
1066-033X/24©2024IEEE24  IEEE CONTROL SYSTEMS  »  AUGUST 2024

P
resident Parisini, President Egerstedt, Past Presi-
dent Baillieul: thank you for choosing me to give
the 35th Bode Lecture.

It is not without at least a little bit of irony that
the first Bode Lecture on machine learning (ML)

and control be given by somebody as “old school” control
theoretic as they get. However, if I do not address the ele-
phant in the room, at this time, did I deserve this opportu-
nity, at this time?

BRIDGE BETWEEN 1991 AND 2023
BODE LECTURES
Among the extraordinary Bode Lectures from the past, the
one that has a special place in my heart is, naturally, my
advisor Petar Kokotovic’s 1991 Bode Lecture. His legendary
“The Joy of Feedback: Nonlinear and Adaptive” [1]. Pivotal
in the development of our field.

Petar used his lecture to promote the work of several
early and midcareer researchers in nonlinear and adaptive
control. Nobody benefited, I feel, more than I did.

I had arrived in Santa Barbara in July that year. I submitted
my first paper in October, the “tuning functions” design of

MIROSLAV KRSTIC

2023 BODE PRIZE LECTURE

Machine Learning:
Bane or Boon for Control?

Machine Learning:
Bane or Boon for Control?

Digital Object Identifier 10.1109/MCS.2024.3402581

Date of current version: 19 July 2024

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5523-941X

AUGUST 2024  «  IEEE CONTROL SYSTEMS  25

adaptive nonlinear controllers. In December, Petar was kind
enough to include this design as the focal point of his Bode Lecture.

So, on with my lecture.

NO RETROSPECTIVES TODAY
Making up my mind regarding the topic for the lecture has
caused me more than a little apprehension, over several months.

Do I share my excitement about the advances in partial
differential equation (PDE) control for traffic, epidemiology,
and social networks, under the title “PDE Backstepping in
the Century of Sociotechnical Systems”?

Or do I go with a talk titled “Inverse Optimal Safety: Kalman
Meets Nagumo,” where I review results, mine and my students’,
on what now goes by the name “control barrier functions”
(CBFs)? Some of these results go back to 2006 (backstepping for
CBFs of relative degree higher than one, called “nonovershoot-
ing control” back then). The newest results expand QP safety
filters via Kalman-like inverse optimality, extend exponential
safety to prescribed-time safety, and generalize CBF designs
from ordinary differential equations (ODEs) to PDEs.

Or do I just go with what everyone I had consulted with
suggested that I speak on, extremum seeking? The sheer
opportunity for a double entendre in the title of the talk,
“Extremum Seeking 101,” was tempting, 101 meaning that
the talk both covers the basics and is occasioned on the one

hundred and first anniversary of the invention of ES (see
“Extremum Seeking 101: Too Big of a Bite”).

CONTROL AND ML: FROM RIVALS TO PARTNERS
After much consideration, I decided to create a Bode Lec-
ture that addresses the new generation of control research-
ers, a lecture that, rather than looking back, hopefully opens a
new horizon.

In the face of initially perceived “threats” that data-
based tools may pose to theory-supported control designs,
the past few years have been a testimony to the brilliance
and resourcefulness of so many individuals in our com-
munity in finding synergies between control and learning.
The results thus far include learning-based model predic-
tive control (MPC); learning Lyapunov functions, control-
Lyapunov functions (CLFs), and CBFs; learning controllers
from data; reinforcement learning (model-based and
model-free); learning in games and multiagent systems
(MASs); and other topics.

For a fairly extensive list of such results and their authors,
as of 2023, please see the extensive introduction in [2].

I propose here a use of ML, which, I believe, has not been
envisioned before. Our community has a formidable heritage
of rigorous control designs. If you think about it, what is common
to our control designs is that they are all complex nonlinear
mappings from models to feedback gains or feedback laws:

.model feedback7

So, I suggest, let ML learn the complete maps from models
to model-based designs, automate the maps’ deployment in
control algorithms, and reduce the control algorithms’ com-
putational burden.

With ML and the powerful GPUs designed for neural net-
works (NNs), a speedup in computation in the three orders
of magnitude range may be achieved. This is a game changer
for control of PDEs, delay systems, and nonlinear systems.

EXAMPLE OF A MODEL-TO-FEEDBACK MAP
What do I mean by a model-to-feedback map?

The simplest example is the linear quadratic regulator
(LQR), which is the problem of designing a control law for a
linear system

x AX Bu= +o

to minimize the cost,

() () .x t u t dt2 2

0
+

3 ^ h#

We all know that this problem’s solution is the feedback law

u B PxT=-

where P is the solution to the Riccati equation

	 .IA A BBP P P PT T+ - =- � (1)

However, please do not think of P only as a matrix that
solves the Riccati equation for one pair (A, B). Imagine the entire

Summary

I t is no longer a question whether machine learning (ML)

should be incorporated into the control toolbox but only

how. Some high-profile artificial intelligence pioneers cau-

tion their colleagues about the use of ML for control in a man-

ner where physical modeling is unnecessarily bypassed and

where the distinguishing requirements of feedback systems,

stability and safety, are not guaranteed. I propose a use of

ML that leverages the control community’s heritage of rigor-

ous, certificate-bearing control designs. A game-changing

“supporting and empowering role” is entrusted to ML, in au-

tomating and accelerating by several orders of magnitude

the implementation of model-based control designs. The

benefit of such a control + ML blend, where both control and

ML get to perform complementary roles for which they are

best suited, is nowhere as evident as for hard-to-control sys-

tems modeled by partial differential equations. I employ, in

partial differential equation (PDE) control, the recent break-

throughs in deep learning approximations of not functions

but function-to-function mappings (nonlinear operators), the

so-called “neural operators.” With neural operators, entire

PDE control methodologies are encoded into what amounts

to a function evaluation, leading to a thousandfold speed-

up in real-time implementation, while retaining the stability

guarantees. Applications range from traffic and epidemiolo-

gy to manufacturing, energy generation, and supply chains.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

26  IEEE CONTROL SYSTEMS  »  AUGUST 2024

nonlinear mapping (,),P A BP= namely, : (,) ,A B PP 7
which is implicitly defined by the Riccati equation.

This mapping is not only continuous in (A, B) but real ana-
lytic, as proven by David Delchamps [3], while a Ph.D. student at
Harvard University with Chris Byrnes (the 2008 Bode Lecturer).

DEEP NEURAL OPERATORS
Neural operators are NN approximations not of functions but
of nonlinear infinite-dimensional mappings of functions

into functions. The excitement about neural operators
came, in recent years, from their speedup of the solution of
the notoriously hard nonlinear Navier–Stokes PDEs by
three orders of magnitude.

