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Abstract—We introduce a framework for eliminating
the computation of controller gain functions in partial
differential equation (PDE) control. We learn the nonlinear
operator from the plant parameters to the control gains
with a (deep) neural network. We provide closed-loop
stability guarantees (global exponential) under an neural
network (NN)-approximation of the feedback gains. While,
in the existing PDE backstepping, finding the gain kernel
requires (one offline) solution to an integral equation,
the neural operator (NO) approach we propose learns the
mapping from the functional coefficients of the plant PDE
to the kernel function by employing a sufficiently high
number of offline numerical solutions to the kernel integral
equation, for a large enough number of the PDE model’s
different functional coefficients. We prove the existence of
a DeepONet approximation, with arbitrarily high accuracy,
of the exact nonlinear continuous operator mapping PDE
coefficient functions into gain functions. Once proven to
exist, learning of the NO is standard, completed “once
and for all” (never online) and the kernel integral equation
does not need to be solved ever again, for any new
functional coefficient not exceeding the magnitude of the
functional coefficients used for training. We also present
an extension from approximating the gain kernel operator
to approximating the full feedback law mapping, from plant
parameter functions and state measurement functions
to the control input, with semiglobal practical stability
guarantees. Simulation illustrations are provided and code
is available online.1 This framework, eliminating real-time
recomputation of gains, has the potential to be game
changing for adaptive control of PDEs and gain scheduling
control of nonlinear PDEs. This article requires no prior
background in machine learning or neural networks.

Index Terms—Aerospace control, backstepping,
Lyapunov analysis, machine learning, nonlinear control
systems.

I. INTRODUCTION

M achine learning/artificial intelligence (ML/AI) is
often (not entirely unjustifiably) thought of as an
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“existential threat” to model-based sciences, from physics
to conventional control theory. In recent years, a framework
has emerged [48], [49], [52], [53], initiated by George
Karniadakis, his coauthors, and teams led by Anima
Anandkumar and Andrew Stuart, which promises to unite
the goals of physics and learning, rather than presenting
learning as an alternative or substitute to first-principles
physics. In this framework, often referred to as neural operators
(NO), which is formulated as learning of mappings from
function spaces into function spaces, and is particularly suitable
for partial differential equations (PDEs), solution/“flow” maps
can be learned after a sufficiently large number of simulations
for different initial conditions. (In some cases, parameters of
models can also be identified from experiments.)

a) Mappings of plant parameters to control gains and learning
of those maps: One cannot but ask what the NO reasoning can
offer to control theory, namely, to the design of controllers,
observers, and online parameter estimators. This article is the
first venture in this direction, a breakthrough with further possi-
bilities, and a blueprint (of a long series of steps) to learn PDE
control designs and prove their stability.

In control systems (feedback controllers, observers,
identifiers), various kinds of nonlinear maps arise, some
from vector into vector spaces, others from vector or function
spaces into function spaces. Some of the maps have time
as an argument (making the domain infinite) and others are
mappings from compact domains into compact image sets,
such as mappings converting system coefficients into controller
coefficients, such as the mapping K(A,B) for the closed-loop
system ẋ = Ax+Bu, u = Kx (under either pole placement
or linear quadratic regulator (LQR)).

While learning nonlinear maps for various design problems
for nonlinear ordinary differential equation (ODEs)would be
worth a study, we focus in this initial work one step beyond, on a
benchmark PDE control class. Our focus on an uncomplicated—
but unstable—PDE control class is for pedagogical reasons.
Combining the operator learning with PDE backstepping is
complex enough even for the simplest-looking among PDE
stabilization problems.

b) PDE backstepping control with the gain computa-
tion obviated using NO: Consider 1-D hyperbolic par-
tial integro-differential equation (PIDE) systems of the
general form vt(x, t) = vx(x, t) + λ(x)v(x, t) + g(x)v(0, t) +∫ x
0 f(x, y)v(y, t)dy on the unit interval x ∈ [0, 1], which are

transformable, using an invertible backstepping “pretransforma-
tion” introduced in [6] into the simple PDE

ut(x, t) = ux(x, t) + β(x)u(0, t) (1)

u(1, t) = U(t). (2)
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Our goal is the design of a PDE colorundary control

U(t) =

∫ 1

0
k(1− y)u(y, t)dy. (3)

Physically, (1) is a “transport process (fromx = 1 towardx = 0)
with recirculation” of the outlet variable u(0, t). Recirculation
causes instability when the coefficient β(x) is positive and
large. This instability is prevented by the backstepping boundary
feedback (3) with the gain function k(·) as a kernel in the spatial
integration of the measured state u(y, t). (The full state does not
need to be measured, as explained in Remark 1 at the end of
Section IV.)

Backstepping produces the gain kernel k for a given β. The
mapping K : β #→ k is nonlinear, continuous, and we learn it.

Why do we care to learn K? The kernel function k can always
be computed for a particular β, so what is the interest in learning
the functional mapping/operator? OnceK is learned,k no longer
needs to be sought, for a new β, as a solution to a partial
differential or integral equation. For the next/new β, finding k is
simply a “function evaluation” of the learned mapping K. This
provides benefits in both adaptive control where, at each time
step, the gain estimate k̂ has to be computed for a new parameter
update β̂, and in gain scheduling for nonlinear PDEs where the
gain has to be recomputed at each current value of the state.

As well known, learning (ML, in general, and its operator
learning varieties: DeepONet, Fourier neural operator (FNO),
learning operators with coupled attention (LOCA), nonlinear
manifold decoders for operator learning (NOMAD), etc.) comes
with an upfront price. Large datasets need to be first produced,
and then large (possibly “deep”) neural networks (NNs) need
to be trained. There is no exception to this in the approach we
propose. For a large sample set of recirculation functions βi, we
need to first solve for the corresponding backstepping kernels
ki. After that, a NN approximation of K needs to be trained on
that data set of the (βi, ki) pairs.

One can stop at producing the NN approximation of the
mappingK and proceed with a heuristic use of the approximated
gains k̂. But we do not stop there. We ask whether the PDE
system will be still stabilized with the NN-approximated gain
kernel k̂. Our main theoretical result is affirmative. With a large
enough data set of solved pairs (βi, ki), and a large enough
trained (deep) NN, closed-loop stability is guaranteed for a new
β, not in the training set.

When ML is applied in the control context [as reinforcement
learning (RL) or other approaches], it is usually regarded as
a model-free design. Our design, summarized in Fig. 1, is not
model-free; it is model-based. It is only that the computational
portion of this model-based (PDE backstepping) design is obvi-
ated through ML.

