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CONTROL OF A LINEARIZED VISCOUS LIQUID--TANK
SYSTEM WITH SURFACE TENSION\ast 

IASSON KARAFYLLIS\dagger AND MIROSLAV KRSTIC\ddagger 

Abstract. This paper studies the linearization of the viscous tank--liquid system. The lineariza-
tion of the tank--liquid system gives a high-order partial differential equation, which is a combination
of a wave equation with Kelvin--Voigt damping and a Euler--Bernoulli beam equation. The single
input appears in two of the boundary conditions (boundary input). The paper provides results both
for the open-loop system (existence/uniqueness of solutions and stability properties of the open-loop
system) as well as results for the construction of feedback stabilizers. More specifically, the feed-
back design methodology is based on control Lyapunov functionals (CLFs). The proposed CLFs are
modifications and augmentations of the total energy functionals for the tank--liquid system so that
the dissipative effects of viscosity, friction, and surface tension are captured. By focusing on the
linearized water--tank system, we are able to provide results that are not provided in the nonlinear
case: (1) existence and uniqueness of solutions, (2) simultaneous presence of friction and surface
tension, and (3) stabilization in a stronger norm, using a different CLF.

Key words. Saint-Venant model, shallow water equations, feedback stabilization, control
Lyapunov functional, higher-order partial differential equations
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1. Introduction. In this paper, we consider the system described by the follow-
ing partial differential equation (PDE) for t > 0, x\in (0,L),

\varphi tt = c2\varphi xx  - \sigma h\ast \varphi xxxx + \mu \varphi txx  - \=\kappa \varphi t;(1.1)

the following ordinary differential equations (ODEs) for t\geq 0,

\.\xi =w, \.w= - f ;(1.2)

and the following additional (boundary and nonlocal) conditions for t\geq 0:

\varphi x(t,0) =\varphi x(t,L) = 0,(1.3)

\varphi xxx(t,0) =\varphi xxx(t,L) = - \sigma  - 1f(t),(1.4) \int L

0

\varphi (t, x)dx=

\int L

0

\varphi t(t, x)dx= 0,(1.5)

where c,\sigma ,h\ast , \mu ,L> 0, \=\kappa \geq 0 are constants and f(t)\in \BbbR is an external (control) input.
Model (1.1), (1.2), (1.3), (1.4), and (1.5) represents the linearization of the classical
Saint-Venant model of liquid--tank motion in which the liquid is viscous with viscosity
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1035

\mu , has surface tension \sigma , and exhibits friction \=\kappa with the tank walls. This particular
linearized PDE--ODE model is reminiscent of both wave and Euler--Bernoulli (EB)
beam equations, with Kelvin--Voigt damping and ordinary damping added.

Since such a wave-beam PDE combination has, to our knowledge, not been a
subject of study as either an abstract system or as a liquid--tank model, it is impor-
tant to develop results for it on well-posedness and stabilization, in particular norms.
However, it is equally important to understand the model's linkage with various re-
lated PDE systems, of which some are simpler---the wave and EB PDEs---and some
are related but more complex (linearized models of aeroelasticity/flutter). We discuss
that next.

On the one hand, for \sigma = 0, one notes that (1.1) is a wave equation, with wave
speed c =

\surd 
gh\ast , where h\ast > 0 is the liquid height at equilibrium while g is the

acceleration of gravity. Such a wave PDE governs the wave dynamics of a liquid
that has no surface tension. On the other extreme, for c = 0 (namely, for g = 0),
one recognizes that (1.1) is the EB beam equation, governing the dynamics of the
surface of a thin layer/film of liquid with nonnegligible surface tension. The wave
and beam effects appear combined in this model because of the interaction between
surface tension (a beamlike effect) and the liquid motion (a wavelike effect).

The classical interaction between elastic structures and fluids appears in aeroelas-
ticity [1, 48], also known under the alternative (but not precisely synonymous) names
of flutter, flow-induced vibration, and fluid--structure interaction. Flutter arises in
many systems, of which aircraft wings and gas turbine compressor blades are the
most well-known examples. Flutter models in general are far more complex, even
when linearized, than the wave--beam equation (1.1). The complexity of flutter mod-
els is due to the fact that, while in the liquid--tank system, there is no net equilibrium
motion of the liquid in the tank relative to the fluid's surface, in the wing flutter, there
is a considerable velocity differential between the wing/beam and the air flowing over
the wing. In the extreme case of high Mach number flight, the elastic effect of the
wing is entirely dominated by the fluid motion, and the flow-induced vibrations are
approximated by a wave equation [48], with elasticity absent but antidamping present
due to the instability induced by the flow.

Hence, the work we undertake here on (1.1), (1.2), (1.3), (1.4), and (1.5) should
be seen in the broader context of control of fluid--structure interaction. Furthermore,
it should be observed that the liquid--tank system with surface tension is a fluid--
structure system of a very particular (limited) kind. In a tank, the dynamics of the
water, constrained from the sides and bottom by the rigid tank and from above by
the skinlike elastic effect of surface tension, have a ``waterbed""-like quality. This is
the quality of conservation of the mean height and velocity of the water (recall (1.5)),
along with smoothing of the water surface by the surface tension.

Since (1.1), (1.2), (1.3), (1.4), and (1.5) is evidently a system of a very particular
kind, with little history of prior study of the system, it is appropriate, and even
helpful, to terminologically differentiate this system from its wave, beam, and other
PDE ``cousins."" A name like, for instance, ``waterbed PDE,"" seems appropriate and
physically descriptive of this mathematical system. We shall occasionally refer to
(1.1) as the (linear) ``waterbed PDE.""

Liquid--tank system: Application, modeling, and control. The liquid--tank system
has an intensely practical motivation. For instance, in [49, 50], the challenges that
arise in spacecraft operation because of the liquid fuel sloshing during spacecraft
transfer and maneuvering, due to the dynamic interaction between the liquid and the
rigid body, are described. One way of mitigating this interaction is through a design
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1036 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

of devices that can achieve sloshing suppression (see, for instance, Chapter 3 in [29]).
However, suppression of the unsteady motion of the liquid by active control is superior
in achieving suppression because it requires no additional devices. The actuators
that perform the transfer, and thus induce the fluid--body unsteady interaction, are
available also for suppressing this interaction.

From a mathematical point of view, the description of sloshing is a highly non-
trivial modeling problem. Two main approaches have been used for the modeling of
free surface flows of incompressible liquids in the literature: (i) the use of the fluid
momentum equations under the assumption of the irrotational flow of the liquid (see,
for instance, [29, 30, 39]) and (ii) the use of the fluid momentum equations for the
derivation of Saint-Venant models (see [3], the first paper by Adh\'emar Jean Claude
Barr\'e de Saint-Venant in 1871) by neglecting the fluid motion in the direction of the
liquid height. The Saint-Venant model or shallow water model is a well-known math-
ematical model that has been used extensively, and many modifications of this model
take into account various types of forces such as gravity, viscous stresses, surface ten-
sion, and friction forces (see [7, 8, 9, 12, 23, 37, 38, 39, 41, 42, 52]). In this review, we
focus on sloshing induced by the movement of the container and on 1-D Saint-Venant
models for the description of the liquid motion.

Control studies of the Saint-Venant model have focused on the inviscid Saint-
Venant model (i.e., the model that ignores viscous stresses and surface tension) and its
linearization around an equilibrium point (see [4, 5, 6, 13, 14, 15, 16, 18, 19, 20, 21, 22,
26, 27, 40, 44, 45]). The feedback design has been performed by employing either the
backstepping methodology or the control Lyapunov functional (CLF) methodology.
Although there is no inviscid liquid, the use of the inviscid Saint-Venant model is
justified when studying the flow in rivers: In this case, the inertial, gravity, and
friction forces are orders of magnitude larger than the viscous stresses, and the effect
of viscosity is negligible.

However, when one studies the flow in a tank, there is no guarantee that the effect
of viscosity is negligible because the velocity of the fluid is (expected to be) relatively
small. To this purpose, viscous Saint-Venant models have been proposed and studied
in [7, 8, 23, 32, 33, 34, 35, 37, 42, 52]. From a mathematical point of view, the effect
of the viscosity is huge: In the case where surface tension is absent, the system is
described by two ODEs, one first-order hyperbolic PDE, and one parabolic PDE,
whereas in the inviscid case, we have two ODEs and two first-order hyperbolic PDEs.

From the point of view of applications, when one studies the flow in a tank, the
avoidance of the phenomenon of liquid spilling out of the tank becomes as important
as the sloshing problem. Thus, the solution of the spill-free and slosh-free movement
problem by means of a robust feedback law becomes a significant mathematical prob-
lem with possibly important applications. The recent works [32, 33, 34, 35] study this
particular feedback stabilization problem for the viscous Saint-Venant model without
linearization around an equilibrium point. More specifically, in [32, 33], a feedback
control law is constructed by employing the CLF methodology for the viscous Saint-
Venant model without wall friction and surface tension (state feedback in [32] and
output feedback in [33]). In [34, 35], it is shown that the same feedback control law
proposed in [32] works even if friction forces or surface tension are present. It should
be noticed that [32, 33, 34, 35] are the only works that guarantee a spill-free movement
of the fluid.

Linearized viscous liquid--tank system (waterbed PDE). In the present work, we
study the linearized version of the viscous liquid--tank system. The linearization gives
the high-order PDE (1.1), which is a combination of a wave equation with Kelvin--

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

1/
24

 to
 1

37
.1

10
.3

3.
32

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1037

Voigt damping and an EB beam equation. The single input appears in two of the
boundary conditions (boundary input). This particular ODE--PDE system has not
been studied before in the literature and can also describe a waterbed--tank system,
with the tank being actuated. Our work provides results both for the open-loop system
(see Theorem 1 for existence/uniqueness of solutions and Theorem 2 for the stability
properties of the open-loop system), as well as results for the construction of feedback
stabilizers (see Theorem 4 below). There are important additional results that can
be provided for the linearization compared to the nonlinear liquid--tank system:

(1) In the linearized case, we provide existence/uniqueness results for the closed-
loop system. In the nonlinear case, we do not provide existence/uniqueness
results for the corresponding closed-loop system.

(2) In the linearized case, we can study the situation where both friction and sur-
face tension are present. In the nonlinear case, we cannot study the situation
where both friction and surface tension are present.

(3) The state norm for which stabilization is achieved in the linearized case is
stronger than the state norm for which stabilization is achieved in the non-
linear case. This difference is explained by the difference of the CLFs in the
nonlinear and the linearized case. The Lyapunov functional in the linearized
case is a linear combination of four functionals: (i) the Lyapunov function for
the tank, (ii) the mechanical energy of the liquid, (iii) the modified mechani-
cal energy of the liquid, and (iv) the energy of the liquid that is obtained if
one considers the liquid as a beam. The first three functionals correspond to
functionals that are also used for the construction of a Lyapunov functional
in the nonlinear case in [32, 34, 35]. However, the last functional---the beam
energy---has no nonlinear counterpart. The constructed CLF is a weighted
H2-quadratic functional with weights depending on the controller gains.