Let me review, with the help of Figure 1, the pathway to
these deep neural operators. The first discovery of approx-
imability by NNs was for nonlinear functions, not opera-
tors, by Cybenko in 1989 [4]. The extension by Chen and
Chen in 1995 [5] to the approximation of nonlinear operators
with single-layer NNs was barely noticed. Today’s great
impact of neural operators is due to the theory developed
for multilayer, or deep, neural operators, a couple of years
ago, by Lu, Jin, and Karniadakis [6], as well as by other
teams of researchers developing a variety of methods.

The theory of neural operators, as universal approxima-
tors, has a tremendous potential for control. Let me give
you a two-sentence digest, stripped of burdensome nota-
tion and technical details, of the landmark universal
approximation theorem by Karniadakis and his team [6].

Extremum Seeking 101: Too Big of a Bite

Extremum seeking was the most appealing candidate topic

for a backward-looking Bode Lecture. I have worked on

extremum seeking for a quarter-century now and, with many

coauthors, introduced the stability guarantees, source seek-

ing, stochastic extremum seeking, Newton extremum seeking,

Nash equilibrium seeking, and extremum seeking for delay

systems and partial differential equations.

Who would have thought, in 1997, that the proof of stability

[S1], driven purely by curiosity, would bring the subject to life

and lead, as of 2023, to

•	 18,000 papers/articles

•	 nearly 3,000 patents, currently produced at the rate of

more than one patent per day?

You can see why I wimped out of the task of surveying thou-

sands of publications in a one-hour lecture.

However, before I move on from extremum seeking, let me

mention to you its greatest industrial achievement: extreme ul-

traviolet (EUV) light in chip manufacturing, depicted in Figure S1.

A rapid fire of laser pulses, shown with the orange lines, blasts a

rapid fire of droplets of a liquid metal, tin, shown with the red dots,

at a rate of 100,000 hits per second. Extremum seeking made

the EUV technology stable, after all else had been tried.

EUV has reduced, over the last decade, the chip feature size

by two orders of magnitude. EUV is now a US$10 billion per year

industry in EUV (photolithography light source) equipment alone.

Stable EUV was enabled by a 2013 patent of my student Paul

Frihauf and his collaborators at Cymer, Inc. [S2], based on an ar-

ticle of another team of students in my lab [S3], a decade earlier.

REFERENCES
[S1] M. Krstic and H.-H. Wang, “Design and stability analysis of extre-
mum seeking feedback for general nonlinear systems,” in Proc. 36th
IEEE Conf. Decis. Control, Piscataway, NJ, USA: IEEE, 1997, vol. 2, pp.
1743–1748, doi: 10.1109/CDC.1997.657809.
[S2] P. Frihauf, D. J. Riggs, M. R. Graham, S. Chang, and W. J. Dun-
stan, “System and method to optimize extreme ultraviolet light genera-
tion,” U.S. Patent 8598552B1, 2013.
[S3] J.-Y. Choi, M. Krstic, K. B. Ariyur, and J. S. Lee, “Extremum seeking
control for discrete-time systems,” IEEE Trans. Autom. Control, vol. 47,
no. 2, pp. 318–323, Feb. 2002, doi: 10.1109/9.983370.

Lens (z)
PiezosMirror (y)

Stepper Motors

y-Axis

x-Axis

z-Axis
Collector

Droplet Generator

Droplet Train

100 kHz
Liquid Tin

Extreme Ultraviolet (EUV) Light
for Photolithography in Chip Manufacturing

FIGURE S1 An application of extremum seeking with the high-
est industrial impact to date: EUV light in photolithography.
Extremum seeking has stabilized the process in which laser
pulses hit liquid tin droplets at the rate of tens of kilohertz,
enabling the increase of chip density by two orders of magni-
tude and the creation of a US$10 billion per year industry (as
of 2023) in light sources for photolithography.

CYBENKO (1989; for Functions)
↓

CHEN & CHEN (1995; for Operators, Single-Layer)
↓

LU, JIN, KARNIADAKIS (2021; for Operators, Deep NN)

FIGURE 1 The progression of neural approximation of nonlinear
mappings, from functions to operators, using deep NNs.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CDC.1997.657809
http://dx.doi.org/10.1109/9.983370

AUGUST 2024  «  IEEE CONTROL SYSTEMS  27

Let G denote a (nonlinear) operator. If G is continuous,
then, for all ,02e there exists a (deep) neural operator Gt
such that

() ()u uG G 1 e- t

for all inputs ,u U! a compact set of continuous functions.
In even simpler words, any continuous operator can be

approximated by an NN, to arbitrarily tight accuracy, uni-
formly over a compact set of continuous input functions.

The approximating “deep neural operator” Gt has been
branded, by the authors, as a DeepONet.

OUTLINE OF THE LECTURE
In the rest of the lecture I will show you several uses of
neural operators in control of PDEs. The need for a speedy
approximation of feedback algorithms is particularly pro-
nounced in control of such complex and high-dimensional
dynamical systems as PDEs. Neural operators are simi-
larly applicable in control of nonlinear ODEs, as well as in
MASs and games. You may think of PDEs as MASs with
infinitely many agents.

I will show you examples of the power of neural oper-
ators in control of both hyperbolic and parabolic PDEs.
For pedagogical reasons, I start with hyperbolic PDEs, for
which the operator that arises in the feedback design
involves functions of only one spatial variable. In para-
bolic PDEs, functions of two variables necessarily arise.

I will show you examples of both mappings whose out-
puts are control gains and mappings whose outputs are the
control values.

I will close the lecture with two application domains
where a rapid recomputation of complex feedback laws, in
real time, is critical. Rapid recomputation is critical in gain
scheduling for nonlinear PDEs and adaptive control for PDEs
with unknown functional coefficients.

HYPERBOLIC PDES: A PEDAGOGICAL START
I first want to ease you into the notion that the design of
control gains for PDEs is a design of function-to-function
operators that are nonlinear, even for PDEs that are linear.
This is easiest to see on a class of hyperbolic PDEs in which
both the model coefficient functions and the feedback gain
functions have only a single (spatial) argument.

Transport PDE With Destabilizing Recirculation
Before I present stabilization of some unstable PDEs to you,
let me introduce you to the baby among PDEs, the transport
PDE. The transport PDE,

u ut x=

has one derivative in time t and one in space x (see “PDE
Notation”). The transport PDE is nothing more than a PDE
representation of a pure delay. As depicted in Figure 2,
the input signal U(t) is delayed by a unit of time, over a
unity distance.

The simplest example of an unstable hyperbolic PDE has
the state u(0, t), from the outlet x = 0, fed back into the trans-
port domain:

	 (,) (,) (,) .()u x t u x t u tx 0t x b= + � (2)

The functional coefficient (),xb highlighted in red, is
called recirculation. This plant has a continuum of positive
feedback loops, one at each spatial location x.