Our learning is offline; not as in adaptive control [1], [6].
c) NO literature—a brief summary: NO are NN-paramete-

rized maps for learning relationships between function spaces.
They originally gained popularity due to their success in map-
ping PDE solutions while remaining discretization-invariant.
Generally, nonlinear operators consist of three components: an
encoder, an approximator, and a reconstructor [45]. The encoder
is an interpolation from an infinite-dimensional function space
to a finite-dimensional vector representation. The approximator
aims to mimic the infinite map using a finite-dimensional repre-
sentation of both the domain function space and the target func-
tion space. The reconstructor then transforms the approximation
output into the infinite-dimensional target function space. The

Fig. 1. Algorithmic representation of our design paradigm of employ-
ing NO in boundary control of PDEs. Three major step clusters are
performed: 1) derivation of the integral equations for the backstepping
kernels, performed only once; 2) learning of the mapping from the plant
parameter functions into the backstepping kernel functions, also per-
formed only once; 3) implementation of the controller for specific plant
parameters. The task in the top box has been completed in [40]. In this
article, the task in the middle box is introduced and stability guarantees
for the task in the bottom box are provided.

implementation of both the approximator and the reconstructor
is generally coupled and can take many forms. For example, the
original DeepONet [53] contains a “branch” net that represents
the approximation network and a “trunk” net that builds a basis
for the target function space. The outputs of the two networks
are then taken in linear combination with each other to form
the operator. FNO [49] utilizes the approximation network in
a Fourier domain where the reconstruction is done on a basis
of the trigonometric polynomials. LOCA [37] integrates the
approximation network and reconstruction step with a unified
attention mechanism. NOMAD [69] extends the linear recon-
structor map in DeepONet to a nonlinear map that is capable
of learning on nonlinear submanifolds in function spaces. There
have been many more extensions to the NO architectures omit-
ted here as they are usually designed around domain-specific
enhancements [50], [64], [84]. Another line of work, called
physics-informed neural networks (PINNs) [36], [67], which can
be used as generic solvers of PDEs by adding physics constraint
loss to neural networks. However, PINNs need to be retrained
for new recirculation function β, thus not providing as much
acceleration for the computation of the backstepping kernels as
the NO.
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d) Advances in learning-based control: Among the first in
demonstrating the stability of learning-based model predictive
controllers were the papers [2] and [68], followed in several
directions. First, for nonlinear systems, deep learning-based
approaches consist of jointly learning the controller and (or)
Lyapunov functions via NNs [10], [11], [12], [13], [14], [20],
[21]. [10] proposed a method for learning control policies
and NN Lyapunov functions using an empirical Lyapunov
loss and then validating using formal verification. The authors
in [11] and [12] generalized the method to learning Lyapunov
functions for piecewise linear and hybrid systems, and in [13] for
learning regions of attraction of nonlinear systems. In addition,
the authors in [60] and [77] have explored how learning-based
control will affect nominal systems with known Lyapunov func-
tions, and the authors in [9], [22], and [63] studied the problem
of learning stability certificates and stable controllers directly
from data. In a similar vein, Berberich et al. [4] has devel-
oped a provable stable data-driven algorithm based on system
measurements and prior knowledge for linear time-invariant
systems.

In a separate, but related direction, many RL [7], [75] control
approaches have been developed over the past few years. On
the one side, model-based RL has been studied due to its su-
perior sample efficiency and interpretable guarantees. The main
focus has been on learning the system dynamics and providing
closed-loop guarantees in finite-time for both linear systems [15],
[23], [29], [42], [78] (and references within); and nonlinear
systems [5], [35], [43], [72]. For model-free RL methods, the
authors in [30], [57], [61], and [91] proved the convergence
of policy optimization, a popular model-free RL method, to
the optimal controller for linear time-invariant systems, [59],
[62] for linear time-varying systems, and [76] for partially
observed linear systems. See [32] for a recent review of policy
optimization methods for continuous control problems, such as
the LQR, H∞ control, risk-sensitive control, linear quadratic
Gaussian (LQG), and output feedback synthesis. For nonlinear
systems, the authors in [16], [17], [19], and [71] investigated
policy optimization with stability guarantees, in which the sta-
bility constraints are derived from control Lyapunov functions.
In addition to policy optimization methods, the authors in [8],
[47], [79], and [80] have studied and proved the stability and
asymptotic convergence of other model-free RL algorithms,
such as actor–critic methods [47], [80] and Q-learning [79] in
control affine systems. In the domain of cyber-physical systems,
a theoretical framework has been developed for learning-based
control to handle partially observable systems [54].

Many advances have been made in learning-based con-
trol in games and multiagent systems [31], [51], [55], [56],
[58], [65], [66], [81], [89], [90]. Convergence is character-
ized for various learning-based methods to Nash equilibria in
zero-sum linear quadratic games [89], continuous games [56],
Stackelberg games [31], [58], Markov games [55], [88],
and multiagent learning over networked systems [51], [65],
[66]. A recent review for learning-based control in games is
in [90].

We focus on learning-based control for PDE systems. In
our previous work [70], we demonstrate the empirical suc-
cess of using NOs for accelerating PDE backstepping ob-
servers, without theoretical guarantees. This work represents
the first step towards using NOs for provably bypassing gain

computations (with exponential stability guarantees) or di-
rectly learning the controller (with practical stability) in PDE
backstepping.

e) Backstepping control of first-order hyperbolic PDEs: The
PDE system (1) and (2) is the simplest open-loop unstable PDE
of any kind, which can be of interest to the researcher working
on PDE stabilization by boundary control. This system is treated
here as a technical benchmark, as was done as well in [6] and
a number of other references offering methodological advances
in PDE stabilization. System (1) and (2) is a particular case of
a single-PDE hyperbolic class in [40], for which PDE back-
stepping was first introduced in the hyperbolic setting. Coupled
systems of first-order hyperbolic PDEs are of greater interest
because they arise in fluid flows, traffic flows, elastic structures,
and other applications. The first result on backstepping for a
pair of coupled hyperbolic PDEs was in [18]. The extension
from two to n+ 1 hyperbolic PDEs, with actuation of only one
and with counterconvection of n other PDEs was introduced
in [27]. An extension from n+ 1 to n+m coupled PDEs, with
actuation on m “homodirectional” PDEs, was provided in [33]
and [34]. Redesigns that are robust to delays were provided
in [3]. An extension from coupled hyperbolic PDEs to cascades
with ODEs was presented in [28]. An extension from hyperbolic
PDE-ODE cascades to “sandwiched” ODE-PDE-ODE systems
was presented in [82] and an event-triggered design for such
systems was given in [83]. The extension of PDE backstepping to
output-feedback regulation with disturbances is proposed in [25]
and [26]. For coupled hyperbolic PDEs with unknown param-
eters, a comprehensive collection of adaptive control designs
was provided in the book [1]. Applications of backstepping to
coupled hyperbolic PDE models of traffic are introduced in [85]
and [86].

f) Article outline and contributions: After a brief introduc-
tion to the backstepping design in Section II, for systems (1)
and (2), in Section III we prove that the backstepping kernel
operator is locally Lipschitz, between the spaces of continuous
functions, with which we satisfy a sufficient condition for the
existence of a NO approximation of a nonlinear operator to
arbitrarily high accuracy—stated at the section’s end in a formal
result and illustrated with an example of approximating the
operator k = K(β). In Section IV we present the first of our
main results: the closed-loop stabilization (not merely practical
but exponential) with a DeepONet-approximated backstepping
gain kerne l function. In Section V we present simulation re-
sults that illustrate stabilization under DeepONet-approximated
gains. Then, in Section VI we pose the question of whether
we can not only approximate the gain kernel mapping β(x) #→
k(x), as in Sections III and IV, but the entire feedback law
mapping (β(x), u(x, t)) #→

∫ 1
0 k(1− y)u(y, t)dy at each time

instant t; we provide an affirmative answer and a guaran-
tee of semiglobal practical exponential stability under such
a DeepONet approximation. In Section VII we illustrate this
feedback law approximation with a theory-confirming simu-
lation. Then, in Section VIII, we present this article’s most
general result, which we leave for the end for pedagogical
reasons, since it deals with Volterra operator kernel functions
of two variables, (x, y), on a triangular domain, and requires
continuity of mappings between spaces of functions that are
not just continuous but continuously differentiable, so that not
only the backstepping kernel is accurately approximable but
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also the kernel’s spatial derivatives, as required for closed-
loop stability. We close with a numerical illustration for this
general case in Section IX. Finally, Section X concludes this
article.