The paper is structured as follows. In section 2, we describe the mathematical
ODE--PDE model of the liquid--tank system and its linearization. In section 3, we
provide the main results of the paper and a detailed comparison with the results for
the nonlinear case. Section 4 is devoted to the proofs of all results in the paper.
Finally, in section 5, we give the concluding remarks of the present work as well as
some problems that remain open and can be topics for future research.

Notation. Throughout the article, we adopt the following notation.
\ast \BbbR + = [0,+\infty ) denotes the set of nonnegative real numbers.
\ast Let S \subseteq \BbbR n be an open set, and let A \subseteq \BbbR n be a set that satisfies S \subseteq A \subseteq 
cl(S). By C0(A ; \Omega ), we denote the class of continuous functions on A that
take values in \Omega \subseteq \BbbR m. By Ck(A ; \Omega ), where k\geq 1 is an integer, we denote the
class of functions on A\subseteq \BbbR n that take values in \Omega \subseteq \BbbR m and have continuous
derivatives of order k. In other words, the functions of class Ck(A;\Omega ) are the
functions that have continuous derivatives of order k in S = int(A) that can
be continued continuously to points in \partial S \cap A. When \Omega = \BbbR , then we write
C0(A ) or Ck(A ).

\ast Let I \subseteq \BbbR be an interval, and let Y be a normed linear space. By C0(I ; Y ),
we denote the class of continuous functions on I that take values in Y . By
C1(I ; Y ), we denote the class of continuously differentiable functions on I
that take values in Y .

\ast Let I \subseteq \BbbR be an interval, let a < b be given constants, and let u : I \times 
[a, b]\rightarrow \BbbR be a given function. We use the notation u[t] to denote the profile
at certain t \in I; i.e., (u[t])(x) = u(t, x) for all x \in [a, b]. When u(t, x) is
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1038 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

(twice) differentiable with respect to x \in [a, b], we use the notation ux(t, x)
(uxx(t, x)) for the (second) derivative of u with respect to x \in [a, b]. When
u(t, x) is differentiable with respect to t, we use the notation ut(t, x) for the
derivative of u with respect to t; i.e., ut(t, x) = \partial u

\partial t (t, x). When u[t] \in X
for all t \in I, where X is a normed linear space with norm \| \| X and the
mapping I \backepsilon t \rightarrow u[t] \in X is C1---i.e., there exists a continuous mapping
v : I \rightarrow X with limh\rightarrow 0(\| h - 1(u[t+ h] - u[t]) - v[t]\| X) = 0 for all t \in I---we
use the notation ut for v. Furthermore, when u\in C1(I;X) and the mapping
I \backepsilon t \rightarrow ut[t] \in X is C1---i.e., there exists a continuous mapping w : I \rightarrow X
with limh\rightarrow 0(\| h - 1(ut[t + h]  - ut[t])  - w[t]\| X) = 0 for all t \in I---we use the
notation utt for w. Mixed derivatives are to be understood in this way. For
example, when ux \in C1(I;X) (i.e., when there exists a continuous mapping
\varphi : I \rightarrow X with limh\rightarrow 0(\| h - 1(ux[t+ h] - ux[t]) - \varphi [t]\| X) = 0 for all t\in I), we
use the notation uxt for \varphi .

\ast Given a set U \subseteq \BbbR n, \chi U denotes the characteristic function of U , i.e., the
function defined by \chi U (x) := 1 for all x\in U and \chi U (x) := 0 for all x /\in U .

\ast Let a < b be given constants. For p \in [1,+\infty ), Lp(a, b) is the set of equiv-
alence classes of Lebesgue measurable functions u : (a, b) \rightarrow \BbbR with \| u\| p :=

(
\int b

a
| u(x)| pdx)1/p <+\infty . The scalar product in L2(a, b) is denoted by \langle \bullet , \bullet \rangle ;

i.e., \langle f, g\rangle =
\int b

a
f(x)g(x)dx for all f, g \in L2(a, b). L\infty (a, b) is the set of

equivalence classes of Lebesgue measurable functions u : (a, b) \rightarrow \BbbR with
\| u\| \infty := ess supx\in (a,b)(| u(x)| )<+\infty . For an integer k \geq 1, Hk(a, b) denotes
the Sobolev space of functions in L2(a, b) with all its weak derivatives up to
order k\geq 1 in L2(a, b).

2. The mathematical model. We consider a 1-D model for the motion of a
tank. The tank contains a viscous, Newtonian, incompressible liquid. The tank is
subject to a force that can be manipulated. We assume that the liquid pressure is
hydrostatic, and consequently, the liquid is modeled by the 1-D viscous Saint-Venant
equations, whereas the tank obeys Newton's second law, and consequently, we consider
the tank acceleration to be the control input.

2.1. The general 1-D model. We next give a general 1-D model for the liquid--
tank system that takes into account all possible forces exerted on the fluid: gravity,
viscous stresses, surface tension, and friction. Let the position of the left side of the
tank at time t\geq 0 be a(t), and let the length of the tank be L> 0 (a constant). The
equations describing the motion of the liquid within the tank are

Ht + (H\=v)z = 0, for t > 0, z \in [a(t), a(t) +L] ,(2.1)

(H\=v)t +

\biggl( 
H\=v2 +

1

2
gH2

\biggr) 
z

 - \sigma H

\Biggl( 
Hzz

(1 +H2
z )

3/2

\Biggr) 
z

= \mu (H\=vz)z  - \kappa (H(t, z), \=v(t, z) - \.a(t)) (\=v(t, z) - \.a(t))

for t > 0, z \in (a(t), a(t) +L) ,

(2.2)

where H(t, z)> 0, \=v(t, z)\in \BbbR are the liquid level and the liquid velocity, respectively,
at time t\geq 0 and position z \in [a(t), a(t) +L], \kappa \in C0((0,+\infty )\times \BbbR ;\BbbR +) is the friction
coefficient that depends on the liquid level and the relative velocity of the fluid with
respect to the tank, while g,\mu > 0, \sigma \geq 0 (constants) are the acceleration of gravity,
the kinematic viscosity of the liquid, and the ratio of the surface tension and liquid
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1039

density, respectively. In certain works, the term ( Hzz

(1+H2
z )

3/2 )z is replaced by Hzzz (see

[7, 8, 9, 41]), but here, we use a more accurate description of the surface tension.
Equations (2.1) and (2.2) can be derived by performing mass and momentum bal-
ances (from first principles, assuming that the liquid pressure is the combination of
hydrostatic pressure and capillary pressure given by the Young--Laplace equation; see
[17]). Various empirical relations have been used for the friction coefficient in the
literature; see [6, 8, 21, 23, 26].

The liquid velocities at the walls of the tank must coincide with the tank velocity;
i.e., we have

\=v(t, a(t)) = \=v(t, a(t) +L) =w(t) for t\geq 0,(2.3)

where w(t) = \.a(t) is the velocity of the tank at time t\geq 0. Moreover, since the tank
acceleration is the control input, we get

\"a(t) = - f(t) for t > 0,(2.4)

where  - f(t), the control input to the problem, is equal to the force exerted on the tank
at time t\geq 0 divided by the total mass of the tank. Using (2.1) and (2.3), it becomes

clear that every classical solution of (2.1) and (2.3) satisfies d
d t (
\int a(t)+L

a(t)
H(t, z)dz) = 0

for all t > 0. Therefore, the total mass of the liquid is constant. Thus, without loss of
generality, we assume that the following equation holds:\int a(t)+L

a(t)

H(t, z)dz \equiv m,(2.5)

where m> 0 is the total mass of the liquid divided by the product of liquid density
times the width of the tank. It should be emphasized that, for obvious physical
reasons, the liquid level H(t, z) must be positive for all times; i.e., we must have

min
x\in [0,L]

(H(t, a(t) + x))> 0 for t\geq 0.(2.6)

For a complete mathematical model of the system in the case \sigma > 0 (the case
where surface tension is present), we need two additional boundary conditions that
describe the interaction between the liquid and the solid walls of the tank. There are
many ways to describe the evolution of the angle of contact of a liquid with a solid
boundary (see the detailed presentation in [36]). In [46, 47], the use of a constant con-
tact angle was suggested based on energy arguments and the fact that there may be
a discrepancy between the actual microscopic and the apparent macroscopic contact
angle. Moreover, the assumption of a constant contact angle allows the well-posedness
of the overall problem (at least for small data; see [46, 47, 54]). The constant con-
tact angle approach has been used extensively in the literature (see, for instance,
[28, 54, 55]). In this work, we adopt the constant contact angle approach by imposing
a contact angle equal to \pi /2. Therefore, the model is accompanied by the following
boundary conditions (written in a way that holds even in the case \sigma = 0, i.e., the
case where surface tension is absent and the additional boundary conditions are not
needed):

\sigma Hz(t, a(t)) = \sigma Hz(t, a(t) +L) = 0 for t\geq 0.(2.7)

Applying the transformation

v(t, x) = \=v(t, a(t) + x) - w(t),

h(t, x) =H(t, a(t) + x),

\xi (t) = a(t) - a\ast ,

(2.8)
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1040 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

where a\ast \in \BbbR is the specified position (a constant) to which we want to bring (and
maintain) the left side of the tank, we obtain the following model:

\.\xi =w, \.w= - f for t\geq 0,(2.9)

ht + (hv)x = 0 for t > 0, x\in [0,L] ,(2.10)

(hv)t +

\biggl( 
hv2 +

1

2
gh2

\biggr) 
x

 - \sigma h

\Biggl( 
hxx

(1 + h2
x)

3/2

\Biggr) 
x

(2.11)

= \mu (hvx)x  - \kappa (h, v)v+ hf

for t > 0, x\in (0,L) ,

v(t,0) = v(t,L) = 0 for t\geq 0,(2.12) \int L

0

h(t, x)dx=m for t\geq 0,(2.13)

\sigma hx(t,0) = \sigma hx(t,L) = 0 for t\geq 0,(2.14)

min
x\in [0,L]

(h(t, x))> 0 for t\geq 0.(2.15)

The open-loop system (2.9), (2.10), (2.11), (2.12), (2.13), (2.14), and (2.15)---i.e.,
system (2.9), (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15) with f(t) \equiv 0---allows a
continuum of equilibria, namely, the points

h(x)\equiv h\ast , v(x)\equiv 0 for x\in [0,L] ,(2.16)

\xi \in \BbbR ,w= 0,(2.17)

where h\ast =m/L. The existence of a continuum family of equilibrium points for the
open-loop system given by (2.16) and (2.17), with the family parameterized by an
arbitrary position of the tank while the liquid is at a unique and spatially constant
height, implies that the desired equilibrium point---i.e., the equilibrium point with
\xi = 0---is not asymptotically stable for the open-loop system.

