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 a b s t r a c t

In this paper, we develop the first result employing neural operators in adaptive PDE control, presented 
for a benchmark 1-D hyperbolic PDE with recirculation. Particularly, we introduce neural operators 
for approximating the mapping from the adaptive estimation of the plants’ functional coefficients to 
the corresponding controller gain kernel. This nonlinear mapping is computationally prohibitive in 
adaptive control when the resulting gain kernel needs to be continuously resolved as the estimation 
of the plant functional coefficient is updated. Thus, by introducing a neural operator approximation 
of this mapping, we absolve the computational barrier for implementing real-time adaptive control of 
PDEs. We establish global stabilization via Lyapunov analysis, in the plant and parameter error states, 
and also present an alternative approach, via passive identifiers, which avoids the strong assumptions 
on kernel differentiability. We then present numerical simulations demonstrating stability and observe 
speedups up to three orders of magnitude, highlighting the real-time efficacy of neural operators in 
adaptive control. Our code (Github) is made publicly available for future researchers.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Following several papers in which PDE backstepping con-
trollers were shown robust to the implementation of the gain 
kernels by replacing the solution of kernel PDEs by an offline-
computed neural operator (NO) approximation of the kernel
(Bhan, Shi, & Krstic, 2023; Krstic, Bhan, & Shi, 2023; Qi, Zhang, 
& Krstic, 2023; Wang, Diagne, & Krstić, 2023a, 2023b; Zhang, 
Zhong, & Yu, 2023), in this paper we introduce the first adaptive
backstepping controller where the gain kernels are computed via 
NOs in real time, from online parameter estimates. We do so for a 
hyperbolic PDE with linear recirculation, the most accessible but 
nevertheless nontrivial (unstable) PDE system, with a functional 
coefficient that is unknown, and with boundary actuation.

We employ an (indirect) adaptive version of a standard PDE 
backstepping controller for a 1-D hyperbolic PDEs but with the 
analytical gain kernel replaced with the operator approximated 
equivalent. We then show, under the kernel operator approxi-
mation, global stability of the resulting closed-loop system via 
Lyapunov analysis and neural operator approximation theorems
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(Deng, Shin, Lu, Zhang, & Karniadakis, 2022; Lanthaler, Li, & 
Stuart, 2023). Furthermore, we present an alternative approach 
based on passive identifiers simplifying the assumptions on the 
gain-kernel derivatives at a cost of an increased dynamic order of 
the parameter estimator.

This is the first result in which offline learning and online learn-
ing are both employed, working in tandem. Hence, it is important 
to explain these two distinct learning tasks. The operator from the 
plant coefficient to the kernel is learned offline — once and for 
all. The unknown plant coefficient is learned online, continually, 
using a parameter estimator. The offline and online learners are 
combined through the adaptive gain, where the NO is evaluated, 
at each time step, for the new plant coefficient estimate. The NO 
speeds up the evaluation of the adaptive gain by about 103

×, 
relative to the hypothetical online solving of the gain kernel 
equation, and thus enables the real-time adaptive control of the 
PDE.

Given the value of the 103
× speedup in computing the adap-

tive gain, the code for all the computational tasks performed in 
relation to this adaptive design are made publicly available at 
https://github.com/lukebhan/NeuralOperatorAdaptiveControl.

Stabilization of PDEs using backstepping-based adaptive control. 
The first investigations into backstepping-based adaptive con-
trol of PDEs were introduced for reaction–diffusion PDEs. Ini-
tially, a set of three approaches extending the simpler ODE 
counterparts were introduced: a Lyapunov approach (Krstic & 
data mining, AI training, and similar technologies.
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Smyshlyaev, 2008), a passive identification approach where one 
constructs an observer-like PDE system to estimate the plant 
parameter (Smyshlyaev & Krstic, 2007a), and a swapping identi-
fier where filters are introduced for the measurement to create 
a prediction error which can be minimized via standard tech-
niques such as gradient descent (Smyshlyaev & Krstic, 2007b). 
Papers Bresch-Pietri and Krstic (2009), Bresch-Pietri and Krstic 
(2014) then extended these techniques to adaptive control for 
systems with unknown delays in ODEs, and to wave PDEs. This 
paved the way for a swapping-based output-feedback extension 
to a single hyperbolic PDE (Bernard & Krstic, 2014), and then 
to extensions to systems of hyperbolic PDES (Anfinsen & Aamo, 
2018, 2019; Anfinsen, Diagne, Aamo, & Krstic, 2016). Further, Zhu 
and Krstic (2020) expanded the direction introduced by Bresch-
Pietri and Krstic (2009) into a series of works on adaptive control 
of delay-systems. Concurrently, many works explored adaptive 
backstepping for different systems including coupled hyperbolic 
PDEs in Yu, Vazquez, and Krstic (2017), coupled hyperbolic PDE-
PDE-ODE systems in Wang, Tang, and Krstic (2023), and the wave 
equation in Wang, Tang, and Krstic (2020). Lastly, we briefly 
mention the more recent works in adaptive control expanding 
into distributed input systems with unknown delays (Wang, Di-
agne, & Qi, 2022) and event-triggered adaptive control of coupled 
hyperbolic PDEs (Karafyllis, Krstic, & Chrysafi, 2019; Wang & 
Krstic, 2021, 2023).
Neural operator approximations for model-based PDE control. In a 
series of breakthrough innovations in the mathematics of ma-
chine learning (Lanthaler et al., 2023; Lanthaler, Mishra, & Karni-
adakis, 2022; Lu, Jin, Pang, Zhang, & Karniadakis, 2021), universal 
operator approximation theorems have been developed which 
demonstrate that neural networks can effectively approximate 
mappings across function spaces. Naturally, the control commu-
nity then capitalized on these results to approximate the kernel 
operator in PDE Backstepping. The first study in this direction was 
conducted for a 1D transport PDE in Bhan et al. (2023), and then 
later extended to both a reaction–diffusion PDE and observers 
in Krstic et al. (2023). In both works, the stability of the PDE 
under the approximated kernel is rigorously proved by employing 
the universal operator approximation theorem (Deng et al., 2022). 
Following Bhan et al. (2023), Krstic et al. (2023), there have been 
a series of extensions where Qi et al. (2023), Wang et al. (2023a) 
developed similar results for hyperbolic and parabolic PDEs with 
delays. Paper Zhang et al. (2023) then tackles the first application 
of NO approximations controlling the Aw–Rascale–Zhang(ARZ) 
PDE consisting of a set of second-order coupled hyperbolic PDEs 
describing traffic flows. Furthermore, Wang et al. (2023b) then 
considers NOs for a more general form of 2 × 2 hyperbolic 
PDEs with applications to oil drilling and shallow water wave 
modeling. Lastly, Lamarque, Bhan, Vazquez, and Krstic (2024) 
employ neural operators for gain-scheduling of hyperbolic PDEs 
with nonlinear recirculation — the first of such work where the 
kernel is recomputed at every timestep thus enabling real-time 
control of nonlinear PDEs.
Contributions. Two major advances in methodology and analysis 
are made. For Lyapunov-based and observer-based (passive) de-
signs of update laws, two distinct neural operators are employed. 
For the Lyapunov update, a smoother NO is trained (the so-called 
‘‘full-kernel’’ NO), leading to a target system with a homogeneous 
boundary condition and perturbations in the domain, whereas 
for the observer-based update, introduced in Anfinsen and Aamo 
(2019), a simpler but less smooth NO is trained (the so-called 
‘‘gain-only’’ NO), eliminating the perturbation in the PDE’s do-
main but making the boundary condition perturbed. These two 
designs give rise to distinct mathematical issues to overcome. 
The paper not only solves the technical problems that arise in 
2

Table 1
Nomenclature for offline and online kernel learning.
 Exact operator K  
 Neural (approximate) operator K̂  
 Exact kernel k = K (β) 
 Exact estimated kernel k̆ = K (β̂) 
 Approximate estimated kernel  
 (adaptive kernel) k̂ = K̂ (β̂) 

NO-based adaptive PDE control but also illuminates the tradeoff 
between the two NO approaches.

The key novel mathematical challenge overcome in this paper, 
relative to the papers Bhan et al. (2023), Krstic et al. (2023), Qi 
et al. (2023), Wang et al. (2023a, 2023b), Zhang et al. (2023) 
in which the robustness to NO approximating of the gain is 
established, is that the updating of the plant coefficient, and the 
associated updating of the kernel through the NO, gives rise to 
not only a potentially high rate of change in the adaptive gain 
but also a potentially high rate of change of the error in the NO 
approximation of the adaptive gain. This mathematical challenge 
is handled differently in the Lyapunov/full-kernel and observer-
based/gain-only approaches. Each approach has its merit and 
each of the proof procedures has an educational value to the 
reader aspiring to pursue extensions of NO-enabled adaptive 
control of PDEs.

