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A B S T R A C T

Neural operator approximations of the gain kernels in PDE backstepping has emerged as a viable method
for implementing controllers in real time. With such an approach, one approximates the gain kernel, which
maps the plant coefficient into the solution of a PDE, with a neural operator. It is in adaptive control that the
benefit of the neural operator is realized, as the kernel PDE solution needs to be computed online, for every
updated estimate of the plant coefficient. We extend the neural operator methodology from adaptive control
of a hyperbolic PDE to adaptive control of a benchmark parabolic PDE (a reaction–diffusion equation with
a spatially-varying and unknown reaction coefficient). We prove global stability and asymptotic regulation
of the plant state for a Lyapunov design of parameter adaptation. The key technical challenge of the result
is handling the 2𝐷 nature of the gain kernels and proving that the target system with two distinct sources
of perturbation terms, due to the parameter estimation error and due to the neural approximation error, is
Lyapunov stable. To verify our theoretical result, we present simulations achieving calculation speedups up to
45× relative to the traditional finite difference solvers for every timestep in the simulation trajectory.
1. Introduction

First introduced in [1], a new methodology has emerged for em-
ploying neural operator(NO) approximations of the gain kernels in PDE
backstepping. The key advantage of this approach compared to tradi-
tional implementations of the kernel, as well as other approximation
approaches such as [2], is the ability to produce the entire kernel
in mere milliseconds for the online control law while the training
process is decoupled to be precomputed offline. Therefore, perhaps
the most valuable application of the neural operator approximated
gain kernels is in adaptive control, where the kernel needs to be
recomputed, online, for every new estimate of the plant parameter. This
was first explored for hyperbolic PDEs in [3]. In this work, we extend
the results of [3] to parabolic PDEs where the technical challenge
arises both in the Lyapunov analysis of a more complex perturbed
target system as well as in the computational implementation, where
the neural operator must map functions on an 1𝐷 domain into a
2𝐷 triangle. Furthermore, from an application perspective, this paper
enables real-time adaptive control of reaction–diffusion PDEs which
govern a series of real-world applications including, but not limited
to, chemical reactions [4], tubular reactor systems [5], multi-agent and
social networking systems [6,7], and Lithium-ion batteries [8].

✩ The first author is supported by the U.S. Department of Energy (DOE) grant DE-SC0024386. The work of M. Krstic was funded by U.S. Air Force Office of
Scientific Research (AFOSR) , USA grant FA9550-23-1-0535 and U.S. National Science Foundation (NSF), USA grant ECCS-2151525.
∗ Corresponding author.
E-mail address: lbhan@ucsd.edu (L. Bhan).

PDE backstepping for adaptive control. The first study of adaptive con-
trol for parabolic PDEs was in [9–11] which extended the adaptive
backstepping results for nonlinear ODEs [12] via three methodologies
— the Lyapunov approach, passive identifier approach, and swapping
approach. In this work, we focus on the Lyapunov approach which
appears to exhibit superior transient performance as mentioned in [9,
13]. This was then extended into hyperbolic PDEs which refer the
reader to the rich set of literature [14–18]. In [19] the authors then
explored delay-adaptive control which was later extended in [13] for
unknown delays. For more complex systems, we refer the reader to
adaptive backstepping schemes across a variety of challenging plants
including coupled hyperbolic PDEs [20], coupled hyperbolic PDE-PDE-
ODE cascades [21] and the wave equation [22]. Lastly, we mention the
extensions into event-triggered adaptive control in [23–25].

Kernel implementations in PDE control. The downside to the backstep-
ping methodology is that, typically, the gain kernel is governed by
a challenging infinite dimensional operator that needs to be approx-
imated during implementation. Thus, we begin our discussion by re-
viewing a series of works on implementing backstepping controllers
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without learning. To start, we emphasize that backstepping is a late-
umping approach - i.e., one designs the control law in continuous space
or the PDE and then discretizes during implementation [26,27]. As
uch, [28] exploits this property by decoupling the PDE system into
inite dimensional slow and infinite dimensional fast subsystems for
ontroller implementation. In a different approach, [29,30] introduced

a power series approximation of the gain kernel solution which is both
simple and extremely useful for approximating complex kernels such
as the Timoshenko beam, but scales poorly with respect to the spatial
discretization size needed for accurately simulating PDEs.

Neural operators, in contrast, scale extremely well despite the high
discretization needed for simulating PDEs [31]. They were first intro-
duced in a series of work for approximating gain kernels in hyperbolic
DEs [1] and parabolic PDEs [32], as well as general state estima-

tion for nonlinear ODEs [33]. This was then extended for hyperbolic
nd parabolic systems with delays in [34,35] respectively. Further-

more, [36] introduce operator approximations for coupled hyperbolic
PDEs and [37] applied neural operators for control of the Aw–Rascale–
hang (ARZ) PDE with applications to traffic flows. Recently, [38]
ointed out that in Hyperbolic PDEs, the approximation can be sim-

plified to only 𝑘̂(1, 𝑦), but for parabolic PDEs, the entire kernel is
needed in the control law. Lastly, we mention the first extension for
approximating kernels that require recomputation online was in [39]
or semi-linear hyperbolic PDEs via the gain scheduling approach and
s aforementioned, this was later extended into adaptive control of

hyperbolic PDEs in [3].

Paper organization. We first introduce, in Section 2, the nominal adap-
tive backstepping control scheme for reaction–diffusion PDEs to expose
the reader to the type of result we aim to maintain under the neural
operator kernel approximation. We then explore and prove a series of
properties for the gain kernel and its time derivative in Section 3 in
rder to apply the universal approximation theorem [40] in Section 4,

to prove the existence of neural operators for approximating the gain
ernels to arbitrary desired accuracy. We then state and prove our
ain result — namely a Lyapunov analysis of the full system with the

NO approximated kernel, adaptive update law, and the backstepping
control law in Section 5. Lastly, in Section 6, we conclude by presenting
simulations demonstrating the efficacy of the proposed neural operator
approximated control scheme on a parabolic PDE resembling molecular
interactions in chemical reactions.

Notation. We use ‖ ⋅ ‖∞ for the infinity-norm, that is ‖𝜆‖∞ = sup𝑥∈[0,1]
|𝜆(𝑥)|. Furthermore, we use ‖𝑢(𝑥, 𝑡)‖ to be the spatial 𝐿2 norm, ‖𝑢(𝑥, 𝑡)‖
=

(

∫ 1
0 𝑢(𝑥, 𝑡)2𝑑 𝑥

)
1
2 . We use 𝐶𝑛(𝑈 ;𝑉 ) to indicate functions from set

𝑈 into set 𝑉 that have 𝑛 continuously differentiable derivatives. For
scenarios, where the function has multiple arguments, i.e., 𝑓 (𝑥, 𝑦, 𝑡), we
use 𝐶2

𝑥,𝑦𝐶
1
𝑡 to indicate the function has continuous second derivatives in

𝑥 and 𝑦, but only continuous first derivatives with respect to 𝑡. If, the
second argument of above is not given, say i.e., 𝐶1(R𝑝), then assume
the function is mapping into the real numbers R. Lastly, we denote the
positive reals by R+ = {𝑥 ∈ R|𝑥 ≥ 0} and Hilbert spaces by 𝐻𝑛. For
example, 𝐻2 is the space of functions with a 𝐿2 weak derivative of
order 2.