2.2. The linearization of the liquid--tank system. Linearizing model (2.9),
(2.10), (2.11), (2.12), (2.13), and (2.14) with \sigma > 0 around the equilibrium point
h(x) \equiv h\ast = m/L, v(x) \equiv 0 and setting \varphi = h  - h\ast \chi [0,L], we obtain the linear
PDE--ODE model (1.1), (1.2), (1.3), (1.4), and (1.5), where c =

\surd 
gh\ast and \=\kappa \geq 0 are

constants. The control system (1.1), (1.2), (1.3), (1.4), and (1.5) is a system that has
not been studied so far in the literature. The control input appears in the ODEs (1.2)
and in the boundary condition (1.4) (boundary control). It should be noticed that
the control input is a boundary input for the linearized model (1.1), (1.2), (1.3), (1.4),
and (1.5), while it is not a boundary input for the nonlinear system. This is not a
result of the linearization but a result of the conversion of the linearized model to a
single second-order in time PDE.

The distributed subsystem (1.1), (1.3), and (1.4) is a combination of an EB beam
equation (with a Young modulus \sigma h\ast ) and a wave equation (with a wave speed c =\surd 
gh\ast ) with additional internal Kelvin--Voigt damping and possible friction. Equation

(1.1) appears in the study of incompressible fluids flowing underground in a fractured
or fissured medium, where \varphi is the pressure of the fluid in the porous part of the
medium; see [24, pp. 217--218]. If (1.1) is to be interpreted as a beam equation, then
the boundary conditions (1.3) and (1.4) mean that the beam ends are subject to ``a
paired force actuation"" and sliding orthogonally to the beam (see also [51]). Condition
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1041

(1.5) comes from the fact that the ``mean displacement"" and mean velocity in a vessel
like a tank can neither be lost nor added. Therefore, in this setting, (1.1) and (1.5)
model neither a fluid alone nor a beam but a fluid--beam system akin to a ``waterbed,""
in which the fabric that constrains the motion of the water underneath it is analogous
to the surface tension, as captured by the term  - \sigma h\ast \varphi xxxx in (1.1). Consequently,
the overall system (1.1), (1.2), (1.3), (1.4), and (1.5) can be interpreted as a water--
tank system where the water surface is effectively covered with a skin/fabric, whose
dynamics are beamlike in interaction with the water. So, (1.1), (1.2), (1.3), (1.4), and
(1.5) is a linearized waterbed--tank system, with the tank being actuated.

The open-loop eigenvalues of the distributed subsystem (1.1), (1.3), (1.4), and
(1.5) are the roots of the equation

s2 +

\biggl( 
\mu 
n2\pi 2

L2
+ \=\kappa 

\biggr) 
s+

n2\pi 2

L2

\biggl( 
c2 + \sigma h\ast n

2\pi 2

L2

\biggr) 
= 0 for n= 1,2, . . . .(2.18)

We next provide the eigenvalues in the case \=\kappa = 0. If \mu 2 \leq 4\sigma h\ast , then all eigenvalues
are complex and are given by the following formula for n= 1,2, . . .:

sn = - \mu 

2L2
n2\pi 2 \pm i

n\pi 

L

\sqrt{} 
4\sigma h\ast  - \mu 2

4L2
n2\pi 2 + c2.(2.19)

If \mu 2 > 4\sigma h\ast , then the eigenvalues are real for n \geq 2cL

\pi 
\surd 

\mu 2 - 4\sigma h\ast 
and are given by the

following formula for all n= 1,2, . . . with n\geq 2cL

\pi 
\surd 

\mu 2 - 4\sigma h\ast 
:

sn = - \mu 
n2\pi 2

2L2
\pm n\pi 

L

\sqrt{} 
\mu 2  - 4\sigma h\ast 

4L2
n2\pi 2  - c2.(2.20)

In every case (\mu 2 > 4\sigma h\ast or \mu 2 \leq 4\sigma h\ast ), we have limn\rightarrow +\infty (Re(sn)) = - \infty , indicating
the strong (internal) damping that is caused by the viscosity of the fluid.

When \=\kappa > 0, then, in general, the eigenvalues are moved to the left in the complex
plane due to the additional damping caused by the friction term  - \=\kappa \varphi t in the left-hand
side of (1.1).

3. Main results. This section provides the main results of the paper.

3.1. Results for the open-loop system. Define

\=S =
\bigl\{ 
\varphi \in H2(0,L) : \varphi \prime (0) =\varphi \prime (L) = 0

\bigr\} 
.(3.1)

For the distributed subsystem (1.1), (1.3), (1.4), and (1.5), we are in a position to
show the following results, which guarantee well-posedness and exponential stability.

Theorem 1 (existence/uniqueness of solutions for the open-loop system). For
every \varphi 0 \in \=S \cap H4(0,L), p0 \in \=S, and f \in C3(\BbbR +) with \varphi \prime \prime \prime 

0 (0) = \varphi \prime \prime \prime 
0 (L) =  - \sigma  - 1f(0),

there exists a unique function \varphi \in C0(\BbbR +; \=S\cap H4(0,L))\cap C1(\BbbR +; \=S)\cap C2(\BbbR +;L
2(0,L))

with \varphi [0] =\varphi 0, \varphi t[0] = p0 that satisfies (1.1), (1.3), and (1.4) for all t\geq 0. Moreover,

if
\int L

0
\varphi 0(x)dx=

\int L

0
p0(x)dx= 0, then (1.5) holds.

Theorem 2 (stability properties of the open-loop system). There exist constants
\=M, \=\lambda ,\Gamma > 0 such that, for every f \in C0(\BbbR +) and for every function \varphi \in C0(\BbbR +; \=S \cap 
H4(0,L)) \cap C1(\BbbR +; \=S) \cap C2(\BbbR +;L

2(0,L)) that satisfies (1.1), (1.3), (1.4), and (1.5)
for all t\geq 0, the following estimate holds:

P (t)\leq \=M exp
\bigl( 
 - \=\lambda t

\bigr) 
P (0) + \Gamma max

0\leq s\leq t

\bigl( 
exp

\bigl( 
 - \=\lambda (t - s)

\bigr) 
| f(s)| 

\bigr) 
for t\geq 0,(3.2)
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1042 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

where

P (t) :=
\Bigl( 
\| \varphi [t]\| 22 + \| \varphi x[t]\| 22 + \| \varphi xx[t]\| 22 + \| \varphi t[t]\| 22

\Bigr) 1/2
for t\geq 0.(3.3)

Remarks. (a) Theorem 1 shows that condition (1.5) defines a positively invariant
subspace of the state space ( \=S \cap H4(0,L))\times \=S. When the initial condition satisfies
(1.5), then the solution satisfies (1.5) for all t\geq 0. (b) Estimate (3.2) shows that the
distributed subsystem (1.1), (1.3), (1.4), and (1.5) satisfies the input-to-state stability
property (see [31]) with respect to the boundary input f in the H2(0,L)\times L2(0,L)
norm of the state (\varphi ,\varphi t).

3.2. Feedback stabilization. Theorem 2 shows that the linearized model (1.1),
(1.2), (1.3), (1.4), and (1.5) is the interconnection of a double integrator ODE sub-
system (recall (1.2)) with the exponentially stable distributed subsystem (1.1), (1.3),
(1.4), and (1.5). The only connection of the ODE subsystem with the PDE subsystem
is the control input that appears in both subsystems (otherwise, the subsystems are
completely independent). This structural feature allows us to consider two different
ways of stabilizing the equilibrium point (\xi ,w) = 0\in \BbbR 2, (\varphi ,\varphi t) = 0\in \=S \times L2(0,L) of
system (1.1), (1.2), (1.3), (1.4), and (1.5).

First way of stabilization. We can stabilize exponentially the equilibrium point
(\xi ,w) = 0\in \BbbR 2, (\varphi ,\varphi t) = 0\in \=S\times L2(0,L) of system (1.1), (1.2), (1.3), (1.4), and (1.5)
by completely ignoring the liquid dynamics and using the feedback law

f(t) = k1\xi (t) + k2w(t),(3.4)

where k1, k2 > 0 are constants. Then, using Theorem 1 and Theorem 2, we con-
clude that, for every (\xi 0,w0) \in \BbbR 2, \varphi 0 \in \=S \cap H4(0,L), p0 \in \=S with

\int L

0
\varphi 0(x)dx =\int L

0
p0(x)dx = 0 and \varphi \prime \prime \prime 

0 (0) = \varphi \prime \prime \prime 
0 (L) =  - \sigma  - 1(k1\xi 0 + k2w0), there exist unique func-

tions \varphi \in C0(\BbbR +; \=S \cap H4(0,L)) \cap C1(\BbbR +; \=S) \cap C2(\BbbR +;L
2(0,L)), (\xi ,w) \in C\infty (\BbbR +;\BbbR 2)

with (\xi (0),w(0)) = (\xi 0,w0), \varphi [0] = \varphi 0, \varphi t[0] = p0 that satisfy (1.1), (1.2), (1.3), (1.4),
and (1.5) and (3.4) for all t\geq 0. Moreover, there exist constants \~M, \~\lambda > 0 such that
the following estimate holds for \geq 0:\sqrt{} 

\xi 2(t) +w2(t) + P 2(t)

\leq \~M exp
\Bigl( 
 - \~\lambda t

\Bigr) \sqrt{} 
\xi 2(0) +w2(0) + P 2(0),

(3.5)

where P (t) is defined by (3.3).
However, there is a problem for the feedback law (3.4). Since we have ignored

completely the liquid dynamics, it is possible that the overshoot for the state com-
ponent \varphi (i.e., the deviation of the liquid level from the equilibrium level) is large
even if the liquid starts from an almost slosh-free initial condition. In other words,
it is possible that the feedback law (3.4) agitates strongly the liquid causing sloshing
during a transient period.

Second way of stabilization. The following result plays a fundamental role in what
follows.

Theorem 3 (well-posedness of the closed-loop system under an arbitrary feed-
back law). Let B,C \in \BbbR be constants, and let \~r, \~p \in C0([0,L]) be given functions.
Suppose that
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1043

\langle \~g, \~r\rangle \geq 12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi n, \~r\rangle | 
n4

,

\langle \~g\prime , \~p\rangle \geq 12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi \prime 
n, \~p\rangle | 
n4

,

(3.6)

where \phi n(x) =
\sqrt{} 

2
L cos(n\pi x

L ) for n= 1,2, . . . and

\~g(x) := x3  - 3L

2
x2 +

L3

4
for x\in [0,L].(3.7)

Then, for every (\xi 0,w0)\in \BbbR 2, \varphi 0 \in \=S\cap H4(0,L), u0 \in \=S with
\int L

0
\varphi 0(x)dx=

\int L

0
u0(x)dx

= 0, \varphi \prime \prime \prime 
0 (0) =\varphi \prime \prime \prime 

0 (L) = - \sigma  - 1(B\xi 0+Cw0+\langle u0, \~r\rangle +\langle \varphi \prime 
0, \~p\rangle ), there exist unique functions

\varphi \in C0(\BbbR +; \=S \cap H4(0,L)) \cap C1(\BbbR +; \=S) \cap C2(\BbbR +;L
2(0,L)), (\xi ,w) \in C1(\BbbR +;\BbbR 2) with

(\xi (0),w(0)) = (\xi 0,w0), \varphi [0] = \varphi 0, \varphi t[0] = u0 that satisfy, for all t \geq 0, (1.1), (1.2),
(1.3), (1.4), and (1.5) under the control law

f(t) =B\xi (t) +Cw(t) + \langle \varphi t[t], \~r\rangle + \langle \varphi x[t], \~p\rangle .(3.8)

Remark. Theorem 3 states that the closed-loop system (1.1), (1.2), (1.3), (1.4),
and (1.5) under a feedback law of the form (3.8) is well-posed when inequalities (3.6)
are valid.

