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Abstract—Safety in dynamical systems is commonly pur-
sued using control barrier functions (CBFs) which enforce
safety-constraints over the entire duration of a system’s
evolution. We propose a prescribed-time safety (PTSf) de-
sign which enforces safety only for a finite time of interest
to the user. While traditional CBF designs would keep the
system away from the safe set longer than necessary, our
PTSf design lets the system reach the boundary of the
safe set by the prescribed time and obey the operator’s
intent thereafter. To emphasize the capability of our design
for safety constraints with high relative degrees, we focus
our exposition on strict-feedback systems where the safety
condition is defined for the state furthest from the control
input. In contrast to existing CBF-based methods for high
relative degree constraints, our approach involves choos-
ing explicitly specified gains (instead of class K functions),
and, with the aid of backstepping, operates in the entirety
of the original safe set with no additional restriction on the
initial conditions. With QP being employed in the design,
in addition to backstepping and CBFs with a PTSf property,
we refer to our design as a QP-backstepping PT-CBF de-
sign. We include some numerical examples to illustrate the
performance of our design.

Index Terms—Automotive control, control theory, nonlin-
ear control systems.

I. INTRODUCTION

A. High Relative Degree CBFs

CONTROL barrier functions (CBFs) have become a popular
tool for synthesizing safe controllers for dynamical sys-

tems and have been used in a wide range of problem domains,
such as multiagent robotics [1], [2], [3], robust safety [4], [5],
[6], automotive systems [7], [8], [9], delay systems [10], [11],
[12], [13], and stochastic systems [14], [15], [16] to mention
a few. First defined in [17] and later refined and popularized
by the seminal papers [8], [18], CBFs are often employed in a
“safety filter” framework where they are used for generating safe
control overrides for a potentially unsafe nominal controller. In
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essence, a nominal controller is designed to achieve a desired
performance objective, and a CBF-based control override is used
whenever the nominal controller is at risk of making the system
unsafe.

In its initial conception [8], [17], CBFs were specified for
safety constraints of relative degree one, i.e., constraints whose
time derivative depend explicitly on the input. The extension
of CBFs to constraints with high relative degree (hi-rel-deg
CBFs) was first studied independently in [19] and [20] with
much progress following in [21], [22], [23], and [24]. In [20], the
extension was limited to the relative degree two case, and in [19],
where CBFs of arbitrarily hi-rel-deg was introduced; its usage
for a relative degree r case involves choosing r − 1 bounded,
positive definite functions that satisfy additional derivative con-
ditions [19, eq. (26)]: a requirement that limits the utility of [19]
for significantly hi-rel-deg constraints. A similar limitation ap-
plies to more recent treatment [23] which requires choosing and
tuning r class-K functions, whose choice determines the subset
of the original safe set that is kept forward invariant. Building
off [20], exponential CBFs were reported in [21] and allowed the
use of simple linear control tools to design CBFs for hi-rel-deg
constraints.

B. Nonovershooting Control Roots of High Relative
Degree CBFs

Preceding the development of CBFs in [8], [17], and [21],
a design for stabilization to an equilibrium point at the barrier
was introduced, under the name “nonovershooting control,” in
the 2006 paper [25]. This design possesses all the attributes of a
safety design with a CBF of a uniform and hi-rel-deg1 with only
the QP step absent since, for stabilization at the barrier, QP is
subsumed in the stabilization design (the nominal feedback and
the safety filtered feedback are the same).

The interest in nonovershooting control in the 1990s came
from applications—spacecraft docking, aerial refueling, ma-
chining, etc.—with no margin for error in downward setpoint
regulation. The nonovershooting control problem for linear
systems, albeit mostly for zero initial conditions and nonzero
setpoints, was solved in [26], [27], and [28].

Krstic and Bement [25] introduced the following two ideas
(translated to the current CBF terminology). First, for a system
with a hi-rel-deg CBF, a backstepping transformation into a
particular target system in the form of a chain of first-order
CBF subsystems (resulting in all real poles in the linear case) is
performed. Second, in order to ensure that all the CBF “states”

1Uniformity of the CBF’s relative degree gives the equivalence of a general
control-affine system with the strict-feedback class and the convertibility of
the safe set, given by the CBF positivity constraint, into a semiinfinite interval
constraint for the first state of the strict-feedback system.
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of this chain begin and remain positive, the positivity of their
initial values is ensured by choosing the backstepping gains in
accordance with the initial conditions so the entire CBF chain
is initialized positively.

This chain structure and the gain selection of [[25], eqs.
(12) and (13)], regarded through the lens of pole placement,
were independently discovered in the 2016 paper [[21], Cor. 2].
Likewise, the nonlinear damping choices in the CBF chain
in [[25], eqs. (53) and (54)] were independently proposed in the
2019 paper [23]. In addition, pursued in [25], but not in [21] and
[23], was a form of input-to-state safety (ISSf) in the presence
of disturbances. This notion, though not explored for hi-rel-deg
CBFs, is rigorously conceived in [5].

Inspired by nonovershooting control under disturbances
in [25], i.e., by stabilization to an equilibrium at the barrier along
with ISSf, mean-square stabilization of stochastic nonlinear
systems to an equilibrium at the barrier, along with a guarantee
of nonviolation of the barrier in the mean sense, is solved in [29].

With a nearly negligible QP modification, the stabilizing feed-
backs in [25] can be used in safety filters. Hence, backstepping
generates a safety filter with explicit tuning variables that dictate
the exponential approach to the barrier.

C. Prescribed-Time Safety (PTSf)

Recent advances in prescribed-time stabilization (PTS) [30]
have resulted in time-varying backstepping controllers that guar-
antee settling times independent of initial conditions. Exten-
sions have been developed to stochastic nonlinear systems [31],
infinite-dimensional systems [32], [33], [34], and even coupled
systems with finite/infinite-dimensional subsystems [35], [36],
[37]. PTS is a subset of both the finite-time [38] and fixed-
time [39] notions (i.e., stronger than both).

The success in achieving stabilization in prescribed time,
independent of initial conditions, inevitably raises the question
of pursuing the safety counterpart of the same notion. Yet,
the two notions differ notably: while PTS guarantees that the
state reaches the equilibrium no later than a prescribed time T ,
PTSf guarantees that the state cannot reach the boundary of the
safe set sooner than a prescribed time T . The utility of PTSf
stems from it enforcing a less conservative notion of safety than
exponential safety (ESf) does. PTSf removes the infinite-time
safety restrictions that ESf requires, allowing the system to
operate at or beyond the barrier’s proximity after time T . In
automotive research, many dangers and rules are finite-time in
nature, such as static obstacles that are eventually passed by
the vehicle, and traffic lights that periodically turn green. For
robot–human handover applications [40], the handover time is
finite, and employing ESf means that the handover in never fully
completed: it is only completed in an approximate sense. PTSf
can enforce safety until the moment that the object is passed
from robot to human.

We distinguish our notion of PTSf from recently defined
notions of fixed- and finite-time safety (FxTSf/FnTSf) in [41].
In PTSf, safety is enforced only for a fixed time duration T , after
which the system is allowed to enter the unsafe set, as dictated by
the nominal system behavior. In contrast, FxTSf enforces safety
indefinitely and acts in a manner where, whenever the safety
filter kicks in and the nominal system behavior is overridden for a
duration of T time units, the system is necessarily brought to the
boundary of the safe-set at the end of that time duration. FnTSf

acts similarly as FxTSf, but the time duration T is dependent on
the state and nominal control input at the time the safety override
kicks in. Furthermore, PTSf is also different from the notions of
limited duration safety [42] and periodic safety using fixed-time
CBFs [43]. Specifically, Garg et al. [43] introduced the notion of
periodic safety, where the objective is to keep a system safe for
all times while enforcing that it periodically (with time periodT )
visits a goal set inside the safe set. In [42], the notion of limited
duration safety was studied, and like PTSf it implies that a
system is kept safe only for a limited duration T . While [42]
restricts the set of initial conditions—a set that shrinks as T
increases [42, Rk. 2]—to be a strict subset of the safe set
[42, eq. (3)], our notion of PTSf places no restriction on the initial
conditions of the system. Recently, Kong et al. [44] introduced
an adaptive tracking design for systems with output constraints
occurring in a limited time interval. Unique to the design in [44]
is the accommodation of limited-duration safety constraints that
do not necessarily begin at the initial time of system evolution.
However, the results in [44] are stated for constraints that are
linear in the system output (PTSf permits nonlinear safety con-
straints). Furthermore, the reference trajectory being tracked is
assumed to reside completely inside of the safe set, which is not
the case for PTSf, where the nominal objective is allowed to be
unsafe during the duration where safety is desired.