2. Nominal controller for PDE backstepping

We begin by introducing the following 1D Reaction–Diffusion PDE
ith a spatially varying coefficient 𝜆(𝑥),

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝜆(𝑥)𝑢(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , (1)
𝑢(0, 𝑡) = 0 , (2)
𝑢(1, 𝑡) = 𝑈 (𝑡) , (3)

where 𝑢(𝑥, 𝑡) is defined for all 𝑡 ∈ R+ with initial condition 𝑢(𝑥, 0) =
𝑢 (𝑥) ∈ 𝐻2(0, 1) that is compatible with the boundary conditions.
0

2 
Further, 𝜆(𝑥) ∶ [0, 1] → R is an unknown, spatially varying coeffi-
cient function that will be estimated online. The standard approach
for controlling the PDE (1), (2), (3) is to introduce the backstepping
transformation

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − ∫

𝑥

0
𝑘(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑 𝑦 , (4)

to convert the system into the stable target system

𝑤𝑡 = 𝑤𝑥𝑥 , (5)
𝑤(0, 𝑡) = 0 , (6)
𝑤(1, 𝑡) = 0 , (7)

under the feedback control law

𝑈 (𝑡) = ∫

1

0
𝑘(1, 𝑦)𝑢(𝑦, 𝑡)𝑑 𝑦 . (8)

To ensure the transformation (4) converts (1), (2), (3) into (5), (6), (7),
he kernel function 𝑘 must satisfy

𝑘𝑥𝑥(𝑥, 𝑦) − 𝑘𝑦𝑦(𝑥, 𝑦) = 𝜆(𝑦)𝑘(𝑥, 𝑦), (𝑥, 𝑦) ∈ ̆ , (9)

𝑘(𝑥, 0) = 0 , (10)

𝑘(𝑥, 𝑥) = −1
2 ∫

𝑥

0
𝜆(𝑦)𝑑 𝑦 , (11)

where we define the triangular domains ̆ = {0 < 𝑦 ≤ 𝑥 < 1} and
= {0 ≤ 𝑦 ≤ 𝑥 ≤ 1}. Note, the gain kernel, which is the solution to an

nfinite dimensional PDE that is not analytically solvable, is explicitly
n operator mapping from functions of the spatially varying 𝜆(𝑥) into

the PDE solution function 𝑘(𝑥, 𝑦). However, in the adaptive control
case, 𝜆(𝑥) is unknown and thus needs to be estimated online via some
approximation 𝜆̂(𝑥). Thus, the PDE kernel in (9), (10), (11) becomes a
mapping from 𝜆̂(𝑥) ↦ 𝑘(𝑥, 𝑦) where the solution requires recomputation
at every timestep. In what follows, we will denote the PDE solution for
𝜆̂ at time 𝑡 by 𝑘̆(𝑥, 𝑦, 𝑡), and denote the neural operator approximation
f the PDE solution for 𝜆̂ at time 𝑡 by 𝑘̂(𝑥, 𝑦, 𝑡). Further, to ensure the
apping from 𝑢 into the 𝑤 system is well defined, recall the inverse

ackstepping transformation,

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) + ∫

𝑥

0
𝑙(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑 𝑦 , (12)

where we refer to 𝑙 as the inverse backstepping kernel. Then, following
Chapter 11 of [41], the estimator of 𝜆̂ is given by

𝜆̂𝑡(𝑥, 𝑡) ∶= Proj(𝜙(𝑥, 𝑡), 𝜆̂(𝑥, 𝑡)) , (13)

𝜙(𝑥, 𝑡) ∶= 𝛾
𝑢(𝑥, 𝑡)

1 + ‖𝑤‖2

×

(

𝑤(𝑥, 𝑡) − ∫

1

𝑥
𝑘̆(𝑦, 𝑥, 𝑡)𝑤(𝑦, 𝑡)𝑑 𝑦

)

, (14)

where 𝛾 , 𝜆̄ > 0 are constants, ‖𝜆‖∞ ≤ 𝜆̄, and the projection is defined as

Proj(𝑎, 𝑏) ∶=
{

0, if |𝑏| = 𝜆̄ and 𝑎𝑏 > 0
𝑎 . otherwise

(15)

Thus, noting that we introduced a bound on 𝜆, we formally state the
nly required assumption on 𝜆 as the following.

Assumption 1. 𝜆 ∈ 𝐶1([0, 1]) and there exists a constant 𝜆̄ > 0 such
that ‖𝜆‖∞ ≤ 𝜆̄.

Such an assumption is standard in the backstepping literature as
𝜆 ∈ 𝐶1([0, 1]) is needed to ensure well-posedness of the kernel PDE
(9), (10), (11) and the bounded assumption is needed for the adaptive
control estimate. Now, we state the main theorem for adaptive control
f parabolic PDEs under the exact gains, which we aim to emulate

under the neural operator approximated gains in this paper: under the
feedback control scheme with the adaptive estimate 𝜆̂ and true kernel

̆
solution 𝑘, the closed-loop system is regulated asymptotically to 0.
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Theorem 1 ([41]). Stabilization under exact adaptive control scheme).
here exists a 𝛾∗ such that for 𝛾 ∈ (0, 𝛾∗), for any initial estimate 𝜆̂(𝑥, 0) ∈
1([0, 1]) with ‖𝜆̂(𝑥, 0)‖∞ ≤ 𝜆̄ and for any initial condition 𝑢0 ∈ 𝐻2(0, 1)
ompatible with boundary conditions, the classical solution of the closed loop
ystem (𝑢, 𝜆̂) consisting of the plant (1), (2), (3), the update law (13), (14),
and the control law (8) is bounded for all (𝑥, 𝑡) ∈ [0, 1] × R+ such that
lim
𝑡→∞

sup
𝑥∈[0,1]

|𝑢(𝑥, 𝑡)| = 0. (16)

3. Properties of gain kernel PDE

In order to approximate the gain kernel PDE for various 𝜆̂ estimates,
e need to prove that both the time and spatial derivatives are well-
efined, continuous and bounded. The exact use of these Lemmas
ill become clear in invoking the universal operator approximation

heorem in Section 4 and the proof of our main result in Section 5.
We will employ the standard approach of successive approximations on
he integral representation of the kernel PDE. Thus, recall the integral
epresentation of the kernel PDE as

𝐺(𝜉 , 𝜂 , 𝑡) = − 1
4 ∫

𝜉

𝜂
𝜆̂
( 𝑠
2
, 𝑡
)

𝑑 𝑠

+ 1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)𝑑 𝑠𝑑 𝜎 , (17)

where

𝜉 = 𝑥 + 𝑦, 𝜂 = 𝑥 − 𝑦 , (18)

(𝜉 , 𝜂 , 𝑡) = 𝑘̆
(

𝜉 + 𝜂
2

,
𝜉 − 𝜂
2

, 𝑡
)

, (𝑥, 𝑦) ∈  . (19)

Then, for the reader’s convenience, we briefly recall the following
lemma whose proof is well known in the backstepping literature.

Lemma 1 ([42] Existence and Bound for Gain Kernel). Let 𝜆̄ > 0 such
that ‖𝜆̂‖∞ ≤ 𝜆̄ for all (𝑥, 𝑡) ∈ [0, 1] × R+. Then, for any fixed 𝑡 ∈ R+, and
for every 𝜆̂(𝑥, 𝑡) ∈ 𝐶1([0, 1]) at fixed 𝑡, the kernel governed by the PDE (9),
(10), (11) with function 𝜆̂ has a unique 𝐶2( ) solution with the bound
‖

‖

‖

𝑘̆(𝑥, 𝑦, 𝑡)‖‖
‖∞

≤ 𝜆̄𝑒2𝜆̄𝑥. (20)

Lemma 2 (Existence and Bound for 𝑘̆𝑥(𝑥, 𝑥, 𝑡)). Let 𝜆̄ > 0 such that ‖𝜆̂‖∞ ≤
𝜆̄, ∀(𝑥, 𝑡) ∈ [0, 1] × R+. Then, for any fixed 𝑡 ∈ R+, 𝑘̆𝑥(𝑥, 𝑥, 𝑡) ∈ 𝐶1[0, 1]
with the bound
‖

‖

‖

𝑘̆𝑥(𝑥, 𝑥, 𝑡)‖‖
‖∞

≤ 1
2
𝜆̄. (21)

Proof. One can show the existence and continuity of this derivative
on all of (𝑥, 𝑦) ∈  by differentiating (17) and using the method of
successive approximations. However, we only require a bound at the
boundary condition 𝑦 = 𝑥 and thus, one has
|

|

|

|

𝜕
𝜕 𝑥 𝑘̆(𝑥, 𝑥, 𝑡)

|

|

|

|

=
|

|

|

|

−1
2
𝜆̂(𝑥, 𝑡)||

|

|

≤ 1
2
𝜆̄, (22)

∀(𝑥, 𝑡) ∈ [0, 1] × R+ . □

Lemma 3 (Existence and Bound for 𝑘̆𝑡(𝑥, 𝑦, 𝑡)). Let 𝜆̄ > 0 such that ‖𝜆̂‖∞ ≤
𝜆̄, ∀(𝑥, 𝑡) ∈ [0, 1] × R+. Then, for every 𝜆̂(𝑥, 𝑡) ∈ 𝐶1([0, 1] × R+), 𝑘̆𝑡(𝑥, 𝑦, 𝑡)
has a unique 𝐶0( × R+) solution with the bound
‖

‖

‖

𝑘̆𝑡(𝑡)
‖

‖

‖

≤ 𝑀‖𝜆̂𝑡(𝑡)‖ , ∀𝑡 ≥ 0 , (23)

𝑀 = 𝑒2𝜆̄(1 + 𝜆̄𝑒2𝜆̄) . (24)

Proof. We begin by showing existence and continuity. Differentiating
17) with respect to 𝑡 yields

