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 a b s t r a c t

Deep neural network approximation of nonlinear operators, commonly referred to as DeepONet, has 
proven capable of approximating PDE backstepping designs in which a single Goursat-form PDE 
governs a single feedback gain function. In boundary control of coupled hyperbolic PDEs, coupled 
Goursat-form PDEs govern two or more gain kernels — a structure unaddressed thus far with 
DeepONet. In this contribution, we open the subject of approximating systems of gain kernel PDEs by 
considering a counter-convecting 2 × 2 hyperbolic system whose backstepping boundary controller 
and observer gains are the solutions to 2 × 2 kernel PDE systems in Goursat form. We establish the 
continuity of the mapping from (a total of five) functional coefficients of the plant to the kernel PDEs 
solutions, prove the existence of an arbitrarily close DeepONet approximation to the kernel PDEs, 
and ensure that the DeepONet-based approximated gains guarantee stabilization when replacing the 
exact backstepping gain kernel functions. Taking into account anti-collocated boundary actuation and 
sensing, our L2-globally-exponentially stabilizing (GES) control law requires the deep learning of both the 
controller and the observer gains. Moreover, the encoding of the feedback law into DeepONet ensures 
semi-global practical exponential stability (SG-PES), as established in our result. The neural operators 
(NOs) speed up the computation of both controller and observer gains by multiple orders of magnitude. 
Its theoretically proved stabilizing capability is demonstrated through simulations.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Coupled first-order hyperbolic PDE systems are versatile, find-
ing applications in traffic dynamics (Goatin, 2006; Yu & Krstic, 
2019) and open channel fluid flow (Diagne, Bastin, & Coron, 2012; 
Diagne, Diagne, Tang, & Krstic, 2017; Diagne, Tang, Diagne, & 
Krstic, 2017; Halleux, Prieur, Coron, D’Andrea-Novel, & Bastin, 
2003; Somathilake & Diagne, 2024), to name a few. The devel-
opment of stabilizing boundary feedback laws for such systems 
began with the locally exponentially stabilizing boundary con-
troller in Coron, D’Andrea-Novel, and Bastin (1999), crafted for 
the Saint-Venant model. This controller used an entropy-based 
Lyapunov function to exponentially stabilize a system where total 
energy was not a suitable Lyapunov candidate. Subsequent works 
utilized the Riemann invariants method for exponential stability 
using local water level measurements at gates without friction. 
Key contributions in Bastin and Coron (2010, 2011), and Vazquez, 
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Krstic, and Coron (2011) led to a quadratic Lyapunov candidate 
for 2 × 2 linear hyperbolic systems. Our work focuses on the 
PDE backstepping approach, using a single boundary actuation 
and observer-based design as in Vazquez et al. (2011) (refer 
to Vazquez, Coron, Krstic, & Bastin, 2012 for the quasilinear 
case). The ‘‘dissipativity’’ method from Bastin and Coron (2010, 
2011) is an observer-free approach that involves finding dis-
sipative boundary conditions akin to ‘‘small gain conditions,’’ 
relying on dual boundary actuation and measurements at gate 
locations. Leveraging Marcum Q-functions, explicit kernels for the 
stabilization of 2 × 2 linear hyperbolic systems with constant 
coefficients are derived in Vazquez and Krstic (2014). Recently, 
delay-adaptive boundary control of coupled hyperbolic PDE-ODE 
cascade systems was established via Batch-Least Square Identi-
fication (BaLSI) (Karafyllis, Kontorinaki, & Krstic, 2020; Wang & 
Diagne, 2024). PDE backstepping has been used to control a 2+1
counter-convective system actuated at one boundary (Burkhardt, 
Yu, & Krstic, 2021; Di Meglio, Vazquez, Krstic, & Petit, 2012). The 
problem structure outlined in Di Meglio, Kaasa, Petit, and Alstad 
(2012) has broad applicability, appearing in various multiphase 
flow of coupled water-sediment dynamics in river breaches (Di-
agne, Diagne, et al., 2017), where exponential stabilization of 
supercritical flow regimes, has been achieved, which was not 
attainable applying the design proposed in Diagne et al. (2012). 
data mining, AI training, and similar technologies.
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Generalized results on the exponential stabilization of an ar-
bitrary number of coupled waves were achieved in Di Meglio, 
Vazquez, and Krstic (2013) and Hu, Di Meglio, Vazquez, and 
Krstic (2016) as non-trivial extensions of Di Meglio, Vazquez, 
et al. (2012) and Vazquez et al. (2011) to the so-called n + 1
and n + m cases. Following these major developments, Anfinsen, 
Diagne, Aamo, and Krstic (2016) and Anfinsen, Diagne, Aamo, and 
Krstic (2017) proposed adaptive observers to estimate boundary 
parameters of both n + 1 and n + m systems motivated by 
the identification of the bottom hole influxes of hydrocarbon 
caused by high-pressure formations in the well during oil drilling 
operations. These developments were followed by major progress 
on adaptive control design (Anfinsen & Aamo, 2019).

In general, the conception of PDE controllers can lead to com-
plex gain functions that require non-obvious computational ef-
fort. Our contribution signifies advancement in leveraging the 
computational capabilities offered by Machine Learning tech-
niques to enhance the feasibility of hyperbolic PDE control.

Contributions: We expedite the computation of gain kernel 
PDEs arising in the context of backstepping control design for 
coupled hyperbolic systems. Developing further the DeepONet 
design originally introduced in Bhan, Shi, and Krstic (2024b) 
and then Krstic, Bhan, and Shi (2024) and Qi, Zhang, and Krstic 
(2024) for simpler PDE systems, we introduce Neural Opera-
tor (NO) approximations for kernels applicable to 2 × 2 hy-
perbolic PDEs to encapsulate the mapping from the functional 
coefficients of the plant into a previously trained DeepONet. We 
design a neural network architecture, more precisely, a computa-
tional resource capable of calculating the gains through function 
evaluations, eliminating the necessity to solve the coupled gain 
kernel PDEs defined on a triangular domain. Recently, Deep-
ONet achieved gain kernels computation for full-state feedback 
control in ARZ traffic system in Zhang, Zhong, and Yu (2024). Fur-
thermore, results on DeepONet-based adaptive control (Lamar-
que, Bhan, Shi, & Krstic, 2025), gain scheduling (Lamarque, Bhan, 
Vazquez, & Krstic, 2025) and moving-horizon estimators (MHE)
(Bhan, Shi, Karafyllis, Krstic, Rawlings, 2024a) were recently de-
veloped.

Differing from Wang, Diagne, and Krstic (2025), where Deep-
ONet approximation of gain kernel PDEs was achieved using a 
composition of operators defined by a single hyperbolic PDE in 
Goursat form and one parabolic PDE defined in a rectangular do-
main, the scenario involving coupled hyperbolic PDEs in cascade, 
along with the observer state, results in the DeepONet approx-
imation of gain kernel functions governed by a pair of coupled 
hyperbolic PDEs in Goursat form. Two of these PDEs originate 
from the controller, while the other two are the observer gain 
kernel PDEs. The controller and observer gains approximated via 
DeepONet are the outputs of a pair of 2 × 2 nonlinear opera-
tors of Goursat PDEs ‘‘powered" by five functional coefficients of 
the plant. The structure of the studied DeepONet of nonlinear 
operators broadens the scope of neural operators design origi-
nally introduced by the machine learning community (Lu, Jin, & 
Karniadakis, 2019). Our contribution is twofold:

• DeepONet for the gain kernels of the output-feedback 
law. We derive a global exponential stability (GES) result for 
a coupled hyperbolic system equipped with an output feed-
back control law informed by the NO-based approximated
controller and observer gain kernel functions. Because the
controller-observer system is a composition of two linear 
systems, the global exponential stability is preserved.

• DeepONet for the fully learned output feedback law.
Leveraging insights from the DeepONet approximations of 
both the controller–observer gain kernels and the observed 
system states, we develop NO approximation for the output-
feedback control law, incorporating the observer state. This 
2

method fully learns the control law for a 2 × 2 hyperbolic 
system using anti-collocated boundary actuation and sens-
ing. We establish a semi-global practical exponential stability 
(SG-PES) estimate for the closed-loop system. This SG-PES 
result stems from approximating the Goursat-form PDEs and 
observer states û and v̂, resulting in both multiplicative and 
additive approximation errors. The stability is semi-global 
as the dataset includes bounded samples of observer states 
û and v̂.