Finally, two distinct features of the time-varying backstepping
technique make it attractive for use in safety filter design. The
first is that, compared to ESf designs, the PTSf filters designed
with time-varying backstepping do not exhibit large transients
when the safety filter overrides the nominal controller. This is
not the case for ESf filters with rapid decay rates: the so-called
“peaking” phenomenon [45], [46], [47] is exhibited, which can
cause some of the states to become very large near the initial-
ization time (see Section V-A1), before rapidly converging to
the equilibrium. This behavior can cause large state-derivatives,
which, e.g., is undesirable in vehicle systems where maneuvers
causing large acceleration and its derivative, jerk, can be dan-
gerous. Moreover, when employing a state feedback controller,
there is a direct consequence on the actuator when allowing
large transients. PTSf safety filter designs avoid peaking by
using small gains near initialization time that only grow large
as the state decays. In essence, PTSf behaves like a smooth,
automatic transition from slow ESf at the initialization time to
fast ESf as time approaches the terminal time. The second feature
making time-varying backstepping attractive is the behavior
of the convergence it achieves near the terminal time. PTSf
achieves convergence with “infinitely-soft” landing, that is, the
state and all of its derivatives converge to the equilibrium by the
terminal time. This feature occurring in finite time is unique
to PTSf, and is desirable because it can ensure, e.g., safety
maneuvers with zero jerk by the terminal time. In contrast,
nonsmooth convergence (for example, a vehicle’s position—but
neither its velocity nor acceleration—converging continuously
to a setpoint) at the terminal time has a direct consequence on
its payload and passengers.

Among all classes of nonlinear systems, strict-feedback sys-
tems most commonly arise. Our PTSf design for vector strict-
feedback systems is applicable to all fully actuated robotic
and vehicular systems employing electric motors, hydraulic
actuators, or propulsion devices. As we are pursuing a general
systematic design for handling safety constraints for high-rel.-
degree systems, we focus on strict-feedback systems; further

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 01,2024 at 05:22:02 UTC from IEEE Xplore.  Restrictions apply. 



1466 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 3, MARCH 2024

investigation is required to handle underactuated systems and
other system structures.

D. Contributions

1) Time-varying backstepping design of explicit controllers
that enforce state constraints of hi-rel-deg only for a fixed
time duration. This is in contrast to [42], where limited-
duration safe policies are learned via value function
learning, and [41] where state-constraints are enforced
indefinitely. Practically speaking, explicit state-feedback
controllers are transparent in design and computationally
inexpensive, and limited-duration safe policies are often
encountered in controls applications.

2) By virtue of our particular time-varying design, the state-
constrained controllers exhibit moderate transients, in
contrast to time-invariant variations [21] that are tuned
for similar system performance (see Section V-A1 for
details). For mechanical systems where large transients
mean causing acceleration and jerk in excess of allowable
values, our time-varying approach is of practical impor-
tance.

3) Relative to the result in [41] on finite/fixed-time safety
via homogeneous feedback for scalar chain-of-integrators
with linear half-space state constraints, our PTSf design
is simpler, and applicable to a more general class of vector
strict-feedback systems with nonlinear state constraints,
making it amenable to, for example, vehicular bicycle
models with circle-to-circle barrier constraints, both of
which are nonlinear.

E. Difference (Added Value) Relative to the Paper’s
Conference Version

This article is a journal version of our conference paper [48].
Per TAC policy,2 the journal version’s added value comprises
a generalization from single-input, scalar chain-of-integrator
systems with linear constraints to multiinput, vector strict-
feedback systems with nonlinear constraints; updated and more
detailed analysis and proofs; the inclusion of omitted proofs for
Lemmas 2 and 3; theoretical discussions of solution existence
after the terminal time and PTSf for initially unsafe systems; and
lastly, two additional numerical examples. All of these additions
and updates constitute an additional eight pages relative to the
conference version.

F. Organization

The rest of this article is organized as follows. Section II
contains the problem description alongside some brief prelimi-
naries. In Section III, we present our QP-backstepping PT-CBF
control design methodology. Our main result and its proof are
included in Section IV, where we also discuss PTSf for initially
unsafe systems. Section V includes three numerical examples
with which we compare our design to existing constant-gain
ESf designs. Finally, Section VI concludes this article.

2[Online]. Available: http://ieeecss.org/publication/transactions-automatic-
control/author-info, Section III, third paragraph

II. PROBLEM DESCRIPTION AND PRELIMINARIES

We study vector strict-feedback systems of the following
form:

ẋi(t) = xi+1(t) + ϕi(xi(t)), i = 1, . . . , n− 1

ẋn(t) = B(xn(t))u(t) + ϕn(xn(t))

y(t) = h(x1(t)), t ≥ t0 (1)

where t0 ≥ 0 is the initialization time, xi ∈ Rm are vector-
valued states, and xi represents the column vector

xi =

⎡⎢⎣x1

...
xi

⎤⎥⎦ ∈ Rmi (2)

withxn andx used interchangeably. The function u ∈ Rm is the
Lebesgue-integrable input, and the functions ϕi : Rmi → Rm

and B : Rmn → Rm×m are defined as

ϕi(xi) :=

⎡⎢⎣ϕi,1(xi)
...

ϕi,m(xi)

⎤⎥⎦ (3)

B(xn) =

⎡⎢⎣β1,1(xn) . . . β1,m(xn)
...

...
βm,1(xn) . . . βm,m(xn)

⎤⎥⎦ . (4)

Assumption 1: The matrix B(xn) is nonsingular for all xn ∈
Rmn. In addition, for each i = 1, . . . , n, the functions ϕi,j(xi) :
Rmi → R, j = 1, . . . ,m are n− i times differentiable.

The safety objective is to keep the scalar output y(t) positive
for an a priori prescribed time T > 0 provided that y(t0) is
positive; that is, we want

y(t0) > 0 ⇒ y(t) > 0 ∀t ∈ [t0, t0 + T ) . (5)

This can be interpreted as enforcing system safety (characterized
by the positivity of y(t)) over the finite time horizon [t0, t0 + T ),
where T is a terminal time that can be a priori prescribed.
Geometrically, the closure of the inequality (5) describes the
closed safe setS := {x : y(t) ≥ 0}, where the system can safely
operate during the time horizon [t0, t0 + T ]. The meaning of the
terminal time varies between applications: for example, it can
represent the robot–human handover time, the time at which a
traffic light signals green, or the time at which an autonomous
vehicle passes an occlusion in the road. As is the case in many
safety-critical systems, the control input will be filtered through
a so-called safety filter which overrides a nominal control input
unom whenever it violates conditions that prevent y(t) from
becoming negative before time t0 + T . We note here that under
certain additional assumptions to be discussed later, the control
design methodology we shall present also achieves the dual task
of bringing the system to safety in no later than T time units in
the case that the system starts unsafe. That is, it achieves

y(t0 + T ) ≥ 0 if y(t0) ≤ 0. (6)
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Lastly, we state our assumption on the output map h : Rm → R
in (1).

Assumption 2: The function h : Rm → R is n times differ-
entiable and satisfies

∂h

∂x1
�= 0 ∀ x1 ∈ {χ ∈ Rm | h(χ) ≥ 0} . (7)

A. Coordinate Transformation

The first step in our design is to transform the system (1)
into a vector chain of integrators using the following state
transformation:

α0 = 0 (8)

αi(xi) = −ϕi(xi) +
i−1∑
j=1

∂αi−1

∂xj

(
xj+1 + ϕj(xj)

)
(9)

i = 1, . . . , n

zi = xi −αi−1, i = 1, . . . , n (10)

with input

u = B−1(xn) (v +αn) (11)

which leads to

żi(t) = zi+1(t), i = 1, . . . , n− 1

żn(t) = v(t),

y(t) = h(z1(t)), t ≥ t0. (12)

We note that the original output in (1) and the transformed
output in (12) are equivalent since z1 = x1, and therefore, we
shall focus our PTSf design on the system (12) by designing
the input v that enforces positivity of y(t), and use (11) to
recover the input u for the original strict-feedback system. In
addition, since our PTSf designs will be for the transformed
system (12), we will transform any Lebesgue-integrable nominal
control function unom applied to the original system (1) by using

vnom = B(x)unom −αn. (13)

Our safety filter will be applied to this transformed nominal
input.