The most obvious contribution is in the enablement of real-
time adaptive PDE control, through a 103

× speedup in the com-
putation of the adaptive gain.
Paper outline. In Section 2, we briefly restate the unpublished but 
relatively easy result for adaptive PDE backstepping of hyperbolic 
PDEs with recirculation. In Section 3, we prove both existence and 
boundedness of the exact backstepping kernel and its derivative. 
In Section 4, we then present the neural operator approxima-
tion theorem and show the adaptive backstepping kernel can be 
approximated by a neural operator. Next, in Section 5, we give 
the paper’s main result presenting stability of the closed loop 
feedback system under the neural operator. We follow the result 
with a proof in Section 6 via Lyapunov analysis. In Section 7, 
we present an alternative approach, via a modular design with 
a passive identifier that avoids the approximation of the kernel’s 
derivative and thus the strong assumptions about the kernel’s dif-
ferentiability required for Lyapunov analysis. Lastly, in Section 8, 
we present numerical simulations highlighting the theoretical 
stability result and calculate the numerical speedups gained from 
the neural operator approximation.

Notation. We present the nomenclature for the offline and on-
line kernel in Table  1. We abbreviate the partial derivative as 
ax(x, ν) =

∂a
∂x (x, ν). For a function a defined on [0, 1] × R+ we 

denote the spatial L2 norm as ∥a(t)∥ =

√∫ 1
0 a2(x, t)dx, which is 

a function of t ∈ R+. We write f (c) = Oc→∞(g(c)) if there exists 
c0 ≥ 0 such that for all c ≥ c0, |f (c)| ≤ M|g(c)| for some uniform 
constant M > 0. We denote the convolution operation (which is 
commutative) by 

(a ∗ b)(x, t) = (b ∗ a)(x, t) =

∫ x

0
a(x − y, t)b(y, t)dy . (1)

2. Exact adaptative PDE backstepping for a hyperbolic PDE 
with recirculation

We consider the following hyperbolic PDE—transport PDE 
with recirculation,
u (x, t) = u (x, t) + β(x)u(0, t) , ∀(x, t) ∈ [0, 1) × R+ (2)
t x
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u(1, t) = U(t) , (3)

where β is an unknown function to be estimated online using an 
estimate β̂(x, t).

We employ an adaptive backstepping transformation given by 
w(x, t) = u(x, t) − k̆ ∗ u(x, t) , ∀(x, t) ∈ [0, 1] × R , (4)

where k̆ is the (online) backstepping kernel solution of the
Volterra equation 
k̆(x, t) = −β̂(x, t) + β̂ ∗ k̆(x, t) , (x, t) ∈ [0, 1] × R+ . (5)

The transformation (4) maps the system (2), (3) to the per-
turbed target system
wt (x, t) = wx(x, t)

+

[
β̃(x, t) − k̆ ∗ β̃(x, t)

]
w(0, t) − Ω(x, t) , (6)

w(1, t) = 0, (7)

where

β̃(x, t) = β(x, t) − β̂(x, t), (8)
Ω(x, t) = k̆t ∗ (w − l̆ ∗ w)(x, t) , (9)

l̆ = −k̆ + k̆ ∗ l̆ = K

(
k̆
)

= K ◦ K

(
β̂

)
= β̂ . (10)

Note that the boundary condition (6) gives from (4) the feedback 
law 
U(t) = (k̆ ∗ u)(1, t) = (K (β̂) ∗ u)(1, t). (11)

We first state an adaptive control design for the adaptative 
problem with the exact backstepping kernel k̆. The next theorem 
serves only as a guidance for what we seek to achieve under a 
NO-based approximate adaptive backstepping design. We omit the 
theorem’s proof since it can be deduced from the proof of our 
main result in Theorem  4.

Theorem 1 (Full-State exact Adaptative Control Design). Consider 
the plant (2)–(3) in feedback with the control law 

U(t) =

∫ 1

0
k̆(1 − y, t)u(y, t)dy, t ≥ 0 (12)

where k̆ is solution of the Volterra integral equation (5). For all 
c > 0 and all B > 0 such that ∥β∥∞ ≤ B, there exists γ ∗(c, B) =

Oc→∞(e−c) > 0 with a decreasing dependence on B, such that for all 
γ ∈ (0, γ ∗), any initial condition β̂(·, 0) ∈ C 0([0, 1],R) satisfying 
∥β̂(·, 0)∥∞ ≤ B, the update law
β̂t (x, t) := Proj(τ (x, t), β̂(x, t)), ∀(x, t) ∈ [0, 1] × R+ , (13)

τ (x, t) :=
γ

1 + ∥w(t)∥2
c

[
ecxw(x, t) −∫ 1

x
k̆(y − x, t)ecyw(y, t)dy

]
w(0, t), (14)

where

w = u − k̆ ∗ u , (15)

∥w(t)∥2
c =

∫ 1

0
ecxw2(x, t)dx , (16)

with the projection operator Proj : R × [0, B] → R defined as1

Proj(a, b) :=

{
0,  if |b| = B and ab > 0
a, else (17)

1 The projector operator defined here is not continuous. Hence, the solutions 
of the PDE system are in the Filippov sense. To avoid the discontinuity, one 
would add a boundary layer of width δ > 0. But to avoid having the exposi-
tion drifting into inessential technicalities, we use the common discontinuous 
projection (17).
3

guarantees that

Γ (t) ≤ R(eρΓ (0)
− 1) , ∀t ≥ 0, (18)

Γ (t) =

∫ 1

0

[
u2(x, t) +

(
β(x) − β̂(x, t)

)2
]
dx (19)

for constants ρ, K > 0 and, in addition, u(x, t) →
t→∞

0 for all 
x ∈ [0, 1].

In summary, with the exact adaptive backstepping feedback 
law (12), (5), (13), (14), the equilibrium (u(x), β̂(x)) ≡ (0, β(x)) is 
globally stable in the L2 sense and the state u(x, t) is regulated 
to zero pointwise in x. The computationally intensive part of 
implementing this feedback law is that the Volterra equation (5) 
needs to be solved (in x) at each time ‘‘step’’ t . It is for this reason 
that we seek a neural operator approximation ˆK : β̂ ↦→ k̂ to the 
exact adaptive backstepping gain operator K : β̂ ↦→ k̆, which 
would require only a neural network evaluation at each t , rather 
than a solution to a Volterra equation.

3. Backstepping kernel properties

This section introduces results on the exact adaptive backstep-
ping kernel k̆ in (5).

Lemma 1 (Existence and Upper Bound for Kernel and Its Derivative).
Let B > 0, β̂ ∈ C 0([0, 1]×R+,R) such that ∥β̂∥∞ ≤ B and consider 
the Volterra equation (5), reiterated here for convenience, 

k̆(x, t) − β̂ ∗ k̆(x, t) + β̂(x, t) = 0 , (x, t) ∈ [0, 1] × R+. (20)

There exists a unique C 0([0, 1] × R+,R) solution k̆ that satisfies 

∥k̆∥∞ ≤ BeB. (21)

If, in addition, β̂t exists and is continuous with respect to x on 
[0, 1] × R+ such that 

∥β̂t∥∞,[0,1]×[0,T ] < ∞, ∀T > 0, (22)

then k̆t exists, is continuous with respect to x on [0, 1] × R+, and 
satisfies 

∥k̆t (t)∥ ≤ ∥β̂t (t)∥(1 + BeB(2 + BeB)), t ≥ 0 . (23)

Proof.  Let B > 0, β̂ ∈ C 0([0, 1] × R+,R) such that ∥β̂∥∞ ≤ B. 
We notice that (20) is just a Volterra integral equation since β̂ is 
continuous. The existence and continuity of k̆ follows. Also, note 
that (20) implies 

|k̆(x, t)| ≤ B +

∫ x

0
|β̂(x − y, t)|.|k̆(y, t)|dy. (24)

Then Grönwall’s lemma gives (21). We now prove the existence 
and continuity with respect to x of k̆t on [0, 1] × R+. To do so 
we use a successive approximation approach. We introduce the 
sequence

∆k0 := −β̂ , (25)
∆kn+1

:= β̂ ∗ ∆kn . (26)

Through iteration we have 

|∆kn(x, t)| ≤
Bn+1xn

n!
, (x, t) ∈ [0, 1] × R+ , (27)

From which we have 

k̆ =

∞∑
∆kn . (28)
n=0
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We will be proving that the series 
∑

∞

n=0 ∆knt  uniformly converges 
on each compact [0, 1] × [0, T ], T > 0. We begin by introducing 
the function 
Bt (T ) := ∥β̂t∥∞,[0,1]×[0,T ] < ∞, T > 0 , (29)

with assumption (29). We can prove through induction that ∀n ∈

N, ∆knt  exists, is continuous with respect to x, and satisfies

|∆knt (x, t)| ≤
(n + 1)α(T )xn

n!
, ∀(x, t) ∈ [0, 1] × [0, T ], (30)

α(T ) := max {Bt (T ), B} . (31)

To do so we have to take the derivative of (26) with respect to 
t using the Leibniz theorem for the derivation of integral with 
parameter. Notice that we use the ‘strong’ version of this theorem 
that does not require β̂t to be continuous with respect to t . From 
(30), we have that the series 

∑
∞

n=0 ∆knt  uniformly converges on 
[0, 1] × [0, T ], for all T > 0. We thus have the existence and 
continuity with respect to x of ̆kt on [0, 1]×R+. We can then take 
the derivative of (20) with respect to t , which gives the following 
inequality satisfied by k̆t ,
|k̆t (x, t)| ≤ |β̂t (x, t)| + BeB∥β̂t (x, t)∥

+

∫ x

0
|β̂(x − y, t)||k̆t (y, t)|dy, (32)

∀(x, t) ∈ [0, 1] × R+ .