In the nutshell, our approach significantly accelerates the com-
putation of both controller and observer gains. Our theoretically 
established stability results are illustrated by simulation results 
and the code is available at github.

Organization of the paper: Section 2 succinctly presents the 
design of an exponentially stabilizing output-feedback boundary 
control law for 2 × 2 hyperbolic systems. Sections 3 and 4 present 
the approximation of the kernel operators and the global ex-
ponential stabilization (GES) under the approximated controller 
gain functions and observer gain functions via DeepONet. Sec-
tion 5 presents a semi-global practical exponential stability (SG-
PES) result when the totality of the output feedback law is learned 
via DeepONet. Section 6 and Section 7 present simulation results 
and concluding remarks, respectively.

Notation: We define the L2-norm for χ (x) ∈ L2[0, 1] as 
∥χ∥

2
L2

=
∫ 1
0 |χ (x)|2dx. For the convenience, we set ∥χ∥

2
= ∥χ∥

2
L2
. 

The supremum norm is denoted ∥ · ∥∞.

2. Preliminaries and problem statement

Preliminaries. We consider linear hyperbolic systems

∂tu(x, t) = − λ(x)∂xu(x, t) + σ (x)u(x, t) + ω(x)v(x, t), (1)

∂tv(x, t) =µ(x)∂xv(x, t) + θ (x)u(x, t), (2)

with boundary conditions 

u(0, t) = qv(0, t), v(1, t) = U(t), (3)

where, λ,µ ∈ C1([0, 1]), σ , ω, θ ∈ C0([0, 1]), q ∈ R, and 
initial conditions v0(x), u0(x) ∈ L2([0, 1]). The transport speeds 
are assumed to satisfy −µ(x) < 0 < λ(x), ∀x ∈ [0, 1], and 
λ, µ, σ , ω, θ are all bounded with λ ≤ λ ≤ λ̄, µ ≤ µ ≤ µ̄, 
σ ≤ σ ≤ σ̄ , ω ≤ ω ≤ ω̄, and θ ≤ θ ≤ θ̄ .

2.1. Full-state boundary feedback control law

Exploiting the following backstepping transformation
(Di Meglio et al., 2013),

β(x, t) =v(x, t) −

∫ x

0
k1(x, ξ )u(ξ, t)dξ −

∫ x

0
k2(x, ξ )v(ξ, t)dξ,

(4)

system (1)–(3) is transformed into the target system

∂tu(x,t) = −λ(x)∂xu(x, t) + σ (x)u(x, t) + ω(x)β(x, t)

+

∫ x

0
c(x, ξ )u(ξ, t)dξ +

∫ x

0
κ(x, ξ )β(ξ, t)dξ, (5)

∂tβ(x,t) = µ(x)∂xβ(x, t), (6)

with boundary conditions defined as 

u(0, t) = qβ(0, t), β(1, t) = 0, (7)

where c(x, ξ ) and κ(x, ξ ) are functions to be determined. The re-
alization of this mapping requires the kernels in the backstepping 

https://github.com/Shanshan7/NeuralOperator2x2Hyperbolic
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transformation (4) to satisfy the following PDEs1

µ(x)∂xk1 − λ(ξ )∂ξk1 = λ′(ξ )k1 + σ (ξ )k1 + θ (ξ )k2, (8)

µ(x)∂xk2 + µ(ξ )∂ξk2 = −µ′(ξ )k2 + ω(ξ )k1, (9)

with boundary conditions

k1(x, x) = −
θ (x)

λ(x) + µ(x)
, (10)

µ(0)k2(x, 0) = qλ(0)k1(x, 0). (11)

The system (8)–(11) defined over the triangular domain T =

{(x, ξ ) | 0 ≤ ξ ≤ x ≤ 1}, is a coupled 2 × 2 Goursat PDE system 
that governs the two gain kernels and the coefficient κ and c are 
chosen to satisfy

κ(x, ξ ) = ω(x)k2(x, ξ ) +

∫ x

ξ

κ(x, s)k2(s, ξ )ds, (12)

c(x, ξ ) = ω(x)k1(x, ξ ) +

∫ x

ξ

κ(x, s)k1(s, ξ )ds. (13)

From (3), (4), and (7), the boundary controller is 

U(t) =

∫ 1

0
k1(1, ξ )u(ξ, t)dξ +

∫ 1

0
k2(1, ξ )v(ξ, t)dξ . (14)

The invertibility of the transformation (4) together with the ex-
istence of a unique solution to (8)–(11) was established in Di 
Meglio et al. (2013). The invertibility of the transformation in-
duces equivalent stability properties of the target and original 
systems.

The inverse transformation of (4) is given by

v(x, t) =β(x, t) +

∫ x

0
l1(x, ξ )u(ξ, t)dξ +

∫ x

0
l2(x, ξ )β(ξ, t)dξ,

(15)

where

l1(x, ξ ) = k1(x, ξ ) +

∫ x

ξ

k2(x, s)l1(s, ξ )ds, (16)

l2(x, ξ ) = k2(x, ξ ) +

∫ x

ξ

k2(x, s)l2(s, ξ )ds. (17)

2.2. Observer design for an output feedback control law

In this section, we present the design of an exponentially con-
vergent observer capable of estimating the spatially distributed 
states of system (1)–(3) using the available boundary point mea-
surement v(0, t), which is anti-collocated with the boundary 
point of actuation. The following backstepping observer is de-
signed:

∂t û(x, t) = − λ(x)∂xû(x, t) + σ (x)û(x, t) + ω(x)v̂(x, t)

+ p1(x)(v(0, t) − v̂(0, t)), (18)
∂t v̂(x, t) =µ(x)∂xv̂(x, t) + θ (x)û(x, t)

+ p2(x)(v(0, t) − v̂(0, t)), (19)

with boundary conditions 
û(0, t) = qv(0, t), v̂(1, t) = U(t). (20)

The functions p1(x) and p2(x) are the observer output injection 
gains given later. Denoting the observer error likes ũ(x, t) =

u(x, t) − û(x, t), it follows the error dynamics

∂t ũ(x, t) = − λ(x)∂xũ(x, t) + σ (x)ũ(x, t)

1 Here, we use the prime notation to indicate derivatives.

3

+ ω(x)ṽ(x, t) − p1(x)ṽ(0, t), (21)

∂t ṽ(x, t) =µ(x)∂xṽ(x, t) + θ (x)ũ(x, t) − p2(x)ṽ(0, t), (22)

with boundary conditions 
ũ(0, t) = 0, ṽ(1, t) = 0. (23)

To design the observer output injection gains, backstepping trans-
formations are again introduced as

ũ(x, t)= α̃(x, t) +

∫ x

0
m1(x, ξ )β̃(ξ, t)dξ, (24)

ṽ(x, t)= β̃(x, t) +

∫ x

0
m2(x, ξ )β̃(ξ, t)dξ, (25)

to map system (21)–(23) into the target system
∂t α̃(x, t) = − λ(x)∂xα̃(x, t) + σ (x)α̃(x, t)

+

∫ x

0
g(x, ξ )α̃(ξ, t)dξ, (26)

∂t β̃(x, t) =µ(x)∂xβ̃(x, t) + θ (x)α̃(x, t)

+

∫ x

0
h(x, ξ )α̃(ξ, t)dξ, (27)

with boundary conditions 
α̃(0, t) = 0, β̃(1, t) = 0, (28)

where g(x, ξ ) and h(x, ξ ) are given below

g(x, ξ ) = −θ (ξ )m1(x, ξ ) −

∫ x

ξ

m1(x, s)h(s, ξ )ds, (29)

h(x, ξ ) = −θ (ξ )m2(x, ξ ) −

∫ x

ξ

m2(x, s)h(s, ξ )ds. (30)

Following Di Meglio et al. (2013), the mapping of (21)–(23) to 
(26)–(28), requires the kernels of (24) and (25) to satisfy
λ(x)∂xm1 − µ(ξ )∂ξm1 = µ′(ξ )m1 + δ(x)m1 + ω(x)m2, (31)