B. Preliminaries

Our PTSf designs will be generated by the following “blow-
up” function:

μm(t− t0, T ) =
1

νm(t− t0, T )
, t ∈ [t0, t0 + T ) (14)

for m ∈ N≥2 and the terminal time T > 0, where

ν(t− t0, T ) :=
T + t0 − t

T
(15)

decays linearly from one to zero by the terminal time. We denote
by mk the rising factorial for m, k ∈ N, that is

mk := m(m+ 1) · · · (m+ k − 1) (16)

the derivatives of μm are

μ(i)
m (t− t0, T ) =

mi

T i
μm+i(t− t0, T ). (17)

For the rest of this article, we shall use μm and μm(t) to denote
μm(t− t0, T ) for brevity when there is no confusion.

We denote by Pn(x) an nth-order polynomial in x.

III. QP-BACKSTEPPING PT-CBF DESIGN FOR NTH-ORDER

VECTOR CHAIN-OF-INTEGRATORS

We recall the system of interest

żi(t) = zi+1(t), i = 1, . . . , n− 1

żn(t) = v(t)

y(t) = h(z1(t)), t ≥ t0. (18)

We aim to design a safety filter such that y(t) > 0 uniformly
over the finite time horizon [t0, t0 + T ); that is, we wish to only
enforce safety while it may be needed. Our design proceeds with
a time-varying backstepping transformation defined as follows,
where we suppress the time-dependency of μ2

h1(z1) = h(z1) (19)

hi(zi, t) =

i−1∑
j=1

∂hi−1

∂zj
zj+1 +

∂hi−1

∂t
+ ci−1μ2hi−1

i = 2, . . . , n (20)

where ci, i = 1, . . . , n− 1 are positive design parameters to be
determined, and the transformed states hi’s are called barrier
functions to connote the desire to keep their values positive
provided that their initial values hi(t0) are positive, as is typical
with standard CBFs [18]. As defined, the barrier functions hi in
(20) satisfy

d

dt
hi = −ciμ2hi + hi+1, i = 1, . . . , n− 1 (21)

and for the last barrier function hn in the chain, we have

d

dt
hn(zn, t) =

n−1∑
j=1

∂hn

∂zj
zj+1 +

∂hn

∂t
+

∂hn

∂zn
v(t) (22)

which includes the control input v(t) in the last term. Therefore,
we shall require that the input v(t) preserves the positivity of
hn if hn(t0) > 0. In particular, we shall permit only inputs v(t)
that ensure that the total time derivative d

dthn satisfies the time-
varying barrier constraint

d

dt
hn + cnμ2hn ≥ 0 (23)

which we will later show is a sufficient condition for enforcing
the positivity of hn (and consequently hn−1, . . . , h1) over a time
interval of length T , provided that hi(t0) > 0, i = 1, . . . , n. To
achieve (23), we override any nominal control input vnom(t)with
the closest (in the Euclidean sense) input vsafe(t) that ensures
d
dthn + cnμ2hn ≥ 0 is satisfied. This is equivalent to solving
the quadratic programming (QP) problem

vsafe = arg minw∈Rm ||w − vnom||2

s.t. a+ b	w ≥ 0 (24)
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where

a := cnμ2hn +

n−1∑
j=1

∂hn

∂zj
zj+1 +

∂hn

∂t

b	 :=
∂hn

∂zn
. (25)

Notice from (20) that the barrier functions hi satisfy

∂hi

∂zi
=

∂hi−1

∂zi−1
(26)

⇒ ∂hi

∂zi
=

∂h1

∂z1
∀i = 1, . . . , n (27)

and coupled with (25) and (7) in Assumption 2, we have

b	 =
∂h1

∂z1
�= 0 (28)

which guarantees that the QP problem (24) is always feasible.
Applying the Karush–Kuhn–Tucker (KKT) optimality condi-
tions to (24) then leads to the explicit solution

vsafe =

{
vnom, a+ b	vnom ≥ 0

vnom − a+b	vnom
||b||2 b, otherwise

(29)

where we shall subsequently refer to the expression in the second
branch as

voverride := vnom − a+ b	vnom

||b||2 b. (30)

The QP solution (29) can be written equivalently as

vsafe = vnom +
max{0,−a− b	vnom}

||b||2 b. (31)

Altogether, the input applied to the system (18) to enforce safety
only for a fixed-time interval T is

v(t) =

⎧⎨⎩
vsafe(t), if t0 ≤ t < t0 + T

g(t, vnom(t), vterminal, h1(t0 + T ))

if t ≥ t0 + T

(32)

where

vterminal =

(
I − b(t0 + T )b	(t0 + T )

||b(t0 + T )||2
)
vnom(t0 + T ) (33)

for the “ramp” function

g(t, vnom(t), vterminal, h1(t0 + T ))

:=

⎧⎨⎩
Φ(t− t0 − T, T̄ )vterminal + (1− Φ(t− t0− T, T̄ ))vnom(t)

if h1(t0 + T ) = 0, t0+ T ≤ t ≤ t0 + T + T̄

vnom(t), otherwise
(34)

where

Φ(t− t0 − T, T̄ ) := e−(μ1(t−t0−T,T̄ )−1) (35)

and T̄ > 0 is a design parameter. The role of g in (32) is to
ensure that the control law is continuous at t = t0 + T when
control authority is transferred to the nominal control vnom. A
high-level illustration of the control flow for our design is shown
in the block diagram in Fig. 1.

Fig. 1. Block diagram with PTSf filter generating input v which over-
rides a potentially unsafe nominal input vnom.

With the safety filter (32), the barrier functions satisfy

d

dt
hi = −ciμ2hi + hi+1, i = 1, . . . , n− 1 (36)

d

dt
hn ≥ −cnμ2hn (37)

for t ∈ [t0, t0 + T ). We can now state and prove our main result.

IV. SAFETY THEOREM

Theorem 1: If the system (18) is initially safe and away from
the barrier, that is, if y(t0) > ε > 0, then the control law (32),
(19)–(34) ensures that y(t) > 0 for all t ∈ [t0, t0 + T ) for the
initial control gains

ci > max {0, ci} , i = 1, . . . , n− 1

cn > 0 (38)

where

ci = − 1

hi(zi(t0), t0)

[
i∑

j=1

∂hi(zi(t0), t0)

∂zj
zj+1(t0)

+
∂hi(zi(t0), t0)

∂t

]
. (39)

Moreover, the control law (32) is uniformly bounded provided
that vnom is continuous in t and Lipschitz in z (uniformly in t) 3

in the interval [t0, t0 + T ].
Remark 1: While not characterized in Theorem 1, if the safety

filter overrides the nominal control input over the time interval
[t0 + t̄, t0 + T ) for some t̄ < T , then the convergence of the
barrier functions to zero with be “infinitely soft”: in other words,
all of the derivatives dk

dtk
hi(zi, t), k ∈ N, will also converge

to zero by the terminal time t0 + T . See Section IV-A, and in
particular, (69) and (72) for the mathematical treatment of this
“infinitely soft” convergence.

We now pursue a proof of Theorem 1.

A. Proof of Theorem 1

The structure of our proof comes in two parts: one to establish
positivity of y(t) for t ∈ [t0, t0 + T ); and another to establish
uniform boundedness of the controller which filters the nom-
inal control input to enforce safety. While these two parts are

3The conditions on vnom are such that the nominal system is well posed.
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intimately connected, each part requires different treatments.
To ensure positivity of h1(z1) for t ∈ [t0, t0 + T ), it is enough
to invoke the control barrier constraint (37) and the choice
of control gains (38). On the other hand, due to the possible
switches in control input between vnom and voverride in (29),
one must take care to ensure uniform boundedness of the input
voverride, whose gains increase with time due to the presence
of μ2 in (30) via the a term even when v = vnom. To this
end, we first present the following commutativity property of
the “blow-up” function (14) which we will leverage to show
controller boundedness. To simplify our presentation, we take
t0 = 0 henceforth.

