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resident Parisini, President Egerstedt, Past Presi-
dent Baillieul: thank you for choosing me to give 
the 35th Bode Lecture. 

It is not without at least a little bit of irony that 
the first Bode Lecture on machine learning (ML) 

and control be given by somebody as “old school” control 
theoretic as they get. However, if I do not address the ele-
phant in the room, at this time, did I deserve this opportu-
nity, at this time?

BRIDGE BETWEEN 1991 AND 2023  
BODE LECTURES
Among the extraordinary Bode Lectures from the past, the 
one that has a special place in my heart is, naturally, my 
advisor Petar Kokotovic’s 1991 Bode Lecture. His legendary 
“The Joy of Feedback: Nonlinear and Adaptive” [1]. Pivotal 
in the development of our field.

Petar used his lecture to promote the work of several 
early and midcareer researchers in nonlinear and adaptive 
control. Nobody benefited, I feel, more than I did.

I had arrived in Santa Barbara in July that year. I submitted  
my first paper in October, the “tuning functions” design of  
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adaptive nonlinear controllers. In December, Petar was kind 
enough to include this design as the focal point of his Bode Lecture.

So, on with my lecture.

NO RETROSPECTIVES TODAY
Making up my mind regarding the topic for the lecture has 
caused me more than a little apprehension, over several months.

Do I share my excitement about the advances in partial 
differential equation (PDE) control for traffic, epidemiology, 
and social networks, under the title “PDE Backstepping in 
the Century of Sociotechnical Systems”?

Or do I go with a talk titled “Inverse Optimal Safety: Kalman 
Meets Nagumo,” where I review results, mine and my students’, 
on what now goes by the name “control barrier functions” 
(CBFs)? Some of these results go back to 2006 (backstepping for 
CBFs of relative degree higher than one, called “nonovershoot-
ing control” back then). The newest results expand QP safety 
filters via Kalman-like inverse optimality, extend exponential 
safety to prescribed-time safety, and generalize CBF designs 
from ordinary differential equations (ODEs) to PDEs.

Or do I just go with what everyone I had consulted with 
suggested that I speak on, extremum seeking? The sheer 
opportunity for a double entendre in the title of the talk, 
“Extremum Seeking 101,” was tempting, 101 meaning that 
the talk both covers the basics and is occasioned on the one 

hundred and first anniversary of the invention of ES (see 
“Extremum Seeking 101: Too Big of a Bite”).

CONTROL AND ML: FROM RIVALS TO PARTNERS
After much consideration, I decided to create a Bode Lec-
ture that addresses the new generation of control research-
ers, a lecture that, rather than looking back, hopefully opens a 
new horizon. 

In the face of initially perceived “threats” that data-
based tools may pose to theory-supported control designs, 
the past few years have been a testimony to the brilliance 
and resourcefulness of so many individuals in our com-
munity in finding synergies between control and learning. 
The results thus far include learning-based model predic-
tive control (MPC); learning Lyapunov functions, control-
Lyapunov functions (CLFs), and CBFs; learning controllers 
from data; reinforcement learning (model-based and 
model-free); learning in games and multiagent systems 
(MASs); and other topics.

For a fairly extensive list of such results and their authors, 
as of 2023, please see the extensive introduction in [2].

I propose here a use of ML, which, I believe, has not been 
envisioned before. Our community has a formidable heritage  
of rigorous control designs. If you think about it, what is common  
to our control designs is that they are all complex nonlinear 
mappings from models to feedback gains or feedback laws:

.model feedback7

So, I suggest, let ML learn the complete maps from models 
to model-based designs, automate the maps’ deployment in 
control algorithms, and reduce the control algorithms’ com-
putational burden.

With ML and the powerful GPUs designed for neural net-
works (NNs), a speedup in computation in the three orders 
of magnitude range may be achieved. This is a game changer 
for control of PDEs, delay systems, and nonlinear systems.

EXAMPLE OF A MODEL-TO-FEEDBACK MAP
What do I mean by a model-to-feedback map?

The simplest example is the linear quadratic regulator 
(LQR), which is the problem of designing a control law for a 
linear system

x AX Bu= +o

to minimize the cost,

( ) ( ) .x t u t dt2 2

0
+

3 ^ h#

We all know that this problem’s solution is the feedback law

u B PxT=-

where P is the solution to the Riccati equation

	 .IA A BBP P P PT T+ - =- � (1)

However, please do not think of P only as a matrix that 
solves the Riccati equation for one pair (A, B). Imagine the entire 

Summary 

I t is no longer a question whether machine learning (ML) 

should be incorporated into the control toolbox but only 

how. Some high-profile artificial intelligence pioneers cau-

tion their colleagues about the use of ML for control in a man-

ner where physical modeling is unnecessarily bypassed and 

where the distinguishing requirements of feedback systems, 

stability and safety, are not guaranteed. I propose a use of 

ML that leverages the control community’s heritage of rigor-

ous, certificate-bearing control designs. A game-changing 

“supporting and empowering role” is entrusted to ML, in au-

tomating and accelerating by several orders of magnitude 

the implementation of model-based control designs. The 

benefit of such a control + ML blend, where both control and 

ML get to perform complementary roles for which they are 

best suited, is nowhere as evident as for hard-to-control sys-

tems modeled by partial differential equations. I employ, in 

partial differential equation (PDE) control, the recent break-

throughs in deep learning approximations of not functions 

but function-to-function mappings (nonlinear operators), the 

so-called “neural operators.” With neural operators, entire 

PDE control methodologies are encoded into what amounts 

to a function evaluation, leading to a thousandfold speed-

up in real-time implementation, while retaining the stability 

guarantees. Applications range from traffic and epidemiolo-

gy to manufacturing, energy generation, and supply chains.
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nonlinear mapping ( , ),P A BP=  namely, : ( , ) ,A B PP 7  
which is implicitly defined by the Riccati equation.