Then using Grönwall’s lemma on (32), we arrive at
|k̆t (t, x)| ≤ |β̂t (x, t)| + BeB∥β̂t (t)∥(2 + BeB),

∀(x, t) ∈ [0, 1] × R+ . (33)

From (33), using the triangular inequality we have (23). □

4. Neural operator approximation of backstepping kernel

Explicitly solving the Volterra equation (5) satisfied by k̆ is 
almost never feasible, and solving it numerically is expensive. We 
design an approximate operator which, for an estimate β̂ of the 
unknown β in the plant (2) produces an approximate adaptive 
kernel k̂, generated by evaluating a neural operator for the input 
β̂ .

For such an approach to guarantee stabilization when the 
exact adaptive kernel k̆ is replaced by the approximate kernel 
k̂, we need to design a neural operator that keeps the approxi-
mation error k̆ − k̂ small in a suitable sense. To produce such a 
neural operator, we recall the DeepONet universal approximation 
theorem.

Theorem 2 (DeepOnet Universal Approximation Theorem (Deng 
et al., 2022)).  Let X ⊂ Rdx  and Y ⊂ Rdy  be compact sets of vectors 
x ∈ X and y ∈ Y , respectively. Let U : X → U ⊂ Rdu  and 
V : Y → V ⊂ Rdv  be sets of continuous functions u(x) and v(y), 
respectively. Let U  also be compact. Assume the operator G : U →

V  is continuous. Then, for all ϵ > 0, there exist m∗, p∗
∈ N such 

that for each m ≥ m∗, p ≥ p∗, there exist θ (k), v(k), neural networks 
f N (·; θ (k)), gN (·; v(k)), k = 1, . . . , p, and xj ∈ X, j = 1, . . . ,m, 
with corresponding um = (u(x1), u(x2), . . . , u(xm))T , such that 
|G (u)(y) − GN(um)(y)| < ϵ , (34)

for all functions u ∈ U  and all values y ∈ Y  of G (u) where 

GN(y) =

p∑
k=1

gN (um; v(k))f N (y; θ (k)) . (35)

Note, such a theorem only gives the existence of a neural opera-
tor; however, (Bhan et al., 2023), Proposition 1 gives conservative 
4

estimates on the number of network parameters needed and 
further estimates are actively being studied e.g. Mukherjee and 
Roy (2024).

Let the set H denote the subset of C 0([0, 1],R) endowed with 
the supremum (∥ · ∥∞) norm, such that all α ∈ H satisfy ∥α∥∞ ≤

M and α is K -Lipschitz where M, K > 0 can be as large as 
required. We denote by K : H → C 0([0, 1],R) the operator 
K : β̂(·, t) ↦→ k̆(·, t) , (36)

where ̆k(·, t) is the solution to the Volterra integral equation (5) at 
a specific time t ≥ 0. Since the parameter estimate β̂(x, t) is time 
varying, its time derivative affects the closed-loop system. For 
this reason, it is not enough to approximate only k̆. Its derivative 
k̆t (·, t) also must be approximated, at each time t . It is crucial 
to note that, while we are concerned about approximating a 
derivative in time, k̆t (x, t), it is only an accurate approximation 
of this quantity as a function of x that is needed.

For this purpose we denote by M : H2
→ C 0([0, 1],R)2 the 

operator 
M : (β̂(·, t), β̂t (·, t)) ↦→ (K (β̂(·, t)), K1(β̂(·, t), β̂t (·, t))) (37)

where K1 is defined as the operator that maps (β̂(·, t), β̂t (·, t))
into the solution k̆1 of the Volterra equation

k̆1(x, t) −

∫ x

0
β̂(x − y, t)k̆1(y, t)dy

+ β̂t (x, t) −

∫ x

0
β̂t (x − y, t)k̆(y, t)dy = 0 , x ∈ [0, 1] , (38)

namely, 

k̆1 = K1

(
β̂, β̂t

)
:= B

(
−β̂t + β̂t ∗ K

(
β̂

)
, K

(
β̂

))
, (39)

which is explicitly given by the expression in Lemma  8.  Note, 
the expression for k̆1 in (38) represents the solution to the time 
derivative of the kernel k̆. 

To approximate the operator M = (K , K1) by a DeepONet, 
the conditions of Theorem  2, require us to define a specific 
compact set of the β̂(·, t), β̂t (·, t) functions. This is the purpose 
of introducing the set H , which, due to its elements being Lips-
chitz with a uniform Lipschitz constant, and therefore uniformly 
equicontinuous, is compact by the Arzelà–Ascoli theorem, and so 
is the set H2

:= H × H .
We have proven that the operator M  is continuous (and even 

Lipschitz) in Lemma 2 of Lamarque et al. (2024). We can then 
state the following theorem, which is a consequence of Theorem 
2.

Theorem 3 (Existence of a Neural Operator Approximating the 
Kernel).  For all ϵ > 0, there exists a neural operator ( ˆK , ˆK1) such 
that for all β̂(·, t), β̂t (·, t) ∈ H and for all ∀x ∈ [0, 1],⏐⏐⏐K (

β̂(·, t)
)
(x) − ˆK

(
β̂(·, t)

)
(x)

⏐⏐⏐
+

⏐⏐⏐K1

(
β̂(·, t), β̂t (·, t)

)
(x) − ˆK1

(
β̂(·, t), β̂t (·, t)

)
(x)

⏐⏐⏐ < ϵ . (40)

5. DeepONet-approximated Lyapunov adaptive PDE backstep-
ping design

The stabilizing property of the adaptive backstepping con-
troller employing an approximate estimated kernel is given in the 
next theorem, our main result.

Theorem 4 (Stability of Approximate Lyapunov Adaptive Back-
stepping Control).  For all B, c > 0, there exists ϵ0(B, c) =

O (ce
−c
2 ), γ0(B, c) = O (e−c) with a decreasing dependence on 
c→∞ c→∞
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ˆ

the argument B such that for all neural operator approximations 
k̂ = ˆK

(
β̂

)
 of accuracy ϵ ∈ (0, ϵ0) provided by Theorem  3, 

all γ ∈ (0, γ0), and all β, β̂(·, 0) that are Lipschitz and satisfy 
∥β∥∞, ∥β̂(·, 0)∥∞ ≤ B, the feedback law 

U(t) =

∫ 1

0
k̂(1 − y, t)u(y, t)dy , (41)

and the update law

β̂t (x, t) := Proj(τ (x, t), β̂(x, t), ), ∀(x, t) ∈ [0, 1] × R+ , (42)

τ (x, t) :=
γ

1 + ∥w(t)∥2
c

[
ecxw(x, t)

−

∫ 1

x
k̂(y − x, t)ecyw(y, t)dy

]
w(0, t), (43)

where

w = u − k̂ ∗ u , (44)

∥w(t)∥2
c =

∫ 1

0
ecxw(x, t)dx , (45)

guarantee that all solutions for which β̂t (·, t) remains in H, k̂(·, t) is 
differentiable, and β̂(·, t) remains Lipschitz for all time satisfy

Γ (t) ≤ R(eρΓ (0)
− 1) , ∀t ≥ 0, (46)

Γ (t) =

∫ 1

0

[
u2(x, t) +

(
β(x) − β̂(x, t)

)2
]
dx , (47)

for constants ρ, R > 0 and, in addition, 

u(x, t) →
t→∞

0 , ∀x ∈ [0, 1] . (48)

The assumptions that β̂t (·, t) remains in H and that k̂(·, t) is 
differentiable for all time are strong and not a priori verifiable. 
They arise from the fact that in the Lyapunov design it is nec-
essary to approximate the update rate k̂t of the approximated 
kernel k̂. This motivates us to pursue, in Section 7, an alternative 
modular design with a passive identifier, which does not require an 
approximation of the derivative of the approximated kernel and, 
hence, does not require these strong assumptions on β̂t (·, t) and 
k̂t (·, t).

Our parameter update law (43) is a replica of (14) but with the 
exact backstepping transformation (4) and the exact kernel (5) 
replaced, respectively, by the approximate transformation (44) 
and the DeepONet kernel ˆK

(
β̂

)
.

We use parameter projection for two reasons. One is for ensur-
ing global stability as in exact adaptive PDE control (Smyshlyaev 
& Krstic, 2010). The second reason, novel in this paper, is for 
ensuring that the condition of Theorem  3 remains valid, namely, 
that ∥β̂∥∞ ≤ B holds for all time.  The Lipschitzness of β̂(·, t), a 
technical condition for the Arzela–Ascoli theorem and the com-
pactness of the input set of K , seems impossible to enforce 
without sacrificing the other more important properties enforced 
by projection, so we assume it instead. 