We next consider the family of feedback laws given by the following formula:

f(t) =K
\bigl( 
k25w(t) + k5\xi (t)

\bigr) 
 - K

\Biggl( 
h\ast (k3 + k4)

\int L

0

x\varphi t(t, x)dx - k3\mu h
\ast (\varphi (t,L) - \varphi (t,0))

\Biggr) 
,

(3.9)

where K,k3, k4, k5 > 0 are the control parameters with

k - 3
5 <min

\left(  c2

4k3\mu (h\ast )
2
L
,
\mu \pi 2

\Bigl( 
\mu \pi 2 + 2K (h\ast )

2
L3k4

\Bigr) 
8K (h\ast )

4
L6(k4 + k3)2

,
K

4

\right)  .(3.10)

Notice that the family of feedback laws (3.9) corresponds to the linearization of the
nonlinear feedback laws that were used for the nonlinear system (2.9), (2.10), (2.11),
(2.12), (2.13), and (2.14) in [32, 34, 35]. It should be noticed that the family of
feedback laws (3.9) and (3.10) is independent of the surface tension coefficient \sigma > 0
and the friction coefficient \=\kappa \geq 0. Moreover, contrary to (3.4), the feedback law (3.9)
is strongly affected by the liquid momentum and the liquid level. Consequently, it is
expected that the feedback law (3.9) does not cause agitation of the liquid and tries
to compensate between the two control objectives of bringing the tank to a specified
position and having the liquid at rest. For the family of feedback laws (3.9) and
(3.10), we are in a position to prove the following result.

Theorem 4 (exponential stabilization by means of liquid-dependent feedback).
Let K,k3, k4, k5 > 0 be given constants for which (3.10) holds. Then, for every

(\xi 0,w0)\in \BbbR 2, \varphi 0 \in \=S \cap H4(0,L), u0 \in \=S with
\int L

0
\varphi 0(x)dx=

\int L

0
u0(x)dx= 0 and

\sigma \varphi \prime \prime \prime 
0 (0) = \sigma \varphi \prime \prime \prime 

0 (L)

= - K

\Biggl( 
k25w0 + k5\xi 0  - h\ast (k3 + k4)

\int L

0

xu0(x)dx - k3\mu h
\ast (\varphi 0(L) - \varphi 0(0))

\Biggr) 
,
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1044 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

there exist unique functions \varphi \in C0(\BbbR +; \=S\cap H4(0,L))\cap C1(\BbbR +; \=S)\cap C2(\BbbR +;L
2(0,L)),

(\xi ,w) \in C1(\BbbR +;\BbbR 2) with (\xi (0),w(0)) = (\xi 0,w0), \varphi [0] = \varphi 0, \varphi t[0] = u0 that satisfy
(1.1), (1.2), (1.3), (1.4), and (1.5) and (3.9) for all t \geq 0. Moreover, there exist
constants \^M, \^\lambda > 0 such that the following estimate holds for t\geq 0:\sqrt{} 

\xi 2(t) +w2(t) + P 2(t)\leq \^M exp
\Bigl( 
 - \^\lambda t

\Bigr) \sqrt{} 
\xi 2(0) +w2(0) + P 2(0),(3.11)

where P (t) is defined by (3.3).

The proof of Theorem 4 is based on the following Lyapunov functional:

\~W (\xi ,w,\varphi ,\varphi t) =
1

2
\xi 2 +

k25
2

\bigl( 
w+ k - 1

5 \xi 
\bigr) 2

+
\mu 

K (h\ast )
2
L

\biggl( 
1

2
\| \varphi t\| 22 +

c2

2
\| \varphi \prime \| 22 +

\sigma h\ast 

2
\| \varphi \prime \prime \| 22

\biggr) 
+ k4

\biggl( 
1

2
\| \theta \| 22 +

c2

2
\| \varphi \| 22 +

\sigma h\ast 

2
\| \varphi \prime \| 22

\biggr) 
+ k3

\biggl( 
1

2
\| \theta  - \mu \varphi \prime \| 22 +

c2 + \=\kappa \mu 

2
\| \varphi \| 22 +

\sigma h\ast 

2
\| \varphi \prime \| 22

\biggr) 
,

(3.12)

where

\theta (x) =

\int x

0

\varphi t(s)ds for x\in [0,L] .(3.13)

More specifically, we show that there exists a constant \omega > 0 such that the solutions
of the closed-loop system (1.1), (1.2), (1.3), (1.4), and (1.5) and (3.9) satisfy the
differential inequality d

d t (
\~W (\xi (t),w(t),\varphi [t],\varphi t[t])) \leq  - 2\omega \~W (\xi (t),w(t),\varphi [t],\varphi t[t]) for

all t\geq 0.
There are major differences between the results for the linearized system and the

results for the nonlinear system in [32, 34, 35].
(1) In the linearized case, we provide existence/uniqueness results for the closed-

loop system. In the nonlinear case, existence/uniqueness results for the cor-
responding closed-loop system are not provided in [32, 34, 35].

(2) In the linearized case, we can study the situation where both friction and
surface tension are present. In the nonlinear case, the situation where both
friction and surface tension are present is not studied in [32, 34, 35].

(3) There is a big difference in the state norm for which we achieve stabilization.
In the nonlinear case, stabilization is achieved in the state norm

P1 =
\Bigl( 
\xi 2 +w2 +

\bigm\| \bigm\| h - h\ast \chi [0,L]

\bigm\| \bigm\| 2
2
+ \| hx\| 22 + \| v\| 22

\Bigr) 1/2
.

On the other hand, in the linearized case, we achieve stabilization in the state
norm

P2 =
\Bigl( 
\xi 2 +w2 + \| \varphi \| 22 + \| \varphi x\| 22 + \| \varphi xx\| 22 + \| \varphi t\| 22

\Bigr) 1/2
.

In order to compare the two norms, we notice that the linearization of (2.9),
(2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) gives \varphi = h - h\ast \chi [0,L] as well
as the equation \varphi t + h\ast vx = 0. Consequently, the state norm P2 corresponds
to the norm

P3 =
\Bigl( 
\xi 2 +w2 +

\bigm\| \bigm\| h - h\ast \chi [0,L]

\bigm\| \bigm\| 2
2
+ \| hx\| 22 + \| hxx\| 22 + \| vx\| 22

\Bigr) 1/2
.
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1045

Therefore, the state norm for which stabilization is achieved in the linearized
case is stronger than the state norm for which stabilization is achieved in the
nonlinear case.

(4) The Lyapunov functional used for the linearized case does not correspond
exactly to the functionals used for the nonlinear case in [32, 34, 35]. The
Lyapunov functional in the linearized case is a linear combination of four func-
tionals: (i) the function 1

2\xi 
2+ 1

2a2 (w+a\xi )2, which is the Lyapunov function for

the tank; (ii) the functional 1
2\| \theta \| 

2
2 +

c2

2 \| \varphi \| 
2
2 +

\sigma h\ast 

2 \| \varphi x\| 22, which corresponds
to the mechanical energy of the liquid; (iii) the functional 1

2\| \theta  - \mu \varphi x\| 22 +
c2+\=\kappa \mu 

2 \| \varphi \| 22+ \sigma h\ast 

2 \| \varphi x\| 22, which corresponds to the modified mechanical energy

of the liquid; and (iv) the functional 1
2\| \varphi t\| 22 + c2

2 \| \varphi x\| 22 + \sigma h\ast 

2 \| \varphi xx\| 22, which
is the energy of the liquid if one considers the liquid as a beam described by
the beamlike equation (1.1). The first three functionals correspond to func-
tionals that are also used for the construction of a Lyapunov functional in the
nonlinear case in [32, 34, 35]. However, the last functional, the beam energy
1
2\| \varphi t\| 22 + c2

2 \| \varphi x\| 22 + \sigma h\ast 

2 \| \varphi xx\| 22, has no nonlinear counterpart. This also
explains the difference in the state norm for which stabilization is achieved.

4. Proofs. This section provides the proofs of all main results.

Proof of Theorem 1. Let arbitrary \varphi 0 \in \=S \cap H4(0,L), p0 \in \=S, and f \in C3(\BbbR +)
with \varphi \prime \prime \prime 

0 (0) =\varphi \prime \prime \prime 
0 (L) = - \sigma  - 1f(0) be given. We perform the following transformation:

\varphi (t, x) = u(t, x) + \=r(x)f(t) for t\geq 0, x\in [0,L] ,(4.1)

where \=r : [0,L]\rightarrow \BbbR is a smooth function that satisfies

\=r\prime (0) = \=r\prime (L) =

\int L

0

\=r(x)dx= 0 and \=r\prime \prime \prime (0) = \=r\prime \prime \prime (L) = - \sigma  - 1.(4.2)

Then, using (4.1) and (4.2) and (1.1), (1.3), and (1.4), we get the problem

utt = c2uxx  - \sigma h\ast uxxxx + \mu utxx  - \=\kappa ut + \=g for t > 0, x\in (0,L) ,(4.3)

ux(t,0) = ux(t,L) = uxxx(t,0) = uxxx(t,L) = 0 for t\geq 0,(4.4)

where

\=g(t, x) =
\Bigl( 
c2\=r\prime \prime (x) - \sigma h\ast \=r(4)(x)

\Bigr) 
f(t) + (\mu \=r\prime \prime (x) - \=\kappa \=r(x)) \.f(t) - \=r(x) \"f(t).(4.5)

Defining

p= ut,U =

\biggl( 
u
p

\biggr) 
, F =

\biggl( 
0
\=g

\biggr) 
,(4.6)

we get from (4.3) and (4.4) the initial-value problem

\.U +AU = F(4.7)

with

U [0] =U0 =

\biggl( 
u0

p0

\biggr) 
, u0(x) =\varphi 0(x) - \=r(x)f(0) for x\in [0,L] ,(4.8)
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1046 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

where A :D(A)\rightarrow X1 is the linear unbounded operator

A=

\left[  0  - 1

\sigma h\ast d4

dx4
 - c2

d2

dx2
 - \mu 

d2

dx2
+ \=\kappa 

\right]  (4.9)

with X1 being the real Hilbert space X1 = \=S \times L2(0,L) with scalar product defined
for all U = (up )\in X1, \=U = ( \=u

\=p )\in X1\bigl( 
U, \=U

\bigr) 
= \langle u, \=u\rangle + c2 \langle u\prime , \=u\prime \rangle + \sigma h\ast \langle u\prime \prime , \=u\prime \prime \rangle + \langle p, \=p\rangle (4.10)

and D(A)\subset X1 being the linear space

D(A) =

\biggl\{ 
U =

\biggl( 
u
p

\biggr) 
\in \=S2 : u\prime \prime \in \=S

\biggr\} 
.(4.11)

Notice that definitions (4.8) and (4.11); the fact that \varphi 0 \in \=S \cap H4(0,L), p0 \in \=S, and
\varphi \prime \prime \prime 
0 (0) =\varphi \prime \prime \prime 

0 (L) = - \sigma  - 1f(0); and properties (4.2) guarantee that U0 \in D(A).
We next show that there exists \=q \geq 0 such that the operator A+ \=q I, where I is

the identity operator, is a maximal monotone operator. Using (4.9) and (4.10), we
get, for all U = (up )\in D(A) and \=q\geq 0,

((A+ \=q I)U,U) = - \langle u,p\rangle  - c2 \langle u\prime , p\prime \rangle  - \sigma h\ast \langle u\prime \prime , p\prime \prime \rangle + \sigma h\ast \langle p,u(4)\rangle  - c2 \langle p,u\prime \prime \rangle 
 - \mu \langle p, p\prime \prime \rangle + (\=q+ \=\kappa ) \langle p, p\rangle + \=q \langle u,u\rangle + \=qc2 \langle u\prime , u\prime \rangle + \=q\sigma h\ast \langle u\prime \prime , u\prime \prime \rangle .