This mapping is not only continuous in (A, B) but real ana-
lytic, as proven by David Delchamps [3], while a Ph.D. student at 
Harvard University with Chris Byrnes (the 2008 Bode Lecturer).

DEEP NEURAL OPERATORS
Neural operators are NN approximations not of functions but 
of nonlinear infinite-dimensional mappings of functions 

into functions. The excitement about neural operators 
came, in recent years, from their speedup of the solution of 
the notoriously hard nonlinear Navier–Stokes PDEs by 
three orders of magnitude.

Let me review, with the help of Figure 1, the pathway to 
these deep neural operators. The first discovery of approx-
imability by NNs was for nonlinear functions, not opera-
tors, by Cybenko in 1989 [4]. The extension by Chen and 
Chen in 1995 [5] to the approximation of nonlinear operators 
with single-layer NNs was barely noticed. Today’s great 
impact of neural operators is due to the theory developed 
for multilayer, or deep, neural operators, a couple of years 
ago, by Lu, Jin, and Karniadakis [6], as well as by other 
teams of researchers developing a variety of methods.

The theory of neural operators, as universal approxima-
tors, has a tremendous potential for control. Let me give 
you a two-sentence digest, stripped of burdensome nota-
tion and technical details, of the landmark universal 
approximation theorem by Karniadakis and his team [6].

Extremum Seeking 101: Too Big of a Bite 

Extremum seeking was the most appealing candidate topic 

for a backward-looking Bode Lecture. I have worked on 

extremum seeking for a quarter-century now and, with many 

coauthors, introduced the stability guarantees, source seek-

ing, stochastic extremum seeking, Newton extremum seeking, 

Nash equilibrium seeking, and extremum seeking for delay 

systems and partial differential equations.

Who would have thought, in 1997, that the proof of stability 

[S1], driven purely by curiosity, would bring the subject to life 

and lead, as of 2023, to

•	 18,000 papers/articles

•	 nearly 3,000 patents, currently produced at the rate of 

more than one patent per day?

You can see why I wimped out of the task of surveying thou-

sands of publications in a one-hour lecture.

However, before I move on from extremum seeking, let me 

mention to you its greatest industrial achievement: extreme ul-

traviolet (EUV) light in chip manufacturing, depicted in Figure S1. 

A rapid fire of laser pulses, shown with the orange lines, blasts a 

rapid fire of droplets of a liquid metal, tin, shown with the red dots, 

at a rate of 100,000 hits per second. Extremum seeking made 

the EUV technology stable, after all else had been tried.

EUV has reduced, over the last decade, the chip feature size 

by two orders of magnitude. EUV is now a US$10 billion per year 

industry in EUV (photolithography light source) equipment alone. 

Stable EUV was enabled by a 2013 patent of my student Paul 

Frihauf and his collaborators at Cymer, Inc. [S2], based on an ar-

ticle of another team of students in my lab [S3], a decade earlier.

REFERENCES
[S1] M. Krstic and H.-H. Wang, “Design and stability analysis of extre-
mum seeking feedback for general nonlinear systems,” in Proc. 36th 
IEEE Conf. Decis. Control, Piscataway, NJ, USA: IEEE, 1997, vol. 2, pp. 
1743–1748, doi: 10.1109/CDC.1997.657809.
[S2] P. Frihauf, D. J. Riggs, M. R. Graham, S. Chang, and W. J. Dun-
stan, “System and method to optimize extreme ultraviolet light genera-
tion,” U.S. Patent 8598552B1, 2013.
[S3] J.-Y. Choi, M. Krstic, K. B. Ariyur, and J. S. Lee, “Extremum seeking 
control for discrete-time systems,” IEEE Trans. Autom. Control, vol. 47, 
no. 2, pp. 318–323, Feb. 2002, doi: 10.1109/9.983370.
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FIGURE S1 An application of extremum seeking with the high-
est industrial impact to date: EUV light in photolithography. 
Extremum seeking has stabilized the process in which laser 
pulses hit liquid tin droplets at the rate of tens of kilohertz, 
enabling the increase of chip density by two orders of magni-
tude and the creation of a US$10 billion per year industry (as 
of 2023) in light sources for photolithography.

CYBENKO (1989; for Functions)
↓

CHEN & CHEN (1995; for Operators, Single-Layer)
↓

LU, JIN, KARNIADAKIS (2021; for Operators, Deep NN)

FIGURE 1 The progression of neural approximation of nonlinear 
mappings, from functions to operators, using deep NNs.
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Let G  denote a (nonlinear) operator. If G  is continuous, 
then, for all ,02e  there exists a (deep) neural operator Gt  
such that

( ) ( )u uG G 1 e- t

for all inputs ,u U!  a compact set of continuous functions.
In even simpler words, any continuous operator can be 

approximated by an NN, to arbitrarily tight accuracy, uni-
formly over a compact set of continuous input functions.

The approximating “deep neural operator” Gt  has been 
branded, by the authors, as a DeepONet.

OUTLINE OF THE LECTURE
In the rest of the lecture I will show you several uses of 
neural operators in control of PDEs. The need for a speedy 
approximation of feedback algorithms is particularly pro-
nounced in control of such complex and high-dimensional 
dynamical systems as PDEs. Neural operators are simi-
larly applicable in control of nonlinear ODEs, as well as in 
MASs and games. You may think of PDEs as MASs with 
infinitely many agents.

I will show you examples of the power of neural oper-
ators in control of both hyperbolic and parabolic PDEs. 
For pedagogical reasons, I start with hyperbolic PDEs, for 
which the operator that arises in the feedback design 
involves functions of only one spatial variable. In para-
bolic PDEs, functions of two variables necessarily arise.

I will show you examples of both mappings whose out-
puts are control gains and mappings whose outputs are the 
control values.

I will close the lecture with two application domains 
where a rapid recomputation of complex feedback laws, in 
real time, is critical. Rapid recomputation is critical in gain 
scheduling for nonlinear PDEs and adaptive control for PDEs 
with unknown functional coefficients.