In summary, this article’s contributions are the PDE stabi-
lization under DeepONet approximations of backstepping gain
kernels (Theorems 2 and 4) and under the approximation of
backstepping feedback laws (Theorem 3). Our stabilization re-
sults also hold for any other NO with a universal approximation
property (shown for LOCA [37] and for FNO on the periodic
domain [38]).

g) Notation: We denote convolution operations as

(a ∗ b)(x) =
∫ x

0
a(x− y)b(y)dy. (4)

In the sequel, we suppresses the arguments x and t wherever
clear from the context. For instance, we write (1) and (2)
compactly as ut = ux + βu(0) and u(1) = U , where from the
context, the boundary values u(0) andu(1) depend on t as well.

II. BACKSTEPPING DESIGN FOR A TRANSPORT PDE WITH
“RECIRCULATION”

Consider the PDE system (1) and (2). We employ the follow-
ing backstepping transformation:

w = u− k ∗ u (5)

i.e., w(x, t) = u(x, t)−
∫ x
0 k(x− y)u(y, t)dy, to convert the

plant into the target system

wt = wx (6)

w(1) = 0 (7)

with the help of feedback

U = (k ∗ u)(1) (8)

namely, U(t) =
∫ 1
0 k(1− y)u(y, t)dy. To yield the target sys-

tem, k must satisfy the integral/convolution equation

k(x) = −β(x) +

∫ x

0
β(x− y)k(y)dy (9)

for x ∈ [0, 1]. While this integral equation is linear in k for a
given β, the mapping from β to k is actually nonlinear, due to
the product in the convolution of β with k, as emphasized with
the nonlinear Laplace transform relation in (15).

III. ACCURACY OF APPROXIMATION OF BACKSTEPPING
KERNEL OPERATOR WITH DEEPONET

An n-layer NN fN : Rd1 → Rdn is given by

fN (x, θ) := (ln ◦ ln−1 ◦ . . . ◦ l2 ◦ l1)(x, θ) (10)

where layers li start with l0 = x ∈ Rd1 and continue as

li+1(li, θi+1) := σ(Wi+1li + bi+1), i = 1, . . . , n− 1 (11)

σ is a nonlinear activation function, and weights Wi+1 ∈
Rdi+1×di and biases bi+1 ∈ Rdi+1 are parameters to be
learned, collected into θi ∈ Rdi+1(di+1), and then into
θ = [θT1 , . . . , θ

T
n ]

T ∈ R
∑n−1

i=1 di+1(di+1). Let ϑ(k), θ(k) ∈
R

∑k−1
i=1 dk,(i+1)(dk,i+1) denote a sequence of NN weights.

A NO for approximating a nonlinear operator G : U #→ V is
defined as

GN (um) (y) =
p∑

k=1

gN
(
um;ϑ(k)

)
fN

(
y; θ(k)

)
(12)

where U andV are function spaces of continuous functions
u ∈ U and v ∈ V . um is the evaluation of function u at points
xi = x1, . . ., xm, p is the number of chosen basis components
in the target space, y ∈ Y is the location of the output function
v(y) evaluations, and gN , fN are NNs termed branch and trunk
networks. Note, gN and fN are not limited to feedforward NNs
10, but can also be of convolutional or recurrent.

Theorem 1 (DeepONet universal approximation theorem [24,
Th. 2.1]): Let X ⊂ Rdx and Y ⊂ Rdy be compact sets of vec-
tors x ∈ X and y ∈ Y , respectively. Let U : X → U ⊂ Rdu

and V : Y → V ⊂ Rdv be sets of continuous functions u(x)
and v(y), respectively. Let U be also compact. Assume the
operator G : U → V is continuous. Then, for all ε > 0, there
exist m∗, p∗ ∈ N such that for each m ≥ m∗, p ≥ p∗, there
exist θ(k),ϑ(k), neural networks fN (·; θ(k)), gN (·;ϑ(k)), k =
1, . . . , p, and xj ∈ X, j = 1, . . . ,m, with corresponding um =
(u(x1), u(x2), . . . , u(xm))T, such that

sup
u∈U

sup
y∈Y

|G(u)(y)− GN (um)(y)| < ε. (13)

We briefly note that there exists many other NO approxima-
tion theorems for architectures other than DeepONet (such as
FNO). More details can be found in [44].

Definition 1 (Backstepping kernel operator): A mapping K :
β #→ k of C0[0, 1] into itself, where k = K(β) satisfies

K(β) = −β + β ∗K(β) (14)

namely, in the Laplace transform notation

k = K(β) := L−1

{
L{β}

L{β}− 1

}
(15)

is referred to as the backstepping kernel operator.
Lemma 1 (Lipschitzness of backstepping kernel operator K):

The kernel operator K : β #→ k in Definition 1 is Lipschitz.
Specifically, for any B > 0 the operator K satisfies

||K(β1)−K(β2)||∞ ≤ C||β1 − β2||∞ (16)

with the Lipschitz constant

C = e3B (17)

for any pair of functions (β1,β2) such that ‖β1‖∞, ‖β2‖∞ ≤ B,
where ‖ · ‖∞ is the supremum norm over the argument of β
and k.

Proof: The result is provable with the Gronwall lemma but we
employ the successful approximation approach, which, unlike
Gronwall, extends to integral equations with multiple (nested)
integrals.

Start with the iteration k0 = −β, kn+1 = k0 + β ∗ kn, n ≥
0 and consider the iteration

!kn+1 = β ∗!kn, !k0 = k0 = −β (18)

for the difference !kn = kn − kn−1, which sums to

k =
∞∑

n=1

!kn. (19)
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Next, for β̄ = ‖β‖∞ and all x ∈ [0, 1]

|!kn(x)| ≤ β̄n+1xn

n!
(20)

which is established by induction by postulating |!kn−1(x)| ≤
β̄nxn−1

(n−1)! and by computing, from (18)

|!kn(x)| =
∣∣∣∣
∫ x

0
β(x− y)!kn−1(y)dy

∣∣∣∣

≤ β̄

∫ x

0

β̄nyn−1

(n− 1)!
|dy ≤ β̄n+1xn

n!
(21)

and then, (20) and (19) yield

|k(x)| ≤ β̄eβ̄x. (22)

Next, for k1 = K(β1) and k2 = K(β2) it is easily verified that

k1 − k2 = β1 ∗ (k1 − k2)− δβ + δβ ∗ k2 (23)

where δβ = β1 − β2. Define the iteration

δkn+1 = β1 ∗ δkn (24)