µ(x)∂xm2 + µ(ξ )∂ξm2 = −µ′(ξ )m2 − θ (x)m1, (32)

with boundary conditions 

m1(x, x) =
ω(x)

λ(x) + µ(x)
, m2(1, ξ ) = 0. (33)

The kernel PDEs (31)–(33) is defined over the triangular domain 
T = {(x, ξ ) | 0 ≤ ξ ≤ x ≤ 1} and their solution allows to obtain 
the gain of the observer as: 
p1(x) = m1(x, 0)µ(0), p2(x) = m2(x, 0)µ(0). (34)

The inverse transformation of (25) is given by 

β̃(x, t) = ṽ(x, t) +

∫ x

0
r2(x, ξ )ṽ(ξ, t)dξ, (35)

where r2(x, ξ ) satisfies 

r2(x, ξ ) = −m2(x, ξ ) −

∫ x

ξ

m2(x, s)r2(s, ξ )ds. (36)

The substitution of (35) into (24) results in 

α̃(x, t) = ũ(x, t) +

∫ x

0
r1(x, ξ )ṽ(ξ, t)dξ, (37)

where r1(x, ξ ) = −m1(x, ξ )−
∫ x

ξ
m1(x, s)r2(s, ξ )ds. The invertibility 

of the transformation (4) together with the existence of a unique 
solution to (8)–(11) was established in Di Meglio et al. (2013). The 
exponential stability of the target system governed by (26)–(28) 
and to that of the error dynamics (21)–(23) is stated in Lemma 
3.3 (Di Meglio et al., 2013). The invertibility of the transformation 
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).
Fig. 1. Learning of the gain kernel functions via DeepONet and through the op-
erator described by the mapping (λ,µ, ω, σ , θ, q) → (k1, k2,m1,m2). Computing 
multiple solutions of kernel PDEs (8)–(11) and (31)–(33) in the Goursat form for 
different functions λ(x), µ(x), ω(x), σ (x), θ (x) and the parameter q completes 
the training procedure of the neural operator K̂.

implies the global exponential convergence of the error system in 
L2 sense (21)–(23) and the L2-Global Exponential Stability of the 
plant (1)–(3) combined with the observer (18)–(20) and subject 
to the control law 

U(t) =

∫ 1

0
k1(1, ξ )û(ξ, t)dξ +

∫ 1

0
k2(1, ξ )v̂(ξ, t)dξ . (38)

We refer the reader to Di Meglio et al. (2013) for more details 
about the design of the output feedback law (38), turning our 
attention to the DeepOnet designs for the output feedback law.

Problem statement. As shown in Figs.  1 and 2, we aim at 
designing neural operators to ultimately learn the controller and 
observer gain functions governed by (8)–(11) and (31)–(33), re-
spectively. The plant functional coefficients are the inputs of the 
nonlinear operators defined by these hyperbolic/Goursat PDEs. 
We first prove a DeepONet approximation to the kernel PDEs by 
showing the continuity of the mapping from plant coefficients to 
kernel PDEs solution. The second part of our design consists of 
the DeepONet encoding of the output-feedback law. Therefore, 
proof-based machine learning designs are presented in this paper.

3. Accuracy of approximation of backstepping kernel operator 
with DeepONet

As the first step towards defining a DeepOnet approximation 
of the kernel functions, we recall an important lemma that states 
the boundedness of the gain kernel functions (Di Meglio et al., 
2013).

Lemma 1.  For every λ, µ ∈ C1([0, 1]), σ , ω, θ ∈ C0([0, 1]), 
and q ∈ R, the gain kernels ki(x, ξ ), mi(x, ξ ), i = 1, 2 satisfying 
the PDE systems (8)–(11) and (31)–(33), respectively, has a unique 
C1(T) solution with the following property 
|ki(x, ξ )| ≤NieMi , i = 1, 2, ∀(x, ξ ) ∈ T, (39)

|mi(x, ξ )| ≤NieMi , i = 1, 2, ∀(x, ξ ) ∈ T, (40)

where Ni > 0, Mi > 0, i = 1, 2 are constants.
Approximation of the neural operators. Knowing the bound-

edness of the kernel functions, we introduce two operators that 
map the functional parameters λ(x), µ(x), ω(x), σ (x), θ (x)
and the constant boundary parameter q of the plant (1)–(3) 
to the kernel PDEs resulting from the controller and the ob-
server design, namely, (8)–(11) and (31)–(33), respectively. As 
depicted Fig.  1, we define the neural approximation of the op-
erator (λ,µ, ω, σ , θ, q) ↦→ (k , k , m , m ) that consists of the 
1 2 1 2

4

operator K : (C1
[0, 1])2 × (C0

[0, 1])3 ×R ↦→ (C1(T))4, where

K(λ,µ, σ , ω, θ, q)(x, ξ )

:=(k1(x, ξ ), k2(x, ξ ),m1(x, ξ ),m2(x, ξ )), (41)

and the operator M : (C1
[0, 1])2 × (C0

[0, 1])3 × R ↦→ (C1(T))2 ×

(C0(T))4 × (C0
[0, 1])2 × (C1(T))4 defined as

M(λ,µ, σ , ω, θ, q)

:=(k1, k2, c, κ, K1, K2, K3, K4, K5, K6, K7, K8) , (42)

where

K1(x) =(λ(x) + µ(x))k1(x, x) + θ (x), (43)

K2(x) = − λ(0)qk1(x, 0) + µ(0)k2(x, 0), (44)
K3(x, ξ ) = − µ(x)∂xk1 + λ(ξ )∂ξk1 + λ′(ξ )k1 + σ (ξ )k1

+ θ (ξ )k2, (45)

K4(x, ξ ) = − µ(x)∂xk2 − µ(ξ )∂ξk2 − µ′(ξ )k2 + ω(ξ )k1, (46)
K5(x, ξ ) = − λ(x)∂xm1 + µ(ξ )∂ξm1 − µ′(ξ )m1 + σ (ξ )m1

+ ω(x)m2, (47)

K6(x, ξ ) =µ(x)∂xm2 + µ(ξ )∂ξm2 + µ′(ξ )m2 + θ (ξ )m1, (48)

K7(x) =m1(x, x)(λ(x) + µ(x)) − ω(x), (49)

K8(ξ ) =m2(1, ξ ), (50)

is introduced. The operators K and M are useful to state the 
following theorem.

Theorem 1 (DeepONet Approximation of the Kernel Functions).
Consider the neural operator defined in (42), along with (43)–(46) 
and let λ, µ, σ , ω, θ, λ′, µ′ > 0 be arbitrarily bounded and 
ϵ > 0, there exists a neural operator M̂ : (C1

[0, 1])2 × (C0
[0, 1])3 ×

R ↦→ (C1(T))2 × (C0(T))2 × (C0
[0, 1])2 × (C1(T))4 such that, 

|M(λ,µ, σ , ω, θ, q) − M̂(λ,µ, σ , ω, θ, q)| < ϵ, (51)

holds for all Lipschitz λ, µ, σ , ω, θ, λ′, µ′, namely, there exists 
a neural operator K̂ such that
|k̃1| + |k̃2| + |c̃| + |κ̃| + |(λ(x) + µ(x))k̃1(x, x)|

+ |λ(0)qk̃1(x, 0) − µ(0)k̃2(x, 0)| + | − µ(x)∂xk̃1
+ λ(ξ )∂ξ k̃1 + λ′(ξ )k̃1 + σ (ξ )k̃1 + θ (ξ )k̃2| + | − µ(x)∂xk̃2
− µ(ξ )∂ξ k̃2 − µ′(ξ )k̃2 + ω(ξ )k̃1| + |λ(x)∂xm̃1 − µ(ξ )∂ξ m̃1

+µ′(ξ )m̃1 − σ (ξ )m̃1 − ω(x)m̃2| + |µ(x)∂xm̃2 + µ(ξ )∂ξ m̃2

+ µ′(ξ )m̃2 + θ (ξ )m̃1| + |m̃1(x, x)(λ(x) + µ(x))|

+ |m̃2(1, ξ )| < ϵ, (52)

where c̃(x, ξ ) = c(x, ξ ) − ĉ(x, ξ ), κ̃(x, ξ ) = κ(x, ξ ) − κ̂(x, ξ ), and
k̃i(x, ξ ) =ki(x, ξ ) − k̂i(x, ξ ), i = 1, 2, (53)

m̃i(x, ξ ) =mi(x, ξ ) − m̂i(x, ξ ), i = 1, 2, (54)

and (k̂1(x, ξ ), k̂2(x, ξ ), m̂1(x, ξ ), m̂2(x, ξ )) = K̂(λ,µ, σ , ω, θ , q)(x, ξ