HYPERBOLIC PDES: A PEDAGOGICAL START
I first want to ease you into the notion that the design of 
control gains for PDEs is a design of function-to-function 
operators that are nonlinear, even for PDEs that are linear. 
This is easiest to see on a class of hyperbolic PDEs in which 
both the model coefficient functions and the feedback gain 
functions have only a single (spatial) argument.

Transport PDE With Destabilizing Recirculation
Before I present stabilization of some unstable PDEs to you, 
let me introduce you to the baby among PDEs, the transport 
PDE. The transport PDE,

u ut x=

has one derivative in time t and one in space x (see “PDE 
Notation”). The transport PDE is nothing more than a PDE 
representation of a pure delay. As depicted in Figure 2, 
the input signal U(t) is delayed by a unit of time, over a 
unity distance.

The simplest example of an unstable hyperbolic PDE has 
the state u(0, t), from the outlet x = 0, fed back into the trans-
port domain:

	 ( , ) ( , ) ( , ) .( )u x t u x t u tx 0t x b= + � (2)

The functional coefficient ( ),xb  highlighted in red, is 
called recirculation. This plant has a continuum of positive 
feedback loops, one at each spatial location x.

You can see the destabilizing effect of positive feedback 
in the simulation plot in Figure 3. The growing oscilla-
tions in this plot are similar to stop-and-go oscillations in 

u (0,t) = U (t –1) u (x,t) U (t)

x = 0
Outlet

x = 1
Inlet

Boundary
Control

FIGURE 2 A (leftward) transport PDE representation of a unity pure 
delay, where ( , ) ( )u t U t0 1= - .

PDE Notation

Figure S2 is helpful in getting acquainted with the nota-

tion common for PDEs. The state of a PDE is not a vec-

tor but a function, a vector of infinite dimension. In PDEs we 

cannot use the symbol x for the state variable, because x 

is commonly used for the spatial coordinate, the continuum 

analog of the index of an entry of a state vector. Based on 

fluid dynamics, where the state is usually the fluid velocity, 

u, the PDE state is typically denoted by u(x, t), at a location 

x and at time t. In PDE control, the actuation is usually at the 

boundary of the domain. We denote the input by U since it 

often has the same physical nature as the state u; it just 

acts at the boundary.

FIGURE S2 PDE notation: the state is denoted by u, the input 
by U, the spatial coordinate by x, and the time by t. The 
curve shows the state as a function of space x, at a given 
time t. If unfamiliar with the notion of a system state being a 
function, one may regard the state u as an infinite-dimen-
sional vector, with x being a “continuum index” of the entries 
of the vector u.

State
u (x,t)

Spatial
Coordinate

Control
U (t)

1 x
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freeway traffic flow, which is modeled by PDEs somewhat 
more complex than (2).

The control in the transport PDE with recirculation 
appears at a boundary, x = 1, the inlet of the transport pro-
cess, namely,

( , ) ( , ) ( ) ( , ),
( , ) ( )  

[ , )u x t u x t u t
u t U t

xx 0 0 1
1 control.

recirculation
boundary

t x !b= +

=

The challenge for the control design for this system is 
that the positive feedback loops are closed throughout 
the spatial interval [ , ),0 1  while the control acts only at the 
boundary x 1=  of the interval, as depicted in Figure 4. So 
control U cannot simply cancel any of these positive feed-
back loops.

At first, it seems impossible for the scalar control U (at 
the boundary) to unlink the continuum of recirculations 
(throughout the domain). However, it is possible to unlink 
them, using PDE backstepping. In fact, that is what PDE 
backstepping was invented for. For PDE backstepping, this 
example is the simplest nontrivial benchmark.

PDE Backstepping Design
Backstepping employs a spatial convolution transformation 
of the state, ,u w7  with a convolution kernel function k, 
underbraced in red:

	 ( , ) ( , ) ( ) ( , ) .w x t u x t k y u y t dyx
x

0
= - -># � (3)

The kernel k depends, in this pedagogical example, on a 
single spatial variable, x – y.

The backstepping transformation, when set to zero at 
the actuated boundary, provides the control law, with the 
same kernel k, whose argument x is set to 1, serving as the 
gain for the controller:

	 ( ) ( ) ( , ) .U t k y u y t dy1
0

1
= -># � (4)

The control law (4), along with the transformation of the 
state, (3), eliminates the destabilizing recirculation:

	 ( ) ( , )w w x u t0t x b= + � (5)

	 ( , ) .w t 01 = � (6)

The resulting closed-loop system, called a target system, is 
the pure delay, with its zero input emphasized in red. The 
target system is not only exponentially stable but finite-time 
stable. Figure 5 shows how the state u(x, t) settles to zero in 
finite time and how the control, shown by the red curve at 
the boundary ,x 1=  achieves this stabilization goal.

Backstepping Kernel Integral Equation and  
Nonlinear Operator
Let us recall the backstepping transformation (3) and the 
control law (4). The key player in both of them is the 
kernel function k, underbraced in red in both equations. I 
have not defined the function k yet. It is k, in fact, that has 
to be designed.

For the kernel function k to eliminate the recirculation 
in the target system (5), (6), kernel k must satisfy the follow-
ing integral equation, for a given recirculation function :b

	 ( ) ( ) ( ) ( ) , [ , ].k x x x y k y dy x 0 1
x

0
!b b=- + -# � (7)

u (0,t) U (t)

β(x)

Boundary
Control

FIGURE 4 A continuum of positive-feedback recirculations in the 
transport PDE with recirculation, ( ) ( , )u u x u t0t x b= + . None of 
these recirculations can be unlinked (cancelled) using scalar 
boundary actuation, ( , ) ( ) .u t U t1 = .
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FIGURE 5 Backstepping feedback (4), whose value is highlighted in red, 
at the boundary x = 1, stabilizes the transport PDE with recirculation (2).