Lemma 2: For m ∈ N≥1 and 0 ≤ t̄ ≤ t < T , the “blow-up”
function (14) satisfies

μm(t, T ) = μm(t̄, T )μm(t− t̄, T − t̄). (40)

Proof: It follows directly from the definition (14)

μm(t, T ) :=
1(

1− t
T

)m
=

1(
1− t̄

T

)m 1(
T−t
T−t̄

)m
= μm(t̄, T )μm(t− t̄, T − t̄). (41)

�
To demonstrate controller uniform boundedness, we must

leverage the fact that the feedback law invokes PTSf whose con-
vergence dominates the rate of divergence of the time-varying
control gains in (30). To accomplish this, we characterize the
following property of the closed-loop system.

Lemma 3: For c > 0, the ith derivative of the function

ξj,k(t, T ) := e−ckj T (μ1(t,T )−1) (42)

satisfies

lim
t→T−

diξj,k(t, T )

dti

= lim
t→T−

P2i (μ1(t, T )) ξj,k(t, T ) = 0, i ∈ N. (43)

Proof: We compute the first derivative according to (17)

dξj,k(t, T )

dt
= −2ckjμ2(t, T )e

−ckj T (μ1(t,T )−1). (44)

An application of l’Hôpital’s rule to (44) twice verifies (43) for
i = 1, since

lim
t→T−

dξj,k(t, T )

dt
= −2ckj e

ckj T lim
t→T−

μ2(t, T )e
−ckj Tμ1(t,T )

= −2ckj e
ckj T lim

τ→+∞

τ2

e−ckj Tτ
= 0. (45)

For successive derivatives, we rely on the general Leibniz rule
to study the time-varying structure of the expression

diξj,k(t, T )

dti
= −2ckj

di−1

dti−1

(
μ2(t, T )e

−ckj T (μ2(t,T )−1)
)

= −2ckj

i−1∑
l=0

(
i− 1

l

)
μ
(l)
2 (t, T )

di−l−1ξj,k(t, T )

dti−l−1

= −2ckj

i−1∑
l=0

2l

T l

(
i− 1

l

)
μ2+l(t, T )

di−l−1ξj,k(t, T )

dti−l−1
.

(46)

We assume by induction that (43) holds for the (i− 1)th deriva-
tive such that

di−1ξj,k(t, T )

dti−1
= P2(i−1) (μ1(t, T )) ξj,k(t, T ). (47)

It follows from applying l’Hôpital’s rule to (46) with (47) i+ 2
times that (43) holds for all i ∈ N. �

We can now proceed with the proof of Theorem 1, where we
select t0 = 0 for clarity.

Proof: We first pursue positivity of y(t) under (32), (38),
and (39). The system beginning from safety implies that
h1(t0) > 0. We proceed by induction: suppose hi(t0) > 0 for
some i = 1, . . . , n− 1; it follows from (20) that

hi+1(t0) = cihi(t0) +
dhi

dt
(t0) (48)

where we have used μ2(t0 − t0, T ) = 1. Our initial control
gains (38) and (39) are designed so that

cihi(t0) +
dhi

dt
(t0) > 0. (49)

We now show that hi(t0) > 0 for all i = 1, . . . , n is a sufficient
condition for nonnegativity of hi(t) for t ∈ [t0, t0 + T ).

Applying the comparison lemma and variation of constants
formula to (36) and (37) gives

hi(t) = hi(t0)e
−ci

∫ t
t0

μ2(s)ds +

∫ t

t0

e−ci
∫ t
τ μ2(s)dshi+1(τ) dτ

i = 1, . . . , n− 1 (50)

hn(t) ≥ hn(t0)e
−cn

∫ t
t0

μ2(s)ds > 0 (51)

for t ∈ [t0, t0 + T ). Substituting (51) into (50) for i = n− 1
yields

hn−1(t) ≥ hn−1(t0)e
−cn−1

∫ t
t0

μ2(s)ds

+ hn(t0)

∫ t

t0

[
e−cn−1

∫ t
τ μ2(s)ds

× e−cn
∫ τ
t0

μ2(s)ds
]
dτ

≥ hn−1(t0)e
−cn−1

∫ t
t0

μ2(s)ds > 0. (52)

By using (51) and (52) and by proceeding by backward strong
induction, it follows that

h1(t) ≥ h1(t0)e
−c1

∫ t
t0

μ2(s)ds (53)

which implies

h1(t) > 0 (54)

for all t ∈ [t0, t0 + T ).
We now pursue T -uniform boundedness of the the control

law (32). We partition the time horizon [0, T ) into intervals for
which the system is either deemed safe or unsafe according to
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the safety filter by defining

tk :=

⎧⎨⎩
min{tk−1 < t ≤ T : vnom(t) = voverride(z, t)}

if it exists
T, otherwise

(55)

for k ∈ N with t0 = 0, where

[0, T ) =
⋃

k∈N∪{0}
tk+1≤T

[tk, tk+1). (56)

We have constructed this partition such that the control law (32)
remains continuous at tk, precluding Zeno behavior of the
closed-loop system. Since the system is initially safe, t1 �= T
represents the first time that safety is enforced by (32). For
t ∈ [t2k, t2k+1), k ∈ N ∪ {0} and t2k+1 ≤ T , we define barrier
functions

h2k
1 (z1) := h(z1(t)) (57)

h2k
i (zi, t) := c2k

i μ2(t− t2k, T − t2k)h
2k
i−1(zi−1, t)

+
d

dt
h2k
i−1(zi−1, t), i = 2, . . . , n (58)

with c2k
i to be specified later. It follows from (32) and (29) that

during these intervals, the barrier functions satisfy

d

dt
h2k
i = −c2k

i μ2(t− t2k, T − t2k)h
2k
i + h2k

i+1 (59)

d

dt
h2k
n > −c2k

n μ2(t− t2k, T − t2k)h
2k
n (60)

for i = 1, . . . , n− 1. Similarly, for t ∈ [t2k−1, t2k), k ∈ N, and
t2k ≤ T , we define the barrier functions

h2k−1
1 (z1) := h(z1(t)) (61)

h2k−1
i (zi, t) := c2k−1

i μ2(t− t2k−1, T − t2k−1)h
2k−1
i−1 (zi−1, t)

+
d

dt
h2k−1
i−1 (zi−1, t), i = 2, . . . , n. (62)

As before, it follows from (32), (29), and (62) that during these
intervals, the barrier functions satisfy

d

dt
h2k−1
i = −c2k−1

i μ2(t− t2k−1, T − t2k−1)h
2k−1
i + h2k−1

i+1

(63)

d

dt
h2k−1
n = −c2k−1

n μ2(t− t2k−1, T − t2k−1)h
2k−1
n (64)

for i = 1, . . . , n− 1.
We select c0i = ci according to (38) and (39), and we select

cki = ck−1
i μ2(tk − tk−1, T − tk−1), k ∈ N. (65)

It follows by definition that h2k
1 (t2k−1) = h2k−1

1 (t2k−1) for
k ∈ N. Furthermore, by applying the initial gain selection (65)
to (61) and (62) and comparing them to (57) and (58)
at t = t2k−1, we deduce that h2k

i (t2k−1) = h2k−1
i (t2k−1) for

i = 2, . . . , n. The same treatment leads to the equalities
h2k
i (t2k) = h2k−1

i (t2k) for i = 1, . . . , n. Hence, the initial gain
selection (65) for each time partition in (56) ensures that the
system dynamics remain continuous at every time. In fact, it
simply tracks the growth of the “blow-up” function μ2 over the
time intervals.

Furthermore, we can leverage Lemma 2 and the initial gain
selection (65) to show that∏

k∈N

cki μ2(t− tk, T − tk) = μ2(t, T ). (66)

In other words, the barrier function design over the partitioned
set (56) is consistent with the design (20)–(39).

For t ∈ [t2k, t2k+1), k ∈ N ∪ {0}, and t2k+1 ≤ T , the sys-
tem is safe and the nominal control vnom(t)—which we assume
to be uniformly bounded (continuous over a compact time
interval)—is being applied. For t ∈ [t2k−1, t2k), k ∈ N, and
t2k ≤ T , we must estimate the size of the time-varying input
voverride(t) to verify that it is bounded.

