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a b s t r a c t

We study the problem of source seeking without position measurements in three-dimensional
Euclidean space. The source-seeking agent is modeled by a second-order dynamical system with
nonholonomic velocity constraints. A constant thrust leads to a uniform forward motion, while
the agent’s orientation can be influenced through two torque inputs. Our control law extends a
recently introduced source seeking method for a torque-controlled unicycle. The proposed feedback
law involves perturbation signals with sufficiently large amplitudes and frequencies. The closed-loop
system can be written as an affine connection system, which approximates the behavior of an averaged
system. This averaged system is driven into the direction of symmetric products of vector fields from
the closed-loop system. Our feedback law is designed in such a way that the symmetric products
contain gradient information about the unknown signal function. Under suitable assumptions on the
signal function, we prove practical local uniform asymptotic stability for the closed-loop system.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of source seeking without position measure-
ents occurs when an autonomous agent aims to locate an
xtreme point of a scalar signal in an environment that denies
ccess to a global positioning system. For instance, in case of an
nderwater vehicle, position measurements and communications
ith the outside world are difficult to realize, especially in dark
onditions, and in surveillance/reconnaissance tasks where active
coustic sensing is not allowed. Also vehicles under ice or in caves
ay be unable to determine their current position. In such an
nvironment, locating the unknown source of a signal becomes a
hallenging problem. The signal could be given by the pressure
f acoustic waves or by the strength of an electromagnetic field.
t is assumed that the agent is equipped with a suitable sensor
o that it can measure the value of the signal at the current
unknown) position. Clearly, a suitable source seeking strategy
ust be adapted to the agent’s equations of motion and to how

he agent is actuated.
Many of the existing studies on source seeking propose al-

orithms for agents in the two-dimensional plane [1–3]. A fre-
uently considered agent model is that of a kinematic unicycle
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as, for example, in [4–7]. So far, only a few papers address the
problem of source seeking in three dimensions. Of particular
interest are methods for three-dimensional vehicle models with
nonholonomic velocity constraints and a uniform forward mo-
tion. This is motivated by potential applications to aerial and
underwater vehicles. To the best of our knowledge, all of the
existing studies on three-dimensional source seeking with under-
actuated vehicles consider velocity-controlled kinematic models.
(In the present paper, we propose a method for a second-order
dynamic agent model.) An example of a three-dimensional kine-
matic model is a vehicle yaw-like and pitch actuated (VYPa). An
mplementation of this model requires measurements of the pitch
ngle to realize the yaw-like velocity. Perturbation-based source
eeking methods for the kinematic VYPa model are proposed
n [8–10]. A hybrid controller for a similar kinematic model is
resented [11]. The method in [12] for the kinematic VYPa model
xtracts gradient information from computations of Poisson in-
egrals under the assumption that the sensed signal is given
y a harmonic function. A perturbation-based method for a roll
nd yaw velocity-actuated kinematic model with constant for-
ard velocity is proposed in [13]. Methods for three-dimensional
nderactuated kinematic models with oscillatory translational
elocity are presented in [14,15].
In the present paper, we propose a source seeking strategy

or a dynamic version of the above-mentioned kinematic VYPa
odel. The control inputs of the dynamic VYPa model are two
orques. Such a torque-actuated model is expected to provide a
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ore realistic description of a mechanical system than a velocity-
ctuated model. The velocity of a first-order kinematic system
an be changed instantaneously through the inputs to any pre-
cribed value. However, this is not possible for a second-order
ynamic system because of the system’s inertia. For this reason,
ontrolling the dynamic VYPa model is also more challenging
han controlling the kinematic VYPa model.

In our previous work [16], we have proposed a source seeking
ethod for a torque-controlled unicycle with uniform forward
elocity. The VYPa model reduces to the unicycle model if the
itch angle is equal to zero. It is therefore reasonable to expect
hat the approach in [16] might serve as a basis for a source
eeking method for the dynamic VYPa model. Indeed, we will
ee that the control law from [16] is also useful for the yaw-like
orque input of the dynamic VYPa model. This yaw-like torque
tabilizes the vehicle about the source within a certain plane. The
dditional input for the pitch moment stabilizes the vehicle about
he source vertically to the plane. These statements will be proved
y means of a suitable averaging and stability analysis in the main
art of the paper.
To construct a source seeking method for the dynamic VYPA