2,000

1,000

–1,000

–2,000

–3,000

0

u
(x

,t
)

"

0 1 2 3 4 5
1

0.5
0

x

Time

Unstable

FIGURE 3 The transport PDE with recirculation, ( )u u xt x b= +  
( , )u t0 , has a continuum of positive feedback loops, recirculating 

the outlet state u(0, t) back into the domain, which results in insta-
bility. In this simulation, only a pair of complex eigenvalues with 
positive real parts arises, resulting in a growing oscillation of the 
plant state in both space and time.
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This integral equation serves the same purpose of a 
“gain design equation” for the PDE backstepping design as 
the Riccati equation (1) serves for the LQR design. Let us 
now introduce a compact, convolution notation for this 
integral equation, and let us suppress the spatial variable:

.k k)b b=- +

This is a linear equation in k, for a given .b  Since a con-
volution appears in the equation, let us apply the Laplace 
transform L,  but in space (not in time), and solve for k:

L L
L

{ }
{ }

.k 1
1

b

b
=

-
-- ' 1

While this expression is not explicit in ,b  it is clear that it is 
nonlinear in .b

To summarize, the mapping : kK 7b  defined by the 
linear integral equation (7) is a nonlinear operator. Interest-
ingly, the operator K  happens to be its own inverse. Func-
tions with this property are called involutions, and matrices 
with this property are called involutory. So, I call K  an 
involution operator.

Learning the Nonlinear Operator K
If one solves the integral equation (7) for a rich enough col-
lection of functions ( ),xib  one obtains a training set of 
gains ( ),k xi  as in the diagram in Figure 6. With this training 
set, one can train a deep NN ,Kt  which approximates the 
operator .K

However, can Kt  approximate K  as closely as we like? The 
answer is affirmative, using Karniadakis’s DeepONet uni-
versal approximation theorem, provided we prove that this 
nonlinear operator : kK 7b  is continuous. In fact, we 
prove that K  is a bit more Lipschitz.

Lemma 1 (Lipschitzness of Operator K )
K  is Lipschitz, with a Lipschitz constant no greater than 

,e B3  on any compact set of input functions ,B#b 3  for 
any .B 02

The Lipschitzness of the nonlinear operator K  is not a 
trivial property. I am not talking about the Lipschitzness 
of the operator’s output function k(x), in relation to its 
scalar spatial argument x. I am establishing the Lip-
schitzness of the entire operator ( )K b  in relation to its 
functional input .b

So, having proven the Lipschitzness of ,K  the DeepO-
Net theorem guarantees that a large enough NN approxi-
mates the operator K  arbitrarily closely, uniformly in the 
input functions beta.

Theorem 1 (DeepONet Approximation of K )
For all , ,B 02e  there exists a DeepONet Kt  satisfying

( )( ) ( ) ( )x xK K 1 eb b- t

for all B#b 3  and [ , ].x 0 1!

Figure 7(a) shows one illustrative input–output pair 
( , )kb t  of the approximate operator .Kt  A comparison of the 
magnitudes on the vertical axes of the two plots shows that 
the approximation error in Figure 7(b) is two orders of mag-
nitude smaller than the exact operator output ( )k K b=  
being approximated. So the DeepONet approximation Kt  
of the exact operator K  is good.

Are DeepONet Gains Stabilizing?
It is reassuring that the gain approximation in Figure 7 
is good; however, approximating control gains alone is 
not of interest to us. Since the approximated gains are 
to be used for feedback, the question is whether stabi-
lization, guaranteed under exact gains, survives the 
approximation.
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FIGURE 7 The training process in Figure 6 results in a good Deep-
ONet approximation Kt  of the exact operator .K  For (a) an illustra-
tive input–output pair ( , ),kb t  (b) the approximation error is two 
orders of magnitude smaller than the kernel k being approximated 
by ) .(k K b=t t

Learning of DeepONet

DeepONet Trainer

Coursat PDE
Solver (Offline)

βi(x ) ki(x )

FIGURE 6 The process of constructing a neural operator (DeepO-
Net) Kt , which approximates the exact operator ,K  by solving, 
numerically, the integral (7) for a rich enough collection of func-
tions ( ),xib  obtaining a training set of gains ( )k xi  and training  
an NN for .Kt
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To answer this question, we plug the approximate gain 
( )k K b=t t  into the backstepping feedback law,

	 ( ) ( ) ( , )U t k y u y t dy1
( )( )y

0

1

1K

= -

b -

t

t
># � (8)

and then employ this feedback as a boundary input, 
( , ) ( ).u t U t1 =  Then we proceed to study closed-loop stability.

We already know that if the exact kernel k is used in the 
backstepping transformation (3) and in the control law (4), the 
exact target system (5), (6) is obtained, resulting in finite-time 
stability. However, when the approximated feedback (8) is 
employed, along with the approximated ( )k K b=t t  in a back-
stepping transformation, meaning that (3) is replaced by

( , ) ( , ) ( ) ( , )w x t u x t k x y u y t dy
x

0
= - -t t#

a perturbation appears in the target system

( , ) ( , ) ( , )
( , )

( )w x t w x t w t

w t

x 0
1 0

t x

perturbation

d= +

=

t t t

t

6 7 8444 444

where the overbraced perturbation is vanishing because it 
has the outlet state ( , )w t0t  as a factor, and the perturbation 
coefficient d  is

( ) .( ) ( )1 KK
bounded by

)b b bd = - + -
e

t^ h
1 2 34444 4444

The boundedness of ( ) ( )K Kb b- t  by an approximately 
small e  follows from Theorem 1. In plain language, we can 
make the perturbation coefficient d  as small as we like 
with a large enough NN .Kt

Lemma 2 (Lyapunov Estimate for Target System)
For all neural operators Kt  with , / ,e B0 2 1!e +^ ^ ^ hhh  the 
Lyapunov functional

( ) ( , )V t e w x t dxx2

0

1 2= t#

satisfies the bound

( ) ( )V t V e c0 0c t 2# )- )

for all .B#b 3

What is the price for this theoretical result? From the 
reciprocal dependence of the upper bound on e  in Lemma 
2 with respect to the bound B on the destabilizing recircu-
lation function ,b  we note that the more unstable the open-
loop plant is, the larger the NN that is needed for the kernel 
approximation.

