1)‖Qzw0‖2∞. (56)

In both of the previous calculations repeated use of Cauchy–
Schwartz’s and Young’s inequality has been made, and a
version of Poincare’s inequality tailored for this system
has been employed (see the Appendix). Now, selecting the

following Lyapunov function,

E(t) = Ew(t) + Ez(t), (57)

we find its time derivative to be:

dE(t)

dt
� −

∫ R2

R1

∫ 2�

0

w2
�

s2
s d� ds

+
(

R2

2

(
q + R2

4(R2 − R1)

))

×
∫ 2�

0
w(t, R2, �)2 d� − 1

4(R2 − R1)
2
Ew

+ 2(�1 + �2)
√

EwEz − 2

(
1

	R2
2

− �

)
Ez. (58)

In this equation we have to choose q and 	 so the final ex-
pression is negative definite. We set the first as

q = −1 − R2

4(R2 − R1)
. (59)

For finding a value for 	, we identify the quadratic form
which appears in (58) and call its matrix A:

A =
⎛
⎜⎝

1

4(R2 − R1)
2

−�1 + �2

−�1 + �2
2

	R2
2

− 2�

⎞
⎟⎠ . (60)

Our interest is to find the maximum possible value of 	 so
A > 0. From Sylvester’s criterion we get the condition for A to
be positive definite:

0 <

(
1

	R2
2

− �

)
− 2(R2 − R1)

2(�1 + �2)
2. (61)

Solving for 1/	,

1

	
> 2R2

2(R2 − R1)
2(�1 + �2

)2 + R2
2�. (62)

Substituting �, we can define an upper bound for 	:

1

	∗
= 2R2

2(R2 − R1)
2 (�1 + �2

)2
+ R2

2

(
�1 + 2�2 + 2

�3

R2

)
. (63)

Note that this bound is a function which depends exclusively
on the geometry and physical parameters of the plant.

This establishes asymptotic stability for the plant in the z, w

coordinates, when 	 ∈ (0, 	∗). Stability in the original coordi-
nates follows from the following inequalities:

‖�‖2
2 �‖w‖2

2

⎛
⎝1 + ‖l̄‖∞

√
�(R2 − R1)(R

2
2 − R2

1)

R1

⎞
⎠

2

(64)



630 R. Vazquez, M. Krstic / Systems & Control Letters 55 (2006) 624–632

and

‖v‖2
2 �2‖z‖2

2 + 2‖w‖2
2

(
(R2 − R1)(R

2
2 − R2

1)2

R3
1

)

×
⎛
⎝1 + ‖l̄‖∞

√
�(R2 − R1)(R

2
2 − R2

1)

R1

⎞
⎠

2

, (65)

which are derived taking norm in the respective definitions. We
have just proved the following theorem:

Theorem 2. For a sufficiently small 	, the system (9)–(10) with
boundary conditions (5)–(8), where the actuations V and U are
specified by control laws (13) and (31), respectively, has unique
classical solutions and is exponentially stable at the origin in
the L2 sense, that is, there exist positive constants M and �,
independent of the initial conditions, such that

∫ R2

R1

(
v2(t, s) +

∫ 2�

0
�2(t, s, �) d�

)
s ds

�Me−�t

∫ R2

R1

(
v2(0, s) +

∫ 2�

0
�2(0, s, �) d�

)
s ds. (66)

The proof of existence and uniqueness of classical solutions
has been skipped, but follows from standard arguments due
to linearity of (9)–(10) and due to the form of the boundary
conditions.

6. Simulation study

We show a prototypical simulation case. For numerical com-
putations, a spectral method combined with the well-known
Crank–Nicholson method (see, for example, [4]) has been used,
using the following numerical values: R1 = 0.369 m, R2 =
0.39 m, P =8.06, Ra =50, C =7.8962×103, K =9.11 ◦C/m.

In Fig. 2 the shape of the control kernel, k̂(R2, s) is plotted,
showing that information near the inner boundary is given more
weight in the control law, which makes sense as the boundary
controller is on the opposite side and therefore has to react more
aggressively to compensate fluctuations of temperature in the
interior part of the domain. The approximate kernel given by
G0(R2 + s, R2 − s) is also shown, and it can be seen that it is
an excellent approximation.

Fig. 3 is an open loop simulation of temperature, which grows
very positive or very negative, depending on the angle, even-
tually becoming too large for further computations. In Fig. 4
closed loop simulations of the plant are shown in physical vari-
ables (velocity and temperature) showing how they reach the
equilibrium state quickly, staying there afterwards. The mag-
nitude of heat flux control is also shown, while the velocity
actuation can be seen just looking at the r = R2 section in the
velocity plot (leftmost side of Fig. 4c), which is the outer cylin-
der rotation imposed by the control law. There is an initial, ap-
parently instantaneous change in the velocity, which happens
in a faster time scale than the evolution of the other variable,

0.37 0.38 0.39
-0.7

-0.5

-0.3

-0.1

 G0  k̂

 r (m)

Fig. 2. Exact (solid) and approximate (dashed) control kernels at R2.
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Fig. 3. Open loop evolution of temperature at radius r = 0.37 m.

a typical behavior of singularly perturbed systems; since the
boundary layer system is exponentially stable, once the con-
trol is set, the velocity goes very fast to the quasi-steady-state
and remains there for the rest of time. Fig. 5 provides a detail
of this initial evolution. As can be seen, the only jump in ve-
locity is located in the outer boundary, since the (closed loop)
boundary conditions are not verified by the initial conditions
and we do not consider actuator dynamics, but this is not par-
ticularly unrealistic—the velocities considered are of the order
of millimeters per second.

7. Conclusions and future work

A combination of singular perturbation theory and backstep-
ping for parabolic PDEs has been successfully employed to
stabilize a thermal fluid confined in a convection loop which
is open loop unstable. The equations of the plant consists of a
1D evolution equation nonlinearly coupled with a 2D evolution
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Fig. 4. Closed loop simulation: (a) temperature at radius r = 0.37 m; (b) temperature at radius r = 0.38 m; (c) velocity; and (d) temperature control effort.
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Fig. 5. Detail of the initial evolution of velocity.

equation, which is complex enough to make very hard any an-
alytical attempt to design a boundary controller and then prove
stability of the closed loop. Our controller, based on the singu-
lar perturbation assumption of a large Prandtl number—which
is true for many fluids—succeeds at this, at least for the lin-
earized plant, employing rotation of the outer boundary and a
Neumann type of boundary state feedback controller for the
temperature (heat flux actuation) which is a realistic setting.
This controller is found using a backstepping design procedure,
which is both conceptually and computationally simple, requir-
ing only to solve a hyperbolic linear equation for obtaining the
control law. A simulation study has been done to show how
the plant is stabilized and the magnitude of the control exerted
through the boundary.

Full state feedback can be used in a CFD setting in which
the state is known at every point of the domain, but in a
real physical experiment this is not possible. Future research
includes developing an output feedback controller, which
will need to measure the temperature only at one or both
of the boundaries, and considering the nonlinearities of the
system [9].
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Appendix

The following lemma has been used in Section 5.

Lemma 1. For any � ∈ C1[R1, R2] the following inequality
holds:

∫ 2�

0

∫ R2

R1

�2(r, �)r dr d�

�2R2(R2 − R1)

∫ 2�

0
�2(R2, �) d�

+ 4(R2 − R1)
2
∫ 2�

0

∫ R2

R1

�2
r (r, �)r dr d�. (67)

We skip the proof which is standard, see e.g. [6].
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