𝐺𝑡(𝜉 , 𝜂 , 𝑡) = −1 𝜉
𝜆̂𝑡

( 𝑠 , 𝑡
)

𝑑 𝑠

4 ∫𝜂 2

3 
+ 1
4 ∫

𝜉

𝜂 ∫

𝜂

0

[

𝜆̂𝑡
(𝜎 − 𝑠

2
, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)

+ 𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

𝐺𝑡(𝜎 , 𝑠, 𝑡)
]

𝑑 𝑠𝑑 𝜎 . (25)

Define the iterate sequence

𝐺0
𝑡 (𝜉 , 𝜂 , 𝑡) ∶=−

1
4 ∫

𝜉

𝜂
𝜆̂𝑡

( 𝑠
2
, 𝑡
)

𝑑 𝑠

+1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂𝑡

(𝜎 − 𝑠
2

, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)𝑑 𝑠𝑑 𝜎 , (26)

𝐺𝑛+1𝑡 (𝜉 , 𝜂 , 𝑡) ∶= 1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

𝐺𝑛𝑡 (𝜎 , 𝑠, 𝑡)𝑑 𝑠𝑑 𝜎 , (27)

and consider the difference sequence

𝛥𝐺0
𝑡 = 𝐺0

𝑡 =−
1
4 ∫

𝜉

𝜂
𝜆̂𝑡

( 𝑠
2
, 𝑡
)

𝑑 𝑠

+1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂𝑡

(𝜎 − 𝑠
2

, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)𝑑 𝑠𝑑 𝜎 , (28)

𝐺𝑛+1𝑡 = 𝐺𝑛+1𝑡 − 𝐺𝑛𝑡 =
1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

𝛥𝐺𝑛𝑡 (𝜎 , 𝑠, 𝑡)𝑑 𝑠𝑑 𝜎 . (29)

Then it is clear 𝐺𝑛𝑡 =
∑∞
𝑛=0 𝛥𝐺

𝑛
𝑡 . We aim to show this series uniformly

converges. For notational simplicity, we introduce the coefficient 𝛼(𝑇 )
which specifies the max of 𝜆̂ and its derivative up to a time 𝑇 .

𝛼(𝑇 ) ∶= max
{

sup
𝑡∈[0,𝑇 ]

‖

‖

‖

𝜆̂𝑡(⋅, 𝑡)‖‖
‖

, 𝜆̂
}

. (30)

Then, for any 𝑇 ≥ 𝑡, the difference sequence satisfies the following
ounds

|

|

|

𝛥𝐺0
𝑡
|

|

|

≤ 𝛼(𝑇 )
( 1
2
+ 𝛼(𝑇 )𝑒2𝛼(𝑇 )

)

, (31)

|

|

𝛥𝐺𝑛𝑡 || ≤
( 1
2
+ 𝛼(𝑇 )𝑒2𝛼(𝑇 )

) 𝛼(𝑇 )𝑛+1(𝜂 + 𝜉)𝑛

𝑛!
. (32)

The first bound comes from applying (30) to (28). The second bound
can be shown via induction. Assume (32) holds for 𝐺𝑛𝑡 . Then, substitut-
ing into (29) yields
|

|

|

𝛥𝐺𝑛+1𝑡
|

|

|

≤ 1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

×
(

( 1
2
+ 𝛼(𝑇 )𝑒2𝛼(𝑇 )

)

×
𝛼(𝑇 )𝑛+1(𝜂 + 𝜉)𝑛

𝑛!

)

𝑑 𝑠𝑑 𝜎

≤ 1
4

(

( 1
2
+ 𝛼(𝑇 )𝑒2𝛼(𝑇 )

) 𝛼(𝑇 )𝑛+2

𝑛!

)

× ∫

𝜉

𝜂 ∫

𝜂

0
(𝜎 + 𝑠)𝑛+1𝑑 𝑠𝑑 𝜎

≤ 1
4

(

( 1
2
+ 𝛼(𝑇 )𝑒2𝛼(𝑇 )

)

×
𝛼(𝑇 )𝑛+2(𝜂 + 𝜉)𝑛+1

(𝑛 + 1)!
)

. (33)

Thus, the series ∑∞
𝑛=0 𝛥𝐺

𝑛
𝑡 uniformly converges on  × [0, 𝑇 ] for 𝑇 ≥

. Since there is a one-to-one correspondence between 𝐺 and 𝑘̆, this
implies the existence and continuity of 𝑘̆𝑡 on  ×R+. One could find a
bound for 𝑘̆𝑡 by analyzing the convergence bound on the series in (31),
32), but for the future Lyapunov analysis, it is easier to work with a

bound on 𝑘̆ in terms of the estimate 𝜆̂.
From (25), the triangle inequality, Cauchy Schwarz, and the substi-

tution of (20) we obtain

|

|

𝐺𝑡(𝜉 , 𝜂 , 𝑡)|| =
|

|

|

|

|

−1
4 ∫

𝜉

𝜂
𝜆̂𝑡

( 𝑠
2
, 𝑡
)

𝑑 𝑠

+ 1
4 ∫

𝜉

𝜂 ∫

𝜂

0

[

𝜆̂𝑡
(𝜎 − 𝑠

2
, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)

+ 𝜆̂
(𝜎 − 𝑠 , 𝑡

)

𝐺𝑡(𝜎 , 𝑠, 𝑡)
]

𝑑 𝑠𝑑 𝜎 |

|

|

(34)

2

|
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≤ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

+ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

𝜆̄𝑒2𝜆̄

+ 𝜆̄∫

𝜉

𝜂 ∫

𝜂

0
|𝐺𝑡(𝜎 , 𝑠, 𝑡)|𝑑 𝑠𝑑 𝜎 . (35)

Now, applying Fubini’s theorem and noting the integrand is always
non-negative yields
|

|

𝐺𝑡(𝜉 , 𝜂 , 𝑡)|| = ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

+ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

𝜆̄𝑒2𝜆̄

+ 𝜆̄∫

𝜉

𝜂 ∫

𝜂

0
|𝐺𝑡(𝜎 , 𝑠, 𝑡)|𝑑 𝑠𝑑 𝜎 (36)

≤ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

+ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

𝜆̄𝑒2𝜆̄

+ 𝜆̄∫

𝜂

0 ∫

𝜉

0
|𝐺𝑡(𝜎 , 𝑠, 𝑡)|𝑑 𝑠𝑑 𝜎 . (37)

Now we apply the Wendroff inequality (see Appendix A) first given
in the book by Beckenbach and Bellman [43] as an extension to

ronwall’s inequality in 2D to obtain the following result for 𝐺𝑡
|𝐺𝑡(𝜉 , 𝜂 , 𝑡)| ≤ ‖

‖

‖

𝜆̂𝑡
‖

‖

‖

(1 + 𝜆̄𝑒2𝜆̄)𝑒2𝜆̄ . (38)

The final result then holds for 𝑘̆𝑡 given 𝐺𝑡 is an equivalent integral
representation of the time derivative of the kernel PDE. □

4. Neural operator approximation of the gain kernel

We aim to approximate the kernel mapping 𝜆̂ ↦ 𝑘 by a neural
perator and thus begin by presenting a general universal approxima-
ion theorem for the nonlocal neural operator - a unifying framework
hat encompasses a series of operator learning architectures including
oth the popular FNO [44] and DeepONet [45] frameworks and their

extensions such as NOMAD [46] and the Laplace NO [47]. We give
the details of the nonlocal-neural operator architecture in Appendix B
(as well as its connections to FNO and DeepONet) and refer the reader
to [40] for further details.

Theorem 2 ([40, Theorem 2.1] Neural Operator Approximation Theorem).
Let 𝛺𝑢 ⊂ R𝑑𝑢1 and 𝛺𝑣 ⊂ R𝑑𝑣1 be two bounded domains with Lipschitz
oundary. Let  ∶ 𝐶0(𝛺𝑢;R

𝑑𝑢2 ) → 𝐶0(𝛺𝑣;R
𝑑𝑣2 ) be a continuous operator

nd fix a compact set 𝐾 ⊂ 𝐶0(𝛺𝑢;R
𝑑𝑢2 ). Then for any 𝜖 > 0, there exists a

nonlocal neural operator ̂ ∶ 𝐾 → 𝐶0(𝛺𝑣;R
𝑑𝑣2 ) such that

sup
𝑢∈𝐾

|(𝑢)(𝑦) − ̂(𝑢)(𝑦)| ≤ 𝜖 , (39)

for all values 𝑦 ∈ 𝛺𝑣.

For readers familiar with the previous explorations of neural op-
rators in approximating kernel gain functions [1], we provide the

following corollary for DeepONet.