(4.12)

Since U = (up ) \in D(A), it follows from (3.1) and (4.11) that u\prime (0) = u\prime (L) =
p\prime (0) = p\prime (L) = u\prime \prime \prime (0) = u\prime \prime \prime (L) = 0. Consequently, integration by parts implies
that  - \langle p,u\prime \prime \rangle = \langle u\prime , p\prime \rangle ,  - \langle p, p\prime \prime \rangle = \langle p\prime , p\prime \rangle , and \langle p,u(4)\rangle = \langle u\prime \prime , p\prime \prime \rangle , and therefore, we
get from (4.12) for all U = (up )\in D(A) and \=q\geq 0 that

((A+ \=q I)U,U) = - \langle u,p\rangle + \mu \| p\prime \| 22 + (\=q+ \=\kappa )\| p\| 22 + \=q \| u\| 22 + \=qc2 \| u\prime \| 22 + \=q\sigma h\ast \| u\prime \prime \| 22 .
(4.13)

The Cauchy--Schwarz inequality implies that  - \langle u,p\rangle \geq  - \| u\| 2\| p\| 2 \geq  - 1
2\| p\| 

2
2 - 1

2\| u\| 
2
2.

Consequently, we get from (4.13) for all U = (up )\in D(A) and \=q\geq 1/2 that

((A+ \=q I)U,U)\geq 0.(4.14)

Let arbitrary ( f1f2 )\in X1 be given. By virtue of (4.9), the equation (A+ (\=q+ 1) I)U =

( f1f2 ) gives

(\=q+ 1)u - p= f1,

\sigma h\ast u(4)  - c2u\prime \prime  - \mu p\prime \prime + (\=q+ 1+ \=\kappa )p= f2.
(4.15)

The system (4.15) gives the equation

\sigma h\ast u(4)  - 
\bigl( 
c2 + \mu (\=q+ 1)

\bigr) 
u\prime \prime + (\=q+ 1)(\=q+ 1+ \=\kappa )u= f3,(4.16)

where f3 = f2 + (\=q + 1 + \=\kappa )f1  - \mu f \prime \prime 
1 . Using Fourier series, we find that, for every

f3 \in L2(0,L) and every \=q \geq 0, (4.16) has a solution u \in \=S with u\prime \prime \in \=S, which is given
by the following equation for x\in [0,L]:
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1047

u(x) =
1

(\=q+ 1)(\=q+ 1+ \=\kappa )L

\int L

0

f3(z)dz

+

\infty \sum 
n=1

2L3 cos
\bigl( 
n\pi x

L

\bigr) \int L

0
f3(z) cos

\bigl( 
n\pi z

L

\bigr) 
dz

\sigma h\ast n4\pi 4 +L2 (c2 + \mu (\=q+ 1))n2\pi 2 +L4(\=q+ 1)(\=q+ 1+ \=\kappa )
.

(4.17)

Using (4.15) and (4.16), we conclude that, for every ( f1f2 )\in X1 and every \=q\geq 0, there

exists U = (up ) \in D(A) such that (A + (\=q + 1) I)U = ( f1f2 ). Therefore, using (4.14),
we conclude that the operator A+ \=q I is a maximal monotone operator for \=q \geq 1/2.
The proof is finished by applying Theorem 7.10 on p. 198 in [10]. The proof is
complete.

Proof of Theorem 2. Let f \in C0 (\BbbR +) and an arbitrary function

\varphi \in C0
\bigl( 
\BbbR +; \=S \cap H4(0,L)

\bigr) 
\cap C1

\bigl( 
\BbbR +; \=S

\bigr) 
\cap C2

\bigl( 
\BbbR +;L

2(0,L)
\bigr) 

that satisfies (1.1), (1.3), (1.4), and (1.5) for all t\geq 0 be given. Define

\theta (t, x) =

\int x

0

\varphi t(t, s)ds for t\geq 0, x\in [0,L] .(4.18)

Using (1.1), (1.3), (1.4), and (1.5) and definition (4.18), we conclude that the following
equations hold:

\theta t = c2\varphi x  - \sigma h\ast \varphi xxx  - h\ast f + \mu \varphi tx  - \=\kappa \theta for t\geq 0,(4.19)

\theta (t,0) = \theta (t,L) = 0 for t\geq 0.(4.20)

Using (1.1), (1.3), (1.4), (4.19), (4.20), and integration by parts, we conclude that the
following equations hold for t\geq 0:

d

d t

\biggl( 
1

2
\| \varphi t[t]\| 22 +

c2

2
\| \varphi x[t]\| 22 +

\sigma h\ast 

2
\| \varphi xx[t]\| 22

\biggr) 
= - \mu \| \varphi tx[t]\| 22  - \=\kappa \| \varphi t[t]\| 22 + h\ast \bigl\langle \varphi tx[t], \chi [0,L]

\bigr\rangle 
f(t),

(4.21)

d

d t

\biggl( 
1

2
\| \theta [t]\| 22 +

c2

2
\| \varphi [t]\| 22 +

\sigma h\ast 

2
\| \varphi x[t]\| 22

\biggr) 
= - \=\kappa \| \theta [t]\| 22  - \mu \| \varphi t[t]\| 22  - h\ast \bigl\langle \theta [t], \chi [0,L]

\bigr\rangle 
f(t),

(4.22)

d

d t

\biggl( 
1

2
\| \theta [t] - \mu \varphi x[t]\| 22 +

c2 + \=\kappa \mu 

2
\| \varphi [t]\| 22 +

\sigma h\ast 

2
\| \varphi x[t]\| 22

\biggr) 
= - \mu c2 \| \varphi x[t]\| 22  - \mu \sigma h\ast \| \varphi xx[t]\| 22  - \=\kappa \| \theta [t]\| 22
 - h\ast \bigl\langle \theta [t] - \mu \varphi x[t], \chi [0,L]

\bigr\rangle 
f(t).

(4.23)

Define the mapping

V1(t) =
1

2
\| \varphi t[t]\| 22 +

c2 + 2\sigma h\ast 

2
\| \varphi x[t]\| 22 +

\sigma h\ast 

2
\| \varphi xx[t]\| 22 +

1

2
\| \theta [t]\| 22

+
2c2 + \=\kappa \mu 

2
\| \varphi [t]\| 22 +

1

2
\| \theta [t] - \mu \varphi x[t]\| 22 .

(4.24)
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1048 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

We notice that V1(t), as defined by (4.24), is nothing else but the sum of the quantities
whose time derivatives appear in the left-hand sides of (4.21), (4.22), and (4.23).
Therefore, we get from (4.21), (4.22), (4.23), and (4.24) for all t\geq 0 that

\.V1(t) = - \mu \| \varphi tx[t]\| 22  - (\mu + \=\kappa )\| \varphi t[t]\| 22  - 2\=\kappa \| \theta [t]\| 22
 - \mu c2 \| \varphi x[t]\| 22  - \mu \sigma h\ast \| \varphi xx[t]\| 22  - h\ast \bigl\langle 2\theta [t] - \mu \varphi x[t] - \varphi tx[t], \chi [0,L]

\bigr\rangle 
f(t).

(4.25)

Using Wirtinger's inequality, (1.3) and (1.5) and (4.18) and (4.20), we get, for all
t\geq 0,

\| \varphi x[t]\| 22 \leq 
L2

\pi 2
\| \varphi xx[t]\| 22 ,(4.26)

\| \theta [t]\| 22 \leq 
L2

\pi 2
\| \varphi t[t]\| 22 ,(4.27)

\| \varphi [t]\| 22 \leq 
L2

\pi 2
\| \varphi x[t]\| 22 ,(4.28)

\| \varphi t[t]\| 22 \leq 
L2

\pi 2
\| \varphi tx[t]\| 22 .(4.29)

Using definitions (3.3), (4.24), (4.18), and (4.27), we conclude that there exist con-
stants K2 >K1 > 0 (independent of t\geq 0 and the solution \varphi ) such that the following
inequalities hold for all t\geq 0:

K1P
2(t)\leq V1(t)\leq K2P

2(t).(4.30)

The Cauchy--Schwarz inequality and (4.27) give the inequalities | \langle \varphi tx[t], \chi [0,L]\rangle | \leq \surd 
L\| \varphi tx[t]\| 2, | \langle \varphi x[t], \chi [0,L]\rangle | \leq 

\surd 
L\| \varphi x[t]\| 2, and | \langle \theta [t], \chi [0,L]\rangle | \leq L

\surd 
L

\pi \| \varphi t[t]\| 2 for all
t\geq 0. Consequently, using the previous inequalities and the elementary inequalities

2h\ast L
\surd 
L

\pi 
\| \varphi t[t]\| 2 | f(t)| \leq 

\mu + \=\kappa 

2
\| \varphi t[t]\| 22 +

2(h\ast )
2
L3

\pi 2 (\mu + \=\kappa )
| f(t)| 2 ,

h\ast \mu 
\surd 
L\| \varphi x[t]\| 2 | f(t)| \leq 

\mu c2

2
\| \varphi x[t]\| 22 +

(h\ast )
2
\mu L

2c2
| f(t)| 2 ,

h\ast 
\surd 
L\| \varphi tx[t]\| 2 | f(t)| \leq 

\mu 

2
\| \varphi tx[t]\| 22 +

(h\ast )
2
L

2\mu 
| f(t)| 2 ,

we obtain from (4.25) for all t\geq 0 that

\.V1(t)\leq  - \mu \| \varphi tx[t]\| 22  - (\mu + \=\kappa )\| \varphi t[t]\| 22  - 2\=\kappa \| \theta [t]\| 22

 - \mu c2 \| \varphi x[t]\| 22  - \mu \sigma h\ast \| \varphi xx[t]\| 22 + 2h\ast L
\surd 
L

\pi 
\| \varphi t[t]\| 2 | f(t)| 

+ h\ast \mu 
\surd 
L\| \varphi x[t]\| 2 | f(t)| + h\ast 

\surd 
L\| \varphi tx[t]\| 2 | f(t)| 

\leq  - \mu 

2
\| \varphi tx[t]\| 22  - 

\mu + \=\kappa 

2
\| \varphi t[t]\| 22  - 

\mu c2

2
\| \varphi x[t]\| 22

 - \mu \sigma h\ast \| \varphi xx[t]\| 22 +
(h\ast )

2
L

2\mu 

\biggl( 
4\mu L2

\pi 2 (\mu + \=\kappa )
+

\mu 2

c2
+ 1

\biggr) 
| f(t)| 2 .