The elementary pointwise-in-x projection operator (17) has 
the following well-known properties (Smyshlyaev & Krstic, 2010, 
Lemma 8.2),

•

(
Proj(τ , β̂)

)2
≤ τ 2, ∀(τ , β̂) ∈ R × [0, B] (49)

• If β̂(x, 0) ∈ [−B, B], ∀x ∈ [0, 1] then the update law 
β̂t ensures that β̂ ∈ [−B, B] (50)

• − β̃Proj(τ , β̂) ≤ −β̃τ  for all β̂, β ∈ [−B, B] . (51)
5

6. Lyapunov analysis

In this section we prove Theorem  4. We replace the backstep-
ping transformation defined in (4) with its approximate version
w(x, t) = u(x, t) − k̂ ∗ u(x, t), ∀(x, t) ∈ [0, 1] × R+ , (52)

obtaining (see Appendix  B) the perturbed target system

wt (w, t) = wx(x, t) +

[
β̃(x, t) − k̂ ∗ β̃(x, t)

]
w(0, t)

− Ω(x, t) + w(0, t)δ(x, t) , (53)
w(1, t) = 0. (54)

where

k̃ := k̆ − k̂ , (55)
β̃ = β − β̂ , (56)

l̂ = −k̂ + k̂ ∗ l̂ = K

(
k̂
)

= K ◦ ˆK

(
β̂

)
, (57)

δ := −k̃ + β̂ ∗ k̃ , (58)
Ω = k̂t ∗ (w − l̂ ∗ w) . (59)

Before commencing our Lyapunov computations, we introduce 
a lemma on the inverse backstepping kernel ̂l.

Lemma 2 (Inverse Kernel Properties). Let B > 0, β̂ ∈ C 0([0, 1] ×

R+,R) such that ∥β̂∥∞ ≤ B and consider the Volterra equation 
l(x, t) = −k̂(x, t) + k̂ ∗ l̂(x, t), (x, t) ∈ [0, 1] × R+ , (60)

with the solution l̂ = K ◦ ˆK

(
β̂

)
, where k̂ = ˆK

(
β̂

)
 is defined 

with ˆK  provided by Theorem  3 for accuracy ϵ > 0. Then

∥l̂∥∞ ≤ k̄ek̄ , (61)
k̄ := BeB + ϵ . (62)

Furthermore, (54) holds if and only if 
u(x, t) = w(x, t) − l̂ ∗ w(x, t) , (63)

for any pair of functions (u, w), and in particular when the state u is 
governed by (2), (3), and the transformed state w is defined by (53), 
(54).

Proof.  The existence of ̂l follows from the facts that it satisfies 
a Volterra integral equation and that k̂ is continuous. The bound 
(61) is obtained with the successive approximation method, as 
in the proof of Lemma  1 using (21). To obtain (63), we invoke 
Lemma  6. □

Lemma 3 (Lyapunov Estimate for Perturbed Target System).  For 
all c, B > 0, there exist strictly positive quantities ϵ0(c, B) =

Oc→∞(ce−
c
2 ), γ0 = Oc→∞(e−c) with a decreasing dependence on 

B such that for any (ϵ, γ ) ∈ (0, ϵ0) × (0, γ0), any β, β̂(·, 0) ∈

C 0([0, 1]) that are Lipschitz and satisfy 
∥β∥∞, ∥β̂(0, ·)∥∞ ≤ B , (64)

and for any approximate adaptive backstepping kernel k̂ = ˆK

(
β̂

)
provided by Theorem  3 with accuracy ϵ, the perturbed target system 
(53), (54) along with the update law (42) satisfies
|β̂(x, t)| ≤ B, (x, t) ∈ [0, 1] × R+ , (65)

V̇ (t) ≤ −
c
4

∥w(t)∥2
c

1 + ∥w(t)∥2
c

−
1
8

w2(0, t)
1 + ∥w(t)∥2

c
, (66)

where

V (t) :=
1
ln

(
1 + ∥w(t)∥2

c

)
+

1
∫ 1

β̃2(x, t)dx , (67)

2 2γ 0
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∥w(t)∥2
c :=

∫ 1

0
ecxw2(x, t)dx , (68)

for t ≥ 0.

Proof.  The property (65) is immediate, as a result of using 
projection. With the update law (42), taking the derivative of (67) 
one arrives at

V̇ (t) =
1

1 + ∥w(t)∥2
c
(I1(t) + I2(t) + I3(t))

+

∫ 1

0

w(0, t)ecx
(
1 − k̂∗

)
β̃(x, t)

1 + ∥w(t)∥2
c  

=τ β̃

dx

+
1
γ

∫ 1

0

(
−

̇̂
β(x, t)β̃(x, t)

)
  

≤−τ β̃ from (42) and (17)

dx

≤
1

1 + ∥w(t)∥2
c
(I1(t) + I2(t) + I3(t)) , (69)

where

I1(t) := w(0, t)
∫ 1

0
ecxw(x, t)δ(x, t) , (70)

I2(t) := −

∫ 1

0
ecxw(x, t)Ω(x, t)dx , (71)

I3(t) := −
1
2
w2(0, t) −

c
2
∥w(t)∥2

c . (72)

Using Lemmas  2 and 1, as well as Theorem  3, we have the 
following upper bounds
∥k̃∥∞ ≤ ϵ , (73)
∥k̂∥∞ ≤ ϵ + ∥k̆∥∞ ≤ ϵ + BeB =: k̄ , (74)

∥l∥∞ ≤ k̄ek̄ =: l̄ , (75)
∥δ∥∞ ≤ ϵ(1 + B) =: δ̄ϵ , (76)

∥k̂t (t)∥ ≤ ∥k̆t (t)∥ + ϵ ≤ M∥β̂t (t)∥ + ϵ , (77)

where

δ̄ := 1 + B , (78)
M := 1 + BeB(2 + BeB) , (79)

as well as 

∥β̂t (t)∥ ≤
γ

2
e

c
2

1 + ∥w(t)∥2
c
(w2(0, t) + ∥w(t)∥2

c )(1 + k̄) . (80)

I1(t) estimate: Using (76) as well as Young’s and Cauchy–
Schwarz inequalities, we have the following 

I1(t) ≤
w2(0, t)

4
+ ϵ2δ̄2ec∥w(t)∥2

c . (81)

I2(t) estimate: We first rework the upper bound (77) using (80)

∥k̂t (t)∥ ≤
γ

2
×

e
c
2 w2(0, t)

1 + ∥w(t)∥2
c
k̄t +

γ

2
×

e
c
2 ∥w(t)∥2

c

1 + ∥w(t)∥2
c
k̄t + ϵ,

t ≥ 0 , (82)
k̄t := M(1 + k̄) . (83)

Then we use Cauchy–Schwarz inequality to have the following for 
t ≥ 0

∥Ω(·, t)∥∞ ≤ ∥k̆t (t)∥.∥w(t)∥(1 + l̄) + ϵ∥w(t)∥(1 + l̄)

≤ γ e
c
2
w2(0, t)

×
∥w(t)∥c

2 Ω̄

2 1 + ∥w(t)∥c

6

+γ e
c
2
∥w(t)∥

2
×

∥w(t)∥2
c

1 + ∥w(t)∥2
c
Ω̄

+ ϵ∥w(t)∥(1 + l̄) , (84)
Ω̄ =: k̄t (1 + l̄). (85)

With these new inequalities we then have the upper bound for 
(71) using Cauchy–Schwarz inequality,

I2(t) ≤ γ ec
w2(0, t)

2
Ω̄ + γ ec

∥w(t)∥2
c

2
Ω̄

+ ϵe
c
2 ∥w(t)∥2

c (1 + l̄) , (86)

where we have used the fact that ∥w(t)∥2c
1+∥w(t)∥2c

≤ 1.
Finally, gathering (81), (86), (72) we have that

V̇ (t) ≤ −
∥w(t)∥2

c

1 + ∥w(t)∥2
c

×

(
c
2

− ϵ2δ̄2ec − γ ec
Ω̄

2
− ϵe

c
2 (1 + l̄)

)
(87)

−
w2(0, t)

1 + ∥w(t)∥2
c

(
1
4

−
γ ec

2
Ω̄

)
. (88)

Noting that the quantities Ω̄, l̄ depend on ϵ in an increasing 
fashion, for setting the upper bound on γ , ϵ we fix Ω̄ := Ω̄(ϵ =

1), l̄ := l̄(ϵ = 1). With such fixed choice of Ω̄ and l̄, all the 
previous inequalities are valid for all ϵ ≤ 1. We now introduce 
the quantities

γ1 :=
ce−c

4Ω̄
> 0 , (89)

ϵ0 := min
{
1, α−1

( c
8

)}
> 0 , (90)

where we introduced the polynomial function α(ϵ) = ϵ2δ̄2ec +

ϵe
c
2 (1 + l̄). Thus, if we choose γ ∈ (0, γ1) and ϵ ∈ (0, ϵ0) we get 

that (87) is dominated by ≤ −
c
4

∥w(t)∥2c
1+∥w(t)∥2c

. To finish the proof of 
the lemma, we now consider (88) and introduce the quantity 

γ0 := min
{
γ1,

e−c

4Ω̄

}
> 0 . (91)

Taking ϵ ∈ (0, ϵ0), γ ∈ (0, γ0) gives 

V̇ (t) ≤ −
c
4

∥w(t)∥2
c

1 + ∥w(t)∥2
c

−
1
8

w2(0, t)
1 + ∥w(t)∥2

c
. (92)

which completes the proof of (66). □

We are now ready to conclude the proof of Theorem  4.