Corollary 1 (DeepONet Universal Approximation Theorem; First Proven
in [48]). Consider the setting of Theorem 2. Then, for all 𝜖 > 0, there exists
𝑝∗, 𝑚∗ such that for all 𝑝 ≥ 𝑝∗, 𝑚 ≥ 𝑚∗, there exists neural network weights
𝜑(𝑘), 𝜃(𝑘) such that the neural networks (see [1], Section 3 for definition)
𝑔 and 𝑓 in the DeepONet given by

𝐺N(𝒖𝑚)(𝑦) =
𝑝
∑

𝑘=1
𝑔 (𝒖;𝜑(𝑘))𝑓 (𝑦; 𝜃(𝑘)) , (40)

satisfy

sup
𝑢∈𝐾

|(𝑢)(𝑦) − N(𝑢)(𝑦)| ≤ 𝜖 , (41)

for all values 𝑦 ∈ 𝛺𝑣.

Note that Theorem 2 has two main assumptions. First, the input
function space is required to be compact. Second, the operator mapping
to be approximated must be continuous. We now introduce the operator
4 
for 𝑘̆ that we aim to approximate, noting that the operator output
includes 𝑘̆ as well as its derivatives 𝑘̆𝑥, 𝑘̆𝑥𝑥, 𝑘̆𝑡 which is needed for
proving stability under the neural operator approximation.

Define the set of functions

𝐾 = {𝑘 ∈ 𝐶2
𝑥,𝑦𝐶

1
𝑡 ( × R+)|𝑘(𝑥, 0, 𝑡) = 0}, ∀𝑥 ∈ [0, 1], 𝑡 ∈ R+ . (42)

Let 𝛬 be a compact set of 𝐶0([0, 1]) with the supremum norm such that
for every 𝜆 ∈ 𝛬, ‖𝜆‖∞ < 𝑀 and 𝜆 is 𝑅−Lipschitz where 𝑀 , 𝑅 > 0
are constants that can be as large as needed. Then, denote the operator
 ∶ 𝛬→ 𝐾 as

(𝜆̂(⋅, 𝑡)) ∶= 𝑘̆(𝑥, 𝑦, 𝑡) . (43)

Further, define the operator  ∶ 𝛬 → 𝐾×𝐶1([0, 1] ×R+) ×𝐶0
𝑥,𝑦𝐶

1
𝑡 ( ×R+)

such that

(𝜆̂(⋅, 𝑡)) ∶= (𝑘̆(𝑥, 𝑦, 𝑡), 𝜅1(𝑥, 𝑡), 𝜅2(𝑥, 𝑦, 𝑡)) , (44)

where

𝜅1(𝑥, 𝑡) = 2 𝜕
𝜕 𝑥 (𝑘̆(𝑥, 𝑥, 𝑡)) + 𝜆̂(𝑥, 𝑡) , (45)

2(𝑥, 𝑦, 𝑡) = 𝑘̆𝑥𝑥(𝑥, 𝑦, 𝑡) − 𝑘̆𝑦𝑦(𝑥, 𝑦, 𝑡)
− 𝜆̂(𝑦, 𝑡)𝑘̆(𝑥, 𝑦, 𝑡) . (46)

For the Lyapunov analysis that follows, we also need to include 𝑘̆𝑡 in
our approximation. Thus, define the operator 1 ∶ 𝛬2 → 𝐶2

𝑥,𝑦𝐶
0
𝑡 ( ×R+)

such that

1(𝜆̂(⋅, 𝑡), 𝜆̂𝑡(⋅, 𝑡)) ∶= 𝑘̆𝑡(𝑥, 𝑦, 𝑡) , (47)

where under the transformations 𝜉 = 𝑥 + 𝑦, 𝜂 = 𝑥 − 𝑦,∀(𝑥, 𝑦) ∈  , we
have 𝑘̆𝑡 is the solution to the integral equation

𝑘̆𝑡

(

𝜉 + 𝜂
2

,
𝜉 − 𝜂
2

)

=𝐺𝑡(𝜉 , 𝜂 , 𝑡) , (48)

0 =−𝐺𝑡(𝜉 , 𝜂 , 𝑡) − 1
4 ∫

𝜉

𝜂
𝜆̂𝑡

( 𝑠
2
, 𝑡
)

𝑑 𝑠

+1
4 ∫

𝜉

𝜂 ∫

𝜂

0

[

𝜆̂𝑡
(𝜎 − 𝑠

2
, 𝑡
)

𝐺(𝜎 , 𝑠, 𝑡)

+𝜆̂
(𝜎 − 𝑠

2
, 𝑡
)

𝐺𝑡(𝜎 , 𝑠, 𝑡)
]

𝑑 𝑠𝑑 𝜎 , (49)

where 𝐺 is given by (17).
Lastly, consider the composition of the operators  and 1 given

as  ∶ 𝛬2 → 𝐾 ×𝐶1([0, 1] ×R+) ×𝐶0
𝑥,𝑦𝐶

1
𝑡 ( ×R+) ×𝐶2

𝑥,𝑦𝐶
0
𝑡 ( ×R+) such

hat

 (𝜆̂(⋅, 𝑡), 𝜆̂𝑡(⋅, 𝑡)) ∶= ((𝜆̂(⋅, 𝑡)),1(𝜆̂(⋅, 𝑡), 𝜆̂𝑡(⋅, 𝑡))) . (50)

We now aim to approximate the operator  which requires continuity
of the operator. First, we note that  was shown to be continuous
in [32, Theorem 4]. Thus, it suffices to show 1 is continuous.

Lemma 4. Fix 𝑡 ≥ 0. Let 𝜆1(⋅, 𝑡), 𝜆2(⋅, 𝑡) ∈ 𝛬 and 𝑘1 = (𝜆1), 𝑘2 = (𝜆2).
Then, 1 is Lipschitz continuous. Explicitly, there exists a Lipschitz constant
𝐴 > 0 such that
‖

‖

‖

‖

1

(

𝜆1,
𝜕
𝜕 𝑡 𝜆1

)

−1

(

𝜆2,
𝜕
𝜕 𝑡 𝜆2

)

‖

‖

‖

‖∞
≤ 𝐴‖𝜆1 − 𝜆2‖∞. (51)

Proof. Let 𝜆1, 𝜆2 ∈ 𝛺. Let 𝑘1 = (𝜆1), 𝑘2 = (𝜆2) and denote
𝐺1, 𝐺2 the corresponding transforms of 𝑘1, 𝑘2 in the integral form 𝐺𝑖 =
𝑘𝑖

(

𝜉+𝜂
2 , 𝜉−𝜂2

)

, 𝑖 ∈ {1, 2}. Then, we have the following

𝛿 𝜆 =𝜆1 − 𝜆2 , (52)

𝛿 𝐺 =𝐺1 − 𝐺2 , (53)

𝛿 𝐺𝑡 =−1
4 ∫

𝜉

𝜂

𝜕(𝛿 𝜆)
𝜕 𝑡

( 𝑠
2
, 𝑡
)

𝑑 𝑠

+1 𝜉 𝜂[ 𝜕(𝛿 𝜆) (𝜎 − 𝑠 , 𝑡
)

𝐺1(𝜎 , 𝑠, 𝑡)
4 ∫𝜂 ∫0 𝜕 𝑡 2
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+
𝜕 𝜆2

(

𝜎−𝑠
2 , 𝑡

)

𝜕 𝑡 𝛿 𝐺(𝜎 , 𝑠, 𝑡)

+𝛿 𝜆
(𝜎 − 2

2

) 𝜕 𝐺1
𝜕 𝑡 (𝜎 , 𝑠, 𝑡)

+𝜆2
(𝜎 − 2

2

) 𝜕(𝛿 𝐺)
𝜕 𝑡 (𝜎 , 𝑠, 𝑡)

]

𝑑 𝑠𝑑 𝜎 (54)

In the proof that follows, will omit the arguments on 𝜆 and 𝐺 for
conciseness. Define the sequence

𝛿 𝐺𝑛+1𝑡 = 1
4 ∫

𝜉

𝜂 ∫

𝜂

0
𝜆2
𝜕(𝛿 𝐺)
𝜕 𝑡

𝑛
𝑑 𝑠𝑑 𝜎 , (55)

𝛿 𝐺0
𝑡 =−

1
4 ∫

𝜉

𝜂

𝜕(𝛿 𝜆)
𝜕 𝑡 𝑑 𝑠

+1
4 ∫

𝜉

𝜂 ∫

𝜂

0

[

𝜕(𝛿 𝜆)
𝜕 𝑡 𝐺1 +

𝜕 𝜆2
𝜕 𝑡 𝛿 𝐺 + 𝛿 𝜆𝜕 𝐺1

𝜕 𝑡
]