To this end, we first study the stability of (63) and (64). We
can solve (64) explicitly to obtain

h2k−1
n (zn, t) = e−c2k−1

n (T−t2k−1)(μ1(t−t2k−1,T−t2k−1)−1)

× h2k−1
n (zn(t2k−1), t2k−1). (67)

Whereas for i = 1, . . . , n− 1, we have the relationship

h2k−1
i (zi, t) = e−c2k−1

i (T−t2k−1)(μ1(t−t2k−1,T−t2k−1)−1)

× h2k−1
i (zi(t2k−1), t2k−1)

+

∫ t

t2k−1

[
e−c2k−1

i

∫ t
τ μ2(z−t2k−1,T−t2k−1)dz

× h2k−1
i+1 (zi+1(τ), τ)dτ

]
. (68)

We first study the limiting behavior of these functions when
t2k = T . We apply Lemma 3 to (67) to establish that successive
derivatives of (67) will converge to zero by the terminal time

lim
t→T−

drh2k−1
n (zn, t)

dtr

= lim
t→T−

P2r (μ1(t, T )) ξn,2k−1(t− t2k−1, T − t2k−1) = 0

(69)

for r ∈ N ∪ {0}. For i = 1, . . . , n− 1, we use (68) to compute
d

dt
h2k−1
i (zi, t) = h2k−1

i+1 (zi+1, t)

+ h2k−1
i (zi(t2k−1), t2k−1)

d

dt
ξi,2k−1(t− t2k−1, T − t2k−1).

(70)

Moreover, since our design (38) together with the analy-
sis (52) and (53) ensure that hi(zi(t2k−1), t2k−1) > 0 for i =
1, . . . , n, it follows by proceeding backward from (67) with (68)
that

h2k−1
i (zn, t) ≤ ξi,2k−1(t− t2k−1, T − t2k−1)

× h2k−1
i (zi(t2k−1), t2k−1)

+ min
c2k−1
i ,...,c2k−1

n

{
ξ2k−1
i (t− t2k−1, T − t2k−1)

}
×

n∑
j=i+1

(T − t2k−1)
j

j!
h2k−1
j (zj(t2k−1), t2k−1).

(71)

By applying Lemma 3 to the second right-hand side term
within (70), and by backward strong induction on (69) and (70),
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we get for r ∈ N ∪ {0} that

lim
t→T−

drh2k−1
i (zi, t)

dtr

= lim
t→T−

P2r (μ1(t, T )) max
i≤j≤n

{ξj,2k−1(t− t2k−1, T − t2k−1)}

= 0, i = 1, . . . , n− 1 (72)

where maxj{ξj} is well defined for all t ∈ [t2k−1, T ) since the
ordering of {ξi,2k−1}i is retained over the entire time interval.
Hence, all of the derivatives of h2k−1

i converge to zero at the
terminal time with the rates given in (69) and (72).

Moreover, it is clear from the T -uniformly dominating behav-
ior of the negative exponential in (67) and (68) that∣∣h2k−1

i (zi, t)
∣∣ < +∞ ∀ t ∈ [t2k−1, t2k), i = 1, . . . , n.

(73)

Their time derivatives are alsoT -uniformly bounded by the same
arguments. Hence, we have shown that when the nominal control
input is overridden by the safety filter to enforce safety during t ∈
[t2k−1, t2k), k ∈ N and t2k ≤ T , the time-varying backstepping
design ensures that the barrier functions are bounded, and when
t2k = T , they converge very smoothly to zero by the terminal
time: indeed, all of their derivatives also converge to zero by the
terminal time.

We can now pursue T -uniform boundedness of the overriding

controller, voverride in (30). Since |b	vnomb|
‖b‖2 ≤ ‖vnom‖ by Cauchy–

Schwarz, voverride is bounded provided that vnom and a in (25) are
bounded. The boundedness of vnom follows from the assumption
that it is T -uniformly continuous. To establish boundedness of
a, we first establish that the components of the target states zi,
i = 2, . . . , n parallel to the vector b are driven to zero by the
terminal time.

Lemma 4: For

zi,‖(t) :=
〈zi(t), b〉
‖b‖2 b (74)

denoting the parallel component of the target system state with
respect to the vector b, we have

lim
t→T−

zi,‖(t) = lim
t→T−

P (μ1(t, T )) ξk,2k−1(t) = 0 (75)

for i = 2, . . . , n and for all t ∈ [t2k−1, T ).
Proof: We proceed by induction. Note that for i = 2, differ-

entiating (19) yields

d

dt
h1(z1) = b	z2 = b	z2,‖ (76)

and an application of (72) yields (75). We assume the following
form for the ith derivative of h1, for i ∈ N≥1 which we later
validate inductively

di

dti
h1(z1)

= b	zi+1,‖ +
i−2∑
j=0

j∑
k=0

z	i−j,‖
d2+kh1(z1)

dz2+k
1

Pk(z2+j−k) (77)

where for l ≥ 2, zl = z2, . . . , zl. Differentiating once more
yields

di+1

dti+1
h1(z1) = b	zi+2,‖ + z	i+1,‖

d2h1(z1)

dz21
z2

+
i−2∑
j=0

j∑
k=0

z	(i+1)−j,‖
d2+kh1(z1)

dz2+k
1

Pk(z2+j−k)

+

i−2∑
j=0

j+1∑
k=0

z	i−j,‖
d2+kh1(z1)

dz2+k
1

P̃k(z2+j−k+1)

(78)

where P̃k accounts for changes in the polynomials
terms/coefficients that arise from the differentiation. Reindexing
the terminal sum and absorbing the second term within (78)
yields

di+1

dti+1
h1(z1)

= b	zi+2,‖ +
i−1∑
j=0

j∑
k=0

z	(i+1)−j,‖
d2+kh1(z1)

dz2+k
1

Pk(z2+j−k)

(79)

which validates (77). The convergence (75) follows from induc-
tively applying (72) to the left-hand side and summand terms
in (77). �

Next, we study the time-derivatives of the barrier functions.
Lemma 5: For i = 2, . . . , n and t ∈ [t2k−1, T ), we have that

lim
t→T−

∂hi(zi, t)

∂t
= lim

t→T−
P (μ1(t, T )) ξi,2k−1(t) = 0. (80)

Proof: For i = 2, note that

∂h2(z2, t)

∂t
=

∂

∂t

(
bT z2 + c2μ2(t, T )h1(z1)

)
(81)

=
2c2
T

μ3(t, T )h1(z1) (82)

an application of (72) yields (80). Assume that (80) holds true
for i = j < n; then

∂hj+1(zj+1, t)

∂t
=

∂

∂t

(
d

dt
hj(zj , t) + cjμ2(t, T )hj(zj , t)

)
(83)

=
d

dt

(
∂hj(zj , t)

∂t

)
+

2cj
T

μ3(t, T )hj(zj , t)

+ cjμ2(t, T )
∂hj(zj , t)

∂t
(84)

where commutativity follows from the structure of the back-
stepping transformation (20). An application of (72) and the
induction hypothesis yields the result. �

We can now study the sum within (25).
Lemma 6: For i = 1, . . . , n− 1 and t ∈ [t2k−1, T ), we have

that

lim
t→T−

i∑
j=1

∂hi(zi(t), t)

∂zj(t)
zj+1(t)

= lim
t→T−

P (μ1(t, T )) ξi,2k−1(t) = 0. (85)

Proof: We proceed by induction. For i = 1, the proof follows
from (76). Assume (85) holds for i = l − 1. Evaluating (20) at
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i = l yields
l−1∑
j=1

∂hl−1

∂zj
zj+1 = hl(zl, t)−

∂hl−1

∂t
− cl−1μ2hl−1. (86)

Applying (69) and (72), and Lemma 5 to the right-hand side of
the above leads to

lim
t→T−

d

dt

⎛⎝ l−1∑
j=1

∂hl−1

∂zj
zj+1

⎞⎠ = lim
t→T−

P (μ1(t, T )) ξl−1,2k−1(t)

= 0. (87)