Finally, we get to our main result.

Theorem 2 (Closed Loop Is Robust to DeepONet)
For any system with ,B#b 3  all controllers with Kt  
trained for any , /e B0 2 1!e +^ ^ ^ hhh guarantee

( )u t Me u t 0/c t 2
0 6# $- )

with overshoot coefficient

( ) , .M e e e1 1 1( )1b b e b b b= + + + + = 3
b e b+r r r rr r^ ^ ^h h h

This theorem establishes more than exponential stability 
in the original state u, with an explicit (and, of course, con-
servative) estimate of the overshoot coefficient M. The theo-
rem guarantees robustness to learning: it is a stability result

»» under all the controllers
»» approximated by all the possible NNs
»» with all accuracy parameters e  in a certain range.

PARABOLIC PDES: GAIN OPERATORS WITH 
FUNCTIONS OF TWO VARIABLES
You might recall me emphasizing that I was starting, for 
pedagogical reasons, with operators whose inputs and out-
puts are functions of only one variable. Such operators 
arose in hyperbolic PDEs. Let us now advance to more com-
plex PDEs in which the gain operator involves functions of 
more than one variable.

The simplest such case is the unstable reaction–diffu-
sion PDE,

( , ) ( , ) ( , ).( )u x t u x t u x txt xx m= +

This PDE is parabolic, with two derivatives in space. 
The PDE’s reaction function ( )xm  causes instability 
(when positive).

For this system, the backstepping transform cannot be a 
simple convolution. It must be a general Volterra operator, 
with a kernel k that depends on two distinct variables, x 
and y, namely,

	 ( , ) ( , ) ( , ) ( , ) .w x t u x t k u y t dyyx
x

0
= - # � (9)

The kernel k must satisfy the following PDE:

	 ( , ) ( , ) ( ) ( , )k x y k x y y k x yxx yy m- = � (10)

where ,m  the destabilizing reaction functional coefficient, is the 
PDE’s input, and the backstepping kernel k the PDE’s output. 
(There are, in addition, two boundary conditions, which I omit, 
and the domain is triangular, rather than rectangular.)

The mapping from m  to k, defined by the PDE (10), is 
hard to visualize. In Figure 8 we show one input–output 
pair ( , ),km  where the output function k(x, y) of two vari-
ables is the result of the input function ( )xm  of one variable 
“running through” the PDE (10). With some abuse (reuse) 
of notation, we denote the operator from m  to k as ,K  
namely, : .kK 7m

With the backstepping transformation (9) and the feed-
back law ( ) ( , ) ( , ) ,U t k y u y t dy1

0

1
= #  we obtain the exact target 

system ,w wt xx=  which is the heat equation (with suitable 
boundary conditions) and, therefore, exponentially stable.
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When we approximate K  by a DeepONet Kt  and use Kt  
in the backstepping transformation and the feedback law, 
we obtain the perturbed target system

( , ) ( , ) ( , ) ( , )( ) ( , )w x t w x t u x t u y t dyx x yt xx
x

k k
0

0 1

 perturbation

d d= + +t t
6 7 84444444444 4444444444

#

with

( ) ( ( ) ( , ) ( ) ( , )).

( ) ( , ) ( ) ( , )( )

( , )
dx
d x x x x

y x y x y

x

x y

2 K K

K Kxx yy

k

k

0

1 2 2 m m m

m md

d

=-

=- - - -

- t

t^
^

h
h

The perturbation terms ,k k0 1d d  include the kernel opera-
tor approximation error ,Kt  as well as the error’s derivatives. 
I have to skip, in this time-limited lecture, the gory details 
of the full definition of the operator K  and the proof of its 
Lipschitzness. However, let me assure you that the pertur-
bations can be guaranteed to be small by training the 
neural operator to make ,k k0 1d d  small.

Let me now show you one representative kernel approx-
imation, in Figure 9. The approximated kernel ( , )k x yt  looks 
coarse. This is expected since kt  is an output of an NN. You 
can see at the bottom of Figure 9 that the approximation 
error is about one tenth the size of the exact kernel k. So, the 
neural operator does a good enough job at what it has been 
trained to do.

What does it take to produce such a close approxima-
tion? It takes an NN with 76 million parameters. This is as 
expected for approximating PDEs that are nonlinear, in 
two dimensions, and with arbitrary input functions.

The training takes a mere 5 min with Nvidia RTX 3090Ti 
GPU (for 500 epochs, on 1,000 m  functions as Chebyshev 
polynomials). To generate a single kernel function kt  for a 
function m  outside the training set, it takes 25 microseconds, 
making the entire kernel function computable at frequencies 
of tens of kilohertz. On an older laptop, and without a GPU, 
all these computations take about fifty times as long, namely, 
the training takes only 4–5 h, and the evaluation of kt  takes 
0.5 ms, namely, the kernel is still computable in a real-time 
fashion at a kilohertz sampling frequency.

However, let us remember why we are here, not only 
to compute gain kernels accurately but for a “preserva-
tion of stabilization under approximation.” The following 

theorem, for parabolic PDEs, reads almost exactly as Theo-
rem 2 for the hyperbolic case.

Theorem 3 (Parabolic: Robustness to DeepONet)
For any system with B| #m m= 3 mr  and ,B#m 3 ml l  there 
exists 02e)  such that all controllers with gains ( )k K m=t t  
trained for any ( , )0!e e)  guarantee

( )u t Me u t 0/t 2
0 6# $-

where

( , ) .M e e e1 1 e2 2 2

e m m m e= + + +m m m e+mr r rr r r r^ ^h h

The proof of Theorem 3 has major differences from the 
proof of Theorem 2, in terms of establishing both the Lip-
schitzness of the operator and the stability of the parabolic 
perturbed target system.