𝑑 𝑠𝑑 𝜎 . (56)

Then, using [32] the Lipschitz bound for 𝛿 𝐺, the fact 𝜆, 𝜆𝑡 ∈ 𝛬, and the
bound in Lemma 3, for any 𝑇 ≥ 𝑡, we attain

‖𝛿 𝐺0
𝑡 ‖∞ ≤ 𝐴‖𝛿 𝜆‖𝛬 , (57)

|𝛿 𝐺𝑛𝑡 | ≤ 𝐴‖𝛿 𝜆‖𝛬
𝛼(𝑇 )𝑛(𝜉 − 𝜂)𝑛

𝑛!
, (58)

𝐴(𝛼(𝑇 )) > 0 , (59)

where we introduce the norm ‖𝜆‖𝛬 ∶= ‖𝜆‖∞ + ‖𝜆𝑡‖∞. The result then
follows from the uniform convergence of the series

𝛿 𝐺𝑡 =
∞
∑

𝑛=0
𝛿 𝐺𝑛𝑡 , (60)

‖𝛿 𝐺𝑡‖∞ = 𝐴‖𝛿 𝜆‖𝛬𝑒𝛼(𝑇 ) . □ □ (61)

Using the continuity of  , we now invoke Theorem 2 to approxi-
ate the composed kernel mapping.

Theorem 3. Fix 𝑡 ≥ 0 and let (𝜆̂(⋅, 𝑡), 𝜆̂𝑡(⋅, 𝑡)) ∈ 𝛬2. Then for all 𝜖 > 0,
there exists a neural operator ̂ such that for all (𝑥, 𝑦) ∈ 

|(𝜆̂)(⋅, 𝑡) − ̂(𝜆̂)(⋅, 𝑡)|
+ |2𝜕𝑥((𝜆̂)(𝑥, 𝑥, 𝑡) − ̂(𝜆̂))|

+ |(𝜕𝑥𝑥 − 𝜕𝑦𝑦)((𝜆̂)(⋅, 𝑡) − ̂(𝜆̂)(⋅, 𝑡))
− 𝜆̂(𝑦)((𝜆̂)(⋅, 𝑡) − ̂(𝜆̂)(⋅, 𝑡))|
+ |1(𝜆̂, 𝜆̂𝑡)(⋅, 𝑡) − ̂𝑡(𝜆̂, 𝜆̂𝑡)(⋅, 𝑡)| ≤ 𝜖 . (62)

5. Stability under NO approximated gain kernel

To simplify notation, define the following constants for the bounds
or both the approximate backstepping kernel and approximate inverse

backstepping kernel as

‖𝑘̂‖∞ = 𝑘̆ + 𝑘̃ ≤ 𝜆̄𝑒2𝜆̄ + 𝜖 =∶ 𝑘̄ , (63)
𝑙‖∞ ≤ ‖𝑘̂‖∞𝑒

‖𝑘̂‖∞ ≤ 𝑘̄𝑒𝑘̄ =∶ 𝑙 . (64)

We now present our main result.

Theorem 4. Let 𝜆̄ > 0. For any Lipschitz 𝜆, 𝜆̂(⋅, 0) ∈ 𝐶1([0, 1]) such that
𝜆‖∞, ‖𝜆̂(⋅, 0)‖∞ ≤ 𝜆̄ and for all neural operator approximations 𝑘̂ = (𝜆̂)
ith accuracy 𝜖 ∈ (0, 𝜖∗) from Theorem 3 where 𝜖∗ is the unique solution

to the equation
𝜖∗

(

1 + (𝜖∗ + 𝜆̄𝑒2𝜆̄)𝑒𝜖∗+𝜆̄𝑒2𝜆̄
)

= 1∕12 (65)

(whose left side being zero at zero and monotonic implies the existence and
uniqueness of 𝜖∗), for all 𝛾 ∈ (0, 𝛾∗(𝜖 , 𝜆̄)), where

𝛾∗(𝜖 , 𝜆̄) =
1
4 − 3(1 + 𝑙)𝜖

(1 + 𝑙)2(1 + 𝑘̄)2 > 0 , (66)
5 
and for all initial estimates 𝜆̂(⋅, 0), 𝜆̂𝑡(⋅, 0) ∈ 𝛬 and all initial condition 𝑢0 ∈
𝐻2(0, 1) compatible with boundary conditions, the classical solution, for
which 𝜆̂𝑡(⋅, 𝑡) remains in 𝛬 and 𝑘̂(⋅, 𝑡) remains differentiable, of the closed-
loop system (𝑢, 𝜆̂, ̂(𝜆̂)) consisting of the plant (1), (2), (3), the update
law

𝜆̂𝑡(𝑥, 𝑡) = Proj(𝜙(𝑥, 𝑡), 𝜆̂(𝑥, 𝑡)) , (67)

𝜙(𝑥, 𝑡) = 𝛾
𝑢(𝑥, 𝑡)

1 + ‖𝑤̂‖2

×

(

𝑤̂(𝑥, 𝑡) − ∫

1

𝑥
𝑘̂(𝑦, 𝑥, 𝑡)𝑤̂(𝑦, 𝑡)𝑑 𝑦

)

, (68)

𝑤̂(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − ∫

𝑥

0
𝑘̂(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 , (69)

and the controller
𝑈 (𝑡) = ∫

1

0
𝑘̂(1, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 , (70)

is bounded for all 𝑥 ∈ [0, 1], 𝑡 ∈ R+ and

lim
𝑡→∞

max
𝑥∈[0,1]

|𝑢(𝑥, 𝑡)| = 0 . (71)

Additionally, there exist constants 𝜌, 𝑅 > 0 such that the stability estimate
𝛤 (𝑡) ≤ 𝑅(𝑒𝜌𝛤 (0) − 1) , (72)

𝛤 (𝑡) ∶= ∫

1

0

[

𝑢2(𝑥, 𝑡) + (

𝜆(𝑥) − 𝜆̂(𝑥, 𝑡))2
]

𝑑 𝑥 , (73)

holds for all 𝑡 ≥ 0.

Proof. Consider the approximate backstepping transform

𝑤̂(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − ∫

𝑥

0
𝑘̂(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 , (74)

𝑢(𝑥, 𝑡) = 𝑤̂(𝑥, 𝑡) + ∫

𝑥

0
𝑙(𝑥, 𝑦, 𝑡)𝑤̂(𝑦, 𝑡)𝑑 𝑦 , (75)

where 𝑘̂ = (𝜆̂) and 𝑙 is the corresponding inverse backstepping
transformation satisfying,

𝑙(𝑥, 𝑦, 𝑡) = 𝑘̂(𝑥, 𝑦, 𝑡) + ∫

𝑥

𝑦
𝑘̂(𝑥, 𝜉 , 𝑡)𝑙(𝜉 , 𝑦, 𝑡)𝑑 𝜉 . (76)

Then, following Appendix C, the target system becomes

𝑤̂𝑡 = 𝑤̂𝑥𝑥 + 𝛿𝑘0(𝑥, 𝑡)𝑢(𝑥, 𝑡) − ∫

𝑥

0
𝛿𝑘1(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦

− ∫

𝑥

0
𝜆̃(𝑦, 𝑡)𝑘̂(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦

− ∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡) , (77)

̂ (0, 𝑡) = 0 , (78)
̂ (1, 𝑡) = 0 , (79)

where

𝛿𝑘0(𝑥, 𝑡) =𝜆̃(𝑥, 𝑡) − 2𝑘̃𝑥(𝑥, 𝑥, 𝑡) , (80)

𝑘1(𝑥, 𝑦, 𝑡) =𝑘̃𝑥𝑥(𝑥, 𝑦, 𝑡) − 𝑘̃𝑦𝑦(𝑥, 𝑦, 𝑡) − 𝜆̂(𝑦)𝑘̃(𝑥, 𝑦, 𝑡) . (81)

Note, such a target system has two perturbation terms given by 𝛿𝑘0
and 𝛿𝑘1 from the neural operator approximation as in [32] as well
as two perturbations from the adaptive control scheme — namely the
arameter estimation error 𝜆̃ and the rate of the parameter estimation

gain 𝑘̂𝑡. Now, for constant 𝛾 > 0, consider the Lyapunov function

𝑉 = 1
2
ln(1 + ‖𝑤̂‖2) + 1

2𝛾
‖𝜆̃‖2 . (82)

Computing the time derivative along the system trajectories, applying
eibniz rule, substituting for 𝑤̂𝑡 and noting 𝜕