Proof.  The continuity of the operator M follows from Lemma 
1. The result is obtained by invoking (Deng, Shin, Lu, Zhang, & 
Karniadakis, 2022, Thm. 2.1).  ■

4. Output feedback stabilization with DeepONet approximated 
controller and observer gains

In this section, we prove that the approximated kernel func-
tions where k̂i and m̂i, i = 1, 2, a priori learned from the 
DeepOnet layer (offline), enforce the closed-loop system stability 
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Fig. 2. The PDE backstepping observer (18)–(20) uses boundary measurement 
of the flux v(0, t). The gains ̂ki and m̂i , i = 1, 2 are produced with the DeepONet 
K̂.

with a quantifiable exponential decay rate. The schematic of 
the resulting closed-loop system is depicted in Fig.  2, consisting 
of the plant (1)–(3), an observer (18)–(20) together with the 
output-feedback boundary control law 

U(t) =

∫ 1

0
k̂1(1, ξ )û(ξ, t)dξ +

∫ 1

0
k̂2(1, ξ )v̂(ξ, t)dξ . (55)

Applying the certainty equivalence principle, the approxi-
mated backstepping transformations (4), (24) and (25) driven by 
k̂i and m̂i, i = 1, 2, are defined as

ẑ(x, t) =v̂(x, t) −

∫ x

0
k̂1(x, ξ )û(ξ, t)dξ −

∫ x

0
k̂2(x, ξ )v̂(ξ, t)dξ,

(56)

ũ(x, t) =w̃(x, t) +

∫ x

0
m̂1(x, ξ )z̃(ξ, t)dξ, (57)

ṽ(x, t) =z̃(x, t) +

∫ x

0
m̂2(x, ξ )z̃(ξ, t)dξ . (58)

Consequently, the approximation of the neural operator (41) is 
introduced as
(k̂1(x, ξ ), k̂2(x, ξ ), m̂1(x, ξ ), m̂2(x, ξ )) = K̂(λ,µ, σ , ω, θ, q)(x, ξ ).

(59)

Approximation of the observer system. In light of (56), system 
(18)–(20) leads to the following approximated target system
∂t û(x, t) = − λ(x)∂xû(x, t) + σ (x)û(x, t) + ω(x)ẑ(x, t)

+

∫ x

0
ĉ(x, ξ )û(ξ, t)dξ +

∫ x

0
κ̂(x, ξ )ẑ(ξ, t)dξ

+ m̂1(x, 0)µ(0)z̃(0, t), (60)
∂t ẑ(x, t) =µ(x)∂xẑ(x, t) + δ1(x)û(x, t) + δ2(x)ẑ(0, t)

+

∫ x

0
δ3(x, ξ )û(ξ, t)dξ +

∫ x

0
δ4(x, ξ )v̂(ξ, t)dξ

+ F (x)µ(0)z̃(0, t), (61)

û(0, t) =qẑ(0, t), ẑ(1, t) = 0, (62)

where

κ̂(x, ξ ) =ω(x)k̂2(x, ξ ) +

∫ x

ξ

κ̂(x, s)k̂2(s, ξ )ds, (63)

ĉ(x, ξ ) =ω(x)k̂1(x, ξ ) +

∫ x

ξ

ĉ(x, s)k̂1(s, ξ )ds, (64)

F (x) =m̂2(x, 0) −

∫ x

0
k̂1(x, ξ )m̂1(ξ, 0)dξ

−

∫ x

0
k̂2(x, ξ )m̂2(ξ, 0)dξ, (65)

and the approximation error terms, δi, i = 1, 2, 3, 4 are given 
below

δ (x) =(λ(x) + µ(x))k̃ (x, x), (66)
1 1

5

δ2(x) =λ(0)qk̃1(x, 0) − µ(0)k̃2(x, 0), (67)

δ3(x, ξ ) =λ(ξ )′k̃1(x, ξ ) + σ (ξ )k̃1(x, ξ ) + θ (ξ )k̃2(x, ξ )

− µ(x)∂xk̃1(x, y) + λ(ξ )∂ξ k̃1(x, ξ ), (68)

δ4(x, ξ ) = − µ(x)∂xk̃2(x, y) − µ(ξ )∂ξ k̃2(x, ξ )

− µ(ξ )′k̃2(x, ξ ) + ω(ξ )k̃1(x, ξ ). (69)

Approximation of the observer error system. Similarly, from 
(57) and (58), system (21)–(23) subject to the approximated 
kernel functions results into the following PDE system
∂tw̃(x, t) = − λ(x)∂xw̃(x, t) + σ (x)w̃(x, t)

+

∫ x

0
ĝ(x, ξ )w̃(ξ, t)dξ +

∫ x

0
δ5(x, ξ )z̃(ξ, t)dξ

+

∫ x

0

∫ x

ξ

r̂1(x, s)δ6(s, ξ )dsz̃(ξ, t)dξ, (70)

∂t z̃(x, t) = µ(x)∂xz̃(x, t) + θ (x)w̃(x, t)

+

∫ x

0
ĥ(x, ξ )w̃(ξ, t)dξ +

∫ x

0
δ6(x, ξ )z̃(ξ, t)dξ

+

∫ x

0

∫ x

ξ

r̂2(x, s)δ6(s, ξ )dsz̃(ξ, t)dξ, (71)

w̃(0, t) =0, z̃(1, t) = 0, (72)

where

ĝ(x, ξ ) = −θ (ξ )m̂1(x, ξ ) − θ (ξ )
∫ x

ξ

m̂1(x, s)r̂2(s, ξ )ds, (73)

ĥ(x, ξ ) = −θ (ξ )m̂2(x, ξ ) − θ (ξ )
∫ x

ξ

m̂2(x, s)r̂2(s, ξ )ds. (74)

The resulting error terms in the approximated observer error 
system, δi, i = 5, 6, are provided below
δ5(x, ξ ) =λ(x)∂xm̃1(x, ξ ) − µ(ξ )∂ξm1(x, ξ ) − σ (x)m̃1(x, ξ )

− ω(x)m2(x, ξ ) + µ(ξ )′m̃1(x, ξ ), (75)
δ6(s, ξ ) = − µ(s)∂sm̃2(s, ξ ) − µ(ξ )∂ξ m̃2(s, ξ )

− µ(ξ )′m̃2(s, ξ ) − θ (s)m̃1(s, ξ ). (76)

Note that from (52), the following inequalities hold 
∥δi∥∞ ≤ ϵ, i = 1, 2, . . . , 6. (77)

Next, we state the exponential stability of the approximated 
target systems (60)–(69) and (70)–(76).

Proposition 1 (Stability of the Approximated Target System).  Con-
sider the cascaded target system (60)–(76), there exists ϵ∗ > 0 such 
that for all ϵ ∈ (0, ϵ∗), the following holds 
Ψ1(t) ≤ Ψ1(0)ϑ2e−ϑ1(ϵ)t , ∀ ≥ 0, (78)

where ϑ1, ϑ2 > 0 and 
Ψ1(t) = ∥û(t)∥2

+ ∥ẑ(t)∥2
+ ∥w̃(t)∥2

+ ∥z̃(t)∥2. (79)

Proof.  The following Lyapunov candidate for the target system 
(60)–(76)

V1(t) =

∫ 1

0

ϱ1e−ϱ2x

λ(x)
û(x, t)2dx +

∫ 1

0

eϱ2x

µ(x)
ẑ(x, t)2dx

+

∫ 1

0

ϱ3e−ϱ4x

λ(x)
w̃(x, t)2dx +

∫ 1

0

ϱ5eϱ4x

µ(x)
z̃(x, t)2dx, (80)

where ϱi > 0, i = 1, 2, . . . , 5 are constants to be decided, pro-
vides stability at an exponential decay rate to be determined as 
well. Computing the time derivative of (80) along (60)–(76), and 
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ˆ