Before progressing with further reading of the theoreti-
cal material, the reader may refer to “Applied PDE Control 
and Experiments: Parabolic (Additive Manufacturing) and 
Hyperbolic (Traffic).”

CAN DEEPONET APPROXIMATE NOT JUST A GAIN 
BUT A FULL FEEDBACK LAW MAP?
You have seen me so far exploit the same idea twice: learn 
the mapping from a PDE model into a backstepping gain, 
specifically, first, the mapping ( )K7b b  for a hyperbolic 
PDE and then the mapping ( ),K7m m  for an entirely  
different ,K  for a parabolic PDE. However, in control 
implementation, we do not apply a gain function (·)k  but  
a scalar control value U. This control value, ( )U t = 

( ) ( , ) ,k y u y t dy1
0

1
-#  also written compactly, by suppress-

ing the time variable, as ( ) ( ),( )U k u u1 1K) )b= = ^ h  is a 
scalar (real) output of the mapping : ( , )u UU 7b  defined as

( , ) ( ) ( ).u u 1U K )b b= ^ h

λ (x )

k (x ,y)

y

x
x 0

0
1

1

FIGURE 8 A visualization of the operator : kK 7m  defined by the 
PDE (10).
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FIGURE 9 The kernel k is approximated by ( ),k K m=t t  using a 
DeepONet, to about 10% accuracy.
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The operator U  is a functional: it has two inputs, which are 
continuous functions, b  and u, and a real output. The con-
trol implementation employs two such input functions 
into the feedback operator, b  representing the model of the 
PDE and u representing the state of the PDE. Why not 
approximate this operator, ,U  with a DeepONet, given 
U ’s importance, both practical and fundamental?

Since U  is a continuous operator, we can approximate 
it. The DeepONet universal approximation theory guar-
antees a neural approximability of U  with arbitrarily 
close accuracy.

Lemma 3 (DeepONet Approximability of U)
There exists a neural operator Ut  such that

( , ) ( , )u uU U 1 eb b- t

for all , , .B u B0 u2 # #e b 3 3b

It does not hurt to note, before proceeding, that the 
feedback law’s approximation ,Ut  while arbitrarily accu-
rate, is not equilibrium-preserving. The exact feedback 
operator U  is linear in the state u, but Ut  is not, since it is 
an NN.

Is this feedback stabilizing? Yes, but not globally expo-
nentially. The result is weaker because the approximation 
error acts as a nonvanishing perturbation on the system. 
Stability is practical and semiglobal.

Theorem 4 (Semiglobal Practical Stability)
For any system with ,B#b 3  all controllers ( , )uU bt  
trained for any /B e B2 1u1e + b^ ^ ^h hh guarantee

	

( )u t B e B e e u

B e
1 1

1
2

 

B t
0

residual value

#

e

+ +

+ +

b b

b

-b^
^

^h
h

h

1 2 34444 4444
� (11)

for all initial conditions

	 .u
B e e B1
1

1 2B

u

0

0

# e

+ +
-

2

b b
b

Bf
^ h

p
1 2 344444 44444

� (12)

In plain English, the neural approximation of the opera-
tor from the PDE model and PDE state to the control input 
is stabilizing semiglobally and practically.

The practical nature of stability is shown in the estimate 
(11): after an exponential decay, the state settles to a resid-
ual set whose spatial L2 size is proportional to the operator 
approximation error, ,e  emphasized in yellow. The result is 
semiglobal in the sense that the region of attraction (12) can 
be arbitrarily enlarged by training the feedback operator 
for larger state values, Bu, emphasized in pink. To approach 
global exponential stability, the price is a larger NN.

The simulations in Figure 10 illustrate Theorem 4. The 
PDE is stabilized but with a small residual error, noticeable 
in the plot for control, toward the end of the time interval, 
on the lower left.

REAL-TIME USES OF DEEPONET
Neural operators (such as DeepONet) generate solutions of 
PDEs on the order of a thousand times faster than numerical 
PDE solvers. However, my first two examples, one hyperbolic 
and one parabolic, have performed the evaluation with the 

Applied PDE Control and Experiments: Parabolic (Additive Manufacturing) and  
Hyperbolic (Traffic) 

After this litany of hyperbolic and parabolic PDEs, theorems, 

and formulas, it may be a good moment to take a break 

and turn the attention to physics and practice. PDE backstep-

ping has seen many uses in control applications, including oil 

drilling and lithium-ion batteries. However, let me make a brief 

mention of two recent books, by my Ph.D. students, on such 

applications of PDE control. Shumon Koga’s book [S4] for par-

abolic models in additive manufacturing and Huan Yu’s book 

[S5] for hyperbolic models in traffic control have both gone 

from theorems to experiments. Incidentally, both books are in 

Birkhäuser’s series edited by Professor Tamer Basar.

REFERENCES
[S4] S. Koga and M. Krstic, Materials Phase Change PDE Control & 
Estimation. Basel, Switzerland: Birkhäuser, 2020.
[S5] H. Yu and M. Krstic, Traffic Congestion Control by PDE Backstep-
ping. Cham, Switzerland: Springer, 2022.

FIGURE S3 Books [S4] and [S5].
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neural operator only offline, followed by using the controller 
in real time.

I will close the lecture with control problems where the 
operator is evaluated online repeatedly. The thousandfold 
computational speedup, which the NN offers over solving 
PDEs in real time, is crucial.

Gain Scheduling for Nonlinear PDEs
The first online use of a DeepONet that I show is in gain 
scheduling, for nonlinear PDEs. Extending linear PDE 
backstepping to nonlinear PDEs, using a nonlinear Volterra 
series, is the best approach, the PDE equivalent of the rigor-
ous, elegant, feedback linearization (or backstepping) for 
ODEs but incredibly, almost hopelessly complex. Rafael 
Vazquez and I have done it once [7], [8] and would recom-
mend the experience only to an enemy.