δk0 = − δβ + δβ ∗ k2 (25)

which verifies k1 − k2 =
∑∞

n=1 δk
n. Noting that (22) ensures

that k2 = K(β2) verifies |k2(x)| ≤ β̄2eβ̄2x, from (25)

|δk0(x)| ≤
(
1 + β̄2e

β̄2x
)
δβ ≤ µ2δβ (26)

where µ2 := 1 + β̄2eβ̄2 and δβ = ‖β1 − β2‖∞, it can be shown
by induction, by mimicking the chain of inequalities (21), that,
for all x ∈ [0, 1]

|δkn(x)| ≤ µ2δβ
β̄n
1 x

n

n!
(27)

and therefore it follows that, for all x ∈ [0, 1]:

|k1(x)− k2(x)| ≤
(
1 + β̄2e

β̄2

)
eβ̄1x‖β1 − β2‖∞

≤ e3B‖β1 − β2‖∞. (28)

Hence, local Lipschitzness is proven with (17). !
Corollary 1 (To Theorem 1): Consider the backstepping

kernel operator K in Definition 1. For all B > 0 and ε > 0,
there exist p∗(B, ε),m∗(B, ε) ∈ N, with an increasing depen-
dence onB and 1/ε, such that for each p ≥ p∗ andm ≥ m∗ there
exist θ(k),ϑ(k), neural networks fN (·; θ(k)), gN (·;ϑ(k)), k =
1, . . . , p, and xj ∈ [0, 1], j = 1, . . . ,m, with corresponding
βm = (β(x1),β(x2), . . . ,β(xm))T, such that

|K(β)(x)−KN (βm)(x)| < ε (29)

holds for all Lipschitz β with the property that ‖β‖∞ ≤ B.2
So the backstepping kernel is approximable, qualitatively, but

how many neurons and how much data are needed for a given ε?
We recall a result on the minimum-sized DeepONet from [24,
Remark 2.8] and instantiate it for d = α = 1.

Proposition 1 (DeepONet size for kernel operator approxima-
tion [24, Th. 2.7 and Remark 2.8]): If the kernel operator defined
in (14) is Lipschitz (or at least Hölder) continuous, a DeepONet

2A set of Lipschitz bounded functions is compact by Arzela-Ascoli theorem.

that approximates it to a required error tolerance ε > 0 indicated
by (29) employs the number of data point evaluations for β on
the order of

m ∼ ε−1 (30)

the number of basis components in the interpolation when
reconstructing into C0[0, 1] on the order of

p ∼ ε−
1
2 (31)

the numbers of layers LgN in the branch network and of neurons
NgN in each layer of the branch network on the order given,
respectively, by

NgN · LgN ∼
(
1

ε

) 1
ε

(32)

and the total size of the trunk network on the order of

|θ(k)| ∼
(
3

2
log

1

ε

)2

. (33)

Example 1: In Fig. 2 we present two examples of approx-
imation of k using a DeepONet approximation of K(β) for
given β1 and β2, which are taken as Chebyshev polynomials
β(x) = 6 cos(γ cos−1(x)). They are trained on approximating
kernels from 900 samples with γ ∈ uniform[2, 8].

IV. STABILITY UNDER KERNEL APPROXIMATION WITH
DEEPONET

For a given β, let k̂ = K̂(β), where K̂ = KN, denote an
NO approximation of the exact backstepping kernel k whose
existence is established in Corollary 1 for DeepONet. Let

k̃ = k − k̂ (34)

denote the approximation error. Finally, let the backstepping
transformation with the approximate kernel k̂ be

ŵ = u− k̂ ∗ u. (35)

With routine calculations, employing the approximate back-
stepping transformation and the feedback

U = (k̂ ∗ u)(1) (36)

we arrive at the target system

ŵt = ŵx + δŵ(0) (37)

ŵ(1) = 0 (38)

where the function δ(x) is defined as

δ = −k̃ + β ∗ k̃. (39)

Next, we proceed with a Lyapunov analysis.
Lemma 2 (Lyapunov estimate): Given arbitrarily large B >

0, for all Lipschitz β with ‖β‖∞ ≤ B, and for all NO K̂ with
ε ∈ (0, ε∗), where

ε∗(B) =
ce−c/2

1 +B
(40)

the Lyapunov functional

V (t) =

∫ 1

0
ecxŵ2(x, t)dx, c > 0 (41)
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Fig. 2. Examples of β, k̂ for Chebyshev polynomials defined as β = 6cos(γ cos−1(x)) with γ = 3, 7.35 on the left-hand side and right-hand side,
respectively. The γ parameter controls the wave frequency of β and therefore affects the resulting kernel. In addition, the DeepONet absolute
approximation error of k̂ and k is shown. The DeepONet approximates the “smoother” function on the left-hand side with better precision than
the large, oscillating function on the right-hand side.

satisfies the following estimate along the solutions of the target
system (37), (38):

V (t) ≤ V (0)e−c∗t (42)

for

c∗ = c− ec

c
ε2 (1 +B)2 > 0. (43)

The accuracy required of the NO K̂, and given by (40), is
maximized with c = 2 and has the value ε∗(B) = 2

e(1+B) .
Proof: Several steps of calculation (chain rule, substitution,

and integration by parts) result in

V̇ = − ŵ2(0)− c

∫ 1

0
ecxŵ2(x, t)dx

+ ŵ(0)

∫ 1

0
δ(x)ecxŵ(x)dx

≤ − 1

2
w2(0)− c

∫ 1

0
ecxŵ2(x, t)dx

+

(∫ 1

0
δ(x)ecxŵ(x)dx

)2

. (44)

With the Cauchy–Schwartz inequality
(∫ 1

0
δ(x)ecxŵ(x)dx

)2

≤
∫ 1

0
δ2(x)ecxdx

∫ 1

0
ecxŵ(x)2dx (45)

we get

V̇ ≤ −1

2
w2(0)−

(
c−

∫ 1

0
δ2(x)ecxdx

)
V. (46)

The function δ in (39) is bounded by |δ(x)| ≤ (1 + ||β||∞)
||k̃||∞, which in turn, using (29), yields

|δ(x)| ≤ (1 + β̄)ε =: δ̄. (47)

Then, substituting this into (37), we obtain

V̇ ≤ − 1

2
w2(0)−

(
c− ε2

(
1 + β̄

)2
∫ 1

0
ecxdx

)
V

≤ − 1

2
w2(0)−

(
c− ec

c
ε2

(
1 + β̄

)2
)
V

≤ − 1

2
w2(0)−

(
c− ec

c
ε2 (1 +B)2

)
V. (48)
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For 0 ≤ ε ≤ ε∗, where ε∗ is defined in (40), we have

V̇ ≤ −1

2
w2(0)− c∗V (49)

for some c∗ > 0 in (43). !
The size of the NO and of the dataset needs to increase with

β̄, i.e., with the potential instability in the open-loop system.
Lemma 3 (Bound on inverse approximate kernel): The kernel

l̂ of the inverse to the backstepping transformation (35)

u = ŵ + l̂ ∗ ŵ (50)

satisfies, for all x ∈ [0, 1], the estimate

|l̂(x)| ≤
(
β̄ + (1 + β̄)ε

)
e(1+β̄)εx. (51)

Proof: It is easily shown that l̂ obeys the integral equation

l̂ = −β + δ + δ ∗ l̂. (52)

Using the successive approximation approach, we get that the
following bound holds for all x ∈ [0, 1]:

|l̂(x)| ≤
(
β̄ + δ̄

)
eδ̄x. (53)