ˆ

using integration by parts and Young’s inequality, the following 
estimate is obtained2:

V̇1(t) ≤ −

(
ϱ1e−ϱ2

(
ϱ2 −

2σ̄ + ω̄ + 2∥ĉ∥∞ + ∥κ̂∥∞

λ

−
µ̄∥m̂1∥∞

λ

)
−

2ϵeϱ2

µ

)
∥û∥2

−

(
ϱ2 −

µ̄F̄
µ

−
4ϵeϱ2

µ

−
ϱ1(ω̄ + ∥κ̂∥∞)

λ

)
∥ẑ∥2

− (1 − ϱ1q2 −
ϵeϱ2

µ
)ẑ(0, t)2

+
ϵeϱ2

µ
∥v̂∥

2
+

(
µ̄F̄
µ

e2ϱ2 +
ϱ1µ̄∥m̂1∥∞

λ

)
z̃(0, t)2

−

(
ϱ3

(
ϱ4 −

2σ̄
λ

−
2θ̄∥r̂1∥∞

λ

)
e−ϱ4

−
ϱ5θ̄ (1 + ∥r̂2∥∞)

µ
e2ϱ4 −

ϱ3ϵ(1 + ∥r̂1∥∞)
λ

)
∥w̃∥

2

−

(
ϱ5

(
ϱ4 −

θ̄ (1 + ∥r̂2∥∞)
µ

)
−

ϱ3ϵ(1 + ∥r̂1∥∞)
λ

−
4ϵeϱ4

µ

)
∥z̃∥2

− ϱ5z̃(0, t)2, (81)

where F (x) ≤ F̄  is a bounded function, and ∥ĉ∥∞ ≤ ω̄∥k̂1∥∞e∥k̂1∥∞ ,
∥κ̂∥∞ ≤ ω̄∥k̂2∥∞e∥k̂2∥∞ . Since the inverse transformation of the 
approximated gain kernel (15) allows to derive a bound of the 
norm of the state v̂(x, t) in (81) with respect to the norm of the 
approximated target system’s state û(x, t) and ẑ(x, t). In other 
words,

v̂(x, t) =ẑ(x, t) +

∫ x

0
l̂1(x, ξ )û(ξ, t)dξ +

∫ x

0
l̂2(x, ξ )ẑ(ξ, t)dξ,

(82)

where the inverse kernel ̂li(x, ξ ) and its inverse k̂i(x, ξ ), i = 1, 2, 
satisfy the following equation

l1(x, ξ ) = k̂1(x, ξ ) +

∫ x

ξ

k̂2(x, s)l̂1(s, ξ )ds, (83)

l2(x, ξ ) = k̂2(x, ξ ) +

∫ x

ξ

k̂2(x, s)l̂2(s, ξ )ds, (84)

and the following bounds hold 

∥l̂1∥∞ ≤ ∥k̂1∥∞e∥k̂2∥∞ , ∥l̂2∥∞ ≤ ∥k̂2∥∞e∥k̂2∥∞ . (85)

Since ∥ki − k̂i∥∞ < ϵ, using (39), we derive the following bound 
∥k̂i∥∞ ≤ NieMi + ϵ. (86)

Substituting (86) into (85) results in the following inequalities 

∥l̂i∥∞ ≤ (NieMi + ϵ)eN2eM2+ϵ, i = 1, 2. (87)

Similarly, based on the inverse transformations (35) and (37), we 
have

w̃(x, t) =ũ(x, t) +

∫ x

0
r̂1(x, ξ )ṽ(ξ, t)dξ, (88)

z̃(x, t) =ṽ(x, t) +

∫ x

0
r̂2(x, ξ )ṽ(ξ, t)dξ, (89)

where the inverse kernels r̂1(x, ξ ) and r̂2(x, ξ ) satisfy equations

r̂1(x, ξ ) = m̂1(x, ξ ) −

∫ x

ξ

m̂1(x, s)r̂2(s, ξ )ds, (90)

2 Due to page limits, complete proofs are in the unabridged 
manuscript (Wang, Diagne, & Krstic, 2023a).
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r̂2(x, ξ ) = −m̂2(x, ξ ) −

∫ x

ξ

m̂2(x, s)r̂2(s, ξ )ds, (91)

and the estimates below hold 
∥r̂i∥∞ ≤ ∥m̂i∥∞e∥m̂i∥∞ , i = 1, 2. (92)

Knowing that ∥mi − m̂i∥∞ < ϵ, and using (39), one can deduce 
that 
∥m̂i∥∞ ≤ NieMi + ϵ. (93)

Substituting (93) into (92) gives 

∥r̂i∥∞ ≤ (NieMi + ϵ)eNieMi+ϵ, i = 1, 2. (94)

Based on (82), the following relation holds 
∥v(t)∥2

≤ 3∥l̂1∥2
∞

∥û(t)∥2
+ 3(1 + ∥l̂2∥2

∞
)∥ẑ(t)∥2. (95)

Substituting (95) into (81) and selecting the parameters for the 
Lyapunov function V1 as (see Wang et al., 2023a for a detailed 
proof)

0 < ϱ1 < min{
λ(µϱ2 − µ̄F̄ )

µ(ω̄ + ∥κ̂∥∞)
,
1
q2

}, (96)

ϱ2 > max
{
2σ̄ + ω̄ + 2∥ĉ∥∞ + ∥κ̂∥∞ + µ̄∥m̂1∥∞

λ
,

µ̄F̄
µ

}
, (97)

ϱ3 >
λϱ5θ̄ (1 + ∥r̂2∥∞)e3ϱ4

µ(ϱ4λ − 2(σ̄ + θ̄∥r̂1∥∞))
, (98)

ϱ4 > max{
θ̄ (1 + ∥r̂2∥∞)

µ
,

2σ̄ + 2θ̄∥r̂1∥∞

λ
}, (99)

ϱ5 >
µ̄F̄ e2ϱ4

µ
+

ϱ1µ̄∥m̂1∥∞

λ
, (100)

one can define ϵ∗ as

ϵ∗
=min

{
µϱ1

e2ϱ2 (2 + 3∥l̂1∥2
∞
)

(
ϱ2 −

2σ̄ + 2∥ĉ∥∞ + ∥κ̂∥∞

λ

−
ω̄ + µ̄∥m̂1∥∞

λ

)
,

(
ϱ2λ − ϱ1(ω̄ + ∥κ̂∥∞)

λ
−

µ̄F̄
µ

)
·

µ

eϱ2 (7 + 3∥l̂2∥2
∞
)
,

ϱ5λ(ϱ4µ − θ̄ (1 + ∥r̂2∥∞))

4λeϱ4 + µϱ3(1 + ∥r̂1∥∞)

λ

ϱ3(1 + ∥r̂1∥∞)

(
ϱ3(ϱ4λ − 2(σ̄ + θ̄∥r̂1∥∞))e−ϱ4

λ

−
ϱ5θ̄ (1 + ∥r̂2∥∞)

µ
e2ϱ4

)
, µ(1 − ϱ1q2)e−ϱ2

}
, (101)

such that for all ϵ ∈ (0, ϵ∗), V̇1(t) ≤ −ϑ1(ϵ)V1(t), where ϑ1(ϵ) is 
defined by

ϑ1(ϵ) =min
{

λ

ϱ1

(
ϱ1e−ϱ2

(
ϱ2 −

2σ̄ + ω̄ + 2∥ĉ∥∞ + ∥κ̂∥∞

λ

−
µ̄∥m̂1∥∞

λ

)
−

ϵeϱ2 (2 + 3∥l̂1∥2
∞
)

µ

)
,

µ

eϱ2

(
ϱ2

−
ϱ1(ω̄ + ∥κ̂∥∞)

λ
−

µ̄F̄
µ

−
7ϵeϱ2

µ
−

3ϵeϱ2∥l̂2∥2
∞

µ

)
,

λe−ϱ4

ϱ3

(
ϱ3

(
ϱ4 −

2σ̄
λ

−
2θ̄∥r̂1∥∞

λ

)
−

ϱ3ϵ(1 + ∥r̂1∥∞)
λ

−
ϱ5θ̄ (1 + ∥r̂2∥∞)