Proof of Theorem  4.  Let V  be the Lyapunov function defined 
in (67) and (ϵ, γ ) ∈ (0, ϵ0) × (0, γ0), where ϵ0, γ0 are defined 
in the proof of Lemma  3. It follows from this lemma that V (t)
is bounded by V (0) < ∞. From the definition of V  as (67), we 
have that ∥β̂∥, ∥w∥ are bounded. And by integrating (92) in time 
and keeping in mind that V  is nonnegative, we have the following 
properties in the sense of norms with respect to time:

• ∥w∥ ∈ L2 ∩ L∞

• w(0, ·) ∈ L2

To achieve the convergence of w to 0, both pointwise and in L2, 
and without seeking an H1 estimate for w, borrowing from the 
approach in  Anfinsen and Aamo (2017, Chapter 4), we introduce 
the quantity 
α(x, t) = B(u(x, t), k(x)), (x, t) ∈ [0, 1] × R+ , (93)

where k := K (β) is the exact backstepping kernel. It follows from 
(93) that α is a solution to the following transport PDE
α (x, t) = α (x, t), (x, t) ∈ [0, 1) × R+ , (94)
t x



M. Lamarque, L. Bhan, Y. Shi et al. Automatica 177 (2025) 112329
α(1, t) =

∫ 1

0
(k̂(1 − y, t) − k(1 − y))u(y, t)dy . (95)

From Lemma  1, it follows that 
∥k∥∞ ≤ BeB. (96)

Through the method of characteristics it follows that 
α(x, t) = α(1, t + x − 1), x + t ≥ 1 . (97)

and, for t + x < 1, we have α(x, t) = α0(t + x), where α0 is 
bounded and denotes the initial condition: α0 := u0 − k ∗ u0. We 
thus have that 
|α(x, t)| ≤ (BeB + k̄)(1 + l̄)∥w(t + x − 1)∥ , t + x ≥ 1 , (98)

and hence ∥α∥∞ ∈ L∞ since we have previously shown that 
∥w∥ ∈ L∞. Since the transformation (93) is invertible, 
u = α − β ∗ α , (99)

and hence we both have ∥u∥∞ ∈ L∞ and
|u(x, t)| ≤ (1 + B)(BeB + k̄)(1 + l̄)∥w(t + x − 1)∥ ,

t + x ≥ 1 . (100)

We now prove that ∥w∥ →
t→∞

0 in order to ultimately obtain 
∥u∥ →

t→∞
0. Since we already know that ∥w∥ ∈ L2, in order to use 

Barbalat’s lemma, we prove that ∥w∥ is uniformly continuous by 
proving that d

dt ∥w∥
2 is bounded. We first derive the bound⏐⏐⏐⏐d∥w∥

2

dt
(t)

⏐⏐⏐⏐ ≤
w2(0, t)

2
+ 2B∥w(t)∥ + 2k̄B∥w(t)∥|w(0, t)|

+ γ e
c
2
w2(0, t)

2
Ω̄ + γ e

c
2
∥w(t)∥2

2
Ω̄

+ ϵ∥w(t)∥2(1 + l̄) + δ̄ϵ|w(0, t)|∥w(t)∥ . (101)

Then, recalling that ∥w∥ ∈ L∞ ∩ L2 and that w(0, t) = u(0, t)
is bounded, we have that (101) is bounded. The convergence of 
∥w(t)∥ to zero as time goes to infinity follows from Barbalat’s 
lemma. From (100), 
∥u(·, t)∥∞ →

t→∞
0 . (102)

We now prove the global stability (46) in the norm (47). Recalling 
the Lyapunov functional (67),
∥w(t)∥2

≤ (e2V (t)
− 1), (103)

∥β̃(t)∥2
≤ 2γV (t) ≤ γ (e2V (t)

− 1), t ≥ 0 . (104)

With the inverse backstepping transformation u = w − l̂ ∗ w we 
have the upper bound 
∥u(t)∥2

≤ (1 + l̄)2∥w(t)∥2 . (105)

Gathering (105), (103), (104) we have 
Γ (t) ≤ max

(
γ , (1 + l̄)2

)
× (e2V (t)

− 1) . (106)

Let us also notice that with the backstepping transformation w =

u − k̂ ∗ u, 
1
2
ln(1 + ∥w(t)∥2

c ) ≤
1
2
ec∥w(t)∥2

≤
1
2
ec(1 + k̄)2∥u(t)∥2, (107)

which leads to 

2V (t) ≤ max
(

1
γ

, ec(1 + k̄)2
)

× Γ (t), t ≥ 0. (108)

Gathering (108) and (106) we have the following

Γ (t) ≤ R(eρΓ (0)
− 1), t ≥ 0 , (109)

R := max(γ , (1 + l̄)2) , (110)
7

ρ := max
(

1
γ

, ec(1 + k̄)2
)

. (111)

Note that the coefficients R, ρ depend in an increasing fashion 
on ϵ. To make them independent of the approximation accuracy 
ϵ, one can choose ρ := ρ(ϵ = 1), R := R(ϵ = 1) and all the 
results are still valid as long as we train the DeepONet ˆK  for 
ϵ ∈ (0,min(1, ϵ0)). Further, note that ϵ0 explicitly depends on the 
max size of the family of β functions given by B and thus a smaller 
B will enable larger neural operator approximation error. □

7. A modular design with a passive identifier

In this section we depart from the Lyapunov adaptive de-
sign of the previous sections and employ a passive identifier
design instead. For ODEs, this identifier is introduced in Krstic, 
Kanellakopoulos, and Kokotovic (1995, Chapter 5). Its first use 
in adaptive control of PDEs is in Smyshlyaev and Krstic (2007a, 
Sections implying equicontinuity and is uniformly bounded by2.1, 
3, and 4), for parabolic PDEs. The first use of a passive identifier 
in control of a hyperbolic PDE is in Anfinsen and Aamo (2019, 
Chapter 4).

Compared to the Lyapunov design, in which the states of 
the entire system (the plant and the parameter estimator) are 
captured in a single Lyapunov function, the passive identifier 
design neither offers superior performance nor the lowest pos-
sible dynamic order. In fact, its dynamic order is increased due 
to the redundancy of the measured state u(x, t) being estimated 
by another PDE observer state, û(x, t), whose sole role is in the 
estimation of the unknown parameter. However, the reward for 
using this less dynamically efficient approach is that the con-
ditions for the estimation of the gain kernel operator are less 
stringent and the analysis is freed of the requirement to estimate 
the time derivative of the approximate kernel.

We start by introducing a passive observer-based identifier. 
For the u-system (2), (3), linearly parametrized in the functional 
coefficient β(x), as proposed in Anfinsen and Aamo (2019, (4.5)), 
we introduce the observer
ût (x, t) = ûx(x, t) + β̂(x, t)u(0, t) + γ0(u(x, t) − û(x, t))u2(0, t)

(112)
û(1, t) = U(t) . (113)

where γ0 > 0 and the term γ0(u(x, t)− û(x, t))u2(0, t) represents 
a form of nonlinear damping in the observer, which plays the 
same role as update law normalization (namely, to bound the 
parameter update rate, β̂t (x, t)), and which was introduced in the 
x-passive scheme in Smyshlyaev and Krstic (2007a, Section 5.6).

For the parameter update law, we employ a slight modification 
of Anfinsen and Aamo (2019, (4.6)),
τ (x, t) := γ (u(x, t) − û(x, t))u(0, t) , (114)

β̂t (x, t) := Proj (τ (x, t), τx(x, t)) , (115)
(x, t) ∈ [0, 1] × R+ ,

where γ > 0 and the Proj is defined in (17). From Anfinsen and 
Aamo (2019, Lemma 4.1), we get the following result, in which 
the spaces L2 and L∞ are with respect to t ∈ [0, ∞).