Now, we consider the sum on the left-hand side of (85) for i = l

l∑
j=1

∂hl

∂zj
zj+1 = b	zl+1,‖ +

l−1∑
j=1

∂hl

∂zj
zj+1 (88)

and we use our backstepping transformation to rewrite
l−1∑
j=1

∂hl

∂zj
zj+1 =

l−1∑
j=1

∂

∂zj

(
d

dt
hl−1 + cl−1μ2hl−1

)
zj+1

=

l−1∑
j=1

(
d

dt

(
∂hl−1

∂zj

)
+ cl−1μ2

∂hl−1

∂zj

)
zj+1

+

l−1∑
j=2

∂hl−1

∂zj−1
zj+1

=

l−2∑
j=1

(
d

dt

(
∂hl−1

∂zj

)
zj+1 +

∂hl−1

∂zj
zj+2

)

+
d

dt

(
∂hl−1

∂zl−1

)
zl + cl−1μ2

l−1∑
j=1

∂hl−1

∂zj
zj+1

=
d

dt

⎛⎝ l−1∑
j=1

∂hl−1

∂zj
zj+1

⎞⎠
+ cl−1μ2

l−1∑
j=1

∂hl−1

∂zj
zj+1. (89)

The ultimate term in (89) is convergent due to the induction
hypothesis, and the penultimate term is convergent due to (87).
Finally, the term corresponding to j = l [i.e., the first term on
the right-hand side of (88)] is itself convergent by (27) and by
Lemma 4. �

It is clear from (69), Lemma 5, and the proof of Lemma 6
[in particular, (89) evaluated at l = n, which gives a] that
the overriding controller (30), which is generated by (25), is
convergent for t ∈ [t2k−1, T ), since

lim
t→T−

a(t) = 0. (90)

Moreover, in the case that the overriding controller presides
over (29) for t ∈ [t2k−1, T ), k ∈ N, it converges to the following
value at the terminal time:

lim
t→T−

v(t) =

(
I − bb	

‖b‖2
)
vnom(T ). (91)

The result (91) agrees with Lemma 4, since (I −
bb	

‖b‖2 )vnom(T ) = vnom,⊥(T ), since the parallel components
of the feedback are driven to zero by this time. �

Remark 2: We reiterate that while the treatment in this sub-
section was applied to the transformed system (18) in vector
chain-of-integrator form, the designed PTSf controller achieves
PTSf for the original vector strict-feedback system (1) via the
input transformation (11) which retains the controller bounded-
ness.

B. Solution Existence After Time T

When employing feedback gains that may grow unbounded,
which is a fundamental feature of our PTSf design, the im-
plications of such a design on closed-loop well posedness
become significant. The prescribed-time attractivity that we
achieve in (72) is a direct result of employing the time-varying
gains in (25) that grow unbounded as t → T . Nevertheless,
by using (72) and Lemma 6 we have established that the
product of these time-varying gains with the state feedback
in (25) generates a continuous, T -uniformly bounded con-
trol law (29). In addition, we have shown in (75) that if
voverride is the input signal to (18) in the interval [t̄, T ), 0 ≤
t̄ < T , the target system states zi,‖(t), i = 2, . . . , n, converge
to zero as t → T . Moreover, it follows from (72) that the
first target system state z1(t) converges to a unique constant
vector z∗1 satisfying h1(z

∗
1) = 0. Unique, because the system

is driven by the solution to the QP problem (24) which is
unique.

While the goal of PTSf is finite-time in nature, our algorithm
may be used in applications where the time horizon extends past
the terminal time. For scenarios when vnom is the input signal
presiding over (29) over the time interval t ∈ [T − ε,∞) for
ε > 0, solution existence over this infinite time horizon reduces
to vnom being piecewise-continuous in t and Lipschitz in z [the
diverging gains (25) are avoided]. For all other scenarios when
voverride is the input signal to (18) over the time interval T T

T−ε :=
[T − ε, T ), solution existence and uniqueness is only guaranteed
on T T

0 .
We present arguments to extend this solution from T T

0 to an
infinite time horizon. Smooth continuations of solutions can be
performed using smooth partitions of unity via mollifiers [49];
particular to our time-varying treatment is that smooth solution
extension is native to the solutions of the closed-loop system,
since their convergence as t → T resembles those used for
mollification of indicator functions.

Indeed, the function ξj,k(t, T ) in (75) is a smooth cutoff
function with the convergence property (43). Extending this
solution to the closed interval [0, T ] is then straightforward:
using (43), we can invoke the Borel’s theorem [[50], Thm. 1.2.6]
to obtain existence of smooth functions (via power series) zT (t)
in a neighborhood of t = T which agree with (75) and (72)
(evaluated at i = 1, yielding the unique finite limits for z1).
Since the target system (18) is a chain of integrators, its matrix
exponential (which is generated by a nilpotent matrix) is readily
computed. Using this matrix exponential, if zi(T + ε) = 0 for
i = 2, . . . , n, then any solution z̄∞(t) to (18) on the interval
[T + ε,∞) is only affected by the input v(t), for any ε > 0.
Taking ε → 0, the solution z̄∞(t) is compatible with the power
series solution zT (t) at time t = T , or z̄∞(T ) = zT (t). Hence,
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the solution

z̄(t) =

{
z(t), t ∈ T T

0

z̄∞(t), t ∈ T ∞
T

(92)

is the extension of z(t) to the infinite time horizon with input
v(t) = (I − bb	

‖b‖2 )vnom(t) according to (91).
However, as the notion of safety expires at t = T , we wish

to cede the PTSf overriding authority to vnom after this time.
The target system (18) with v(t) in (32) has a unique solution
z∞(t) in T ∞

T+ε provided that vnom is sufficiently regular. More-
over, the smooth cutoff function we employ in (34) gradually
and smoothly applies the nominal input to the system such
that limε→0+ v(T + ε) = (I − bb	

‖b‖2 )vnom and limε→0− v(T +

T̄ + ε) = vnom. As a result, we have that limε→0+ z∞(T + ε) =
z̄(T ), and that the nominal control input is implemented after
an additional T̄ units of time. Thus, it follows by uniqueness
of both solutions that we can smoothly piece together a unique
solution from z̄(t)

∣∣
[0,T ]

and z∞(t)
∣∣
(T,∞]

over the infinite time
horizon.

C. PTSf for Initially Unsafe Systems

We consider the dual problem of rescuing an initially unsafe
system to safety in no later than an a-priori prescribed time T .
In particular, suppose for the system (18) with output y(t) =
h(z1(t)), the initial output satisfies y(t0) < −ε < 0; we desire
a controller that achieves

y(t0 + T ) ≥ 0. (93)

To proceed, we introduce the following assumption on the output
map h : Rm → R, which is a stronger version of Assumption 2

Assumption 3: The function h : Rm → R is n times differ-
entiable and satisfies

∂h

∂x1
�= 0 ∀x1 ∈ Rm. (94)

Corollary 7: If Assumption 3 holds, and if the system (18)
is initially unsafe, that is, if y(t0) < −ε < 0, then the control
law (32), (19)–(34) ensures that y(t0 + T ) ≥ 0 for the initial
control gains selected as in (38) and (39). Moreover, the control
law (32) is uniformly bounded provided that vnom is continuous
in the interval [t0, t0 + T ].

Proof: The proof follows by noticing that the barrier function
definitions (20), choice of initial gains (38)–(39), and control
law (32) lead to the same target system (36)–(37), but with
initial conditionh1(t0) < 0,hi(t0) > 0, for i = 2, . . . , n. Using
a similar argument, as in Theorem 1, we arrive at the same lower
bound on h1(t) in (53) which leads to

y(t0 + T ) = h1(t0 + T ) ≥ 0. (95)

The introduction of Assumption 3 ensures that the QP prob-
lem (24) remains feasible and that the controller boundedness
argument in Theorem 1 applies. �

V. EXAMPLES

We present three examples to demonstrate some fundamental
properties and advantages of our PTSf design. To center attention
on these properties of PTSf, we consider systems that are simple
and theoretically well understood. For a more practical applica-
tion of PTSf, see [51] which uses results from the conference

version of this article for designing detailed experiments on a 7-
degree of freedom (DOF) robot manipulator.