With (47), we get (51). !
Theorem 2 (Closed-loop stability robust to DeepONet approx-

imation of backstepping kernel): Let B > 0 be arbitrarily large
and consider the closed-loop system consisting of (1), (2) with
any Lipschitzβ such that ‖β‖∞ ≤ B, and the feedback (36) with
the NO gain kernel k̂ = K̂(β) of arbitrary desired accuracy of
approximation ε ∈ (0, ε∗) in relation to the exact backstepping
kernelk, where ε∗(B) is defined in (40). This closed-loop system
obeys the exponential stability estimate

‖u(t)‖ ≤ Me−c∗t/2‖u(0)‖ ∀t ≥ 0 (54)

with the overshoot coefficient

M =
(
1 +

(
β̄ + (1 + β̄)ε

)
e(1+β̄)ε

)(
1 + β̄eβ̄

)
ec/2. (55)

Proof: First, we note that V defined in the statement of
Lemma 2 satisfies

1
(
1 + ‖l̂‖∞

)2 ‖u‖
2 ≤ V ≤ ec

(
1 + ‖k̂‖∞

)2
‖u‖2. (56)

Since, by Lemma 2, V (t) ≤ V (0)e−c∗t, we get, for all t ≥ 0

‖u(t)‖ ≤
(
1 + ‖l̂‖∞

)(
1 + ‖k̂‖∞

)
ec/2

× e−c∗t/2‖u(0)‖. (57)

Then, noting, with Theorem 1, (22), and Lemma 3 that

‖k̂‖∞ ≤ ‖k‖∞ + ε ≤ β̄eβ̄ + ε (58)

‖l̂‖∞ ≤
(
β̄ + (1 + β̄)ε

)
e(1+β̄)ε (59)

we finally arrive at the exponential stability estimate (54). !
Remark 1: Full-state measurement u(x, t) is employed in the

feedback law (36) but can be avoided by employing only the
measurement of the outlet signal, u(0, t), from which the full
state u(x, t) is observable, the observer

ŭt = ŭx + βu(0) (60)

û(1) = U (61)

and the observer-based controller

U = (k̂ ∗ ŭ)(1) (62)

which can avoid solving the PDE (60), (61) online by employing
its explicit solution as an arbitrary function ŭ(x, t) = ŭ0(x) for
t+ x ∈ [0, 1) and

ŭ(x, t) = U(t+ x− 1) +

∫ t

t+x−1
β(t+ x− τ)u(0, τ)dτ

(63)
for t+ x ≥ 1. A closed-loop stability result as in Theorem 2 can
be established for this observer-based controller.

V. SIMULATIONS: STABILIZATION WITH NO-APPROXIMATED
GAIN KERNEL β #→ K(β)

Continuing with Example 1, in Fig. 3 we show that the system
is open-loop unstable for both βs and we present tests with the
learned kernels in closed-loop simulations up to t = 2. In both
cases, the PDE settles (nearly perfectly) by t = 1, as expected
from the target system with the perfect kernel k. The small ripple
in the right simulation is due to the use of the approximated
kernel k̂. The simulations confirm that we can successfully learn
a NO approximation of the kernel and corroborate the theoretical
guarantee that an NO-approximated kernel can successfully
emulate a backstepping kernel while maintaining stability.

The NO architecture in K̂ consists of about 680 thousand
parameters with a training time of 1 min (using an Nvidia
RTX 3090Ti GPU) on a dataset of 900 different β defined
as the Chebyshev polynomials β = 6 cos(γ cos−1(x)) where
γ ∼ uniform(2, 10). We choose β of this form due to the
rich set of PDEs and kernel functions constructed by varying
only a single parameter. The resulting training relative L2 er-
ror 4E − 3 and the testing relative L2 loss on 100 instances
sampled from the same distribution was 5E − 3. If a wider
distribution of γ is chosen, the mapping can be learned but
requires both a larger network and more data for the same
accuracy.

VI. APPROXIMATING THE FULL FEEDBACK LAW MAP
(β, u) #→ U

We have so far pursued only the approximation of operator
K(β), while treating the feedback operator (8), given by U =
(k ∗ u)(1) = (K(β) ∗ u)(1), as straightforward to compute—
merely an integral in x, i.e., a simple inner product between the
functions K(β)(1− x) and the state measurement u(x, t).

It is of theoretical (if not practical) interest to explore the
neural approximation of the mapping from (β, u) into the scalar
control input U . Such a mapping is clearly from a much larger
space of functions (β, u) into scalars (i.e., the mapping is func-
tional) and is, therefore, considerably more training-intensive
and learning-intensive. Nevertheless, since it is legitimate to ask
how one would approximate not just the feedback gain kernel
but the entire feedback law map, we examine this option in this
section.

We emphasize that we are approximating just the feedback
operator (K(β) ∗ u)(1), whose second argument is the current
state u as a function of x, not the entire trajectory u(x, t).
We do not train the NO using a trajectory-dependent cost∫ tf
0 (

∫ 1
0 u2(x, t)dx+ U2(t))dt for different initial conditions

u0, as, e.g., in the application of RL to the hyperbolic PDEs
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Fig. 3. Top row showcases open-loop instability for the recirculation functions β that are the same as in Fig. 2, with γ = text3, 7.35 on the left-hand
side and right-hand side, respectively. In addition, the bottom two rows highlight examples of PDE closed-loop state response and errors between
the response with “perfect gain” k and “approximate gain” k̂. β corresponds to the same values in Fig. 2. For the more “fluctuating” plant parameter
β, on the right-hand side of Fig. 2, the control task is more challenging and, consequently, the state approximation error is also higher (bottom
right-hand side).

of traffic flow in [87]. Instead, we perform the training simply
on the kernel integral (14) and the convolution operation (8) for
sample functions β and u of x.

The form of stability we achieve in this section is less strong
than in Theorem 2. While Theorem 2 guarantees global ex-
ponential stability, here we achieve only semiglobal practical
exponential stability. Because in this section we do not just
train a multiplicative gain K(β) but a feedback of u as well,
the approximation error is not just multiplicative but additive,

which is the cause of the exponential stability being practical.
Because the data set involves samples u of bounded magnitude,
stability is semiglobal only.

Nevertheless, in comparison to the training on closed-
loop solutions over a finite time horizon for the traf-
fic flow in [87], where the finite horizon precludes the
possibility of stability guarantees, the semiglobal practi-
cal exponential stability achieved here is a rather strong
result.
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We start by establishing the Lipschitzness of the backstepping
feedback map.