Lemma 4 (Properties of Passive Identifier (Anfinsen & Aamo, 2019, 
Lemma 4.1)).  The identifier (112)–(113), with an arbitrary initial 
condition û0 = û(·, 0) such that ∥û0∥ < ∞, along with the update 
law (115) with an arbitrary Lipschitz initial condition β̂0 = β̂(·, 0)
such that ∥β̂0∥∞ ≤ B, guarantees that all solutions satisfy

∥β̂(·, t)∥ ≤ B, t ≥ 0 , (116)
∥e∥ ∈ L ∩ L , (117)
∞ 2
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|e(0, ·)|, ∥e∥|u(0, ·)|, ∥β̂t∥ ∈ L2 , (118)

where 
e := u − û . (119)

Next, we introduce our adaptive control law with a DeepONet-
approximated gain. Let us first recall the definition of the exact 
estimated kernel k̆ = K (β̂) through the solution of the Volterra 
equation 

k̆(x, t) = −β̂(x, t) +

∫ x

0
β̂(y, t)k̆(x − y, t)dy, (120)

for all (x, t) ∈ [0, 1] ×R+. A weaker version of an approximating 
operator ˆK  for the approximate estimator kernel k̂ = ˆK (β̂)
suffices as compared to the approximation in Theorem  3.

Theorem 5 (Existence of a NO to Approx. the Kernel). For all ϵ > 0
there exists a neural operator ˆK  such that for all β̂(·, t) ∈ H, for all 
∀x ∈ [0, 1], ⏐⏐⏐K (

β̂(·, t)
)
(x) − ˆK

(
β̂(·, t)

)
(x)

⏐⏐⏐ < ϵ . (121)

We are now ready to state an equivalent of Theorem  4

Theorem 6 (Stability of Approximate Passive-Identifier Adaptive 
Backstepping Control). For all B, γ , γ0 > 0 and ϵ0 :=

e−
3
2

√
2(1+B)

> 0

such that for all neural operator approximations k̂ of accuracy ϵ ∈

(0, ϵ0) provided by Theorem  5, the plant (2),(3), in feedback with the 
adaptive control law 

U(t) =

∫ 1

0
k̂(x − y, t)û(y, t)dy , (122)

along with the update law for β̂ given by (115) with any Lipschitz 
initial condition β̂0 = β̂(·, 0) such that ∥β̂0∥∞ ≤ B, and the 
passive observer û given by (112), (113) with any initial condition 
û0 = û(·, 0) such that ∥û0∥ < ∞, satisfies the following properties 
for all solutions for which β̂(·, t) remains Lipschitz for all time:

∥u∥, ∥û∥, ∥u∥∞, ∥û∥∞ ∈ L2 ∩ L∞ , (123)

∥u∥∞, ∥û∥∞ → 0 ,  as t → ∞ . (124)

Additionally, the following global stability estimate holds for the 
equilibrium (u, û, β̂) = (0, 0, β), 
S(t) ≤ RS(0)eρS(0), t ≥ 0, (125)

where 
S := ∥u∥2

+ ∥û∥2
+ ∥β̃∥

2 , (126)

and ρ, R > 0 are strictly positive constants.

Proof.  The proof borrows considerably from Anfinsen and Aamo 
(2019, Chapter 4), with minimum repetition, and with necessary 
augmentation to account for the gain approximation error k̆ − k̂.

Part A: Perturbed target system. We take the same exact adap-
tive backstepping transformation as (4) but apply it to the ob-
server state û, namely,

w(x, t) := û(x, t) −

∫ x

0
k̆(x − y, t)û(y, t)dy,

(x, t) ∈ [0, 1] × R+ , (127)

where k̆ is the exact solution to the Volterra equation (5). This 
backstepping transformation leads to the following system satis-
fied by w (for the computations refer to Appendix  C):
w (x, t) = w (x, t) − k̆(x, t)e(0, t) +
t x

8

γ0u2(0, t)B(e, k̆)(x, t) + Ω(x, t) , (128)

w(1, t) = −

∫ 1

0
k̃(1 − y, t)B(w, β̂)(y, t)dy =: Γ (t),

(x, t) ∈ [0, 1] × R+ , (129)

where

B(e, k̆) := e − k̆ ∗ e , (130)
B(w, β̂) := w − β̂ ∗ w , (131)

Ω(x, t) :=

∫ x

0
k̆t (x − y, t)B(w, β̂)(y, t)dy , (132)

k̃ := k̆ − k̂ . (133)

Notice that the only difference with the system described in An-
finsen and Aamo (2019, (4.29)) lies in the presence of perturbed 
boundary conditions Γ , which is a consequence of the con-
troller choice U that employs an approximated estimated kernel 
k̂ instead of the exact estimated kernel k̆.

Spatial L 2 boundedness and regulation of plant and observer 
states. We use the following Lyapunov function candidate (An-
finsen & Aamo, 2019, (4.42)): 

V (t) := ∥w(t)∥2
c =

∫ 1

0
ecxw2(x, t)dx, t ≥ 0 , (134)

where c > 0 is an arbitrary positive constant. Before starting the 
Lyapunov computations we first state and recall inequalities that 
can be achieved from Lemma  1

∥k̆∥∞ ≤ BeB := k̄ , (135)
∥k̃∥∞ ≤ ϵ , (136)

∥k̆t (t)∥ ≤ M∥β̂t (t)∥ , (137)
|Γ (t)| ≤ ϵΓ̄ ∥w(t)∥ , (138)

∥w(t)∥ ≤ G1∥û(t)∥ , (139)
∥û(t)∥ ≤ G2∥w(t)∥ , (140)

where

M := 1 + BeB(2 + BeB) , (141)
Γ̄ := 1 + B , (142)
G1 := 1 + k̄ , (143)
G2 := 1 + B . (144)

We use the same computations as the one done in Anfinsen and 
Aamo (2019, Chapter 4) with the only difference that w2(1, t) =

Γ 2(t) ̸= 0. We also choose c = 3 and it leads to the following 
upper bound 

V̇ (t) ≤ −V (t)
(
1 − ecϵ2Γ̄ 2)

+ l1(l)V (t) + l2(t), t ≥ 0 , (145)

where

l1(t) := 2G2
1γ

2
0 e

2c
∥e(t)∥2u2(0, t) + ecG2

2∥k̆t∥
2 , (146)

l2(t) := (e3k̄2 + 1)e2(0, t), t ≥ 0 . (147)

We introduce 

ϵ0 :=
e−

c
2

√
2Γ̄

. (148)

Thus, if we choose ϵ ∈ (0, ϵ0) we have 1 − ecϵ2Γ̄ 2 > 1
2 > 0. 

Since, from (137), ∥k̆t∥ ≤ M∥β̂t∥, we have from Lemma  4 that 
l1, l2 ∈ L 1 (and are positive). Then using Krstic et al. (1995, 
Lemma B.6) we have that 

V ∈ L1 ∩ L∞, V (t) → 0. (149)

t→∞
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¯

It follows from (149) that ∥w∥ ∈ L2∩L∞, ∥w(t)∥ →
t→∞

0. Further, 
from (140) we have the same for û. Lastly, from Lemma  4 it 
follows that ∥u∥ ∈ L2 ∩ L∞.

Part B: Pointwise-in-space boundedness and regulation. Exactly 
like in Anfinsen and Aamo (2019, (3.11)) we also introduce the 
quantity 

α(x, t) = u(x, t) −

∫ x

0
k(x − y)u(y, t)dy , (150)

for all (x, t) ∈ [0, 1] × R+ with k being the exact backstepping 
kernel i.e k = K (β). The backstepping transformation of (150) 
leads to the following transport PDE

αt = αx , (151)

α(1, t) =

∫ 1

0
k̂(1 − y, t)û(y, t)dy −

∫ 1

0
k(1 − y)u(y, t)dy,

(x, t) ∈ [0, 1] × R+ . (152)

The only difference with Anfinsen and Aamo (2019, (4.57b)) lies 
in the presence k̂ instead of k̆ in the boundary condition (152). 
But noticing that thanks to (136), (135) we have 
|k̂(x, t)| ≤ ϵ + k̄ . (153)

Thus α(1, t) remains bounded. The solution of the transport PDE 
(151)–(152) is given by 
α(x, t) = α(1, t + x − 1), x + t ≥ 1 . (154)

and, for t + x < 1, we have α(x, t) = α0(t + x), where α0 is 
bounded and denotes the initial condition: α0 := u0 − k ∗ u0. 
It follows that ∥α∥∞ ∈ L∞. Since the transformation (150) is 
invertible, u = α − β ∗ α, we also have that ∥u∥∞ ∈ L∞. We 
then achieve an upper bound on d

dt ∥u∥
2 to get the regulation to 

0 of ∥u∥ through Barbalat’s lemma. From ⏐⏐⏐⏐d∥u∥2

dt
(t)

⏐⏐⏐⏐ ≤ U2(t) + u2(0, t) + 2B|u(0, t)|∥u(t)∥ < ∞ , (155)

we have that ∥u(t)∥ →
t→∞

0. Since ∥u(t)∥, ∥û(t)∥ → 0, we also 
have α(1, t) → 0. From the last observation it follows that 
∥α(·, t)∥∞ →

t→∞
0, t ↦→ ∥α(·, t)∥∞ ∈ L2 ∩ L∞ . (156)

With the invertibility of the transformation (150), namely, u =

α − β ∗ α, we have that 
∥u∥∞ ∈ L∞ ∩ L2, ∥u(t)∥∞ →

t→∞
0. (157)

We now prove a similar result for û. To do so we first use the 
change of variable 
ê(x, t) := e(1 − x, t). (158)