µ
e2ϱ4

)
,

µ

ϱ5eϱ4

(
ϱ5

(
ϱ4 −

θ̄∥r̂2∥∞

µ

−
θ̄

)
−

ϱ3ϵ(1 + ∥r̂1∥∞)
−

4ϵeϱ4
)}

, (102)

µ λ µ
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which leads that V1(t) ≤ V1(0)e−ϑ1(ϵ)t . From (79), we have

V1(t) ≤max
{

ϱ1

λ
,

ϱ3

λ
,

eϱ2

µ
,

ϱ5eϱ4

µ

}
Ψ1(t), (103)

Ψ1(t) ≤
1

min
{

ϱ1e−ϱ2

λ̄
,

ϱ3e−ϱ4

λ̄
, 1

µ̄
,

ϱ5
µ̄

}V1(t). (104)

Therefore, the exponential stability bound (78) holds, and

ϑ2 =min
{

ϱ1e−ϱ2

λ̄
,

ϱ3e−ϱ4

λ̄
,

1
µ̄

,
ϱ5

µ̄

}
· max

{
ϱ1

λ
,

ϱ3

λ
,

eϱ2

µ
,

ϱ5eϱ4

µ

}
. ■ (105)

The following proposition states the stability equivalence be-
tween the target system and the original closed-loop system. 
Transformations (56), (58), along with their inverse (82), (88) and 
(89) help to state the following norm-equivalence properties.

Proposition 2 (Norm Equivalence Between Approximated Target 
and Original Systems).  Consider the closed-loop system including 
the plant (1)–(3) with observer system (18)–(20) and the observer-
based controller (55). There exists ϵ∗ > 0 such that for all ϵ ∈

(0, ϵ∗), the following estimates hold between this closed-loop system 
and the target system (60)–(76), 
Ψ1(t) ≤ S1(ϵ)Φ1(t), Φ1(t) ≤ S2(ϵ)Ψ1(t), (106)

where 
Φ1(t) = ∥u(t)∥2

+ ∥v(t)∥2
+ ∥û(t)∥2

+ ∥v̂(t)∥2, (107)

Ψ1(t) is defined in (79) and the positive constants as

S1(ϵ) =20 + 8(N1eM1 + ϵ)eN1eM1+ϵ
+ 8(N2eM2 + ϵ)

· eN2eM2+ϵ
+ 3(N1eM1 + N2eM2 + 2ϵ), (108)

S2(ϵ) =20 + 9(N1eM1 + N2eM2 + 2ϵ) eN2eM2+ϵ
+ 4N1eM1

+ 4N2eM2 + 8ϵ. (109)

Proof.  From (56)–(58), we have3

Ψ1(t) =∥û(t)∥2
+

∫ 1

0

(
v̂(x, t) −

∫ x

0
k̂1(x, ξ )û(ξ, t)dξ

−

∫ x

0
k̂2(x, ξ )v̂(ξ, t)dξ

)2

dx

+

∫ 1

0

(
ũ(x, t) +

∫ x

0
r̂1(x, ξ )ṽ(ξ, t)dξ

)2

dx

+

∫ 1

0

(
ṽ(x, t) +

∫ x

0
r̂2(x, ξ )ṽ(ξ, t)dξ

)2

dx

≤(1 + 3∥k̂1∥2
∞
)∥û(t)∥2

+ 3(1 + ∥k̂2∥2
∞
)∥v̂(t)∥2

+ 2∥ũ(t)∥2
+ 2(1 + ∥r̂1∥2

∞
+ ∥r̂2∥2

∞
)∥ṽ(t)∥2. (110)

Since ũ = u − û and ṽ = v − v̂, we have
Ψ1(t) ≤(1 + 3∥k̂1∥2

∞
)∥û(t)∥2

+ 3(1 + ∥k̂2∥2
∞
)∥v̂(t)∥2

+ 2∥u(t) − û(t)∥2
+ 2(1 + ∥r̂1∥2

∞
+ ∥r̂2∥2

∞
)

· ∥v(t) − v̂(t)∥2

≤(20 + 3∥k̂1∥2
∞

+ 3∥k̂2∥2
∞

+ 8∥r̂1∥2
∞

+ 8∥r̂2∥2
∞
)Φ1(t).

(111)

3 Due to page limits, complete proofs are in the unabridged 
manuscript (Wang et al., 2023a).
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Submiting (86) and (94) into (111), it arrivals

Ψ1(t) ≤

(
20 + 8(N1eM1 + ϵ)eN1eM1+ϵ

+ 8(N2eM2 + ϵ)

·eN2eM2+ϵ
+ 3(N1eM1 + N2eM2 + 2ϵ)

)
Φ1(t). (112)

Similarly, from (57), (58), and (82), we obtain
Φ1(t) ≤(3 + 9∥l̂1∥2

∞
)∥û(t)∥2

+ 9(1 + ∥l̂2∥2
∞
)∥ẑ(t)∥2

+ 4∥w̃(t)∥2
+ 4(1 + ∥m̂1∥

2
∞

+ ∥m̂2∥
2
∞
)∥z̃(t)∥2

≤(20 + 9(N1eM1 + N2eM2 + 2ϵ) eN2eM2+ϵ

+ 4N1eM1 + 4N2eM2 + 8ϵ)Ψ1(t), (113)

which completes the proof.  ■

After establishing the norm-equivalence in Proposition  2, the 
main result immediately follows in Theorem  2. 

Theorem 2 (Main Result—Exponential Stabilization via DeepONet 
Controller and Observer Gains).  Consider the closed-loop system 
consisting of the plant (1)–(3) together with the observer (18)–(20) 
and the control law (55). Assuming that functions λ, µ ∈ C1([0, 1])
have Lipschitz derivatives, σ , ω, θ ∈ C0([0, 1]), q ∈ R, and let 
λ, µ, σ , ω, θ, λ′, µ′ > 0 be arbitrarily bounded, there exists 
a sufficiently small ϵ∗ > 0 such that all gain in the feedback law 
(55) and the observer system (18)–(20) with the neural operator 
M̂(λ,µ, σ , ω, θ, q) of approximation accuracy ϵ ∈ (0, ϵ∗) in rela-
tion to the exact backstepping kernels ki(x, ξ ), and mi(x, ξ ), i = 1, 2
that ensures the following exponential stability bound 
Φ1(t) ≤ Φ1(0)S1(ϵ)S2(ϵ)ϑ2e−ϑ1(ϵ)t , ∀t ≥ 0 , (114)

where ϑ1, ϑ2 > 0 are positive constants, Φ1(t), S1(ϵ) and S2(ϵ) are 
defined in (107)–(109), respectively.

Remark 1.  The product S1(ϵ)S2(ϵ) is the portion of the overshoot 
which depends on ϵ and this dependence is clearly increasing, 
based on (108) and (109). It makes sense that poor approximation 
increases the overshoot estimate. The definition of the decay rate 
ϑ1, as given (102), shows a decreasing dependence on ϵ, meaning 
that a poor approximation reduces the decay rate estimate.

5. A fully learned output feedback law via DeepONet approxi-
mation

5.1. Summary of the design procedure

In this section, we present a DeepONet approximation design 
that enables one to achieve learning of the output-feedback 
boundary control signal and provide proof-equipped stability 
guarantees. Exploiting the kernel functions approximation ob-
tained in Section 4, we design a DeepONet that take as entries the 
five plant parameters λ(x), µ(x), σ (x), ω(x), θ (x) and q, as well 
as the estimates generated by the state observer, namely, û(x, t), 
v̂(x, t). The learning network is built to produce the following 
approximated control law 

Û(t) =

∫ 1

0
k̂1(1, ξ )û(ξ, t)dξ +

∫ 1

0
k̂2(1, ξ )v̂(ξ, t)dξ . (115)

The structure of the DeepONet-assisted closed-loop system is 
depicted in Fig.  3. Our result only ensures semi-global prac-
tical exponential stability (SG-PES) because as opposed to the 
approach presented in Section 4, which only contains multi-
plicative error, the mapping Û(t) in (115), involves an additive 
intermediate linear layer that supplements additive error into 
the approximation process. We proceed with the three following 
steps (see Fig.  3):
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Fig. 3. The learning architecture of the observer-based control law in three 
steps.