Lemma 4: Consider the feedback (8), namely

U = (K(β) ∗ u)(1) (64)

and the associated map U : (β, u) #→ U from C0([0, 1]2) into
R. For arbitrary Bβ , Bu > 0, the mapping U is Lipschitz on any
set of x-dependent Lipschitz functions (β, u) such that ‖β‖∞ ≤
Bβ , ‖u‖2 ≤ Bu, with a Lipschitz constant

CU = Bβe
Bβ +Bue

3Bβ . (65)

Proof: Let ||(β, u)||∞2 = ||β||∞ + ||u||2, U1 = U(β1, u1)
= (K(β1) ∗ u1)(1), andU2 = U(β2, u2) = (K(β2) ∗ u2)(1). A
calculation gives

|U1 − U2| = |(K(β1) ∗ u1)(1)− (K(β2) ∗ u2)(1)|
≤‖K(β1)‖∞‖u1−u2‖2+‖u2‖2‖K(β1)−K(β2)‖∞

(66)

where we have employed the Cauchy–Schwartz inequality.
Let ‖β1‖∞, ‖β2‖∞ ≤ Bβ and ‖u1‖2, ‖u2‖2 ≤ Bu. Recall that
‖K(β)‖∞ ≤ BβeBβ and ‖K(β1)−K(β2)‖∞ ≤ e3Bβ‖β1 −
β2‖∞. Then, we get

|U(β1, u1)− U(β2, u2)|

≤
(
Bβe

Bβ +Bue
3Bβ

)
‖(β1 − β2, u1 − u2)‖∞2. (67)

!
Taking the backstepping transformation w = u− k ∗ u,

where k = K(β) is the exact backstepping kernel for β, we get

wt = wx (68)

w(1) = U − (K(β) ∗ u)(1). (69)

Let now Û be the NO version of the mapping U(β, u) =
(K(β) ∗ u)(1). Taking the NO control U = Û(β, u), we ob-
tain the boundary condition w(1) = Û(β, u)− (K(β) ∗ u)(1),
namely, the target system

wt = wx (70)

w(1) = Û(β, u)− U(β, u). (71)

Due to the Lipschitzness of U , based on the DeepONet ap-
proximation accuracy theorem, we get the following.

Lemma 5: For all Bβ , Bu > 0, and ε, there exists an
NO Û such that

|U(β, u)− Û(β, u)| < ε (72)

for all β ∈ C0[0, 1] that are Lipschitz in x and such that ‖β‖∞ ≤
Bβ , and u ∈ L2[0, 1] that are H1 in x and ‖u‖2 ≤ Bu.

Next, we state and then prove the main result.
Theorem 3 (Semiglobal practical stability under DeepONet

approximation of backstepping feedback law): If ε < ε∗, where

ε∗(Bβ , Bu, c) :=

√
cBu

ec/2 (1 +Bβ)
> 0 (73)

and ‖u(0)‖ ≤ B0
u, where

B0
u(ε, Bβ , Bu, c) :=

1

1+BβeBβ

(
Bu

ec/2 (1+Bβ)
− ε√

c

)
>0

(74)

the closed-loop solutions under the NO approximation of the
PDE backstepping feedback law, i.e.,

ut(x, t) = ux(x, t) + β(x)u(0, t) (75)

u(1, t) = Û(β, u)(t) (76)

satisfy the semiglobal practical exponential stability estimate

‖u(t)‖ ≤ (1 +Bβ)
(
1 +Bβe

Bβ
)
ec/2e−ct/2‖u(0)‖

+ (1 +Bβ)
ec/2√

c
ε ∀t ≥ 0. (77)

The estimate (77) is semiglobal because the radius B0
u of

the ball of initial conditions in L2[0, 1] is made arbitrarily large
by increasing Bu, and by increasing, in accordance with the
increase ofBu, the training set size and the number of NN nodes.
Nevertheless, though semiglobal, the attraction radiusB0

u in (74)
is much smaller than the magnitude Bu of the samples of u in
the training set.

The residual value

lim sup
t→

‖u(t)‖ ≤ (1 +Bβ)
ec/2√

c
ε (78)

is made arbitrarily small by decreasing ε and by increasing, in
accordance with the decrease of ε, the training set size and the
number of NN nodes. As the magnitude Bβ of the (potentially
destabilizing) gain samples β used for training grows, the resid-
ual error grows.

Proof of Theorem 3: To make the notation concise, denote
Ũ = U − Û and note that this mapping satisfies |Ũ(β, u)| =
|w(1)| ≤ ε for all ‖β‖∞ ≤ Bβ , ‖u‖∞ ≤ Bu. Note also that
Ũ depends on ε, Bβ , Bu through the number of training data
and NO size. Consider now the Lyapunov functional V (t) =∫ 1
0 ecxw2(x, t)dx. Its derivative is

V̇ = ecw2(1)− w2(0)− c

∫ 1

0
ecxw2(x, t)dx

≤ − cV + ecw2(1) (79)

which yields

V (t) ≤ V (0)e−ct +
ec

c
sup

0≤τ≤t
w2(1, τ)

≤ V (0)e−ct +
ec

c
sup

0≤τ≤t

(
Ũ(β, u)(τ)

)2
. (80)

Using the facts that

1

(1 + ‖l‖∞)2
‖u‖2 ≤ V ≤ ec (1 + ‖k‖∞)2 ‖u‖2. (81)

and ‖k‖∞, ‖l‖∞ ≤ BβeBβ , ‖l‖∞ ≤ Bβ we get

‖u(t)‖ ≤ (1 +Bβ)
(
1 +Bβe

Bβ
)
ec/2e−ct/2‖u(0)‖

+ (1 +Bβ)
ec/2√

c
sup

0≤τ≤t

∣∣∣Ũ(β, u)(τ)
∣∣∣ . (82)

The conclusions of the theorem are directly deduced from this
estimate and the bound |Ũ | < ε in Lemma 5. !

The NO Û : (β, u) #→ U is complex, and therefore computa-
tionally burdensome in real time. Why not instead precompute
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Fig. 4. Examples of PDE closed-loop state response and errors between the response with “perfect control” U and “approximate control” Û . β is
same as in Fig. 2 with γ = 3.

the NO K̂ : β #→ k̂ and also find a DeepONet Ω̂ approximation
of the bilinear map Ω : (k, u) #→ U , which is simply the con-
volution Ω(k, u)(t) =

∫ 1
0 k(1− x)u(x, t)dy, and then compute

just Ω̂(k̂, u)(t) in real time, after computing k̂ = K̂(β) offline?
This is certainly possible. Why have not we developed the
theory for this approach? Simply because the theory for such
a “composition-of-operators” approach, for Ω̂(K̂(β), u), would
be hardly any different, but just notationally more involved, than
the theory that we provide here for the one-shot NO Û(β, u).

VII. SIMULATIONS: PRACTICAL STABILIZATION WITH
NO-APPROXIMATED FEEDBACK LAW (β, u) → U

Learning the map (β, u) #→ U is harder than β #→ k due to
the combination of two functions, β, and u. We can learn the
mapping using a training set defined by β as in Fig. 2 with
γ ∈ uniform(2, 6) and random values of u. We present results
with the learned mapping in Fig. 4 where the learned control
contains significant error. Due to this, we see that the PDE in the
right-hand side of Fig. 4 contains a significant ripple past the time
T = 1 whereas the analytically controlled PDE is stabilized, as
stipulated by the target system, by T = 1. When compared with
the operator approximation for gain kernel in the left-hand side
of Fig. 3, the PDE error is at least twice as large confirming the
theoretical results in Theorems 3 and 2.

Furthermore, the network architecture, as presented in Fig. 5
requires significant enhancement over a traditional DeepONet.

To learn this mapping, we emulate the operator structure where
the map (β, u) requires two DeepONet layers for the integral
operators adjoined with linear layers for the multiplicative op-
eration. In additional, to make the network feasible, we use
a smaller spatial resolution than in Section V and a larger
dataset. The dataset requires a combination of both β and u
and thus consists of 50 000 instances. Therefore a network of
approximately 415 000 parameters takes approximately 20 min
to train. We achieved a training relativeL2 error of 7.2E − 3 and
a testing relative L2 error of 3.3E − 2. This demonstrates, to the
practical user, that the map (β, u) requires more training data and
significant architectural enhancements boosting training time,
yet the error in Fig. 4 is larger compared with employing the
learned map β #→ k.