(4.31)
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1049

Using (4.28), (4.29), and (4.31), we get for all t\geq 0 that

\.V1(t)\leq  - \mu \pi 2 + (\mu + \=\kappa )L2

2L2
\| \varphi t[t]\| 22  - 

\mu c2

4
\| \varphi x[t]\| 22  - 

\mu c2

4
\| \varphi x[t]\| 22

 - \mu \sigma h\ast \| \varphi xx[t]\| 22 +
(h\ast )

2
L

2\mu 

\biggl( 
4\mu L2

\pi 2 (\mu + \=\kappa )
+

\mu 2

c2
+ 1

\biggr) 
| f(t)| 2

\leq  - \mu \pi 2 + (\mu + \=\kappa )L2

2L2
\| \varphi t[t]\| 22  - 

\mu c2\pi 2

4L2
\| \varphi [t]\| 22  - 

\mu c2

4
\| \varphi x[t]\| 22

 - \mu \sigma h\ast \| \varphi xx[t]\| 22 +
(h\ast )

2
L

2\mu 

\biggl( 
4\mu L2

\pi 2 (\mu + \=\kappa )
+

\mu 2

c2
+ 1

\biggr) 
| f(t)| 2 .

(4.32)

Definition (3.3) and (4.32) imply that there exists a constant K3 > 0 (independent of
t\geq 0 and the solution \varphi ) such that the following inequality holds for all t\geq 0:

\.V1(t)\leq  - K3P
2(t) +

(h\ast )
2
L

2\mu 

\biggl( 
4\mu L2

\pi 2 (\mu + \=\kappa )
+

\mu 2

c2
+ 1

\biggr) 
| f(t)| 2 .(4.33)

Using (4.30) and (4.33), we conclude that there exists a constant K4 > 0 (independent
of t\geq 0 and the solution \varphi ) such that the following inequality holds for all t\geq 0:

\.V1(t)\leq  - K4 V1(t) +
(h\ast )

2
L

2\mu 

\biggl( 
4\mu L2

\pi 2 (\mu + \=\kappa )
+

\mu 2

c2
+ 1

\biggr) 
| f(t)| 2 .(4.34)

Estimate (3.2) for appropriate constants \=M, \=\lambda ,\Gamma > 0 is a direct consequence of differ-
ential inequality (4.34) and inequalities (4.30). The proof is complete.

Proof of Theorem 3. The proof follows a similar notation with the proof of The-
orem 1 (for example, we have states u,U , scalar product (\bullet , \bullet ), identity operator
I, etc.). However, the reader should not be tempted by an overlapping notation for
different quantities to compare the different quantities in the proofs. The proofs of
Theorem 1 and Theorem 3 are completely independent. Define the real Hilbert space

X2 =

\Biggl\{ 
(\xi ,w,\varphi ,u) : (\xi ,w)\in \BbbR 2 , \varphi \in \=S , u\in L2(0,L) ,

\int L

0

\varphi (x)dx=

\int L

0

u(x)dx= 0

\Biggr\} (4.35)

with scalar product defined for all U = (\xi ,w,\varphi ,u)\in X2, \=U = (\=\xi , \=w, \=\varphi , \=u)\in X2\bigl( 
U, \=U

\bigr) 
= \xi \=\xi +w \=w+ \langle \varphi , \=\varphi \rangle + c2 \langle \varphi \prime , \=\varphi \prime \rangle + \sigma h\ast \langle \varphi \prime \prime , \=\varphi \prime \prime \rangle + \langle u, \=u\rangle .(4.36)

Define the linear unbounded operator \~A :D( \~A)\rightarrow X2 for all U = (\xi ,w,\varphi ,u) \in D( \~A)
by means of the following equation:

\~AU =
\bigl( 
 - w, B\xi +Cw+ \langle u, \~r\rangle + \langle \varphi \prime , \~p\rangle ,  - u,  - c2\varphi \prime \prime + \sigma h\ast \varphi (4)  - \mu u\prime \prime + \=\kappa u

\bigr) 
,

(4.37)

where D( \~A)\subset X2 is the linear subspace

D( \~A) =

\biggl\{ 
(\xi ,w,\varphi ,u)\in X2 :

\varphi \in H4(0,L) , u\in \=S,
\sigma \varphi \prime \prime \prime (0) = \sigma \varphi \prime \prime \prime (L) = - B\xi  - Cw - \langle u, \~r\rangle  - \langle \varphi \prime , \~p\rangle 

\biggr\} 
.

(4.38)
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1050 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

It is clear from definitions (4.37) and (4.38) that we are seeking for a solution of the
initial-value problem

\.U + \~AU = 0(4.39)

with

U [0] = (\xi 0,w0,\varphi 0, u0) .(4.40)

Notice that definitions (4.35), (4.38), and (4.40) and the fact that (\xi 0,w0) \in \BbbR 2,

\varphi 0 \in \=S \cap H4(0,L), u0 \in \=S with
\int L

0
\varphi 0(x)dx =

\int L

0
u0(x)dx = 0, \varphi \prime \prime \prime 

0 (0) = \varphi \prime \prime \prime 
0 (L) =

 - \sigma  - 1(B\xi 0 + Cw0 + \langle u0, \~r\rangle + \langle \varphi \prime 
0, \~p\rangle ) imply that U [0] = (\xi 0,w0,\varphi 0, u0) \in D( \~A). The

theorem is proved by applying the Hille--Yosida theorem (Theorem 7.4 on p. 185 in
[10] and Remark 6 on p. 190 in [10]) to the initial-value problems (4.39) and (4.40).
To this purpose, it suffices to show that the linear unbounded operator \~A+ \=q I, where
\~A : D( \~A) \rightarrow X2 is defined by (4.37) and (4.38), is a maximal monotone operator
for some \=q \geq 0. Indeed, by virtue of (3.1), (4.35), (4.36), (4.37), and (4.38) and by
using integration by parts, the Cauchy--Schwarz inequality and the fact that | u(L) - 
u(0)| \leq 

\surd 
L\| u\prime \| 2 (a consequence of the Cauchy--Schwarz inequality and the fact that

u(L) - u(0) =
\int L

0
u\prime (x)dx), we have, for all U = (\xi ,w,\varphi ,u)\in D( \~A),

\Bigl( 
\~AU,U

\Bigr) 
= - \xi w+B\xi w+Cw2 +w \langle u, \~r\rangle +w \langle \varphi \prime , \~p\rangle 

 - \langle \varphi ,u\rangle  - c2 \langle \varphi \prime , u\prime \rangle  - \sigma h\ast \langle \varphi \prime \prime , u\prime \prime \rangle  - c2 \langle u,\varphi \prime \prime \rangle 

+ \sigma h\ast 
\Bigl\langle 
u,\varphi (4)

\Bigr\rangle 
 - \mu \langle u,u\prime \prime \rangle + \=\kappa \| u\| 22

= (B  - 1)\xi w+Cw2 +w \langle u, \~r\rangle +w \langle \varphi \prime , \~p\rangle + \mu \| u\prime \| 22 + \=\kappa \| u\| 22
 - \langle \varphi ,u\rangle  - h\ast (u(L) - u(0)) (B\xi +Cw+ \langle u, \~r\rangle + \langle \varphi \prime , \~p\rangle )

\geq  - | B  - 1| | \xi | | w|  - | C| w2  - \| \~r\| 2 | w| \| u\| 2  - \| \~p\| 2 | w| \| \varphi 
\prime \| 2 + \mu \| u\prime \| 22 + \=\kappa \| u\| 22

 - \| \varphi \| 2 \| u\| 2  - | B| h\ast 
\surd 
L\| u\prime \| 2 | \xi | 

 - h\ast | C| 
\surd 
L\| u\prime \| 2 | w|  - h\ast 

\surd 
L\| u\prime \| 2 \| \~r\| 2 \| u\| 2  - h\ast 

\surd 
L\| u\prime \| 2 \| \~p\| 2 \| \varphi 

\prime \| 2 .

(4.41)

Using the inequalities

| B| h\ast 
\surd 
L\| u\prime \| 2 | \xi | \leq 

\mu 

4
\| u\prime \| 22 +

1

\mu 
B2 (h\ast )

2
L\xi 2,

h\ast | C| 
\surd 
L\| u\prime \| 2 | w| \leq 

\mu 

4
\| u\prime \| 22 +

1

\mu 
C2 (h\ast )

2
Lw2,

h\ast 
\surd 
L\| u\prime \| 2 \| \~r\| 2 \| u\| 2 \leq 

\mu 

4
\| u\prime \| 22 +

1

\mu 
(h\ast )

2
L\| \~r\| 22 \| u\| 

2
2 ,

h\ast 
\surd 
L\| u\prime \| 2 \| \~p\| 2 \| \varphi 

\prime \| 2 \leq 
\mu 

4
\| u\prime \| 22 +

1

\mu 
(h\ast )

2
L\| \~p\| 22 \| \varphi 

\prime \| 22 ,

| B  - 1| | \xi | | w| \leq | B  - 1| 
2

\xi 2 +
| B  - 1| 

2
w2,

\| \~r\| 2 | w| \| u\| 2 \leq 
\| \~r\| 2
2

\| u\| 22 +
\| \~r\| 2
2

w2,

\| \~p\| 2 | w| \| \varphi 
\prime \| 2 \leq 

\| \~p\| 2
2

\| \varphi \prime \| 22 +
\| \~p\| 2
2

w2,

\| \varphi \| 2 \| u\| 2 \leq 
1

2
\| u\| 22 +

1

2
\| \varphi \| 22 ,
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1051

we get from (4.36) and (4.41) that

\Bigl( 
( \~A+ \=q I)U,U

\Bigr) 
\geq 
\biggl( 
\=q - | B  - 1| 

2
 - L

\mu 
B2 (h\ast )

2

\biggr) 
\xi 2 + \=q\sigma h\ast \| \varphi \prime \prime \| 22

+

\biggl( 
\=q - 

| B  - 1| + \| \~r\| 2 + \| \~p\| 2
2

 - | C|  - L

\mu 
C2 (h\ast )

2

\biggr) 
w2 +

\biggl( 
\=q - 1

2

\biggr) 
\| \varphi \| 22

+

\biggl( 
\=qc2  - 

\| \~p\| 2
2

 - L

\mu 
(h\ast )

2 \| \~p\| 22

\biggr) 
\| \varphi \prime \| 22 +

\biggl( 
\=q - 

\| \~r\| 2 + 1

2
 - L

\mu 
(h\ast )

2 \| \~r\| 22

\biggr) 
\| u\| 22 .