You can see the destabilizing effect of positive feedback
in the simulation plot in Figure 3. The growing oscilla-
tions in this plot are similar to stop-and-go oscillations in

u (0,t) = U (t –1) u (x,t) U (t)

x = 0
Outlet

x = 1
Inlet

Boundary
Control

FIGURE 2 A (leftward) transport PDE representation of a unity pure
delay, where (,) ()u t U t0 1= - .

PDE Notation

Figure S2 is helpful in getting acquainted with the nota-

tion common for PDEs. The state of a PDE is not a vec-

tor but a function, a vector of infinite dimension. In PDEs we

cannot use the symbol x for the state variable, because x

is commonly used for the spatial coordinate, the continuum

analog of the index of an entry of a state vector. Based on

fluid dynamics, where the state is usually the fluid velocity,

u, the PDE state is typically denoted by u(x, t), at a location

x and at time t. In PDE control, the actuation is usually at the

boundary of the domain. We denote the input by U since it

often has the same physical nature as the state u; it just

acts at the boundary.

FIGURE S2 PDE notation: the state is denoted by u, the input
by U, the spatial coordinate by x, and the time by t. The
curve shows the state as a function of space x, at a given
time t. If unfamiliar with the notion of a system state being a
function, one may regard the state u as an infinite-dimen-
sional vector, with x being a “continuum index” of the entries
of the vector u.

State
u (x,t)

Spatial
Coordinate

Control
U (t)

1 x

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

28  IEEE CONTROL SYSTEMS  »  AUGUST 2024

freeway traffic flow, which is modeled by PDEs somewhat
more complex than (2).

The control in the transport PDE with recirculation
appears at a boundary, x = 1, the inlet of the transport pro-
cess, namely,

(,) (,) () (,),
(,) ()

[,)u x t u x t u t
u t U t

xx 0 0 1
1 control.

recirculation
boundary

t x !b= +

=

The challenge for the control design for this system is
that the positive feedback loops are closed throughout
the spatial interval [,),0 1 while the control acts only at the
boundary x 1= of the interval, as depicted in Figure 4. So
control U cannot simply cancel any of these positive feed-
back loops.

At first, it seems impossible for the scalar control U (at
the boundary) to unlink the continuum of recirculations
(throughout the domain). However, it is possible to unlink
them, using PDE backstepping. In fact, that is what PDE
backstepping was invented for. For PDE backstepping, this
example is the simplest nontrivial benchmark.

PDE Backstepping Design
Backstepping employs a spatial convolution transformation
of the state, ,u w7 with a convolution kernel function k,
underbraced in red:

	 (,) (,) () (,) .w x t u x t k y u y t dyx
x

0
= - -># � (3)

The kernel k depends, in this pedagogical example, on a
single spatial variable, x – y.

The backstepping transformation, when set to zero at
the actuated boundary, provides the control law, with the
same kernel k, whose argument x is set to 1, serving as the
gain for the controller:

	 () () (,) .U t k y u y t dy1
0

1
= -># � (4)

The control law (4), along with the transformation of the
state, (3), eliminates the destabilizing recirculation:

	 () (,)w w x u t0t x b= + � (5)

	 (,) .w t 01 = � (6)

The resulting closed-loop system, called a target system, is
the pure delay, with its zero input emphasized in red. The
target system is not only exponentially stable but finite-time
stable. Figure 5 shows how the state u(x, t) settles to zero in
finite time and how the control, shown by the red curve at
the boundary ,x 1= achieves this stabilization goal.

Backstepping Kernel Integral Equation and
Nonlinear Operator
Let us recall the backstepping transformation (3) and the
control law (4). The key player in both of them is the
kernel function k, underbraced in red in both equations. I
have not defined the function k yet. It is k, in fact, that has
to be designed.

For the kernel function k to eliminate the recirculation
in the target system (5), (6), kernel k must satisfy the follow-
ing integral equation, for a given recirculation function :b

	 () () () () , [,].k x x x y k y dy x 0 1
x

0
!b b=- + -# � (7)

u (0,t) U (t)

β(x)

Boundary
Control

FIGURE 4 A continuum of positive-feedback recirculations in the
transport PDE with recirculation, () (,)u u x u t0t x b= + . None of
these recirculations can be unlinked (cancelled) using scalar
boundary actuation, (,) () .u t U t1 = .

10
7.5

5
2.5

0
–2.5

–5
–7.5

u b
ks

 (x
,t)

0 0.2 0.5 0.8 1 1.2 1.5 1.8 2
1

0.5
0

Time

x

Stabilized

What We Want to Achieve With Feedback Control:

FIGURE 5 Backstepping feedback (4), whose value is highlighted in red,
at the boundary x = 1, stabilizes the transport PDE with recirculation (2).

2,000

1,000

–1,000

–2,000

–3,000

0

u
(x

,t
)

"

0 1 2 3 4 5
1

0.5
0

x

Time

Unstable

FIGURE 3 The transport PDE with recirculation, ()u u xt x b= +
(,)u t0 , has a continuum of positive feedback loops, recirculating

the outlet state u(0, t) back into the domain, which results in insta-
bility. In this simulation, only a pair of complex eigenvalues with
positive real parts arises, resulting in a growing oscillation of the
plant state in both space and time.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2024  «  IEEE CONTROL SYSTEMS  29

This integral equation serves the same purpose of a
“gain design equation” for the PDE backstepping design as
the Riccati equation (1) serves for the LQR design. Let us
now introduce a compact, convolution notation for this
integral equation, and let us suppress the spatial variable:

.k k)b b=- +

This is a linear equation in k, for a given .b Since a con-
volution appears in the equation, let us apply the Laplace
transform L, but in space (not in time), and solve for k:

L L
L

{ }
{ }

.k 1
1

b

b
=

-
-- ' 1

While this expression is not explicit in ,b it is clear that it is
nonlinear in .b

To summarize, the mapping : kK 7b defined by the
linear integral equation (7) is a nonlinear operator. Interest-
ingly, the operator K happens to be its own inverse. Func-
tions with this property are called involutions, and matrices
with this property are called involutory. So, I call K an
involution operator.

Learning the Nonlinear Operator K
If one solves the integral equation (7) for a rich enough col-
lection of functions (),xib one obtains a training set of
gains (),k xi as in the diagram in Figure 6. With this training
set, one can train a deep NN ,Kt which approximates the
operator .K

However, can Kt approximate K as closely as we like? The
answer is affirmative, using Karniadakis’s DeepONet uni-
versal approximation theorem, provided we prove that this
nonlinear operator : kK 7b is continuous. In fact, we
prove that K is a bit more Lipschitz.