This leads to the following PDE satisfied by ê
êt (x, t) + êx(x, t) = a(t)ê(x, t) + f (x, t), (159)

ê(0, t) = 0 , (160)

where

f (x, t) = β̃(1 − x, t)u(0, t) , (161)
a(t) = −γ0u2(0, t). (162)

We are now ready to use Karafyllis and Krstic (2020, Theorem 
2.3) to achieve the following ISS result for ê for t ≥ 1

∥ê(·, t)∥∞ ≤ 2Be

(
1+µ−γ0 min

0≤s≤t
u2(0,s)

)
max

t−1≤s≤t
(|u(0, t)|e−µ(t−s))

≤ 2Be1+µ max |u(0, t)| , (163)

t−1≤s≤t

9

where 
µ := 2γ0 max

t≥0
u2(0, t) < ∞ , (164)

since ∥u∥∞ ∈ L∞. From (163) we are now ready to prove that 
∥ê∥∞ ∈ L2 ∩ L∞, ∥ê∥∞ →

t→∞
0. Notice that from (150) we have 

that u(0, s) = α(0, s). From (154) we thus have for t ≤ s ≤ t + 1

|u(0, s)| = |α(0, s)| = |α(1, s − 1)| = |α(s − t, t)| ,
(165)

max
t≤s≤t+1

|u(0, s)| ≤ ∥α(·, t)∥∞ . (166)

Since ∥α∥∞ ∈ L2, ∥α(t)∥∞ →
t→∞

0, from (163), (166) the same 
holds for ê, and thus for e and the same for û since û = u − e.

Part C: Global stability. We now prove (125). Define 
S(t) := ∥u(t)∥2

+ ∥û(t)∥2
+ ∥β̃(t)∥2, t ≥ 0 . (167)

The goal is to prove the existence of a function θ ∈ K∞ such that 

S(t) ≤ θ (S(0)), t ≥ 0 . (168)

We begin by reusing the Lyapunov functions introduced in An-
finsen and Aamo (2017, Chapter 4) 

V1(t) :=

∫ 1

0
(1 + x)

[
e2(x, t) +

1
γ

β̃2(x, t)dx
]

, t ≥ 0 . (169)

Using the proof of Anfinsen and Aamo (2019, Lemma 4.1) leads 
to the following∫

∞

0
e2(0, τ )dτ +

∫
∞

0
∥e(τ )∥2dτ

+2γ0

∫
∞

0
∥e(τ )∥2u2(0, τ )dτ ≤ V1(0) . (170)

Also from the definition of the update law (115) we have that 

∥k̆t (t)∥2
≤ M2

∥β̂t (t)∥2
≤

M2γ 2

2γ0
(2γ0∥e(t)∥2u2(0, t)) . (171)

Recalling (145), we also have from Krstic et al. (1995, Lemma B.6) 
that 
V (t) ≤ (e−

t
2 V (0) + ∥l2∥1)e∥l1∥1 . (172)

Then recalling (146), (147) (171) and (170) we have
∥l1∥1 ≤ l̄1V1(0) , (173)
∥l2∥2 ≤ l̄2V1(0) , (174)

where, recalling that k̄ = BeB,G1 = BeB,G2 = B,M(B) =

1 + BeB(2 + BeB), the coefficients ̄l1, l̄2 are given by

l1(B, γ , γ0) := max
((

1 + BeB
)2

γ0e2c,

γ 2ec(1 + B)2
(
1 + BeB(2 + BeB)

)2
2γ0

)
, (175)

l̄2(B) := 1 + e3
(
1 + BeB

)2
. (176)

We then introduce the function
V3(t) :=V1(t) + V (t)

=

∫ 1

0
(1 + x)

[
β̃(x, t)2

γ
+ e2(x, t)

]
+

∫ 1

0
e3xw2(x, t)dx .

(177)

Noticing that 
V (t) ≤ l̄ V (0)e∥l1∥1 , t ≥ 0 , (178)
1 2 1
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we achieve from (172), (178), (173) and (174) the following 

V3(t) ≤ 2l̄2V3(0)el̄1V3(0), t ≥ 0. (179)

We thus have the following for t ≥ 0 using the Cauchy–Schwarz 
and Young inequalities

V3(t) ≥
1
γ

∥β̃(t)∥2
+ ∥e(t)∥2

+
∥û(t)∥2

(1 + B)2

≥
1
γ

∥β̃(t)∥2
+

1
(1 + B)2

(∥e(t)∥2
+ ∥û(t)∥2)

≥
1
γ

∥β̃(t)∥2
+

1
(1 + B)2

(∥u(t)∥2
+ 2∥û(t)∥2

− 2∥u(t)∥∥û(t)∥)

≥
1
γ

∥β̃(t)∥2
+

1
(1 + B)2

(
1
4
∥û(t)∥2

+
1
3
∥u(t)∥2

)
≥ min

(
1
γ

,
1

4(1 + B)2

)
S(t). (180)

We now focus on establishing the upper bound on V3. From (177) 
we have for t ≥ 0 with Young’s inequality

V3(t) ≤
2
γ

∥β̃(t)∥2
+ 4∥u(t)∥2

+ 4∥û(t)∥2
+ e3(1 + k̄)2∥û(t)∥2

≤ max
(

2
γ

, 4 + e3(1 + k̄)2
)
S(t) . (181)

Then gathering (179), (180), (181) we obtain (125) with

R(B, γ , γ0) := 2l̄2 max
(
γ , 4(1 + B)2

)
, (182)

ρ(B, γ , γ0) := l̄1 max
(

2
γ

, 4 + e3
(
1 + BeB

)2)
. □ (183)

Examining the bounds R and ρ in (182), (183), in light of 
(175) and (176), one notes their explicit, albeit conservative de-
pendence on the ‘‘instability bound’’ B, the adaptation gain γ , 
and the normalization (observer nonlinear damping) gain γ0. The 
increasing dependence on the instability B is the most evident, 
and expected.

8. Simulations

We simulate the system governed by (2), (3) where the plant 
coefficient β(x) = 5 cos(σ cos−1(x)) is defined as a Chebyshev 
polynomial with shape parameter σ . This choice of β(x) follows 
from Bhan et al. (2023), Lamarque et al. (2024),  as they are a 
dense orthogonal L2 set of functions and therefore approximate 
a large number of expected functions in practice. However, we 
emphasize that any compact set of continuous functions can be 
chosen for the plant coefficients β(x) ( e.g. Fourier series). For 
simulation of the hyperbolic PDE, we utilize a first-order upwind 
scheme with temporal step dt = 5 × 10−4 and spatial step 
dx = 1 × 10−2. We note that the given PDE with β(x) as a 
Chebyshev polynomial is open-loop unstable (Figure 3, Bhan et al. 
(2023)). For the adaptive control scheme, we utilize the Lyapunov 
approach given in (41), (42), (43), (44) with a first order Euler 
scheme for (42).

We now begin our discussion on training the NO-approximated
kernel. To effectively handle the adaptive estimates of β̂(x) and 
the corresponding kernels, one must construct a diverse and 
exhaustive dataset anticipating the possible β functions encoun-
tered. The simplest way to build this dataset is by generating 
β values with varying σ  and simulating the true adaptive con-
troller saving both the β functions and corresponding kernels 
encountered. Although simulating the true adaptive controller 
is expensive, the construction of the dataset, like training, only 
needs to be done once offline. In this work, we considered 10 β
10
Table 2
Neural operator speedups over the analytical kernel calculation with respect to 
the increase in discretization points (decrease in step size). 
 Spatial step 
size (dx)

Analytical kernel 
calculation 
time (s) ↓

Neural operator 
kernel calculation 
time (s) ↓

Speedup ↑ 

 0.01 0.044 0.023 1.87x  
 0.001 2.697 0.024 110x  
 0.0005 10.334 0.024 427x  
 0.0001 245 0.037 6642x  

functions with σ ∼ Uniform(2.7, 3.2) and simulate the resulting 
PDEs under the adaptive controller for T = 10s, sub-sampling 
each pair of (β, k) every 0.01s using the finite difference scheme 
in Bhan, Bian, Krstic, and Shi (2024) for the kernel calculation 
k. This creates a total dataset of 10000 different (β, k) pairs 
to perform supervised learning of the neural operator (avail-
able publicly https://t.ly/w2kFR). We note that if one wants to 
handle a larger family of plant coefficients, they will need to 
sample more β functions and perform similar calculations run-
ning the true adaptive controller. Lastly, we briefly mention that 
although the Lyapunov approach as discussed in Sections 4, 5 
requires approximation of the derivatives, we found sufficient 
performance without the calculation intensive derivative approx-
imation (See Lamarque et al. (2024, Sec. XI) for more details on 
neural operator approximation of derivatives).

The training of the NO uses the DeepXDE package (Lu, Meng, 
Mao, & Karniadakis, 2021) and requires approximately 100 sec-
onds to train (whereas the dataset takes several minutes to con-
struct). The resulting DeepONet consists of 14913 parameters 
with traditional multi-layer perceptron (MLPs) for the branch and 
trunk networks. Despite the small network, excellent accuracy is 
achieved as the L2 training error was 2× 10−3 and the L2 testing 
error was 1.8 × 10−3.