The alternative to a full-blown nonlinear design is gain 
scheduling. The article [9] by Rugh and Shamma, which 
won the IFAC High Impact Paper Award, surveys rigorous 
gain scheduling for ODEs. My students and I introduced 
such a linear parameter varying-esque framework for non-
linear PDEs in [10], a decade after [9]. This approach to 
nonlinear PDE control has not been revisited since, due to 
its theory being demanding, in spite of its straightforward 
implementation.

To illustrate gain scheduling for nonlinear PDEs, I 
return to the hyperbolic PDE with recirculation but where 
now the recirculation b  depends on the outlet state u(0, t), 
shown in red, in addition to depending on x:

	 ( , ) ( , ) ( , ) ( , ) .( , )u x t u x t x u tu t 00t x b= + � (13)

You can see in Figure 3 a linear version of such a plant 
having exponentially growing oscillations. Under a non-
linearity, the unstable oscillations settle into a limit cycle, 
as exhibited in Figure 11.

How does a linear controller, designed based on the Jaco-
bian linearization at the origin, fare for this nonlinear 
system? It fares poorly, as one observes in Figure 12. Except 
for miniscule initial conditions, such a linear feedback 
makes matters even worse than they are in the open loop in 
Figure 3. The linear control eliminates the limit cycle and 
results in an exponential instability.

We now introduce a nonlinear operator for scheduling the 
backstepping gains, the parameterized involution operator :K

) ( , ) ( , ) ( , ) ( ) ( , )( x x x y y dyK K
x

0
b b b bo o o o=- + -#

where .R!o  The input functions b  of this operator depend 
on two variables, the spatial variable x, as before, in (7), and 
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the variable ,o  which stands in for the outlet state u(0, t). We 
employ this new operator in a gain scheduling nonlinear 
feedback law, with approximation Kt ,

	 ( ) ( ) ( , ) ( , ) .( , )U t y u y t dyu t1 0K
0

1
b= -t# � (14)

For simulation results, let us turn our attention to Fig
ure 13. Figure 13(a) illustrates the stabilization with the  
gain scheduling controller, implementing the DeepONet 
( ) ( , ( , ))y u t1 0K b -t  as a gain. Figure 13(b) shows how the spa-

tially dependent gain (( , ) ) ( , ( , ))k x t y u t1 0K b= -t t  evolves over 
time, in response to the variation of the scheduling state u(0, t).

Can we prove anything for a DeepONet-enabled gain 
scheduling controller, such as the one illustrated by Figure 13? 
Yes, we can prove stability, stated in the next theorem. How-
ever, the result is not easy, and its proof approaches 20 pages. 
This is because even in the absence of a perturbation induced 
by the DeepONet approximation, perturbations caused by 
derivatives both in time (as in gain scheduling for ODEs [9]) 
and in space need to be dominated in the analysis.

Theorem 5 (Local Stabilization in H1 Norm)
For all ,c 02  there exist , ,M 00 2e X)  such that with any 
neural operator Kt  approximated to any accuracy ( , ),0!e e)

( ) ( ( )) ( )u u t M u e
c t

0 0 0 2&# #X X X X -

for all t 0$ , where

( ( )) : ( , ) ( ) ( ) .u t u t u t u t0 x
2 2 2

X = + +

In this theorem, our estimate of a region of attraction 
,0X  shown in yellow, in terms of the H1 spatial norm of the 

state, shown in blue, depends on the accuracy e  of the 
neural operator .Kt

Adaptive Control for Unknown Functional Coefficients
The last result I have, for today, is the most exciting, at least 
to me: in online adaptive control. You will see offline learn-
ing and online learning working in tandem.

I return to the example (2), repeated here for convenience:

	 ( , ) ( , ) ( , ) .( )u x t u x t u tx 0t x b= + � (15)

However, ( )xb  denotes now an unknown functional coef-
ficient. The online estimate of ( )xb  is denoted by ( , )x tbt ,  
and its updating includes projection in order to guarantee 
that (·, )t B#b 3

t  for all .t 0$  The neural operator K K.t  
has already been trained; it produces the adaptive gain 

( )K bt t  by being fed the estimate bt  and is employed in the 
indirect adaptive control law,

( ) ( ) ( , ) ( , ) .U t y t u y t dy1K
0

1
b= -t t#

The estimation of b  with bt  is performed online. The 
update law is designed by Lyapunov approach and given by

	

( , )
( )

( , ) ( ) ( , ) ( , ) ( , )

x t
w t

e w x t e y x t w y t dy u t

t 1

0K
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#

2
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b

b

=
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t
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1 2 344444444444 44444444444
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�

(16)

where

( , ) ( , ) ( ) ( , ) ( , )

( ) ( , ) .

w x t u x t x y t u y t dy

w t e w x t dx

K
x

c
cx

0

2

0

1 2

b= - -

=

t t#
#

The structure of the update law (16) is conventional: a 
product of a regressor with the regulation error, divided by 
normalization, and employing the backstepping transfor-
mation and its weighted norm.
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FIGURE 11 The transport PDE with a nonlinear recirculation (13) is 
unstable at the origin but settles into a (spatiotemporal) limit cycle.
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an exponential growth. This is the result of acting aggressively in 
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the bounding effect of the nonlinearity in ( , ( , )) .x u t0b
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The update law (16) looks like a PDE, but it is not. It has a 
derivative in time but no derivative in x. Instead, it has inte-
gration in x. The right-hand side of (16) depends nonlinearly 
on bt  through the neural operator .Kt . In today’s parlance, 
this is a nonlinear ensemble system, in the same mathemati-
cal family with mean-field games.

Let me illustrate this online learning-based control, 
enabled by offline learning, using the plots in Figure 14. The 
plant is open-loop unstable. The adaptive controller stabi-
lizes the plant, in spite of the b  function being unknown. 
How, exactly?