• Step 1. The functions λ(x), µ(x), σ (x), ω(x), θ (x), q remain 
the inputs of the neural operator K introduced in Section 4 
and generates the NO approximated kernel functions ̂ki(x, ξ )
and m̂i(x, ξ ), i = 1, 2.

• Step 2. A linear layer is employed to multiply the esti-
mated kernel functions k̂i(x, ξ ), i = 1, 2 with the observer 
estimates û and v̂.

• Step 3. A new neural operator U : (λ,µ, σ , ω, θ, q, û, v̂) ↦→

U , (C1
[0, 1])2×(C0

[0, 1])3×R×(C0
[0, 1])2 ↦→ R, where U is 

defined in (38), is learned to implement the nonlinear inte-
gral operation, resulting in the final observer-based control 
law Û given by (115). This mapping is constructed us-
ing the DeepONet approximation accuracy theorem recently 
introduced in Krstic et al. (2024) for a reaction–diffusion 
PDE.

The expansion of the mapping K defined in Step 1 from larger 
space U to the scalar value of the control input Û(t) comes at the 
price of a substantial amount of training and learning effort.

Let us denote Û the NO approximation of the output-feedback 
operator U and recall the operator M̂ given in Theorem  1, the 
following theorem holds. 

Theorem 3 (DeepONet Approximation of the Output Feedback Con-
trol Law).  Let λ, µ, σ , ω, θ, λ′, µ′ > 0 be arbitrarily bounded 
and ϵ > 0, there exists neural operators M̂ and Û such that
|M(λ,µ, σ , ω, θ, q)(x, ξ ) − M̂(λ,µ, σ , ω, θ, q)(x, ξ )|

+ |U(λ,µ, σ , ω, θ, q, û, v̂) − Û(λ,µ, σ , ω, θ, q, û, v̂)| < ϵ, (116)

holds for all Lipschitz λ, µ, σ , ω, θ, λ′, µ′, û, v̂ with the 
properties that ∥û(t)∥∞ ≤ Bû, ∥v̂(t)∥∞ ≤ Bv̂ , namely, there exists a 
neural operator K̂ such that
|k̃1| + |k̃2| + |c̃| + |κ̃| + |(λ(x) + µ(x))k̃1(x, x)|

+ |λ(0)qk̃1(x, 0) − µ(0)k̃2(x, 0)| + |λ(ξ )∂ξ k̃1 − µ(x)∂xk̃1
+ λ′(ξ )k̃1 + σ (ξ )k̃1 + θ (ξ )k̃2| + | − µ(x)∂xk̃2 − µ(ξ )∂ξ k̃2
− µ′(ξ )k̃2 + ω(ξ )k̃1| + |λ(x)∂xm̃1 − µ(ξ )∂ξ m̃1 + µ′(ξ )m̃1

−σ (ξ )m̃1 − ω(x)m̃2| + |µ(x)∂xm̃2 + µ(ξ )∂ξ m̃2 + µ′(ξ )m̃2

+θ (ξ )m̃1| + |Ũ(λ,µ, σ , ω, θ, q, û, v̂)| < ϵ. (117)

Proof.  The continuity of the operator M follows directly from 
Lemma  1 and that of the operator U can be established follow-
ing (Bhan et al., 2024b, Lem. 4). The final result is then obtained 
by invoking (Deng et al., 2022, Thm. 2.1).  ■

Theorem  3 is useful to prove the stability of (1)–(3) combined 
with the observer system (18)–(20) when the approximated out-
put feedback control law (115) learned through DeepOnet is 
assigned.
8

5.2. Stabilization under output feedback control law generated via 
DeepONet

Recalling the NO approximation Û, the control law (115) can 
be expressed as Û = Û(λ,µ, σ , ω, θ, q, û, v̂). Applying the cer-
tainty equivalence principle, the backstepping transformations 
(4), (24) and (25) driven by k̂i and m̂i, i = 1, 2, are defined as 
(56)–(58), respectively. The inverse transformations of (56)–(58) 
are defined in (82), (88) and (89), respectively.

Using the backstepping transformation (56), the observer
(18)–(20) translates into the following target system
∂t û(x, t) = − λ(x)∂xû(x, t) + σ (x)û(x, t) + ω(x)ẑ(x, t)

+

∫ x

0
ĉ(x, ξ )û(ξ, t)dξ +

∫ x

0
κ̂(x, ξ )ẑ(ξ, t)dξ

+ m̂1(x, 0)µ(0)z̃(0, t), (118)

∂t ẑ(x, t) = µ(x)∂xẑ(x, t) + F (x)µ(0)z̃(0, t), (119)

û(0, t) =qẑ(0, t), ẑ(1, t) = Ũ(t), (120)

where κ̂(x, ξ ), ĉ(x, ξ ) and F (x) are defined in (63)–(65), respec-
tively. The approximation error terms, δi, i = 1, 2, 3, 4 are 
given in (66)–(69), and Ũ(t) = U(t) − Û(t). We recall that 
U(t), the approximated control law (115), is obtained from an 
approximation of the gain kernel when functions parameters 
λ(x), µ(x), σ (x), ω(x), θ (x) vary whereas, the complete approx-
imation of the feedback law, namely, Û(t), requires input–output 
data of the observer states, namely, û and v̂, provided some L2
initial data (u0(x), v0(x), û0(x), v̂0(x)). It is worth recalling that the 
estimated state trajectories result from a dataset collected at the 
sensing point v(0, t).

Using (57) and (58), the error system (21)–(23) maps into the 
following set of PDEs
∂tw̃(x, t) = − λ(x)∂xw̃(x, t) + σ (x)w̃(x, t)

+

∫ x

0
ĝ(x, ξ )w̃(ξ, t)dξ +

∫ x

0
δ5(x, ξ )z̃(ξ, t)dξ

+

∫ x

0

∫ x

ξ

r̂1(x, s)δ6(s, ξ )dsz̃(ξ, t)dξ, (121)

∂t z̃(x, t) =µ(x)∂xz̃(x, t) + θ (x)w̃(x, t)

+

∫ x

0
ĥ(x, ξ )w̃(ξ, t)dξ +

∫ x

0
δ6(x, ξ )z̃(ξ, t)dξ

+

∫ x

0

∫ x

ξ

r̂2(x, s)δ6(s, ξ )dsz̃(ξ, t)dξ, (122)

w̃(0, t) =0, z̃(1, t) = Ũ(t), (123)

where ĝ(x, ξ ), ̂h(x, ξ ), δ5(x, ξ ) and δ6(x, ξ ) are defined in (73)–(76),
respectively.

We claim that the coupled target system (118)–(120),
(121)–(123), equipped with the DeepONet-based approximated 
kernels, is semi-globally practically exponentially stable.

Proposition 3 (Stability of the Approximated Target System).  Con-
sider the cascaded target system (118)–(120), (121)–(123), there 
exists ε∗ > 0 such that for all ε ∈ (0, ε∗), and the following holds 

Ψ2(t) ≤ Ψ2(0)ϑ4(ϵ)e−ϑ3(ϵ)t + ϑ5ϵ
2, ∀t ≥ 0, (124)

where Ψ2(t) = ∥û(t)∥2
+ ∥ẑ(t)∥2

+ ∥w̃(t)∥2
+∥z̃(t)∥2, and

ϑ3(ϵ) =min
{
λe−ι2

(
ι2 −

2σ̄ + ω̄ + 2∥ĉ∥∞ + ∥κ̂∥∞

λ

−
µ̄∥m̂1∥∞

)
,

µ

ι2

(
ι2 −

ι1(ω̄ + ∥κ̂∥∞)
−

µ̄F̄
)

,

λ e λ µ



S. Wang, M. Diagne and M. Krstic Automatica 178 (2025) 112351
λe−ι4

ι3

(
ι3

(
ι4 −

2σ̄
λ

−
2θ̄∥r̂1∥∞

λ

)
−

ι3ϵ(1 + ∥r̂1∥∞)
λ

−
ι5θ̄ (1 + ∥r̂2∥∞)

µ
e2ι4

)
,

µ

ι5eι4

(
ι5

(
ι4 −

θ̄ (1 + ∥r̂2∥∞)
µ

)
−

4ϵeι4

µ
−

ι3ϵ(1 + ∥r̂1∥∞)
λ

)}
, ϑ4(ϵ) =

eι2 + ι5eι4

ϑ3(ϵ)
,

(125)