Lemma 1 (Lipschitzness of Operator K)
K is Lipschitz, with a Lipschitz constant no greater than

,e B3 on any compact set of input functions ,B#b 3 for
any .B 02

The Lipschitzness of the nonlinear operator K is not a
trivial property. I am not talking about the Lipschitzness
of the operator’s output function k(x), in relation to its
scalar spatial argument x. I am establishing the Lip-
schitzness of the entire operator ()K b in relation to its
functional input .b

So, having proven the Lipschitzness of ,K the DeepO-
Net theorem guarantees that a large enough NN approxi-
mates the operator K arbitrarily closely, uniformly in the
input functions beta.

Theorem 1 (DeepONet Approximation of K)
For all , ,B 02e there exists a DeepONet Kt satisfying

()() () ()x xK K 1 eb b- t

for all B#b 3 and [,].x 0 1!

Figure 7(a) shows one illustrative input–output pair
(,)kb t of the approximate operator .Kt A comparison of the
magnitudes on the vertical axes of the two plots shows that
the approximation error in Figure 7(b) is two orders of mag-
nitude smaller than the exact operator output ()k K b=
being approximated. So the DeepONet approximation Kt
of the exact operator K is good.

Are DeepONet Gains Stabilizing?
It is reassuring that the gain approximation in Figure 7
is good; however, approximating control gains alone is
not of interest to us. Since the approximated gains are
to be used for feedback, the question is whether stabi-
lization, guaranteed under exact gains, survives the
approximation.

25

15

5

–5

–15

0.15

0.11

0.07

0.04

0

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

(a)

(b)

Error Between k and k

"

β(x) and k(x)

"

"

β
k

Small
Approximation

Error

"

β
k

–

0

0

FIGURE 7 The training process in Figure 6 results in a good Deep-
ONet approximation Kt of the exact operator .K For (a) an illustra-
tive input–output pair (,),kb t (b) the approximation error is two
orders of magnitude smaller than the kernel k being approximated
by) .(k K b=t t

Learning of DeepONet

DeepONet Trainer

Coursat PDE
Solver (Offline)

βi(x) ki(x)

FIGURE 6 The process of constructing a neural operator (DeepO-
Net) Kt , which approximates the exact operator ,K by solving,
numerically, the integral (7) for a rich enough collection of func-
tions (),xib obtaining a training set of gains ()k xi and training
an NN for .Kt

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

30  IEEE CONTROL SYSTEMS  »  AUGUST 2024

To answer this question, we plug the approximate gain
()k K b=t t into the backstepping feedback law,

	 () () (,)U t k y u y t dy1
()()y

0

1

1K

= -

b -

t

t
># � (8)

and then employ this feedback as a boundary input,
(,) ().u t U t1 = Then we proceed to study closed-loop stability.

We already know that if the exact kernel k is used in the
backstepping transformation (3) and in the control law (4), the
exact target system (5), (6) is obtained, resulting in finite-time
stability. However, when the approximated feedback (8) is
employed, along with the approximated ()k K b=t t in a back-
stepping transformation, meaning that (3) is replaced by

(,) (,) () (,)w x t u x t k x y u y t dy
x

0
= - -t t#

a perturbation appears in the target system

(,) (,) (,)
(,)

()w x t w x t w t

w t

x 0
1 0

t x

perturbation

d= +

=

t t t

t

6 7 8444 444

where the overbraced perturbation is vanishing because it
has the outlet state (,)w t0t as a factor, and the perturbation
coefficient d is

() .() ()1 KK
bounded by

)b b bd = - + -
e

t^ h
1 2 34444 4444

The boundedness of () ()K Kb b- t by an approximately
small e follows from Theorem 1. In plain language, we can
make the perturbation coefficient d as small as we like
with a large enough NN .Kt

Lemma 2 (Lyapunov Estimate for Target System)
For all neural operators Kt with , / ,e B0 2 1!e +^ ^ ^ hhh the
Lyapunov functional

() (,)V t e w x t dxx2

0

1 2= t#

satisfies the bound

() ()V t V e c0 0c t 2#)-)

for all .B#b 3

What is the price for this theoretical result? From the
reciprocal dependence of the upper bound on e in Lemma
2 with respect to the bound B on the destabilizing recircu-
lation function ,b we note that the more unstable the open-
loop plant is, the larger the NN that is needed for the kernel
approximation.

Finally, we get to our main result.

Theorem 2 (Closed Loop Is Robust to DeepONet)
For any system with ,B#b 3 all controllers with Kt
trained for any , /e B0 2 1!e +^ ^ ^ hhh guarantee

()u t Me u t 0/c t 2
0 6# $-)

with overshoot coefficient

() , .M e e e1 1 1()1b b e b b b= + + + + = 3
b e b+r r r rr r^ ^ ^h h h

This theorem establishes more than exponential stability
in the original state u, with an explicit (and, of course, con-
servative) estimate of the overshoot coefficient M. The theo-
rem guarantees robustness to learning: it is a stability result

»» under all the controllers
»» approximated by all the possible NNs
»» with all accuracy parameters e in a certain range.

PARABOLIC PDES: GAIN OPERATORS WITH
FUNCTIONS OF TWO VARIABLES
You might recall me emphasizing that I was starting, for
pedagogical reasons, with operators whose inputs and out-
puts are functions of only one variable. Such operators
arose in hyperbolic PDEs. Let us now advance to more com-
plex PDEs in which the gain operator involves functions of
more than one variable.

The simplest such case is the unstable reaction–diffu-
sion PDE,

(,) (,) (,).()u x t u x t u x txt xx m= +

This PDE is parabolic, with two derivatives in space.
The PDE’s reaction function ()xm causes instability
(when positive).

For this system, the backstepping transform cannot be a
simple convolution. It must be a general Volterra operator,
with a kernel k that depends on two distinct variables, x
and y, namely,

	 (,) (,) (,) (,) .w x t u x t k u y t dyyx
x

0
= - # � (9)

The kernel k must satisfy the following PDE:

	 (,) (,) () (,)k x y k x y y k x yxx yy m- = � (10)

where ,m the destabilizing reaction functional coefficient, is the
PDE’s input, and the backstepping kernel k the PDE’s output.
(There are, in addition, two boundary conditions, which I omit,
and the domain is triangular, rather than rectangular.)

The mapping from m to k, defined by the PDE (10), is
hard to visualize. In Figure 8 we show one input–output
pair (,),km where the output function k(x, y) of two vari-
ables is the result of the input function ()xm of one variable
“running through” the PDE (10). With some abuse (reuse)
of notation, we denote the operator from m to k as ,K
namely, : .kK 7m

With the backstepping transformation (9) and the feed-
back law () (,) (,) ,U t k y u y t dy1

0

1
= # we obtain the exact target

system ,w wt xx= which is the heat equation (with suitable
boundary conditions) and, therefore, exponentially stable.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2024  «  IEEE CONTROL SYSTEMS  31

When we approximate K by a DeepONet Kt and use Kt
in the backstepping transformation and the feedback law,
we obtain the perturbed target system

(,) (,) (,) (,)() (,)w x t w x t u x t u y t dyx x yt xx
x

k k
0

0 1

 perturbation

d d= + +t t
6 7 84444444444 4444444444

#

with

() (() (,) () (,)).