Adaptive control is a rather complex process, so let me 
explain it step by step. The plant’s instability drives the 
estimation of b . By about 10 s, the estimate bt  of b , shown 
in Figure 14(c), is good enough to produce a controller that 

is stabilizing, as shown in Figure 14(b), where the state  
u(x, t) rapidly decays after about 10 s. The stabilization of 
u(x, t) then eliminates the persistency of excitation (PE) in 
the update law (16). This loss of PE automatically freezes 
the updating of bt , from about 10 s onward.

Figure 14(c) shows that bt  has settled to the red profile, 
but it has not converged to the true blue profile. This lack of 
exact convergence does not matter. The red profile for bt  is 
stabilizing, which is the sole task of adaptive control (system 
identification is not the task).

So, if you are uninitiated in the miracle of adaptive con-
trol, the simulation in Figure 14 introduces it to you: suc-
ceeding at the task of control, without paying the price (of 
inducing PE) for unnecessary complete learning of the 
model. In fact, unless tracking of a complex reference is 
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FIGURE 13 (a) The nonlinear gain-scheduling controller (14) stabilizes the nonlinear PDE (13), with the control input shown in red. (b) The 
spatially dependent gain ( , ) ) ( , ( , ))(k x t y u t1 0K b= -t t  evolves over time, in response to the variation of the scheduling state u(0, t). It is inter-
esting how the gain profile grows more negative, overall, over time. This is consistent with the fact that the open-loop system has a limit cycle, 
shown in Figure 11. The controller is more cautious initially, given the bounding open-loop benefit of the limit cycle, and grows more aggres-
sive as the state gets smaller. The DeepONet-enabled gain scheduling controller acts in a meaningful, theory-interpretable fashion.
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desired, “incidental PE” and perfect model identification 
are synonymous with bad transient performance. We see 
that avoided in Figure 14.

Is the adaptive control experiment in Figure 14 backed 
by theory? Yes.

Theorem 6 (Global Stabilization, Pointwise Regulation)
There exist ,R 02t  such that

( ) ,

( ) ( , ) ( ) ( , )

t R e t

t u x t x x t dx

1 0( )0

2 2

0

1

6# $

b b

C

C

-

= + -

tC

t

^
^
h

h6 @#

and
( , ) , [ , ] .lim u x t x0 0 1

t
6 !=

"3

Global stability in the L2 norm of the state and parameter 
error, with an exponential-in-initial-condition estimate, along 
with a pointwise-in-space regulation of the state u, is proven.

SUMMARY AND PERSPECTIVES
Let me close with a question and an answer to it. Is this learn-
ing-based approach to control model-free? It is absolutely not; 

the role of ML is not to learn the unknown. ML’s role is to 
encode, once and for all, in an NN, the model-based back-
stepping design for a class of PDEs. If it is model-free learn-
ing and control you are after, you might want to check out 
extremum seeking instead.

To recap, a real-time speedup of three orders of magni-
tude in producing feedback gains, achieved with a very rea-
sonable training time (minutes), enables control of PDEs 
that are nonlinear or have unknown functional parameters.

What problems open up for future research? This entire 
list does:

»» 2D and 3D PDEs
»» coupled + ensemble PDEs
»» other nonlinear PDE classes
»» PDE observers
»» nonlinear ODE delay systems–predictor feedback
»» applications.

I am particularly excited about applications but also about 
predictor feedback for nonlinear delay systems, which 
requires an approximation of the open-loop flow map of the 
nonlinear ODE.

However, why should you care, if you do not work on 
PDE control? Many designs for nonlinear controllers and 
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FIGURE 14 (a) The plant is open-loop unstable. (b) The adaptive controller stabilizes the plant, once the estimate bt  has become good 
enough, around 10 s, to provide a stabilizing feedback gain. (c) The parameter updating ends around 10 s, with a profile ( )xbt  in red, 
which differs from the true profile ( )xb  in blue, since the stabilization of the state u(x, t) terminates the persistence of excitation and does 
not require perfect identification of ( ) .xb
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estimators, for systems such as ( ) ( ) ,x f x g x u= +o  are predi-
cated on solving a PDE:

»» dynamic programming: DeepONet for ( , )f g V7
»» output regulation
»» Kravaris-Kazantzis-Luenberger (KKL) observers
»» Immersion & Invariance (I&I) adaptive control.

However, I do not promise that DeepONet will remove the curse 
of dimensionality. Approximating the Hamilton–Jacobi–Bell-
man map for an ODE with more than a few state variables will 
always be very hard, possibly harder than designing controllers 
for linear PDEs in dimensions not much higher than three.
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produced many more results than I am able to show on this 
day in December, toppled some amazing technical barri-
ers, and shown that ML is no bane but a boon for control.
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PDE Backstepping: 77 Notable 
Contributors 

I would be absolutely remiss not to acknowledge the PDE 

backstepping community in this lecture. This is a com-

munity of exceptional talent. It has revolutionized a branch 

of control theory, PDE control, which is physically ubiquitous 

and highly necessitated in technology.

Seventy-seven notable contributors to PDE backstep-

ping are: Aamo, Ahmed-Ali, Alalabi, Alleaume, Andrade, 

Anfinsen, Ascencio, Astolfi, Baccoli, Balogh, Bastin, 

Bekiaris-Liberis, Bernard, Bhan, Bresch-Pietri, Bribiesca- 

Argomedo, Burkhardt, Cai, Cerpa, Chen (several), Cochran, 

Coron, Demir, Deutscher, Diagne, Di Meglio, Espitia, Fri-

hauf, Gehring, Giri, Guan, Guo, Hasan, Hashimoto, Hayat, 

Hu, Karafyllis, Koga, Lamnabhi-Lagarrigue, Liu (several), 

Magnis, Meurer, Morris, Moura, Nguyen, Olive, Oliveira, Or-

lov, Parisini, Pisano, Polyakov, Prieur, Qi, Rathnayake, Re-

daud, Ren, Sanz-Diaz, Schuster, Shi, Siranosian, Smyshly-

aev, Steeves, Su, Susto, Tang, Tsubakino, Vazquez, Wang 

(several), Xu, Yu, Zhang, and Zhu.
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