VIII. EXTENSION TO HYPERBOLIC PIDES

We present the “general case” for a class of hyperbolic PIDE
of the form

ut(x, t) = ux(x, t) + g(x)u(0, t)

+

∫ x

0
f(x, y)u(y, t)dy, x ∈ [0, 1) (83)

u(1, t) = U(t). (84)

We have left this generalization for the end of this article
for pedagogical reasons—in order not to overwhelm and daze
the reader—since the case where the Volterra operator kernel
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Fig. 5. Network architecture for the map (β, u) #→ U presented in Section VI. The network first solves the kernel function using a DeepONet layer,
then utilizes linear layers to multiply k with the PDE state u, and concludes by learning a second NO layer for the nonlinear integral operation
yielding the final control output U .

f(x, y) is a function of two variables complicates the treatment
considerably. The backstepping transformation is no longer a
convolution with a function of a single variable, the gain map-
ping is no longer of C0 functions on [0, 1] but of C1 functions
on the triangle {0 ≤ y ≤ x ≤ 1}, and the DeepONet theorem
requires estimates of the derivatives of the backstepping kernel.

While [6, Eqs. (11)–(17)] shows that (1) and (2) can be
transformed into (83) and (84), respectively, this transformation
involves a nonlinear mapping f #→ β, which itself would have to
be learned to produce an approximation of the complete kernel
mapping (g, f) #→ k as a composition of two mappings. This
is why the results of the previous sections do not provide a
solution to the general case (83) and (84), but only a pedagogical
introduction, and this is why a generalization in this section is
necessary.

To find the mapping from the PIDE coefficients (g, f) to the
kernel k of the backstepping controller

U(t) =

∫ 1

0
k(1, y)u(y, t)dy (85)

we take the backstepping transform

w(x, t) = u(x, t)−
∫ x

0
k(x, y)u(y, t)dy (86)

which is not a simple convolution as in (5), with a kernel
depending on a single argument, and the same target system
as in (6) and (7), wt = wx, w(1) = 0, which gives the kernel
integral equation derived in [40] as

k(x, y) = F0(x, y) + F (g, f, k)(x, y) (87)

where

F0(x, y) := − g(x− y)−
∫ y

0
f(x− y + ξ, ξ)dξ

(88)

F (g, f,κ)(x, y) :=

∫ x−y

0
g(ξ)κ(x− y, ξ)dξ

+

∫ y

0

∫ x−y

0
f(ξ + ,, ,)κ

(
x− y + ,, ξ

+ ,

)
dξd,. (89)

Denote T = {0 ≤ y ≤ x ≤ 1} as the domain of the functions
f and k. Further, denote

ḡ = sup
[0,1]

|g|, g′ = sup
[0,1]

|g′| (90)

f̄ = sup
T

|f |, fx = sup
T

|fx|. (91)

It was proven in [40] that

|k(x, y)| ≤
(
ḡ + f̄

)
eḡ+f̄ =: k̄

(
ḡ, f̄

)
. (92)

For the partial derivatives

kx = F x
0 + F (g, f, kx) (93)

ky = F y
0 − F (g, f, kx) (94)

where

F x
0 (x, y) = −

∫ y

0
fx(x− y + ξ, ξ)dξ + φ0(x, y) (95)

F y
0 (x, y) = fx(x, y) +

∫ x

y
f(σ, y)k(x,σ)dσ − φ0(x, y)

(96)

φ0(x, y) = − g′(x− y) + g(x− y)k(x− y, x− y)

+

∫ y

0
f(x− y + ,, ,)k(x− y + ,, x− y + ,)d,

(97)
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Fig. 6. On the left-hand side is an example of f(x, y) generated by the following form f(x, y) = β(x)β(y) where β is the Chebyshev polynomial
as in Fig. 2 with γ = 6. On the right-hand side is the corresponding PDE with open loop instability.

Fig. 7. Examples of the learned kernel k̂(x, y) and the kernel error k(x, y)− k̂(x, y) with a peak of about 10% of k(x, y), around the coordinate
(0.9, 0.9). The kernel shown corresponds to f(x, y) in Fig. 6.

it is proven using the same approach (successive approximation,
infinite series, and induction) that, on the triangle T

|kx(x, y)| ≤
(
fx + φ0

)
eḡ+f̄ =: kx

(
ḡ, g′, f̄ , fx

)
(98)

|ky(x, y)| ≤ fx + f̄ k̄ + φ0 +
(
ḡ + f̄

)
kx (99)

where

φ0(ḡ, g′, f̄) := g′ +
(
ḡ + f̄

)
k̄. (100)

Hence, along with the existence, uniqueness, and con-
tinuous differentiability of k [40], we have proven the
following.

Lemma 6: The map Q : C1([0, 1]× T ) → C1([0, 1]× T )
defined by k = Q(g, f), and representing the solution of (87),
is continuous. In addition, |k|, |kx|, |ky| are bounded, respec-
tively, as in (92), (98), and (99), in terms of the bounds on
|g|, |g′|, |f |, |fx|.

From the continuity of the map Q on the Banach space
C1([0, 1]× T ), the following result is inferred from the Deep-
ONet theorem.

Lemma 7: For all ε > 0 and Bg, Bg′ , Bf , Bfx > 0 there ex-
ists an NO Q̂ such that, for all (x, y) ∈ T ,

∣∣∣Q̂(g, f)(x, y)−Q(g, f)(x, y)
∣∣∣

+

∣∣∣∣
.

.x

(
Q̂(g, f)(x, y)−Q(g, f)(x, y)

)∣∣∣∣

+

∣∣∣∣
.

.y

(
Q̂(g, f)(x, y)−Q(g, f)(x, y)

)∣∣∣∣ < ε (101)

for all functions g ∈ C1([0, 1]) and f ∈ C1(T ) whose deriva-
tives are Lipschitz, and which satisfy ‖g‖∞ ≤ Bg , ‖g′‖∞ ≤ Bg′ ,
‖f‖∞ ≤ Bf , and ‖fx‖∞ ≤ Bfx .
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Fig. 8. PDE with the analytical kernel on the top left-hand side and with the learned kernel on the top right-hand side. In addition, the L2 error
between the systems peaks around t = 1.3 at a value of 0.2. The PDE shown corresponds to the f(x, y) presented in Fig. 6.

Denoting k̃ = k − k̂ = K(g, f)− K̂(g, f), (101) can be writ-
ten as |k̃(x, y)|+ |k̃x(x, y)|+ |k̃y(x, y)| < ε.