𝜕 𝑡 𝜆̃ = 𝜆̂𝑡 yields

𝑉̇ = 1
1|‖𝑤̂‖2 ∫

1

0
𝑤̂(𝑥, 𝑡)𝑤̂𝑡(𝑥, 𝑡)𝑑 𝑥

+ 1 1
𝜆̃(𝑥, 𝑡)𝜆̃𝑡(𝑥, 𝑡)𝑑 𝑥 (83)
𝛾 ∫0
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= 1
1|‖𝑤̂‖2

(

∫

1

0
𝑤̂(𝑥, 𝑡)𝑤̂𝑥𝑥𝑑 𝑥

+ ∫

1

0
𝑤̂(𝑥, 𝑡)𝛿𝑘0(𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑 𝑥

+ ∫

1

0
𝑤̂(𝑥, 𝑡)∫

𝑥

0
𝛿𝑘1(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥

− ∫

1

0
𝑤̂(𝑥, 𝑡)∫

𝑥

0
𝜆̃(𝑦, 𝑡)𝑘̂(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥

− ∫

1

0
𝑤̂(𝑥, 𝑡)∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥

)

+ 1
𝛾 ∫

1

0
𝜆̃(𝑦, 𝑡)𝜆̂𝑡(𝑦, 𝑡)𝑑 𝑦 . (84)

Noting that 𝑤̂(1, 𝑡) = 𝑤̂(0, 𝑡) = 0 and applying integration by parts to the
irst term along with substituting the update law (67), (68) computed

with 𝑘̂ in for 𝜆̂𝑡 yields

𝑉̇ = − 1
1 + ‖𝑤̂‖2

(𝐼1(𝑥, 𝑡) + 𝐼2(𝑥, 𝑡) + 𝐼3(𝑥, 𝑡)

+ 𝐼4(𝑥, 𝑡)) , (85)

1(𝑥, 𝑡) = ∫

1

0
𝑤̂2
𝑥(𝑥, 𝑡)𝑑 𝑥 , (86)

2(𝑥, 𝑡) = 2∫
1

0
𝑤̂(𝑥, 𝑡)𝑘̃𝑥(𝑥, 𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑 𝑥 , (87)

𝐼3(𝑥, 𝑡) = ∫

1

0
𝑤̂(𝑥, 𝑡)∫

𝑥

0
𝛿𝑘1(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥 , (88)

𝐼4(𝑥, 𝑡) = ∫

1

0
𝑤̂(𝑥, 𝑡)∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥 . (89)

We now bound each term in terms of ‖𝑤̂𝑥‖2 to estimate a bound on
̇ . The 𝐼1 term is obvious.

By expanding 𝑢(𝑥, 𝑡), using (75), and substituting 𝑘̃𝑥(𝑥, 𝑥, 𝑡) < 𝜖∕2
rom Theorem 3 yields

|𝐼2(𝑥, 𝑡)| ≤ 𝜖 ∫

1

0
𝑤̂(𝑥, 𝑡)

(

𝑤̂(𝑥, 𝑡)

+ ∫

𝑥

0
𝑙(𝑥, 𝑦, 𝑡)𝑤̂(𝑦, 𝑡)𝑑 𝑦

)

𝑑 𝑥 (90)

≤ 𝜖(1 + 𝑙)‖𝑤̂‖2 , (91)

and employing Poincaré’s inequality yields

|𝐼2(𝑥, 𝑡)| ≤ 4𝜖(1 + 𝑙)‖𝑤̂𝑥‖2 . (92)

The same exact procedure is used to bound 𝐼3 yielding

|𝐼3(𝑥, 𝑡)| ≤ 4𝜖(1 + 𝑙)‖𝑤̂𝑥‖2 . (93)

Lastly, to bound 𝐼4, first note that the update law satisfies

‖𝜆̂𝑡‖ ≤ 𝛾(1 + 𝑙)(1 + 𝑘̄) , (94)

and thus applying the bound (23), (24) given in Lemma 3 yields

‖𝑘̂𝑡‖ ≤ 𝜖 + 𝛾(1 + 𝑙)(1 + 𝑘̄)2𝑒2𝜆̄ . (95)

Then, expanding 𝐼4 using (75) and applying (95) yields

|𝐼4(𝑥, 𝑡)| ≤ 4(𝜖(1 + 𝑙) + 𝛾(1 + 𝑙)2(1 + 𝑘̄)2𝑒2𝜆̄)‖𝑤̂𝑥‖2 . (96)

Combining the bounds on 𝐼2, 𝐼3, 𝐼4 yields the following estimate
̇ ≤ − 4

1 + ‖𝑤̂‖2
[ 1
4
−
(

1 + 𝑙)
(

3𝜖 − 𝛾(1 + 𝑙)(1 + 𝑘̄)2𝑒2𝜆̄
)]

‖𝑤̂𝑥‖
2 , (97)

yielding

𝑉̇ ≤ −
4(1 − 𝛾∕𝛾∗)
(1 + ‖𝑤̂‖2) ∫

1

0
𝑤̂2
𝑥(𝑥)𝑑 𝑥 , (98)

𝛾∗ =
1
4 − 3(1 + 𝑙)𝜖

(1 + 𝑙)2(1 + 𝑘̄)2 . (99)
6 
Thus, ‖𝑤‖ is bounded and ‖𝑤𝑥‖2 is integrable when 𝛾 < 𝛾∗. Similarly,
e can bound the time derivative of ‖𝑤𝑥‖2 by the following sequence.
irst, compute the derivative, then apply integration by parts and
ubstitution of the target system. Then, substitute the bounds from

Theorem 3 along with the inverse transform (75) and again perform
integration of parts yielding
1
2
𝜕
𝜕 𝑡‖𝑤̂𝑥‖

2 ≤ ∫

1

0
𝑤̂𝑥𝑤̂𝑥𝑡𝑑 𝑥 (100)

≤ 𝑤̂𝑥(1, 𝑡)𝑤̂𝑡(1, 𝑡) − 𝑤̂𝑥(0, 𝑡)𝑤̂𝑡(0, 𝑡)

−∫

1

0
𝑤̂𝑥𝑥(𝑥, 𝑡)𝑤̂𝑡(𝑥, 𝑡)𝑑 𝑥 (101)

≤−∫

1

0
𝑤̂2
𝑥𝑥(𝑥, 𝑡)

+2∫

1

0
𝑤̂𝑥𝑥(𝑥, 𝑡)𝑘̂𝑥(𝑥, 𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑 𝑥

+∫

1

0
𝑤̂𝑥𝑥(𝑥, 𝑡)∫

𝑥

0
𝛿𝑘1(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥

+∫

1

0
𝑤̂𝑥𝑥(𝑥, 𝑡)∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦𝑑 𝑥 (102)

≤ (−1 + 3𝜖(1 + 𝑙) + 𝛾(1 + 𝑙)2(1 + 𝑘̄)2𝑒2𝜆̄)‖𝑤̂𝑥‖2 . (103)

Now, since ‖𝑤̂𝑥‖2 is integrable for all time when 𝛾 < 𝛾∗, integrating
(103) yields that ‖𝑤̂‖ is bounded. Therefore, by Agmon’s inequality,
(𝑥, 𝑡) is uniformly bounded for all 𝑡 ≥ 0. Furthermore, to show that
(𝑥, 𝑡) → 0, performing a similar procedure as in (100)–(103) yields
|

|

|

|

1
2
𝑑
𝑑 𝑡‖𝑤̂‖

2|
|

|

|

≤ ‖𝑤̂𝑥‖
2 + 2𝜆̄(1 + 𝑙)(1 − 𝑘̄)‖𝑤̂‖2

+ 4(𝛾∕𝛾∗)‖𝑤̂𝑥‖2 . (104)

where now the right hand side of this inequality is bounded. Thus, using
Barbalat’s lemma, we get ‖𝑤‖ → 0 as 𝑡 → ∞. Further, using Agmon’s
inequality we have 𝑤(𝑥, 𝑡) → 0 for all 𝑥 ∈ [0, 1] as 𝑡 → ∞. Lastly, the
esult holds for the 𝑢 system via the boundedness of 𝑙 by 𝑙 and the
nverse backstepping transform (12). Thus, the first part of Theorem 4

is complete.
For the stability estimate, note that the Lyapunov function (82)

satisfies

‖𝑤(𝑡)‖2 ≤ (𝑒2𝑉 (𝑡) − 1) , (105)
‖𝜆̃(𝑡)‖2 ≤ 2𝛾 𝑉 (𝑡) ≤ 𝛾(𝑒2𝑉 (𝑡) − 1) , (106)

for all 𝑡 ≥ 0. Further, note that the backstepping transformations with
𝑘̂ and 𝑙 in (74), (75), we obtain the following inequalities