(4.42)

It follows from (4.42) that, for \=q\geq 0 sufficiently large, it holds that\Bigl( 
( \~A+ \=q I)U,U

\Bigr) 
\geq 0.(4.43)

Let arbitrary f1, f2 \in \BbbR , f3 \in H2(0,L), f4 \in L2(0,L) with f \prime 
3(0) = f \prime 

3(L) = 0

and
\int L

0
f3(x)dx =

\int L

0
f4(x)dx = 0 be given. We investigate the existence of U =

(\xi ,w,\varphi ,u) \in D( \~A) with \~AU + (\=q + 1)U = (f1, f2, f3, f4). Using (4.37), we get the
equations

(\=q+ 1)\xi  - w= f1,

(\=q+ 1)w+B\xi +Cw+ \langle u, \~r\rangle + \langle \varphi \prime , \~p\rangle = f2,

(\=q+ 1)\varphi  - u= f3,

(\=q+ 1)u - c2\varphi \prime \prime + \sigma h\ast \varphi (4)  - \mu u\prime \prime + \=\kappa u= f4.

(4.44)

For \=q \geq 0 sufficiently large (so that (\=q + 1 + C)(\=q + 1) +B > 0), we get from (4.44)
that

\xi =
\=q+ 1+C

s(\=q)
f1 +

1

s(\=q)
f2 +

1

s(\=q)
\langle f3, \~r\rangle  - 

\=q+ 1

s(\=q)
\langle \varphi , \~r\rangle  - 1

s(\=q)
\langle \varphi \prime , \~p\rangle ,

w= - B

s(\=q)
f1 +

\=q+ 1

s(\=q)
f2 +

\=q+ 1

s(\=q)
\langle f3, \~r\rangle  - 

(\=q+ 1)2

s(\=q)
\langle \varphi , \~r\rangle  - \=q+ 1

s(\=q)
\langle \varphi \prime , \~p\rangle ,

u= (\=q+ 1)\varphi  - f3,

(4.45)

where s(\=q) = (\=q+ 1+C) (\=q+ 1) +B and \varphi \in H4(0,L) is a function that satisfies

\sigma h\ast \varphi (4)  - 
\bigl( 
c2 + \mu (\=q+ 1)

\bigr) 
\varphi \prime \prime + (\=q+ 1)(\=q+ 1+ \=\kappa )\varphi = f5,(4.46)

\varphi \prime (0) =\varphi \prime (L) = 0,

\varphi \prime \prime \prime (0) =\varphi \prime \prime \prime (L) =Z  - (\=q+ 1)3

\sigma s(\=q)
\langle \varphi , \~r\rangle  - (\=q+ 1)2

\sigma s(\=q)
\langle \varphi \prime , \~p\rangle 

(4.47)

with Z = - (\=q+1)B
\sigma s(\=q) f1  - C(\=q+1)+B

\sigma s(\=q) f2 +
(\=q+1)2

\sigma s(\=q) \langle f3, \~r\rangle and f5 = f4  - \mu f \prime \prime 
3 + (\=q + 1+ \=\kappa )f3.

Notice that, by virtue of (4.46) and (4.47) and the fact that f \prime 
3(0) = f \prime 

3(L) = 0 and\int L

0
f3(x)dx=

\int L

0
f4(x)dx= 0, it follows that

\int L

0
\varphi (x)dx= 0. Therefore, a solution of

the boundary-value problem (4.46) and (4.47) gives (by means of (4.45)) a solution
U = (\xi ,w,\varphi ,u) \in D( \~A) of the equation \~AU + (\=q + 1)U = (f1, f2, f3, f4). Therefore,
we next finish the proof by showing that, for sufficiently large \=q \geq 0 (so that s(\=q) =
(\=q + 1 + C)(\=q + 1) + B > 0), the boundary-value problem (4.46) and (4.47) has a

solution \varphi \in H4(0,L) for every Z \in \BbbR and every f5 \in L2(0,L) with
\int L

0
f5(x)dx = 0.
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1052 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

We look for a solution of the form \varphi (x) = a0(x
3 - 3L

2 x2+ L3

4 )+
\sum \infty 

n=1 an\phi n(x), where

an \in \BbbR for n = 1,2, . . . and \phi n(x) =
\sqrt{} 

2
L cos(n\pi x

L ) for n = 1,2, . . .. Substituting this

expression in (4.46) and (4.47) and recalling (3.7), we obtain the following:

an =
L4 \langle f5, \phi n\rangle 
\~\theta (n, \=q)

+ 6a0

\sqrt{} 
2

L

L6 (( - 1)
n  - 1)

\~\theta (n, \=q)
b(n, \=q) for n= 1,2, . . . ,(4.48)

\biggl( 
6 +

(\=q+ 1)3

\sigma s(\=q)
\~\Gamma +

(\=q+ 1)2

\sigma s(\=q)
\~\Delta 

\biggr) 
a0(4.49)

=Z  - (\=q+ 1)2L4

\sigma s(\=q)

\infty \sum 
n=1

\langle f5, \phi n\rangle 
\~\theta (n, \=q)

((\=q+ 1) \langle \phi n, \~r\rangle + \langle \phi \prime 
n, \~p\rangle ) ,

where

\~\theta (n, \=q) = \sigma h\ast n4\pi 4 +L2
\bigl( 
c2 + \mu (\=q+ 1)

\bigr) 
n2\pi 2 + (\=q+ 1)(\=q+ 1+ \=\kappa )L4,(4.50)

b(n, \=q) =

\bigl( 
c2 + \mu (\=q+ 1)

\bigr) 
n2\pi 2 +L2(\=q+ 1)(\=q+ 1+ \=\kappa )

n4\pi 4
,(4.51)

\~\Gamma = \langle \~g, \~r\rangle + 6

\sqrt{} 
2

L

\infty \sum 
n=1

L6 (( - 1)
n  - 1)

\~\theta (n, \=q)
b(n, \=q) \langle \phi n, \~r\rangle ,

\~\Delta = \langle \~g\prime , \~p\rangle + 6

\sqrt{} 
2

L

\infty \sum 
n=1

L6 (( - 1)
n  - 1)

\~\theta (n, \=q)
b(n, \=q) \langle \phi \prime 

n, \~p\rangle .
(4.52)

Notice that (4.48), (4.50), and (4.51) and the fact that f5 \in L2(0,L) guarantee that

\varphi (x) = a0(x
3  - 3L

2 x2 + L3

4 ) +
\sum \infty 

n=1 an\phi n(x) is indeed a function of class H4(0,L).
Therefore, the solvability of the boundary-value problem (4.46) and (4.47) depends
on the solvability of (4.49). Since \~\theta (n, \=q) = n4\pi 4(\sigma h\ast + L2b(n, \=q)) (a consequence of
(4.50) and (4.51)) and since b(n, \=q)\geq 0, we get from (4.52) that

\~\Gamma \geq \langle \~g, \~r\rangle  - 12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi n, \~r\rangle | 
n4

,

\~\Delta \geq \langle \~g\prime , \~p\rangle  - 12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi \prime 
n, \~p\rangle | 
n4

.

(4.53)

Inequalities (3.6) and (4.53) guarantee that \~\Gamma \geq 0 and \~\Delta \geq 0. Consequently, (4.49)
is solvable. Thus, we conclude that, for sufficiently large \=q \geq 0 (so that s(\=q) =
(\=q + 1+C)(\=q + 1) +B > 0) and for every f1, f2 \in \BbbR , f3 \in H2(0,L), f4 \in L2(0,L) with

f \prime 
3(0) = f \prime 

3(L) = 0 and
\int L

0
f3(x)dx =

\int L

0
f4(x)dx = 0, there exists U = (\xi ,w,\varphi ,u) \in 

D( \~A) with \~AU + (\=q+ 1)U = (f1, f2, f3, f4).
The proof is complete.

Proof of Theorem 4. Let (\xi 0,w0)\in \BbbR 2, \varphi 0 \in \=S\cap H4(0,L), u0 \in \=S with
\int L

0
\varphi 0(x)dx=\int L

0
u0(x)dx= 0, and

\sigma \varphi \prime \prime \prime 
0 (0) = \sigma \varphi \prime \prime \prime 

0 (L)

= - K

\Biggl( 
k25w0 + k5\xi 0  - h\ast (k3 + k4)

\int L

0

xu0(x)dx - k3\mu h
\ast (\varphi 0(L) - \varphi 0(0))

\Biggr) 
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1053

be given. We notice that the feedback law (3.9) takes the form (3.8) with

B =Kk5 , C =Kk25,

\~r(x) = - Kh\ast (k3 + k4)x,

\~p(x) = - Kk3\mu h
\ast .

(4.54)

For \phi n(x) =
\sqrt{} 

2
L cos(n\pi x

L ), n= 1,2, . . ., we get from (4.54) for n= 1,2, . . . that

\langle \phi n, \~r\rangle = - Kh\ast (k3 + k4)
L2 (( - 1)n  - 1)

n2\pi 2

\sqrt{} 
2

L
,

\langle \phi \prime 
n, \~p\rangle = - Kk3\mu h

\ast 
\sqrt{} 

2

L
(( - 1)n  - 1) .

(4.55)

Using (3.7), (4.54), and (4.55), we get

\langle \~g, \~r\rangle =Kh\ast (k3 + k4)
L5

20
,

12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi n, \~r\rangle | 
n4

=
48L5

\pi 6
Kh\ast (k3 + k4)

\sum 
n odd

1

n6
,

\langle \~g\prime , \~p\rangle =Kk3\mu h
\ast L

3

2
,

12L4

\pi 4

\sqrt{} 
2

L

\sum 
n odd

| \langle \phi \prime 
n, \~p\rangle | 
n4

=
48L3

\pi 4
Kk3\mu h

\ast 
\sum 
n odd

1

n4
.

(4.56)

Since
\sum 

n odd
1
n6 = \pi 6

960 and
\sum 

n odd
1
n4 = \pi 4

96 , it follows from (4.56) that inequalities (3.6)
hold. Therefore, Theorem 3 implies that there exist unique functions \varphi \in C0(\BbbR +; \=S \cap 
H4(0,L)) \cap C1(\BbbR +; \=S) \cap C2(\BbbR +;L

2(0,L)), (\xi ,w) \in C1(\BbbR +;\BbbR 2) with (\xi (0),w(0)) =
(\xi 0,w0), \varphi [0] =\varphi 0, \varphi t[0] = u0 that satisfy (1.1), (1.2), (1.3), (1.4), (1.5), and (3.9) for
all t\geq 0. The rest of the proof exploits the Lyapunov functional

\~W (t) =
1

2
\xi 2(t) +

k25
2

\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+
\mu 

K (h\ast )
2
L

\biggl( 
1

2
\| \varphi t[t]\| 22 +

c2

2
\| \varphi x[t]\| 22 +

\sigma h\ast 

2
\| \varphi xx[t]\| 22

\biggr) 
+ k4

\biggl( 
1

2
\| \theta [t]\| 22 +

c2

2
\| \varphi [t]\| 22 +

\sigma h\ast 

2
\| \varphi x[t]\| 22

\biggr) 
+ k3

\biggl( 
1

2
\| \theta [t] - \mu \varphi x[t]\| 22 +

c2 + \=\kappa \mu 

2
\| \varphi [t]\| 22 +

\sigma h\ast 

2
\| \varphi x[t]\| 22

\biggr) 
,

(4.57)

where \theta is defined by (4.18). Using (4.21), (4.22), and (4.23) and definition (4.57), we
get for all t\geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
= - k - 1

5 \xi 2(t) + k5
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2  - \mu 2

K (h\ast )
2
L
\| \varphi tx[t]\| 22

 - 

\Biggl( 
\=\kappa \mu 

K (h\ast )
2
L
+ k4\mu 

\Biggr) 
\| \varphi t[t]\| 22 +

\mu 

Kh\ast L
f(t)

\int L

0

\varphi tx(t, x)dx

 - \=\kappa (k3 + k4)\| \theta [t]\| 22  - k3\mu c
2 \| \varphi x[t]\| 22  - k3\mu \sigma h

\ast \| \varphi xx[t]\| 22

 - 

\Biggl( 
k25w(t) + k5\xi (t) + h\ast (k3 + k4)

\int L

0

\theta (t, x)dx

 - k3\mu h
\ast 
\int L

0

\varphi x(t, x)dx

\Biggr) 
f(t).