() (,) () (,)()

(,)
dx
d x x x x

y x y x y

x

x y

2 K K

K Kxx yy

k

k

0

1 2 2 m m m

m md

d

=-

=- - - -

- t

t^
^

h
h

The perturbation terms ,k k0 1d d include the kernel opera-
tor approximation error ,Kt as well as the error’s derivatives.
I have to skip, in this time-limited lecture, the gory details
of the full definition of the operator K and the proof of its
Lipschitzness. However, let me assure you that the pertur-
bations can be guaranteed to be small by training the
neural operator to make ,k k0 1d d small.

Let me now show you one representative kernel approx-
imation, in Figure 9. The approximated kernel (,)k x yt looks
coarse. This is expected since kt is an output of an NN. You
can see at the bottom of Figure 9 that the approximation
error is about one tenth the size of the exact kernel k. So, the
neural operator does a good enough job at what it has been
trained to do.

What does it take to produce such a close approxima-
tion? It takes an NN with 76 million parameters. This is as
expected for approximating PDEs that are nonlinear, in
two dimensions, and with arbitrary input functions.

The training takes a mere 5 min with Nvidia RTX 3090Ti
GPU (for 500 epochs, on 1,000 m functions as Chebyshev
polynomials). To generate a single kernel function kt for a
function m outside the training set, it takes 25 microseconds,
making the entire kernel function computable at frequencies
of tens of kilohertz. On an older laptop, and without a GPU,
all these computations take about fifty times as long, namely,
the training takes only 4–5 h, and the evaluation of kt takes
0.5 ms, namely, the kernel is still computable in a real-time
fashion at a kilohertz sampling frequency.

However, let us remember why we are here, not only
to compute gain kernels accurately but for a “preserva-
tion of stabilization under approximation.” The following

theorem, for parabolic PDEs, reads almost exactly as Theo-
rem 2 for the hyperbolic case.

Theorem 3 (Parabolic: Robustness to DeepONet)
For any system with B| #m m= 3 mr and ,B#m 3 ml l there
exists 02e) such that all controllers with gains ()k K m=t t
trained for any (,)0!e e) guarantee

()u t Me u t 0/t 2
0 6# $-

where

(,) .M e e e1 1 e2 2 2

e m m m e= + + +m m m e+mr r rr r r r^ ^h h

The proof of Theorem 3 has major differences from the
proof of Theorem 2, in terms of establishing both the Lip-
schitzness of the operator and the stability of the parabolic
perturbed target system.

Before progressing with further reading of the theoreti-
cal material, the reader may refer to “Applied PDE Control
and Experiments: Parabolic (Additive Manufacturing) and
Hyperbolic (Traffic).”

CAN DEEPONET APPROXIMATE NOT JUST A GAIN
BUT A FULL FEEDBACK LAW MAP?
You have seen me so far exploit the same idea twice: learn
the mapping from a PDE model into a backstepping gain,
specifically, first, the mapping ()K7b b for a hyperbolic
PDE and then the mapping (),K7m m for an entirely
different ,K for a parabolic PDE. However, in control
implementation, we do not apply a gain function (·)k but
a scalar control value U. This control value, ()U t =

() (,) ,k y u y t dy1
0

1
-# also written compactly, by suppress-

ing the time variable, as () (),()U k u u1 1K))b= = ^ h is a
scalar (real) output of the mapping : (,)u UU 7b defined as

(,) () ().u u 1U K)b b= ^ h

λ (x)

k (x ,y)

y

x
x 0

0
1

1

FIGURE 8 A visualization of the operator : kK 7m defined by the
PDE (10).

2

–2

0 0.2 0.5 0.8 1

0

1
0.5

0

x

0 0.2 0.5 0.8 1 1
0.5

0

x

k
(x

,y
)

"

0.4

0.2
0

–0.2

k
(x

,y
)

–
k

(x
,y

)

"

FIGURE 9 The kernel k is approximated by (),k K m=t t using a
DeepONet, to about 10% accuracy.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

32  IEEE CONTROL SYSTEMS  »  AUGUST 2024

The operator U is a functional: it has two inputs, which are
continuous functions, b and u, and a real output. The con-
trol implementation employs two such input functions
into the feedback operator, b representing the model of the
PDE and u representing the state of the PDE. Why not
approximate this operator, ,U with a DeepONet, given
U ’s importance, both practical and fundamental?

Since U is a continuous operator, we can approximate
it. The DeepONet universal approximation theory guar-
antees a neural approximability of U with arbitrarily
close accuracy.

Lemma 3 (DeepONet Approximability of U)
There exists a neural operator Ut such that

(,) (,)u uU U 1 eb b- t

for all , , .B u B0 u2 # #e b 3 3b

It does not hurt to note, before proceeding, that the
feedback law’s approximation ,Ut while arbitrarily accu-
rate, is not equilibrium-preserving. The exact feedback
operator U is linear in the state u, but Ut is not, since it is
an NN.

Is this feedback stabilizing? Yes, but not globally expo-
nentially. The result is weaker because the approximation
error acts as a nonvanishing perturbation on the system.
Stability is practical and semiglobal.

Theorem 4 (Semiglobal Practical Stability)
For any system with ,B#b 3 all controllers (,)uU bt
trained for any /B e B2 1u1e + b^ ^ ^h hh guarantee

	

()u t B e B e e u

B e
1 1

1
2

B t
0

residual value

#

e

+ +

+ +

b b

b

-b^
^

^h
h

h

1 2 34444 4444
� (11)

for all initial conditions

	 .u
B e e B1
1

1 2B

u

0

0

e

+ +
-

2

b b
b

Bf
^ h

p
1 2 344444 44444

� (12)

In plain English, the neural approximation of the opera-
tor from the PDE model and PDE state to the control input
is stabilizing semiglobally and practically.

The practical nature of stability is shown in the estimate
(11): after an exponential decay, the state settles to a resid-
ual set whose spatial L2 size is proportional to the operator
approximation error, ,e emphasized in yellow. The result is
semiglobal in the sense that the region of attraction (12) can
be arbitrarily enlarged by training the feedback operator
for larger state values, Bu, emphasized in pink. To approach
global exponential stability, the price is a larger NN.

The simulations in Figure 10 illustrate Theorem 4. The
PDE is stabilized but with a small residual error, noticeable
in the plot for control, toward the end of the time interval,
on the lower left.