‖𝑢(𝑡)‖2 ≤ (1 + 𝑙)‖𝑤(𝑡)‖2 , (107)
1
2
ln(1 + ‖𝑤(𝑡)‖2) ≤ 1

2
‖𝑤(𝑡)‖2

≤ 1
2
(1 + 𝑘̄)2‖𝑢(𝑡)‖2 , (108)

Combining (105), (106), (107) leads to
𝛤 (𝑡) ≤ max(𝛾 , (1 + 𝑙)2) × (𝑒2𝑉 (𝑡) − 1) . (109)

Using the inequality (108) in combination with (73) and (82) yields

2𝑉 (𝑡) ≤ max
(

1
𝛾
, (1 + 𝑘̄)2

)

× 𝛤 (𝑡) , (110)

resulting in the final stability estimate

𝛤 (𝑡) ≤ 𝑅
(

𝑒𝜌𝛤 (0) − 1) , (111)

𝑅 ∶= max
(

𝛾 , (1 + 𝑙)2) , (112)

𝜌 ∶= max
(

1
𝛾
, (1 + 𝑘̄)2

)

, (113)

for all 𝑡 ≥ 0. □
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Fig. 1. Simulation of the plant (1), (2), (3) with openloop controller 𝑈 (𝑡) = 0. We note
that the plant is openloop unstable.

We briefly remind the reader that the assumptions that 𝜆̂, 𝜆̂𝑡 ∈
𝛬 (i.e. 𝜆̂, 𝜆̂𝑡 are Lipschitz and bounded at every 𝑡 ≥ 0) are strong
and cannot be verified apriori (also seen in [3]), but the assumption
that 𝑘̂𝑡 is differentiable can be satisfied by choosing a differentiable
architecture of the DeepONet, namely via using Sigmoidal activation
functions. See [49] for the formal definition of Sigmoidal functions and
we note 𝜎(𝑥) = 1

1+𝑒−𝑥 is the most common example. The goal of this
paper is not to study the differentiability of the neural operator and
as such we do not explore this problem, but leave it for future work.
Furthermore, we mention that one can employ the passive identifier
approach as in [3] to alleviate the assumption of 𝑘̂𝑡.

Lastly, we briefly mention that the effect of 𝜖 on 𝛾 in (66) is as one
would expect: as the neural approximation error is increased, one must
choose a smaller update gain since the error due to the neural operator-
approximated kernel forces the update law to be more conservative in
its rate of update.

6. Experimental simulations

The code for the experiments with exact parameter values is pack-
aged into a Jupyter-Notebook available at https://github.com/lukebha
n/NeuralOperatorParabolicAdaptiveControl.

For experimental simulation, we consider the plant (1), (2), (3)
which commonly represents a chemical diffusion process where 𝑢 is the
concentration of a molecule and the reaction kinematics are assumed to
be linear with a spatially varying proportional gain [4]. In this work,
we choose the spatially varying coefficient from a class of functions
— namely the Chebyshev polynomials (𝜆(𝑥) = 25 cos(𝛾(ar ccos 𝑥)) + 25)
for three reasons. First, the polynomials are bounded and equicontin-
uous, thus aligning with the compactness requirement of Theorem 3.
Furthermore, the family of polynomials are challenging functions that
yield highly unstable plants and exhibit high parameter sensitivity as
small changes in 𝛾 can drastically change the oscillation of the polyno-
mials (for example, see [1, Figure 1]). Therefore, the neural operator
must learn the mapping for vastly different shaped functions including
unseen 𝜆 with shapes differing from the functions used in training.
Lastly, the choice of a sufficiently complex family closely resembles a
real-world scenario where one most likely will not know the family
of 𝜆 expected, but may try to use some set of basis functions that
can accurately approximate a wide class of potential 𝜆’s. A reasonable
choice for such a set is the Chebyshev polynomials as they are well
known for approximating bounded polynomials and thus are one such
family to train a NO when 𝜆 is unknown.
7 
Fig. 2. The 𝜆̂ estimates according to the feedback loop in Fig. 3 (top). The blue lines
indicate the true 𝜆 and red line the final 𝜆̂ estimate. The bottom figure shows the
final estimates, initial guess, and true 𝜆 for the simulation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Simulation of the plant (1), (2), (3) with the update law (67), (68), (69), and
the controller (70) where 𝑘̂ is calculated using a neural operator.

To train a neural operator approximation of the kernels for an
̂ ̂
unknown set of 𝜆, one must construct a dataset of 𝜆 likely to be seen
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Fig. 4. Neural operator approximated kernel 𝑘̂(1, 𝑦, 𝑡) and kernel error corresponding
to the plant in Fig. 3.

during implementation. As such, to build our dataset, we choose 10 𝜆
values randomly sampled with 𝛾 ∼ Uniform(8.5, 9.5) and simulate the
trajectories with a finite difference solver (from [50]) for the kernel
PDE. We then sample the estimated 𝜆̂ and 𝑘̆ at 500 time-steps for each
trajectory consisting of a dataset with 5000 (𝜆̂, 𝑘̆) pairs for training
and testing the NO. This entire process takes over 1 hour to simulate
trajectories (Nvidia RTX 3090Ti) for only 10 plants and thus further
motivates the use of Neural Operator approximations in the gain kernel.
For the NO architecture, we use a DeepONet [51] where the branch
net is a convolutional neural network [52] and the trunk net is a
feed-forward neural-network. For the analytical kernel PDE simulation,
we use the numerical scheme in the Appendix of [32] and use the
benchmark implementation in [50] for the plant PDE.

We present simulations in Figs. 1, 4, 3, 2 for a single test case
with 𝛾 = 9 - a value unseen during training. Th NO approximated
kernels are stabilizing, and in practice we found the average (over both
space and time) relative error is less than 3% between the operator
approximated kernel and the finite difference kernel despite the spikes
in error as shown in Fig. 4. Furthermore, with a spatial step size
𝑑 𝑥 = 0.01 and a temporal step size of 𝑑 𝑡 = 10−5 (the largest without
numerical instability for the first-order finite difference scheme for
the plant), the trajectory simulation (to 𝑇 = 1s) took 297s for the
finite difference kernel and 73s for the NO approximated kernel (4×
speedup). This includes the simulation of the PDE plant as well as the
calculation of both the update law for the estimator and the controller.
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Table 1
Calculation times for the finite difference scheme and neural operator averaged over
100 kernel calculations at various spatial resolutions.

Spatial step
size (dx)

Finite-difference
kernel
calculation time (ms)

NO
kernel
calculation time (ms)

Speedup

0.05 0.38 0.42 0.9×
0.01 0.95 0.68 13.9×
0.005 39.88 0.86 45.9×

For computation of just the gain kernel, we provide calculation times
for various spatial step sizes in Table 1.

7. Conclusion

In this paper, we extend the work of adaptive PDE control with
neural operator approximated gains from hyperbolic PDEs [3] to the
more challenging parabolic PDE case. In doing so, we present new
Lyapunov results for a more challenging target system (77) that retains
the NO perturbation terms found in [32] coupled with the challenging
perturbations from the adaptive scheme in [41]. Furthermore, we
showcase the power of the neural operator approximation in a scenario
where the kernel must be resolved at every timestep achieving speedups
of 45× compared to a standard finite-difference implementation.
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Appendix A. Wendroff inequality

Lemma 5 (Wendroff Inequality, [43]). Let 𝑐 ≥ 0 and given two non-
negative multi-variable functions, 𝑢(𝑟, 𝑠), 𝑣(𝑟, 𝑠) ≥ 0 such that
𝑢(𝑥, 𝑦) ≤ 𝑐 + ∫

𝑦

0 ∫

𝑥

0
𝑣(𝑟, 𝑠)𝑢(𝑟, 𝑠)𝑑 𝑟𝑑 𝑠 . (A.1)

where 𝑥, 𝑦 ∈ R. Then the following estimate for 𝑢(𝑥, 𝑦) holds
|𝑢(𝑥, 𝑦)| ≤ 𝑐 𝑒∫ 𝑦0 ∫ 𝑥0 𝑣(𝑟,𝑠)𝑢(𝑟,𝑠)𝑑 𝑟𝑑 𝑠 ∀(𝑥, 𝑦) ∈ R2 . (A.2)