(4.58)
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1054 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

Using integration by parts and (4.18) and (4.20), we get from (3.9) for all t\geq 0 that

f(t) =K

\Biggl( 
k25w(t) + k5\xi (t) + h\ast (k3 + k4)

\int L

0

\theta (t, x)dx - k3\mu h
\ast 
\int L

0

\varphi x(t, x)dx

\Biggr) 
.

(4.59)

Combining (4.58) and (4.59) and using the fact that | 
\int L

0
\varphi tx(t, x)dx| \leq 

\surd 
L\| \varphi tx[t]\| 2,

we get for all t\geq 0 and \=\gamma \geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - k - 1

5 \xi 2(t) - \=\gamma 
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2  - K - 1f2(t)

+ (k5 + \=\gamma )
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2  - \mu 2

K (h\ast )
2
L
\| \varphi tx[t]\| 22

 - 

\Biggl( 
\=\kappa \mu 

K (h\ast )
2
L
+ k4\mu 

\Biggr) 
\| \varphi t[t]\| 22 +

\mu 

Kh\ast 
\surd 
L
| f(t)| \| \varphi tx[t]\| 2

 - \=\kappa (k3 + k4)\| \theta [t]\| 22  - k3\mu c
2 \| \varphi x[t]\| 22  - k3\mu \sigma h

\ast \| \varphi xx[t]\| 22 .

(4.60)

Combining (4.59) and (4.60) and using the fact that

\mu 

Kh\ast 
\surd 
L
| f(t)| \| \varphi tx[t]\| 2 \leq 

\mu 2

2K (h\ast )
2
L
\| \varphi tx[t]\| 22 +

1

2K
f2(t),

we get for all t\geq 0 and \=\gamma \geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - k - 1

5 \xi 2(t) - \=\gamma 
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+ k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \Biggl( 

K - 1f(t) - h\ast (k3 + k4)

\int L

0

\theta (t, x)dx

+k3\mu h
\ast 
\int L

0

\varphi x(t, x)dx

\Biggr) 2

 - \mu 2

2K (h\ast )
2
L
\| \varphi tx[t]\| 22  - 

\Biggl( 
\=\kappa \mu 

K (h\ast )
2
L
+ k4\mu 

\Biggr) 
\| \varphi t[t]\| 22  - 

1

2K
f2(t)

 - \=\kappa (k3 + k4)\| \theta [t]\| 22  - k3\mu c
2 \| \varphi x[t]\| 22  - k3\mu \sigma h

\ast \| \varphi xx[t]\| 22 .

(4.61)

Using the fact that

\Biggl( 
K - 1f(t) - h\ast (k3 + k4)

\int L

0

\theta (t, x)dx+ k3\mu h
\ast 
\int L

0

\varphi x(t, x)dx

\Biggr) 2

\leq 2K - 2f2(t) + 4k23\mu 
2(h\ast )2

\Biggl( \int L

0

\varphi x(t, x)dx

\Biggr) 2

+ 4(h\ast )2(k3 + k4)
2

\Biggl( \int L

0

\theta (t, x)dx

\Biggr) 2

,
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CONTROL OF A VISCOUS LIQUID--TANK SYSTEM 1055

we obtain from (4.61) for all t\geq 0 and \=\gamma \geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - k - 1

5 \xi 2(t) - \=\gamma 
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+ 4k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
k23\mu 

2(h\ast )2

\Biggl( \int L

0

\varphi x(t, x)dx

\Biggr) 2

+ 4k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
(h\ast )2(k3 + k4)

2

\Biggl( \int L

0

\theta (t, x)dx

\Biggr) 2

 - \mu 2

2K (h\ast )
2
L
\| \varphi tx[t]\| 22  - k4\mu \| \varphi t[t]\| 22

 - 2K - 2

\biggl( 
K

4
 - k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \biggr) 

f2(t)

 - \=\kappa (k3 + k4)\| \theta [t]\| 22  - k3\mu c
2 \| \varphi x[t]\| 22  - k3\mu \sigma h

\ast \| \varphi xx[t]\| 22 .

(4.62)

Using the fact that (
\int L

0
\varphi x(t, x)dx)

2 \leq L\| \varphi x[t]\| 22 and (
\int L

0
\theta (t, x)dx)2 \leq L\| \theta [t]\| 22, we

obtain from (4.62) for all t\geq 0 and \=\gamma \geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - k - 1

5 \xi 2(t) - \=\gamma 
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+ 4k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
(h\ast )2(k3 + k4)

2L\| \theta [t]\| 22  - k3\mu \sigma h
\ast \| \varphi xx[t]\| 22

 - \mu 2

2K (h\ast )
2
L
\| \varphi tx[t]\| 22  - k4\mu \| \varphi t[t]\| 22

 - 2K - 2

\biggl( 
K

4
 - k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \biggr) 

f2(t)

 - 4k23\mu 
2(h\ast )2L

\biggl( 
c2

4k3\mu (h\ast )2L
 - k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \biggr) 

\| \varphi x[t]\| 22 .

(4.63)

Using (4.27) and (4.29), we obtain from (4.63) for all t\geq 0 and \=\gamma \geq 0 that

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - k - 1

5 \xi 2(t) - \=\gamma 
\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

 - k3\mu \sigma h
\ast \| \varphi xx[t]\| 22  - 2K - 2

\biggl( 
K

4
 - k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \biggr) 

f2(t)

 - 4(h\ast )2(k3 + k4)
2L

3

\pi 2

\Biggl( 
\mu \pi 2

\bigl( 
2Kk4(h

\ast )2L3 + \mu \pi 2
\bigr) 

8K(h\ast )4(k3 + k4)2L6

 - k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \bigr) 

\| \varphi t[t]\| 22

 - 4k23\mu 
2(h\ast )2L

\biggl( 
c2

4k3\mu (h\ast )2L
 - k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) \biggr) 

\| \varphi x[t]\| 22 .

(4.64)

Inequality (3.10) implies that there exists \=\gamma > 0 sufficiently small such that

K > 4k - 3
5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
,

\mu \pi 2
\bigl( 
2Kk4(h

\ast )2L3 + \mu \pi 2
\bigr) 

8K(h\ast )4(k3 + k4)2L6
>k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
,

and

c2

4k3\mu (h\ast )2L
> k - 3

5

\bigl( 
1 + k - 1

5 \=\gamma 
\bigr) 
.
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Consequently, there exists a constant c1 > 0 (independent of the solution and inde-
pendent of t\geq 0) such that the following inequality holds for all t\geq 0:

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - c1

\Bigl( 
\xi 2(t) +

\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+ \| \varphi x[t]\| 22 + \| \varphi xx[t]\| 22 + \| \varphi t[t]\| 22
\Bigr) 
.

(4.65)

Using definition (4.57) and inequalities (4.27) and (4.28), we conclude that there exists
a constant c2 > 0 (independent of t \geq 0 and the solution) such that the following
inequality holds for all t\geq 0:

\~W (t)\leq c2

\Bigl( 
\xi 2(t) +

\bigl( 
w(t) + k - 1

5 \xi (t)
\bigr) 2

+ \| \varphi x[t]\| 22 + \| \varphi xx[t]\| 22 + \| \varphi t[t]\| 22
\Bigr) 
.(4.66)

Combining (4.65) and (4.66), we obtain the differential inequality

d

d t

\Bigl( 
\~W (t)

\Bigr) 
\leq  - c - 1

2 c1 \~W (t)

for all t\geq 0, which directly gives the following estimate for all t\geq 0:

\~W (t)\leq exp
\bigl( 
 - c - 1

2 c1 t
\bigr) 
\~W (0).(4.67)

The rest of the proof follows from estimate (4.67) and the fact that there exist con-
stants c4 > c3 > 0 (independent of t \geq 0 and the solution \varphi , \xi ,w) such that the
following inequalities hold for all t\geq 0:

c3
\bigl( 
P 2(t) + \xi 2(t) +w2(t)

\bigr) 
\leq \~W (t)\leq c4

\bigl( 
P 2(t) + \xi 2(t) +w2(t)

\bigr) 
.(4.68)

The proof is complete.

5. Conclusions. The present paper provided novel results for the linearization
of the liquid--tank system, and we have shown that the same family of feedback laws
that works for the nonlinear case can also achieve exponential stabilization for the
linearization of the liquid--tank system, no matter what the value of the surface tension
coefficient is. However, many new results are still needed for a complete study of the
spill-free, slosh-free problem of liquid--tank transfer. We next present four problems
that remain unresolved in the linearized case.

(1) Extension to two dimensions. Real tanks are not 1-D; the actual equations
for the study of a real liquid--tank system involve an additional spatial dimension.
The extension of the theoretical results to two spatial dimensions poses new chal-
lenges that will demand different approaches that have no analogues in the 1-D case
(e.g., the appearance of vorticity). The extension may also involve different boundary
conditions when surface tension is present (see [36, 43]).

(2) Rapid stabilization. It would be interesting to construct feedback laws that
can achieve rapid stabilization of the linearized liquid--tank system, i.e., stabiliza-
tion with an (arbitrarily) assignable, exponential convergence rate (see [11, 51] for
the rapid stabilization of beam equations and see [53] for stabilization of linearized
viscous flows). Notice that Theorem 4 does not guarantee an (arbitrarily) assigna-
ble, exponential convergence rate. If the rapid stabilization problem is not solvable, it
would also be interesting to have a counterexample that shows that rapid stabilization
is not possible.
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(3) Optimal control. It would also be of interest to study optimal control problems
that can be posed for the linearized liquid--tank system. The cost function may contain
terms that penalize the control action (e.g., terms of the form

\int T

0
| f(t)| 2 dt) as well

as terms that penalize sloshing (e.g., terms of the form
\int T

0
\| \varphi [t]\| 22 dt). The solution

of optimal control problems can allow the computation of the optimal feedback gains
for a given initial state.

(4) Control Lyapunov functionals. The feedback design for the linearized liquid--
tank system is based on appropriate CLFs whose construction is based on energy
arguments. It is possible that this methodology can be applied to similar PDE systems
and that some general principles for the construction of CLFs can be stated.
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