A. Double-Integrator Design Demonstration

Consider the double integrator

ẋ1(t) = x2(t) (96)

ẋ2(t) = u(t) (97)

y(t) = −x1(t), t ≥ t0. (98)

This system can be considered as an idealized model of the lon-
gitudinal dynamics of a vehicle, where the states x1 and x2 rep-
resent the position and velocity of the vehicle, respectively, and
the input u represents the longitudinal acceleration/deceleration
command. The safety objective is to enforce that the position
x1 remains negative for a prescribed time duration T during
which the system is driven by a nominal control unom that can be
overridden as needed to enforce safety. One possible application
of this is the problem of ensuring that an ego vehicle does not
violate a red traffic light that is on for a fixed duration T , irre-
spective of driver input. We begin the design by performing the
time-varying backstepping transformation defined as follows:

h1(x1) := −x1

h2(x2, t) := −x2 + c1μ2h1(x1) (99)

where c1 is a design parameter to be determined. The positivity
of h1(x1(t0)) follows from requiring that the system is initially
safe, i.e., x1(t0) < 0. For h2(x2(t0), t0), we achieve positiv-
ity by choosing c1 > max{0,−x2(t0)

x1(t0)
}, where we have used

μ2(t0 − t0, T ) = 1 in (99). Under the transformation (99) and
the choice of control

uoverride = c2μ2h2 +
d

dt
(c1μ2h1)

= −(c1 + c2)μ2x2 − c1

(
c2μ2 +

2μ1

T

)
μ2x1 (100)

where c2 > 0, the h-dynamics satisfy

d

dt
h1 = −c1μ2h1 + h2

d

dt
h2 = −c2μ2h2 (101)

which we have shown converges to the origin in T time units for
positive constants c1 and c2 chosen to satisfy the aforementioned
conditions. Thus, to enforce that the nominal control input unom
does not make the state x1 positive before time t0 + T , we apply
the safety filter

u =

{
usafe, if t0 ≤ t < t0 + T

g(t, unom, 0, h1(t0 + T )), if t ≥ t0 + T
(102)

where

usafe = min {unom, uoverride} (103)

and g is, as defined in (34). Strictly speaking, the safety filter
min{unom, uoverride} applied during times t0 ≤ t < t0 + T is the
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solution of the QP problem

usafe = arg min
w∈R

|w − unom|2

s.t. w ≤ c2μ2h2 +
d

dt
(c1μ2h1) (104)

where the inequality in (104) is equivalent to d
dth2 + c2μ2h2 ≥

0 under input w.
1) PTSf Versus ESf: The Peaking Phenomenon: Suppose

that the nominal control inputunom is at risk of making the system
unsafe, and we wish to design a time-invariant safety filter that
overrides the nominal control and takes the system to the origin.
This problem was studied in [21, Sec. 3.B] for input–output
linearized systems via pole-placement (which inherently relies
on the backstepping method—see [21, Rk. 5]), which achieves
exponential convergence to the origin with arbitrary decay rate.
We define the barrier functions

h1(x1) := −x1

h2(x2) := −x2 + ρh1, ρ > 0 (105)

with the goal of keeping h1 ≥ 0 uniformly. Consider the follow-
ing time-invariant safety filter designed as in [21]

u = min
{
unom,−

(
2ρ2 3ρ

)
x
}
, for t0 ≤ t < ∞ (106)

with ρ ≥ max{0,−x2(t0)
x1(t0)

}. Suppose the safety filter overrides
the nominal control input at t = t0 + t̄ < ∞ and continues to
enforce safety thereafter (i.e., u(t) = −(2ρ2 3ρ)x(t) for all
t ≥ t0 + t̄, placing the closed-loop poles for the x-system at
{−ρ,−2ρ}). Then the closed-loop system (96)–(98) is given by

x(t) = e−ρ(t−t0−t̄)

×
(

2− e−ρ(t−t0) 1
ρ − e−ρ(t−t0−t̄)

ρ

2ρ
(
e−ρ(t−t0−t̄) − 1

)
2e−ρ(t−t0−t̄) − 1

)
x(t0 + t̄).

(107)

If we wish to achieve large exponential decay when the system is
unsafe, we can select ρ � max{0,−x2(t0)

x1(t0)
} as large as desired.

However, for small t− t0 − t̄, the righthand side of (107) can
be very large depending on the size of ρ (in particular, x2 grows
with ρ). This illustrates the “peaking” phenomenon, which was
studied for ODE control systems in [45], [46], and [47]. The
celebrated work of Sussmann and Kokotovic [46] has exposed
the possibility of disastrous outcomes in input–output feedback
linearization, where rapid regulation of the output can have
catastrophic consequences on the zero dynamics. Moreover, due
to the structure of the feedback (106), even for systems with a
full relative degree (systems without zero dynamics, as above),
the control input becomes extremely large near time t0 + t̄.

In the context of safety, if (x1, x2) represent position and
velocity, seeking time-invariant safety filters with large expo-
nential decay (ρ � max{0,−x2(t0)

x1(t0)
}) results in a very large and

rapid transient response in the velocity, which is undesirable as
it causes a large “jerk” to the system.

For the time-varying safety filter (106), the control gains are
chosen to initially start quite small and depending on the initial
conditions [see (100)], and only grow very large simultaneously
as the states get very small and as time approaches the prescribed
terminal time. This eliminates the possibility of peaking.

2) Numerical Simulation: We now compare these results
graphically to demonstrate the advantages of time-varying back-
stepping. We perform numerical simulations for the double-
integrator system under the nominal controller

unom = −k1ξ1 − k2ξ2

ξ1 = x1 + a sin(ωt) + b

ξ2 = x2 + aω cos(ωt) (108)

with k1 = k2 = 4, a = 1, b = 0.8, and ω = 2π/T , where T =
4 is the prescribed time. The initial condition is chosen as
x(0) = (−4, 2)	. For safety, we use the time-varying PTSf
safety filter (102) and (100) with choice of gains c2 = c1 =

max{0,−x2(0)
x1(0)

}+ 0.1 = 0.6 and use ramp function (34) with

m = 2 and T̄ = 0.5 for controller continuity at t0 + T [see
Section III, (34) for details]. For comparison, we use the time-
invariant ESf safety filter (106) with ρ = 0.6 and ρ = 3.2. The
choice ρ = 0.6 was made to allow a gain equivalent to the initial
gains c1μ2(0), c1μ2(0) of PTSf, and the choice ρ = 3.2 was
tuned to make ESf less conservative and to react at around the
same instant as PTSf.

For numerical stability near the origin, we clip the blow-up
function μ2 at a maximum value μ2,max = 1000, which still
allows the PTSf gains to grow to several orders of magnitudes
larger than ρ = 3.2. This gain clipping is done for all numerical
simulations in this article; and as a consequence, the systems
under study are only allowed to reach a small neighborhood
of the boundary of the safe set at the terminal time T . For a
maximum gain μ2,max = 1000 this neighborhood is sufficiently
small and qualitatively insignificant. For all ODEs considered
in this article, we use a simple first-order Euler method for
numerical simulations; with a small sampling time of 10−5 due
to the rapidly growing PTSf gains.

The system trajectories under PTSf and ESf are shown in
Fig. 2, where we observe the ESf filter with ρ = 0.6 being
overly restrictive, keeping the system further from its nominal
trajectory. With ρ increased to 3.2, the ESf filter becomes less
restrictive like PTSf but at the cost of a significantly higher jerk as
evident in Fig. 3. Lastly, as evident in both figures, the PTSf filter
eventually allows the system evolve freely after the prescribed
time T = 4 has elapsed.

B. Vector-Valued Double Integrator With Nonlinear
Constraint

To illustrate our design on a vector-valued chain of integrators,
we consider the following system:

ż1 = z2

ż2 = v (109)

where z1 = (z1,1, z1,2)
	, z2 = (z2,1, z2,2)

	 are vector-valued
states in R2, and v = (v1, v2)

	 is the vector-valued input. A
nominal controller is designed to stabilize the states (z1, z2)
to the origin, while the safety condition is to keep the state z1
outside of a circular unsafe set, that is,

h(z1) = (z1,1 − c1)
2 + (z1,2 − c2)

2 − r2 (110)

where (c1, c2) ∈ R2 and r ∈ R are the center and radius of the
unsafe-set, respectively. We apply the PTSf safety filter (32),
(34), and (29) with initial gains c2 = c1 = 1 and terminal time
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Fig. 2. System trajectories (left) and outputs (right) for double integrator under nominal controller (108) with initial condition (x1(0), x2(0)) =
(−4, 2) and prescribed terminal time T = 4 for safety. The PTSf safety filter uses (102) and (100) with c2 = c1 = 0.6 while the ESf safety filter uses
(106) with ρ = 0.6 and ρ = 3.2 – the latter value tuned to make ESf react at the same instant as PTSf.