Now take the backstepping transformation

ŵ(x, t) = u(x, t)−
∫ x

0
k̂(x, y)u(y, t)dy. (102)

With the control law

U(t) =

∫ 1

0
k̂(1, y)u(y, t)dy (103)

the target system becomes

ŵx(x, t) = ŵt(x, t) + δ0(x)ŵ(0, t)

+

∫ x

0
δ1(x, y)u(y, t)dy (104)

ŵ(1, t) = 0 (105)

where

δ0(x) = − k̃(x, 0) +

∫ x

0
g(y)k̃(x, y)dy (106)

δ1(x, y) = − k̃x(x, y)− k̃y(x, y)

+

∫ x

y
f(ξ, y)k̃(x, ξ)dξ (107)

satisfy

‖δ0‖∞ ≤ (1 + ḡ)ε (108)

‖δ1‖∞ ≤ (2 + f̄)ε. (109)

Since the state u appears under the integral in the ŵ-system
(104), in the Lyapunov analysis we need the inverse backstep-
ping transformation

u(x, t) = ŵ(x, t) +

∫ x

0
l̂(x, y)ŵ(y, t)dy. (110)

It is shown in [41] that the direct and inverse backstepping
kernels satisfy in general the relationship

l̂(x, y) = k̂(x, y) +

∫ x

y
k̂(x, ξ)l̂(ξ, y)dξ. (111)

The inverse kernel satisfies the following conservative bound:

‖l̂‖∞ ≤ ‖k̂‖∞e‖k̂‖∞ . (112)

Since ‖k − k̂‖∞ < ε, we have that ‖k̂‖∞ ≤ ‖k‖∞ + ε. With
(92) we get ‖k̂‖∞ ≤ k̄(ḡ, f̄) + ε and hence

‖l̂‖∞ ≤
(
k̄ + ε

)
ek̄+ε. (113)

Going back to (110), we get

‖u‖ ≤
(
1 +

(
k̄ + ε

)
ek̄+ε

)
‖ŵ‖. (114)

Mimicking and generalizing the steps of the proofs of Lemma 2
and Theorem 2, we get the following exponential stability result.
(We omit the explicit but conservative and exceedingly compli-
cated and uninformative estimates of the overshoot coefficient,
the decay rate, and the upper bound ε∗ on the approximation
accuracy needed to guarantee stability under the gain approxi-
mation.)

Theorem 4: LetBg, Bg′ , Bf , Bfx > 0 be arbitrarily large and
consider the system (83) and (84) with any g ∈ C1([0, 1]) and
f ∈ C1(T ) whose derivatives are Lipschitz and which satisfy
‖g‖∞ ≤ Bg, ‖g′‖∞ ≤ Bg′ , ‖f‖∞ ≤ Bf , ‖fx‖∞ ≤ Bfx . There
exists a sufficiently small ε∗(Bg, Bg′ , Bf , Bfx) > 0 such that
the feedback law (103) with the NO gain kernel k̂ = Q̂(g, f)
of arbitrary desired accuracy of approximation ε ∈ (0, ε∗) in
relation to the exact backstepping kernel k ensures that there
exist M, c∗ > 0 such that the closed-loop system satisfies the
exponential stability bound

‖u(t)‖ ≤ Me−c∗t/2‖u(0)‖ ∀t ≥ 0. (115)
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IX. SIMULATIONS: STABILIZATION OF PIDE WITH
NO-APPROXIMATED GAIN KERNEL f #→ Q(f) DEPENDENT

ON (x, y)

For clarity, we consider the systems of the form (83) with
g = 0, so that the focus is solely on the mapping of 2-D plant
kernels f(x, y) into 2-D backstepping kernels k(x, y), which are
governed by the (double) integral equation

k(x, y) = −
∫ y

0
f(x− y + ξ, ξ)dξ

+

∫ y

0

∫ x−y

0
f(ξ + ,, ,)k(x− y + ,, ξ + ,)dξd,.

(116)

We illustrate in this section the NO approximation Q̂ of the
nonlinear operator Q : f #→ k mapping C1(T ) into itself. First,
in Fig. 6 we present the construction of the 2-D function f
via a product of Chebyshev polynomials and highlight the
PDE’s open-loop instability. Then, we showcase the corre-
sponding learned kernel and the error in Fig. 7. The point-
wise error for the learned kernel peaks at around 10% of k,
as it “ripples” in the right-hand side of Fig. 7. The learned
kernel k̂ achieves stabilization in Fig. 8 (right-hand side),
but not by t = 1, as it would with perfect k in (6) and (7),
but only exponentially, as guaranteed for the learned k̂ in
Theorem 4.

For this 2-D problem (f and k are functions of x and y), we
design the branch network of the NO with convolutional neural
networks (CNNs) as they have had large success in handling 2-D
inputs [39], [46]. The network consists of 70 million parameters
(due to the CNNs), yet only takes around 5 min to train. On
900 instances, the network achieves a relative L2 training error
of 1.3e− 3 and a relative L2 testing error of 1.8e− 3 on 100
instances.

X. CONCLUSION

a) What is achieved: PINN, DeepONet, FNO, LOCA,
NOMAD—they have all been used with success to approximate
solution maps of PDEs. What we introduce is a novel framework:
for approximating the solution maps for integral (87), (88), (89),
or simply (9), for the feedback gain functions k in control of
PDEs.

We provide the guarantees that 1) any desired level of accuracy
of NO approximation of the backstepping gain kernel is achieved
for any β that satisfies ‖β‖∞ ≤ B for arbitrarily large given
B > 0, and 2) the PDE is stabilized with an NO-approximated
gain kernel for any ‖β‖∞ ≤ B.

These results generalize to a class of PIDEs with functional
coefficients (g, f) that depends on two variables, (x, y), and
result in kernels k that are also functions of (x, y).

For a given B > 0 and any chosen positive ε < ε∗(B), the
determination of the NO approximate operator K̂(·) is done
offline, once only, and such a K̂(·), which depends on B and
ε, is usable “forever,” so to speak, for any recirculation kernel
that does not violate ‖β‖∞ ≤ B.

When the entire PDE backstepping feedback law—rather
than just its gain kernel—is being approximated, globality and
perfect convergence are lost, but only slightly. Decay remains
exponential, over infinite time, and stability is semiglobal.

b) What is gained by making a particular controller class
with theoretical guarantees the object of learning: By now it
is probably clear to the reader that what we present here is a
method for learning an entire class of model-based controllers,
by learning the gains k̂ = K̂(β), or k̂ = Q(g, f), for any plant
parameters β or (g, f). What does one profit from learning a
particular class of controllers backed up by theory? Suppose
that, instead of learning the PDE backstepping gain mapping
K(·), we were trying to find any gain function k(x) that meets
some performance objective. This goal could be formulated as a
finite-time minimization of

∫ tf
0 (

∫ 1
0 u2(x, t)dx+ U2(t))dt, for

a given β, over a set of gain functions k for a ball of initial
conditions u0(x) = u(x, 0) around the origin. Not only would
this be a much larger search, over (k, u0), but such a finite-
time minimization could ensure only finite-time performance,
not exponential stability.

Our achievement of global exponential stability (not “practi-
cal”/approximate, but with an actual convergence of the state to
zero) relies crucially—in each of the lemmas and theorems that
we state—on the theoretical steps from the PDE backstepping
toolkit (backstepping transform, target system, integral equation
for kernel, successive infinite-series approximation, Lyapunov
analysis). It is only by assigning the NO a service role in an
otherwise model-based design that stability is assured. Stability
assurance is absent from learning approaches in which the
feedback law design is left to ML and a finite-time cost, as in
RL for the traffic flow PDEs [87].

c) Future research: Of immediate interest are the extensions
of the results of this article to parabolic PDEs in [73], as well as
extensions from the approximations of controller kernels to the
NO approximations of PDE backstepping observer kernels [74],
with guarantees of observer convergence, and with observer-
based stabilization (separation principle).
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