We begin our discussion of the numerical simulations by pre-
senting NO speedups averaged over 100 calculations of the ker-
nel, according to discretization size, in Table  2. We can see that 
as the spatial step size grows, the speedup increases shrinking 
the analytical kernel calculation time from 4 min to 0.4 seconds. 
This is only for a single kernel calculation in which the speedup is 
exemplified as in each timestep in adaptive control, the resulting 
kernel needs to be continually recalculated according to the new 
β̂ estimate.

Lastly, we conclude by presenting a single instance of the 
resulting controller under NO approximated kernels in Fig.  1. 
This instance presents β(x) as the aforementioned Chebyshev 
polynomial with σ = 2.9 and initializes the estimated plant 
parameter to β̂(x, 0) = 1. We emphasize that this specific β(x)
was not seen in any of the β(x) functions utilized for training. In 
Fig.  1, the plant’s instability in the first eight seconds drives the 
estimation of β̂ , but then, by ten seconds, the estimate is good 
enough to provide a stabilizing controller leading to rapid decay 
of the system state. Furthermore, the stabilization annihilates the 
persistence of excitation from the plant’s estimator leading to 
the stagnation of the estimate β̂ . This is observed clearly in Fig. 
2 where β̂ freezes by t = 10 and — due to lack of excitation 
— never reaches the true β(x) value. We stress that this lack 
of convergence towards the true β is not an issue but merely 
a feature of adaptive control as one is not performing perfect 
plant identification, but estimating with the goal of stabilization, 
which is aptly achieved with the final, inexact β̂ (in red) of Fig. 
2. We conclude our discussion with Fig.  3 showcasing the kernel 
computed using the NO over time. As expected, once β̂ stalls, the 
corresponding kernel — which is a mapping relying solely on β̂ — 
stagnates concurrently. Furthermore, in the right of Fig.  3 we see 
that the NO approximation is very close to the analytical estimate 
maximizing at a relative error of approximately 10%.

https://t.ly/w2kFR
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Fig. 1. Adaptive neural operator controller applied to the PDE governed by (2), (3) where β(x) = 5 cos(σ cos−1(x)) with σ = 2.9 and initial condition u(x, 0) = 1. 
The initial guess for β̂ was β̂(x, 0) = 1 ∀x ∈ [0, 1] and the control update law (42), (43), (44), (45) has parameter c = 1.

Fig. 2. Left: β̂ estimates when controlling the PDE in Fig.  1 using neural operator approximated kernels: true β (blue) and final estimated β̂ (red); Right: comparison 
between the true β value, the initial guess β̂(·, 0) = 1, and the final estimated β̂ at t = 13. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 3. Neural operator approximated kernels when controlling the PDE in Fig.  1 (left), and the difference in kernel error between the approximated kernel and the 
analytical kernel (right).

11
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9. Conclusion

In this paper, we present the first results for NO approximated 
kernels in adaptive control of hyperbolic PDEs. We consider two 
approaches, namely a Lyapunov-based approach and a modular 
approach with a passive identifier, and prove global stability for 
both approaches, with tradeoffs between assumptions and dy-
namic orders. We then present numerical simulations showcasing 
the viability of the Lyapunov approach under the neural operator 
approximated kernels obtaining speedups on the magnitude of 
103. With such large reduction in computational costs, NO-based 
adaptive backstepping opens the door for applying adaptive PDE 
control in real-time.
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Appendix A. Backstepping transformation and involution op-
erator for the kernel

We introduce a backstepping operator B defined as 
B(ξ, η) := ξ − η ∗ ξ , (A.1)

and, with this operator, introduce the (Volterra-type) backstep-
ping equation 
B(ξ, η) = ζ , (A.2)

meant to be solved for ξ , for given (ζ , η). We denote the solution 
of (A.2) for ξ  with the operator W (ζ , η). Next, setting ζ = −η in 
(A.2), we introduce the kernel integral equation 
B(ξ, η) + η = ξ − η ∗ ξ + η = 0 , (A.3)

and denote its solution for ξ  with the operator K (η) := W (−η, η),
namely, as 
B(K (η), η) + η = K (η) − η ∗ K (η) + η = 0 . (A.4)

Next, we give a previously unobserved property of K .

Lemma 5. K −1
= K , i.e. K 2

:= K ◦ K = Id.

Proof.  By noting that the roles of ξ  and η in (A.3) are interchange-
able, or by using the Laplace transform. □

Due to the property given by Lemma  5, we call K  the involu-
tion operator.2

The next lemma gives an explicit expression for the operator 
W .

Lemma 6. 
W (ζ , η) = ζ − K (η) ∗ ζ

= B (ζ , K (η))
= B

(
ζ , K −1(η)

)
. (A.5)

Proof.  By direct substitution into (A.2), or by using the Laplace 
transform. The last equality follows from Lemma  5. □

2 Because a matrix A such that A2
= I is typically referred to as involutory.
12
To summarize, 
ζ = B (ξ , η) iff ξ = B

(
ζ , K −1(η)

)
, (A.6)

or, alternatively stated, if ξ + η = η ∗ ξ , then 
w = u − ξ ∗ u iff u = w − η ∗ w . (A.7)

These observations yield the following result.

Lemma 7.  The operator (η, ζ ) ↦→ (K (η), B(ζ , η)) is an involution.

Proof.  By noting that
K (K (η)) = η (A.8)

B (B (ζ , η) , K (η)) = ζ . □ (A.9)

In calculations to come, Eq. (A.2) will arise in a particular form. 
We provide its solution in the following lemma.

Lemma 8.  For given functions β0, β1, and k0 = K (β0), if the 
function k1 satisfies the equation 
k1 − β0 ∗ k1 + β1 − β1 ∗ k0 = 0 , (A.10)

then it is explicitly given by
k1 = K1(β0, β1) := −β1 + β1 ∗ K (β0) + β1 ∗ K (β0)

− β1 ∗ K (β0) ∗ K (β0) . (A.11)

Proof.  Using Lemma  6. □

Appendix B. Perturbed target system with approximate esti-
mated kernel

We derive the perturbed target system (53), (54), where w =

u − k̂ ∗ u and k̂ is the approximate estimated kernel, assumed to 
be both continuous and differentiable with respect to t . Since (54) 
is just a consequence of the choice of U(t), we focus on proving 
(53). Taking the derivative with respect to x and t of (52) gives 
the following

wt = ut − k̂t ∗ u − k̂ ∗ ut (B.1)
wx(x, t) = ux(x, t) − k̂(0, t)u(x, t)

+

∫ x

0
k̂y(x − y, t)u(y, t)dy,

for all (x, t) ∈ [0, 1] × R+. Integration by parts on (B.2) gives 
wx(x, t) = ux(x, t) − k̂(x, t)w(0, t) − k̂ ∗ ux(x, t) , (B.2)

employing u(0, t) = w(0, t). With (B.1), (2) and (B.2) gives

wt (x, t) − wx(x, t) = w(0, t)
[
β(x) + k̂(x, t)

−

∫ x

0
k̂(x − y, t)β(y)dy

]
− k̂t ∗ u(x, t), ∀(x, t) ∈ [0, 1) × R+. (B.3)

From (5), we have that 
k̂ = −β̂ + β̂ ∗ k̂ + δ (B.4)

and, with some rearrangements, arrive at

β(x) + k̂(x, t) −

∫ x

0
k̂(x − y, t)β(y)dy =β̃(x, t) − β̃ ∗ k̂(x, t)

+ δ(x, t) . (B.5)

Then, using the inverse backstepping transformation u = w−l̂∗w, 
from (B.3) we arrive at (53).
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Appendix C. Perturbed observer target system with exact esti-
mated kernel

We derive the system (128)–(129). Since (129) is just a matter 
of the choice for the controller, we focus on (128). Taking the 
derivative of (127) with respect to t gives

wt (x, t) = ût (x, t) −

∫ x

0
k̆(x − y, t)ût (y, t)dy − Ω(x, t) , (C.1)

Ω(x, t) :=

∫ x

0
k̆t (x − y, t)û(y, t)dy . (C.2)

and with respect to x gives

wx(x, t) = ûx(x, t) − k̆(0, t)û(x, t) +

∫ x

0
k̆y(y − x, t)û(y, t)dy

= ûx(x, t) − k̆(x, t)û(0, t) −

∫ x

0
k̆(x − y, t)ûx(y, t)dy

(C.3)

where we used integration by parts. Then gathering (C.1), (C.3) 
we have
wt (x, t) − wx(x, t) = û(0, t)k̆(x, t)

+ u(0, t)
[
β̂(x, t) −

∫ x

0
k̆(x − y, t)β̂(y, t)dy

]
− Ω(x, t) + γ0u2(0, t)B(e, k̆)(x, t) . (C.4)

Using the definition of ̆k in (5), as well as the inverse backstepping 
transformation, û = w − β̂ ∗ w, we arrive at (128).
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