Appendix B. Nonlocal neural operator

Definition 1 (Nonlocal Neural Operator (NNO; [40]). Let 𝛺𝑢 ⊂ R𝑑𝑢1 ,
𝛺𝑣 ⊂ R𝑑𝑣1 be bounded domains and define the following function
spaces consisting of continuous functions  ⊂ 𝐶0(𝛺𝑢;R

𝑑𝑢2 ),  ⊂
𝐶0(𝛺𝑣;R

𝑑𝑣2 ). Then, a NNO is defined as a mapping ̂ ∶  →  given
by the composition ̂ = ◦𝐿◦ ⋯ ◦1◦ consisting of a lifting layer ,
hidden layers 𝑙 , 𝑙 = 1,… , 𝐿, and a projection layer . Furthermore,
for 𝑚 = 0,… , 𝑀 modes, let there be functions 𝜓 , 𝜙 ∶ 𝛺 → R𝑑𝑐
𝑙 ,𝑚 𝑙 ,𝑚 𝑢



L. Bhan et al.

f

𝜎

e

b

t

𝑤

𝑤

Systems & Control Letters 195 (2025) 105968 
for a given a channel dimension 𝑑𝑐 > 0. Then, the lifting layer  for a
unction 𝑢 ∈  is given by

 ∶  →  , 𝑢(𝑥) ↦ 𝑅(𝑢(𝑥), 𝑥) , (B.1)

where (𝛺𝑢;R𝑑𝑐 ) is a Banach space for the hidden layers and 𝑅 ∶
R𝑑𝑢2 × 𝛺𝑢 → R𝑑𝑐 is a learnable neural network acting between finite
dimensional Euclidean spaces. For 𝑙 = 1,… , 𝐿 each hidden layer 𝑙 is
of the form

(𝑙𝑣)(𝑥) ∶= 𝜎
(

𝑊𝑙𝑣(𝑥) + 𝑏𝑙 +
𝑀
∑

𝑚=0
⟨𝑇𝑙 ,𝑚𝑣, 𝜓𝑙 ,𝑚⟩𝐿2(𝛺𝑢;R𝑑𝑐 )𝜙𝑙 ,𝑚(𝑥)

)

, (B.2)

where 𝑊𝑙 , 𝑇𝑙 ,𝑚 ∈ R𝑑𝑐×𝑑𝑐 and bias 𝑏𝑙 ∈ R𝑑𝑐 are learnable parameters,
∶ R → R is a smooth, infinitely differentiable activation function that

acts component wise on inputs. Lastly, the projection layer  is defined
as

 ∶  →  , 𝑠(𝑥) ↦ 𝑄(𝑠(𝑥), 𝑥) , (B.3)

where 𝑄 is a finite dimensional neural network from R𝑑𝑐 ×𝛺𝑢 → R𝑑𝑣2 .
Note that (B.2) is almost a traditional feed-forward neural network

xcept for the last term that is nonlocal as the inner product is taken
over the entire 𝛺𝑢 space.

B.1. DeepONet form of NNO

Recall, a DeepONet is of the form

𝐺N(𝒖𝑚)(𝑦) =
𝑝
∑

𝑘=1
𝑔 (𝒖;𝜑(𝑘))𝑓 (𝑦; 𝜃(𝑘)) , (B.4)

where 𝒖𝑚 = (𝑢(𝑥1), 𝑢(𝑥2),… , 𝑢(𝑥𝑚)) for 𝑢 ∈  and 𝑓 , 𝑔 are
neural networks denote the trunk and branch network respectively. To
represent the DeepONet as an NNO, let 𝑊𝑙 , 𝑏𝑙 = 0 for every 𝑙 = 1,… , 𝐿.
Let the branch network 𝑔 which takes in sensor inputs 𝑢(𝑥1),… , 𝑢(𝑥𝑚)
be given by the following

𝑔 (𝑢) ∶= 𝜎

( 𝑚
∑

𝑗=1
𝑅(𝑢(𝑥𝑗 ), 𝑥𝑗 )

)

, (B.5)

where 𝑅 is the same neural network in the lifting layer  in (B.1). Then,
let the trunk network 𝑓 be given by the function 𝜙𝑙 ,𝑚 in (B.2) with the
activation function 𝜎 and projection layer  representing the identity
functions. Then, the DeepONet is universal in the setting of Theorem 2.

B.2. FNO form of NNO

A natural form for the third term in (B.2) is choosing the kernel
ased operator

(𝑙𝑣)(𝑥) ∶= 𝜎
(

𝑊𝑙𝑣(𝑥) + 𝑏𝑙 + ∫𝛺
𝐾𝑙(𝑥, 𝑦)𝑣(𝑦)𝑑 𝑦

)

. (B.6)

Then, one can represent the FNO architecture as a NNO in the following
form. Let 𝐾𝑙(𝑥, 𝑦) = 𝐾𝑙(𝑥 − 𝑦) and 𝐾𝑙(𝑥) =

∑

|𝑘|≤𝑘max
𝑃𝑙 ,𝑘𝑒𝑖𝑘𝑥 be a

rigonometric polynomial (Fourier) approximation with 𝑘max = 𝑀
modes and 𝑃𝑙 ,𝑘 is a matrix of complex, learnable parameters, i.e. 𝑃𝑙 ,𝑘 ∈
C𝑑𝑐×𝑑𝑐 . Then, the FNO is universal in the setting of Theorem 2.

Appendix C. Derivation of target system

We begin by differentiating the transformation

̂ (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − ∫

𝑥

0
𝑘̂(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 , (C.1)

where we apply integration by parts twice and cancel out the 𝑘̂(𝑥, 0, 𝑡) =
0 and 𝑢(0, 𝑡) = 0 terms yielding

̂ 𝑡(𝑥, 𝑡) =𝑢𝑥𝑥(𝑥, 𝑡) + 𝜆(𝑥)𝑢(𝑥, 𝑡) − 𝑘̂(𝑥, 𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)

− ∫

𝑥

0
𝑘̂𝑦𝑦(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦

−
𝑥
(

𝑘̂ (𝑥, 𝑦, 𝑡) + 𝑘̂(𝑥, 𝑦, 𝑡)𝜆(𝑦)) 𝑢(𝑦, 𝑡)𝑑 𝑦 , (C.2)
∫0 𝑡
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and similarly following the application of Leibniz rule for the spatial
derivative

𝑤̂𝑥𝑥(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) − 2𝑘̂𝑥(𝑥, 𝑥, 𝑡)𝑢(𝑥, 𝑡) − 𝑘̂(𝑥, 𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)
− ∫

𝑥

0
𝑘̂𝑥𝑥(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 . (C.3)

Now, subtracting (C.3) from (C.2) and substituting for 𝑘 − 𝑘̂ = 𝑘̃ and
𝜆 − 𝜆̂ = 𝜆̃ yields

𝑤̂𝑡(𝑥, 𝑡) − 𝑤̂𝑥𝑥(𝑥, 𝑡) = (𝜆̃(𝑥, 𝑡) − 2𝑘̃𝑥(𝑥, 𝑥, 𝑡))𝑢(𝑥, 𝑡)
− ∫

𝑥

0

[(

𝑘̃𝑥𝑥(𝑥, 𝑦, 𝑡) − 𝑘̃𝑦𝑦(𝑥, 𝑦, 𝑡)

− 𝜆(𝑦)𝑘̃(𝑥, 𝑦, 𝑡)
)

𝑢(𝑦, 𝑡)
]

𝑑 𝑦

− ∫

𝑥

0
𝜆̃(𝑦)𝑘(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦

− ∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 . (C.4)

And now expanding the 𝑘 = 𝑘̂ + 𝑘̃ in the second integral yields

𝑤̂𝑡(𝑥, 𝑡) − 𝑤̂𝑥𝑥(𝑥, 𝑡) = (𝜆̃(𝑥, 𝑡) − 2𝑘̃𝑥(𝑥, 𝑥, 𝑡))𝑢(𝑥, 𝑡)
− ∫

𝑥

0
𝑘̂(𝑥, 𝑦, 𝑡)𝜆̃(𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦

−∫

𝑥

0

[(

𝑘̃𝑥𝑥(𝑥, 𝑦, 𝑡) − 𝑘̃𝑦𝑦(𝑥, 𝑦, 𝑡)

− 𝑘̃(𝑥, 𝑦, 𝑡)𝜆̂(𝑦)
)

𝑢(𝑦, 𝑡)
]

𝑑 𝑦

− ∫

𝑥

0
𝑘̂𝑡(𝑥, 𝑦, 𝑡)𝑢(𝑦, 𝑡)𝑑 𝑦 . (C.5)

Lastly, substituting 𝛿𝑘0 and 𝛿𝑘1 yields the result.

Data availability

Code is available following link in manuscript.
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