REAL-TIME USES OF DEEPONET
Neural operators (such as DeepONet) generate solutions of
PDEs on the order of a thousand times faster than numerical
PDE solvers. However, my first two examples, one hyperbolic
and one parabolic, have performed the evaluation with the

Applied PDE Control and Experiments: Parabolic (Additive Manufacturing) and
Hyperbolic (Traffic)

After this litany of hyperbolic and parabolic PDEs, theorems,

and formulas, it may be a good moment to take a break

and turn the attention to physics and practice. PDE backstep-

ping has seen many uses in control applications, including oil

drilling and lithium-ion batteries. However, let me make a brief

mention of two recent books, by my Ph.D. students, on such

applications of PDE control. Shumon Koga’s book [S4] for par-

abolic models in additive manufacturing and Huan Yu’s book

[S5] for hyperbolic models in traffic control have both gone

from theorems to experiments. Incidentally, both books are in

Birkhäuser’s series edited by Professor Tamer Basar.

REFERENCES
[S4] S. Koga and M. Krstic, Materials Phase Change PDE Control &
Estimation. Basel, Switzerland: Birkhäuser, 2020.
[S5] H. Yu and M. Krstic, Traffic Congestion Control by PDE Backstep-
ping. Cham, Switzerland: Springer, 2022.

FIGURE S3 Books [S4] and [S5].

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2024  «  IEEE CONTROL SYSTEMS  33

neural operator only offline, followed by using the controller
in real time.

I will close the lecture with control problems where the
operator is evaluated online repeatedly. The thousandfold
computational speedup, which the NN offers over solving
PDEs in real time, is crucial.

Gain Scheduling for Nonlinear PDEs
The first online use of a DeepONet that I show is in gain
scheduling, for nonlinear PDEs. Extending linear PDE
backstepping to nonlinear PDEs, using a nonlinear Volterra
series, is the best approach, the PDE equivalent of the rigor-
ous, elegant, feedback linearization (or backstepping) for
ODEs but incredibly, almost hopelessly complex. Rafael
Vazquez and I have done it once [7], [8] and would recom-
mend the experience only to an enemy.

The alternative to a full-blown nonlinear design is gain
scheduling. The article [9] by Rugh and Shamma, which
won the IFAC High Impact Paper Award, surveys rigorous
gain scheduling for ODEs. My students and I introduced
such a linear parameter varying-esque framework for non-
linear PDEs in [10], a decade after [9]. This approach to
nonlinear PDE control has not been revisited since, due to
its theory being demanding, in spite of its straightforward
implementation.

To illustrate gain scheduling for nonlinear PDEs, I
return to the hyperbolic PDE with recirculation but where
now the recirculation b depends on the outlet state u(0, t),
shown in red, in addition to depending on x:

	 (,) (,) (,) (,) .(,)u x t u x t x u tu t 00t x b= + � (13)

You can see in Figure 3 a linear version of such a plant
having exponentially growing oscillations. Under a non-
linearity, the unstable oscillations settle into a limit cycle,
as exhibited in Figure 11.

How does a linear controller, designed based on the Jaco-
bian linearization at the origin, fare for this nonlinear
system? It fares poorly, as one observes in Figure 12. Except
for miniscule initial conditions, such a linear feedback
makes matters even worse than they are in the open loop in
Figure 3. The linear control eliminates the limit cycle and
results in an exponential instability.

We now introduce a nonlinear operator for scheduling the
backstepping gains, the parameterized involution operator :K

) (,) (,) (,) () (,)(x x x y y dyK K
x

0
b b b bo o o o=- + -#

where .R!o The input functions b of this operator depend
on two variables, the spatial variable x, as before, in (7), and

30

20

10

–10

–20

0

0 2 4 6 8 10
1

0.5
0

x

Time

Open-Loop Unstable

PRACTICAL Stabilization Achieved With DeepONet Implementation of Backstepping

u
(x

,t
)

20

12

4

–4

–12

–20

u
(x

,t
)

"

0 0.5 1 1.5 2
1

0.5
0

x

Time

Closed-Loop Stable

Small
Residual
Error

4

2

0

–2

0 0.5 1.5 2.0
Time

1

U and U

"

"U
U

FIGURE 10 Practical stabilization, using the DeepONet approximation (,)U uU b=Z of the feedback law, with a small noticeable residual
error toward the end of the plot for control on the lower left.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

34  IEEE CONTROL SYSTEMS  »  AUGUST 2024

the variable ,o which stands in for the outlet state u(0, t). We
employ this new operator in a gain scheduling nonlinear
feedback law, with approximation Kt ,

	 () () (,) (,) .(,)U t y u y t dyu t1 0K
0

1
b= -t# � (14)

For simulation results, let us turn our attention to Fig
ure 13. Figure 13(a) illustrates the stabilization with the
gain scheduling controller, implementing the DeepONet
() (, (,))y u t1 0K b -t as a gain. Figure 13(b) shows how the spa-

tially dependent gain ((,)) (, (,))k x t y u t1 0K b= -t t evolves over
time, in response to the variation of the scheduling state u(0, t).

Can we prove anything for a DeepONet-enabled gain
scheduling controller, such as the one illustrated by Figure 13?
Yes, we can prove stability, stated in the next theorem. How-
ever, the result is not easy, and its proof approaches 20 pages.
This is because even in the absence of a perturbation induced
by the DeepONet approximation, perturbations caused by
derivatives both in time (as in gain scheduling for ODEs [9])
and in space need to be dominated in the analysis.

Theorem 5 (Local Stabilization in H1 Norm)
For all ,c 02 there exist , ,M 00 2e X) such that with any
neural operator Kt approximated to any accuracy (,),0!e e)

() (()) ()u u t M u e
c t

0 0 0 2&# #X X X X -

for all t 0$, where

(()) : (,) () () .u t u t u t u t0 x
2 2 2

X = + +

In this theorem, our estimate of a region of attraction
,0X shown in yellow, in terms of the H1 spatial norm of the

state, shown in blue, depends on the accuracy e of the
neural operator .Kt

Adaptive Control for Unknown Functional Coefficients
The last result I have, for today, is the most exciting, at least
to me: in online adaptive control. You will see offline learn-
ing and online learning working in tandem.

I return to the example (2), repeated here for convenience:

	 (,) (,) (,) .()u x t u x t u tx 0t x b= + � (15)

However, ()xb denotes now an unknown functional coef-
ficient. The online estimate of ()xb is denoted by (,)x tbt ,
and its updating includes projection in order to guarantee
that (·,)t B#b 3

t for all .t 0$ The neural operator K K.t
has already been trained; it produces the adaptive gain

()K bt t by being fed the estimate bt and is employed in the
indirect adaptive control law,

() () (,) (,) .U t y t u y t dy1K
0

1
b= -t t#

The estimation of b with bt is performed online. The
update law is designed by Lyapunov approach and given by

	

(,)
()

(,) () (,) (,) (,)

x t
w t

e w x t e y x t w y t dy u t

t 1

0K

c

cx cy

x

2

1
normalization

regressor regulation
 error

#

2
2 c
b

b

=
+

- -t

t

t8 B
1 2 344444444444 44444444444

1 2 3444 444

=#
�

(16)

where

(,) (,) () (,) (,)

() (,) .

w x t u x t x y t u y t dy

w t e w x t dx

K
x

c
cx

0

2

0

1 2

b= - -

=

t t#
#

The structure of the update law (16) is conventional: a
product of a regressor with the regulation error, divided by
normalization, and employing the backstepping transfor-
mation and its weighted norm.