ϑ5 = min
{

ι1e−ι2

λ̄
,

ι3e−ι4

λ̄
,

1
µ̄

,
ι5

µ̄

}
· max

{
ι1

λ
,

ι3

λ
,

eι2

µ
,

ι5eι4

µ

}
, (126)

with 0 < ι1 < 1
q2
,

ι2 >max
{
2σ̄ + ω̄ + 2∥ĉ∥∞ + ∥κ̂∥∞ + µ̄∥m̂1∥∞

λ
,

ι1(ω̄ + ∥κ̂∥∞)
λ

+
µ̄F̄
µ

}
, (127)

ι3 >
λι5θ̄ (1 + ∥r̂2∥∞)e3ι4

µ(ι4λ − 2(σ̄ + θ̄∥r̂1∥∞))
, (128)

ι4 >max{
θ̄ (1 + ∥r̂2∥∞)

µ
,

2σ̄ + 2θ̄∥r̂1∥∞

λ
}, (129)

ι5 >
µ̄F̄ e2ι2

µ
+

ι1µ̄∥m̂1∥∞

λ
. (130)

Moreover, we define ϵ∗ as

ϵ∗
=min

{
λ

ι1(1 + ∥r̂1∥∞)

(
ι3(ι4λ − 2(σ̄ + θ̄∥r̂1∥∞))e−ι4

λ

−
ι5θ̄ (1 + ∥r̂2∥∞)

µ
e2ι4

)
,
ι5λ(ι4µ − θ̄ (1 + ∥r̂2∥∞))

4λeι2 + µι3(1 + ∥r̂1∥∞)

}
. (131)

The proof of Proposition  3 is given in Wang et al. (2023a).
To translate the stability of the cascaded target system into 

that of the original closed-loop system, we consider transforma-
tions (56)–(58), along with inverse transformations (82), (88) and 
(89), and state the following proposition.

Proposition 4 (Norm Equivalence Between Approximated Target 
and Original Systems).  Consider the closed-loop system including 
the plant (1)–(3) with observer system (18)–(20) and the observer-
based controller (115). There exists ϵ∗ > 0 such that for all ϵ ∈

(0, ϵ∗), the following estimates hold between this closed-loop system 
and the cascaded target system (118)–(120), (121)–(123), Ψ2(t) ≤

S1(ϵ)Φ2(t), Φ2(t) ≤ S2(ϵ)Ψ2(t), where Φ2(t) = ∥u(t)∥2
+∥v(t)∥2

+

∥û(t)∥2
+∥v̂(t)∥2, and the positive constants are given in (108) and 

(109), respectively.
The proof of Proposition  4 is similar to that of Proposition 

2 and can be found in Wang et al. (2023a). With the help of 
Propositions  3 and 4 state we state following theorem.

Theorem 4 (Semi-global Practical Exponential Stability via Deep-
Onet Controller and Observer Gains).  For any ϵ < ϵ∗ where 

ϵ∗
:=

√
(B2

u + B2
v + B2

û + B2
v̂
)

√
S2(ϵ)ϑ5

> 0, (132)

and ∥u(0)∥2
+ ∥v(0)∥2

+ ∥û(0)∥2
+ ∥v̂(0)∥2

≤ ζ , where 

ζ :=
S1(ϵ)

(
(B2

u + B2
v + B2

û + B2
v̂) − S2(ϵ)ϑ5ϵ

2
)

> 0, (133)

S2(ϵ)ϑ4(ϵ)

9

the closed-loop system consisting of the NO approximation of the 
PDE feedback law (115) and the plant (1)–(3) and observer sys-
tem (18)–(20) satisfy the semi-global practical exponential stability 
estimate, 

Φ2(t) ≤
S2(ϵ)
S1(ϵ)

ϑ4(ϵ)e−ϑ3(ϵ)tΦ2(0) + S2ϑ5ϵ
2, ∀t ≥ 0. (134)

Remark 2.  The estimate given by (134) is semi-global, allowing 
the radius ζ  of the initial condition ball in the L2[0, 1] space to 
expand as Bu, Bv , Bû, and Bv̂ increase. Additionally, the size of 
the training set and the number of neural network nodes are 
functions of these parameters. Despite the semi-global stability, 
the region of attraction ζ , defined in (133), is much smaller than 
the magnitude of samples associated with Bu, Bv , Bû, and Bv̂ in the 
training set. From (134), as t → ∞, the residual value Φ2(t) ≤

S2ϑ5ϵ
2 can be minimized by decreasing ϵ and simultaneously 

increasing the training set size and the number of neural network 
nodes accordingly.

6. Simulation results

Our simulation4 is performed considering a 2 × 2 linear hy-
perbolic system with λ(x) = Γ x + 1, µ(x) = eΓ x

+ 2, δ(x) =

Γ (x + 1), θ (x) = Γ (x + 1), ω(x) = Γ (cosh(x) + 1), q = Γ /3, 
parameterized by Γ = 5. Under initial conditions u0(x) = 1, 
v0(x) = sin(x). By iterating the functions λ(x), µ(x), δ(x), θ (x), and 
ω(x) along the y-axis to generate a two-dimensional (2D) input 
for the K network, the DeepONet is developed without modifying 
the grid structure. Similarly, the constant q is iterated along both 
x and y coordinates to generate additional 2D inputs for the K
network. In summary, this methodology results in six distinct 
2D inputs for the network. Our approach capitalizes on this 2D 
structure by integrating a Convolutional Neural Network (CNN) 
into the branch network of the DeepONet. Exploiting a 2000 
samples dataset, the model demonstrating the highest accuracy in 
data point classification is identified. The error between analytical 
and learned DeepONet kernels, namely k1, k2, m1, and m2, are 
depicted in Figs.  4. These figures illustrate the kernels’ behavior 
for the value of Γ = 5. During the training phase, the relative L2
errors for kernels k1, k2, m1, and m2 were recorded as 4.90×10−5, 
3.48 × 10−5, 6.69 × 10−5, and 2.61 × 10−5, respectively. The 
corresponding testing errors were 5.32 × 10−5, 3.89 × 10−5, 
7.34 × 10−5, and 2.62 × 10−5.

Furthermore, we simulate the closed-loop system comprising 
the NO approximation of the PDE feedback law (115), the plant 
(1)–(3), and the observer system (18)–(20). Our control law is 
derived using a pre-designed learning network for the gain ker-
nels, rather than directly from the inputs λ(x), µ(x), σ (x), ω(x),
θ (x), q, û(x, t), and v̂(x, t). These inputs are processed by the 
neural operators from Section 4 to approximate kernel functions 
k̂i(x, ξ ) and m̂i(x, ξ ), i = 1, 2. These approximations are then 
linearly combined with observer estimates û and v̂. Finally, using 
a DeepONet layer to learn the mapping (λ,µ, σ , ω, θ, q, û, v̂) →

Û from 2000 samples, we achieve a convergence error of 5.46 ×

10−8 in L2 and a testing error of 5.97×10−8. Fig.  5 illustrates the 
feasibility of both control laws U(t) and Û(t).

4 We refer the reader to Wang et al. (2023a) where expanded simulation 
results including the training loss, the convergence of the observer and the error 
system can be found.
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Fig. 4. The error between approximated and exact gain kernel functions 
k1(x, ξ )− k̂1(x, ξ ), k2(x, ξ )− k̂2(x, ξ ), m1(x, ξ )− m̂1(x, ξ ) and m2(x, ξ )− m̂2(x, ξ ).

Fig. 5. (a): The closed-loop solutions with the observer kernels m1(x, ξ ), 
m2(x, ξ ), and the control law U(t) given by (55). (b): The closed-loop solutions 
with the observer kernels m̂1(x, ξ ), m̂2(x, ξ ), and control law Û(t) given by (115).

7. Concluding remarks

In this paper, we design neural operators for the boundary 
control of 2 × 2 hyperbolic PDEs system. PDE backstepping-
driven DeepONet combines data-driven methods with deductive 
Lyapunov arguments to expedite the computation of both con-
troller and observer gains exploiting the functional parameters 
of the plant. Our key results are the L2-global exponential stability 
(GES) with NO-approximated gain functions and the semi-global 
practical exponential stability (SG-PES) when the observer state is 
learned and input to the controller.
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