Fig. 3. Left: Control signal. Right: Jerk during intervals when nominal command is overridden. When ESf is tuned (ρ = 3.2 case) to be less
restrictive like PTSf, the magnitude of the jerk increases significantly.

T = 3 with T̄ = 0.5, and compare with ESf filters designed
similarly, as in Section V-A1, with ρ = 1 (matching the initial
PTSf gains) and ρ = 3. The latter choice ρ = 3 was tuned so
that under ESf, the system reaches the boundary of the unsafe
set at about the same time as under the PTSf filter. In both cases
(i.e., ESf with ρ = 1 and ρ = 3), the safety filter is turned OFFat
the terminal time T = 3 and control authority returned to the
nominal stabilizing controller using the cutoff function (34).
The resulting system trajectories under the nominal controller,
ESf safety filters, and PTSf safety filter are shown in Fig. 4, and
in Fig. 5, we show the control effort exerted up until the terminal
time T = 3 when all safety filters cede control authority to the
nominal controller.

When the ESf filter (ρ = 1 case) is tuned to be as restric-
tive (in terms of control effort override) as PTSf at the initial
time, the system deviates further from its nominal behavior
due to the persistently low gain of the ESf filter which greatly
limits the rate of approach to the boundary of the unsafe set
over the time duration T . However, because PTSf uses gains
that start small and grow large, it initially behaves like the
slower (low-gain) ESf filter—permitting only a slow exponen-
tial approach rate to the barrier—but as time approaches the
terminal time T = 3, behaves like a fast (high-gain) ESf filter
and allows a fast exponential approach to the boundary of the
safe set. By design, the system is guaranteed to be able to
reach the boundary by time T under PTSf without the designer
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Fig. 4. System trajectories (left) and distance from origin (right) for the vector-valued double integrator (109) with initial condition
(z1,1(0), z1,2(0)) = (−13, 2), (z2,1(0), z2,2(0)) = (0, 0) under a nominal stabilizing controller (red), a PTSf filter with terminal time T = 3 (green),
and a ESf filers (cyan, blue).

Fig. 5. Control signal for the vector-valued double integrator (109) with
the PTSf safety filter with terminal time T = 3 applied.

needing to tune gains specifically for this purpose as is the case
with ESf.

C. Preservation of Nominal Prescribed-Time
Stabilization Performance

One advantage of PTSf safety filters over infinite-time ESf fil-
ters is the ability to enforce safety without destroying finite-time
performance of the underlying nominal system. In particular, for
systems where the nominal control objective is to be achieved
in finite time as is the case in PTS, the ephemeral nature of
PTSf makes it possible to enforce safety, and retain the finite
properties of the nominal controller. To illustrate this advantage,
we consider the following example. Consider the second order,
scalar, strict-feedback system

ẋ1(t) = x2
1(t) + x2(t)

ẋ2(t) = u(t)

y(t) = −x1(t), t ≥ t0. (111)

The safety-objective is to keep the system output y(t) positive
for all times t ∈ [0, T ), and the nominal control objective is to
stabilize the system to the origin in prescribed time Tnom. We
begin by transforming the system into double integrator form
using state transformation z1(t) = x1(t) and z2(t) = x2

1(t) +

x2(t) leading to

ż1(t) = z2(t)

ż2(t) = v(t) = u(t) + 2x1(x
2
1 + x2)

y(t) = −z1(t), t ≥ t0. (112)

For the nominal control, we use a PTS controller, as in [52], for
the transformed system. Specifically, we use

vnom(t) = −Kμ2(t)z(t)

K =
[
ω2 2ζω

]
(113)

with ω = 4 and ζ = 0.1. Starting from initial state (x1(0),
x2(0)) = (−1,−1) which corresponds to (z1(0), z2(0)) =
(−1, 0), we apply ESf safety filters with ρ = 1.2 and ρ = 10,
and the PTSf safety filter with initial gains c1 = c2 = 1 to the
z-system and transform the resulting safe input to the x-system
using

u(t) = v(t)− 2x1(x
2
1 + x2). (114)

The slower ESf filter (ρ = 1.2) is tuned to be initially as re-
strictive as the PTSf filter, overriding the nominal input by
roughly the same amount, while the faster ESf filter is chosen
so that the output arrives sufficiently close to the boundary of
the safe-region, thereby retaining the PTS property as much as
possible. The resulting plots are shown in Fig. 6. While the PTSf
safety filter initially limits the rate of approach to the y(t) = 0
boundary to enforce safety, it still preserves the PTS property of
the nominal PTS controller. For the faster ESf safety filter with
ρ = 10, the system gets sufficiently close to the boundary of the
safe set at the terminal time; however, choosing the appropriate
ESf gain ρ requires more effort from the designer, unlike in PTSf
where the designer only chooses the terminal time to match the
terminal time of the nominal PTS controller, and gains c1 and
c2 according to the explicit prescription in (38).

Next, we explore the case where the terminal time for safety
T is less than nominal prescribed stabilization time
Tnom. This translates to a scenario where safety is desired for

a time interval shorter than the prescribed stabilization time.
Keeping the same initial conditions and initial control gains
c1 and c2, we rerun the simulation with PTSf safety-filters with
terminal times T = 0.8, 0.6, and 0.4 time units, respectively.
The resulting system outputs and control signals are shown in
Fig. 7, where we see the finite-time stabilization property of
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Fig. 6. Output (left) and input (right) for strict-feedback system (111) with initial condition (x1(0), x2(0)) = (−1,−1) under nominal PTS controller
(113) with terminal time Tnom = 1 (red), a PTSf filter with terminal time T = 1 (green), an ESf filter with ρ = 1.2 (cyan), and an ESf filter with ρ = 10
(blue).

Fig. 7. Comparison of PTSf safety filters with terminal times T ≤ Tnom = 1 of the nominal PTS controller. Dashed lines corresponds to periods
when the nominal controller is not overridden; either because it is safe or because the safety interval T has elapsed.

the nominal controller being retained after the PTSf filters cede
control.

VI. CONCLUSION

In this article, we present a safety filter design for strict-
feedback systems that enforces state constraints for an a priori
prescribed time. Our design uses a time-varying backstepping
transformation with gains that grow as time approaches the
terminal time. Despite the use of gains that grow toward infinity,
we show that our safegaurding controller remains uniformly
bounded provided that the nominal controller is uniformly
bounded.

Absent from our treatment is the practical consideration of
actuator constraints, which has been studied in, e.g., [53] and

[54], where iterative methods may lead to the construction of
viable safe sets if these methods converge; the nonexistence of
viable safe sets given arbitrary actuator limitations is expected,
and has been extensively studied for stabilization problems,
e.g., [55] and [56].

Compelling future research directions include: studying
predictor-based safety filter designs to compensate for input de-
lays which are omnipresent in applications, developing output-
feedback safety filters within the ISSf framework [5] and char-
acterizing the relationship between estimation error and safety
violations, characterizing and compensating for the effect of per-
sistent disturbances appearing on the right-hand side of the dy-
namics, and developing a discretization algorithm that preserves
the properties of our PTSf filter. Lastly, QP-based safety filters
are only pointwise optimal and do not minimize a meaningful
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cost function over the duration of safety enforcement. However,
recent results on the design of inverse optimal (infinite-time)
safety filters [57], inverse optimal prescribed-time stabilizing
controllers [31], and CBF synthesis for approximate optimal
control problems [58] have made promising the prospect of
studying the design of inverse-optimal PTSf filters.
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[11] I. Abel, M. Janković, and M. Krstić, “Constrained control of input delayed
systems with partially compensated input delays,” in Proc. ASME Dyn.
Syst. Controls Conf., 2020, pp. V001T04A006–7:8.
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