2

1

0

–1

–2

u
(x

,t
)

0 2 4 6 8 10
1

0.5
0

x

Time

Open-Loop Unstable:
Limit Cycle

FIGURE 11 The transport PDE with a nonlinear recirculation (13) is
unstable at the origin but settles into a (spatiotemporal) limit cycle.

40
20

–20

–40
–60

–80

–100
0 0.5 1 1.5 2 2.5 3 3.5 4

0

1
0.5

0

x

Time

u
(x

,t
)

FIGURE 12 A controller based on linearization not only fails to sta-
bilize (13) but destroys its boundedness (limit cycle) and induces
an exponential growth. This is the result of acting aggressively in
response to the locally destabilizing recirculation and disregarding
the bounding effect of the nonlinearity in (, (,)) .x u t0b

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2024  «  IEEE CONTROL SYSTEMS  35

The update law (16) looks like a PDE, but it is not. It has a
derivative in time but no derivative in x. Instead, it has inte-
gration in x. The right-hand side of (16) depends nonlinearly
on bt through the neural operator .Kt . In today’s parlance,
this is a nonlinear ensemble system, in the same mathemati-
cal family with mean-field games.

Let me illustrate this online learning-based control,
enabled by offline learning, using the plots in Figure 14. The
plant is open-loop unstable. The adaptive controller stabi-
lizes the plant, in spite of the b function being unknown.
How, exactly?

Adaptive control is a rather complex process, so let me
explain it step by step. The plant’s instability drives the
estimation of b . By about 10 s, the estimate bt of b , shown
in Figure 14(c), is good enough to produce a controller that

is stabilizing, as shown in Figure 14(b), where the state
u(x, t) rapidly decays after about 10 s. The stabilization of
u(x, t) then eliminates the persistency of excitation (PE) in
the update law (16). This loss of PE automatically freezes
the updating of bt , from about 10 s onward.

Figure 14(c) shows that bt has settled to the red profile,
but it has not converged to the true blue profile. This lack of
exact convergence does not matter. The red profile for bt is
stabilizing, which is the sole task of adaptive control (system
identification is not the task).

So, if you are uninitiated in the miracle of adaptive con-
trol, the simulation in Figure 14 introduces it to you: suc-
ceeding at the task of control, without paying the price (of
inducing PE) for unnecessary complete learning of the
model. In fact, unless tracking of a complex reference is

0.4

0.2

0

–0.2

–0.4

0 0.5 1 1.5 2 2.5 3 3.5 4
1

0.5

0

x

u N
O

(x
,t)

Time

Time

0

–10

–20

–30

–40

–50

0 0.5 1 1.5 2 2.5 3 3.5 4 1

0.5
0

x

k N
O

(x
,u

(0
,t

))

DeepONet-Based
Gain Scheduler Stabilizes

maybe
THE PUNCHLINE OF THE TALK

Transient of Stabilizing Nonlinear Gain
Computed With DeepONet

(a)

(b)

FIGURE 13 (a) The nonlinear gain-scheduling controller (14) stabilizes the nonlinear PDE (13), with the control input shown in red. (b) The
spatially dependent gain (,)) (, (,))(k x t y u t1 0K b= -t t evolves over time, in response to the variation of the scheduling state u(0, t). It is inter-
esting how the gain profile grows more negative, overall, over time. This is consistent with the fact that the open-loop system has a limit cycle,
shown in Figure 11. The controller is more cautious initially, given the bounding open-loop benefit of the limit cycle, and grows more aggres-
sive as the state gets smaller. The DeepONet-enabled gain scheduling controller acts in a meaningful, theory-interpretable fashion.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

36  IEEE CONTROL SYSTEMS  »  AUGUST 2024

desired, “incidental PE” and perfect model identification
are synonymous with bad transient performance. We see
that avoided in Figure 14.

Is the adaptive control experiment in Figure 14 backed
by theory? Yes.

Theorem 6 (Global Stabilization, Pointwise Regulation)
There exist ,R 02t such that

() ,

() (,) () (,)

t R e t

t u x t x x t dx

1 0()0

2 2

0

1

6# $

b b

C

C

-

= + -

tC

t

^
^
h

h6 @#

and
(,) , [,] .lim u x t x0 0 1

t
6 !=

"3

Global stability in the L2 norm of the state and parameter
error, with an exponential-in-initial-condition estimate, along
with a pointwise-in-space regulation of the state u, is proven.

SUMMARY AND PERSPECTIVES
Let me close with a question and an answer to it. Is this learn-
ing-based approach to control model-free? It is absolutely not;

the role of ML is not to learn the unknown. ML’s role is to
encode, once and for all, in an NN, the model-based back-
stepping design for a class of PDEs. If it is model-free learn-
ing and control you are after, you might want to check out
extremum seeking instead.

To recap, a real-time speedup of three orders of magni-
tude in producing feedback gains, achieved with a very rea-
sonable training time (minutes), enables control of PDEs
that are nonlinear or have unknown functional parameters.

What problems open up for future research? This entire
list does:

»» 2D and 3D PDEs
»» coupled + ensemble PDEs
»» other nonlinear PDE classes
»» PDE observers
»» nonlinear ODE delay systems–predictor feedback
»» applications.

I am particularly excited about applications but also about
predictor feedback for nonlinear delay systems, which
requires an approximation of the open-loop flow map of the
nonlinear ODE.

However, why should you care, if you do not work on
PDE control? Many designs for nonlinear controllers and

10

–10

0

u o
pe

n(
x,

t)

u(
x,

t)

0 5 10 15
1

0.5
0

0 5 10 15
1

0.5
0

5

0

–5

x x

0 5 10 15
1

0.5
0

x

4

2

0

–2

–4

β
(x

,t
)

"

Open-Loop
Unstable

Stabilizing
Gain Kicks in

Parameter
Estimate
Settles

True
Parameter

Time Time

Time

(a) (b)

(c)

FIGURE 14 (a) The plant is open-loop unstable. (b) The adaptive controller stabilizes the plant, once the estimate bt has become good
enough, around 10 s, to provide a stabilizing feedback gain. (c) The parameter updating ends around 10 s, with a profile ()xbt in red,
which differs from the true profile ()xb in blue, since the stabilization of the state u(x, t) terminates the persistence of excitation and does
not require perfect identification of () .xb

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2024  «  IEEE CONTROL SYSTEMS  37

estimators, for systems such as () () ,x f x g x u= +o are predi-
cated on solving a PDE:

»» dynamic programming: DeepONet for (,)f g V7
»» output regulation
»» Kravaris-Kazantzis-Luenberger (KKL) observers
»» Immersion & Invariance (I&I) adaptive control.

However, I do not promise that DeepONet will remove the curse
of dimensionality. Approximating the Hamilton–Jacobi–Bell-
man map for an ODE with more than a few state variables will
always be very hard, possibly harder than designing controllers
for linear PDEs in dimensions not much higher than three.

THANKS
As I thank you for your attention, and my sponsors, the
National Science Foundation, Air Force Office for Scientific
Research, and Office of Naval Research, for their kind sup-
port, let me also thank my collaborators:

1)	 Luke Bhan (UC San Diego)
2)	 Yuanyuan Shi (UC San Diego)
3)	 Maxence Lamarque (Mines-Paris)
4)	 Mamadou Diagne (UC San Diego)
5)	 Rafael Vazquez (University of Seville)
6)	 Jie Qi (Donghua University, China)
7)	 Shanshan Wang (University of Shanghai for Science

and Technology, China)
8)	 Jing Zhang (Donghua University, China).
Starting on this topic in January this year, they have

produced many more results than I am able to show on this
day in December, toppled some amazing technical barri-
ers, and shown that ML is no bane but a boon for control.

ACKNOWLEDGMENT
This work was supported by NSF Grants CMMI-2228791,
ECCS-2151525, and ECCS-2210315; ONR Grant N00014-23-1-
2376; and AFOSR Grant FA9550-23-1-0535.

AUTHOR INFORMATION
Miroslav Krstic (mkrstic@ucsd.edu) received the under-
graduate degree in electrical engineering from the Univer-
sity of Belgrade and the M.S. and Ph.D. degrees from the
University of California, Santa Barbara, in 1992 and 1994,
respectively. Miroslav Krstic is a distinguished professor
and senior associate vice chancellor for research at the Uni-
versity of California, San Diego, La Jolla, CA 92093 USA.
He has received the IEEE Hendrik Bode Lecture Prize;
the Richard Bellman Control Heritage Award; the SIAM
Reid Prize; the ASME Rufus Oldenburger Medal; IFAC
TC Awards for Nonlinear Control, Distributed Parameter
Systems, and Adaptive Systems; IFAC’s Harold Chestnut
Textbook Prize; the Ragazzini Education Award; the inau-
gural AV Balakrishnan Award for the Mathematics of Sys-
tems; and other recognitions. He has been elected Fellow
of seven scientific societies and a member of the Serbian
Academy of Sciences. Krstic serves as editor in chief of Sys-
tems & Control Letters and senior editor of Automatica and is
editor in chief-designate for IEEE Transactions on Automatic
Control (2026).

REFERENCES
[1] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE
Control Syst. Mag., vol. 12, no. 3, pp. 7–17, Jun. 1992, doi: 10.1109/37.165507.
[2] L. Bhan, Y. Shi, and M. Krstic, “Neural operators for bypassing gain and
control computations in PDE backstepping,” IEEE Trans. Autom. Control,
early access, Dec. 26, 2023, doi: 10.1109/TAC.2023.3347499.
[3] D. F. Delchamps, “Analytic stabilization and the algebraic Riccati equa-
tion,” in Proc. 22nd IEEE Conf. Decis. Control, Piscataway, NJ, USA: IEEE,
1983, pp. 1396–1401, doi: 10.1109/CDC.1983.269767.
[4] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989, doi: 10.1007/
BF02551274.
[5] T. Chen and H. Chen, “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its application
to dynamical systems,” IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 911–917,
Jul. 1995, doi: 10.1109/72.392253.
[6] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning non-
linear operators via DeepONet based on the universal approximation theo-
rem of operators,” Nature Mach. Intell., vol. 3, no. 3, pp. 218–229, 2021, doi:
10.1038/s42256-021-00302-5.
[7] R. Vazquez and M. Krstic, “Control of 1-D parabolic PDEs with Volterra
nonlinearities, part I: Design,” Automatica, vol. 44, no. 11, pp. 2778–2790,
2008, doi: 10.1016/j.automatica.2008.04.013.
[8] R. Vazquez and M. Krstic, “Control of 1D parabolic PDEs with Volterra
nonlinearities, part II: Analysis,” Automatica, vol. 44, no. 11, pp. 2791–2803,
2008, doi: 10.1016/j.automatica.2008.04.007.
[9] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Automatica,
vol. 36, no. 10, pp. 1401–1425, 2000, doi: 10.1016/S0005-1098(00)00058-3.
[10] A. A. Siranosian, M. Krstic, A. Smyshlyaev, and M. Bement, “Gain
scheduling-inspired boundary control for nonlinear partial differential
equations,” ASME J. Dyn. Syst., Meas., Control, vol. 133, no. 5, 2011, Art. no.
051007, doi: 10.1115/1.4004065.

�

PDE Backstepping: 77 Notable
Contributors

I would be absolutely remiss not to acknowledge the PDE

backstepping community in this lecture. This is a com-

munity of exceptional talent. It has revolutionized a branch

of control theory, PDE control, which is physically ubiquitous

and highly necessitated in technology.

Seventy-seven notable contributors to PDE backstep-

ping are: Aamo, Ahmed-Ali, Alalabi, Alleaume, Andrade,

Anfinsen, Ascencio, Astolfi, Baccoli, Balogh, Bastin,

Bekiaris-Liberis, Bernard, Bhan, Bresch-Pietri, Bribiesca-

Argomedo, Burkhardt, Cai, Cerpa, Chen (several), Cochran,

Coron, Demir, Deutscher, Diagne, Di Meglio, Espitia, Fri-

hauf, Gehring, Giri, Guan, Guo, Hasan, Hashimoto, Hayat,

Hu, Karafyllis, Koga, Lamnabhi-Lagarrigue, Liu (several),

Magnis, Meurer, Morris, Moura, Nguyen, Olive, Oliveira, Or-

lov, Parisini, Pisano, Polyakov, Prieur, Qi, Rathnayake, Re-

daud, Ren, Sanz-Diaz, Schuster, Shi, Siranosian, Smyshly-

aev, Steeves, Su, Susto, Tang, Tsubakino, Vazquez, Wang

(several), Xu, Yu, Zhang, and Zhu.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on August 04,2024 at 00:43:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/37.165507
http://dx.doi.org/10.1109/TAC.2023.3347499
http://dx.doi.org/10.1109/CDC.1983.269767
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1109/72.392253
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1016/j.automatica.2008.04.013
http://dx.doi.org/10.1016/j.automatica.2008.04.007
http://dx.doi.org/10.1016/S0005-1098(00)00058-3
http://dx.doi.org/10.1115/1.4004065
mailto:mkrstic@ucsd.edu

	24_44mcs04-krstic-3402581