odel, we follow a recently established approach to design ex-
remum seeking control for mechanical systems. This approach
s based on the averaging results in [17] for mechanical systems
nder vibrational control. It is known from [17] that certain large-
mplitude high-frequency perturbation signals provide access to
o-called symmetric products of vector fields, which originate
from iterated Lie brackets of vector fields on the tangent bun-
dle of the configuration manifolds. A suitably designed feedback
law can lead to the effect that the symmetric products pro-
vide information about the gradient of the unknown objective
function. Several extremum seeking problems have been already
solved by control laws based on symmetric product approxima-
tions. This includes source seeking control for unicycles [16,18,
19] and two-dimensional water vessels [20], formation shape
control for double-integrator point masses [21], and extremum
seeking control for certain classes of fully-actuated mechanical
systems without velocity constraints [22,23]. However, none of
the above methods can be successfully applied to the nonholo-
nomic three-dimensional vehicle that we study in this paper.
The complex dynamics of the vehicle demand a different con-
trol strategy. In the present paper, we show how such a con-
trol law can be designed using approximations of symmetric
product. Our control law involves only one oscillatory pertur-
bation signal for each input channel, which indicates the con-
ceptual difference from extremum seeking methods based on
approximations of Lie brackets of pairs of vector fields as in
[24–26] with two phase-shifted oscillatory signals for each input
channel. In contrast to extremum seeking control for open-loop
stable systems as in [27–29] (which is justified in certain appli-
cations, see e.g. [30–32]), our method employs sufficiently strong
perturbation signals to overpower potentially unstable dynamics.

The proposed source seeking method employs oscillatory
torque inputs with sufficiently large amplitudes and frequencies.
Such inputs are certainly difficult (and sometimes even impossi-
ble) to realize in practical implementations. In the present paper,
we do not address the difficult problem of implementations in
real-world vehicles, which is, of course, relevant to practitioners.
Instead, we focus on the underlying theoretical principles that al-
low us to design the first source seeking method for the dynamic
VYPa model.

The paper is structured as follows. The subsequent Section 2
introduces a suitable notion of practical stability for the closed-
loop system. A detailed description of the dynamic VYPa model
can be found in Section 3. The source seeking problem and

its solution are presented in Section 4. An averaging analysis c

2

in Section 5 will reveal that the proposed control leads to an
approximations of symmetric products as indicated earlier. The
symmetric products involve the gradient of the signal function
and stabilize the system, which is proved in Section 6. Finally,
in Section 7, we provide numerical simulations to illustrate our
stability result.

2. Practical stability

Let | · | denote the Euclidean norm on Rn and let U be an open
subset of Rn. For every positive real number ω, let f ω be a time-
dependent vector field on U . We assume that, for every ω > 0,
very t0 ∈ R, and every x0 ∈ U , the ordinary differential equation

˙ = f ω(t, x) (1)

ith initial condition x(t0) = x0 has a unique maximal solution,
hich may have a finite escape time. Our control law will result

n a closed-loop system of the form (1), where ω is a parameter
o scale the amplitudes and frequencies of the employed pertur-
ation signals. To reveal the behavior of the closed-loop system
or large values of ω, we will apply a suitable change of variables.
ore generally, for every ω > 0 and every t ∈ R, we suppose

that φωt : U → U is a bijective map and we consider the change
of variables

x̃ = φωt (x). (2)

We will use the following notion of stability to describe the
behavior of the closed-loop system.

Definition 1 ([33]). A point x∗ of U is said to be practically locally
uniformly asymptotically stable for (1) in the variables (2) if the
following conditions are both satisfied.

1. Practical uniform stability: For every ε > 0, there exist
δ, ω0 > 0 such that, for every ω ≥ ω0, every t0 ∈ R, and
every x̃0 ∈ U with |x̃0 − x∗| ≤ δ, the maximal solution
x of (1) with initial condition x(t0) = (φωt )

−1(x̃0) satisfies
|φωt (x(t)) − x∗| ≤ ε for every t ≥ t0.

2. Practical local uniform attraction: There exists δ > 0 such
that, for every ε > 0, there exist τ , ω0 > 0 such that,
for every ω ≥ ω0, every t0 ∈ R, and every x̃0 ∈ U with
|x̃0 − x∗| ≤ δ, the maximal solution x of (1) with initial
condition x(t0) = (φωt )

−1(x̃0) satisfies |φωt (x(t)) − x∗| ≤ ε

for every t ≥ t0 + τ .

Remark 1. In Definition 1, the word ‘‘practically’’ emphasizes the
dependence on the parameter ω and the word ‘‘uniformly’’ means
uniformity with respect to the time parameter. If there exists a
vector field f on U such that f ω(t, x) = f (x) and if φωt (x) = x
for every ω > 0, every t ∈ R, and every x ∈ U , then we omit
the words ‘‘practically’’ and ‘‘uniformly’’. In this case, Definition 1
reduces to the usual notion of local asymptotic stability.

Let f̄ be a vector field on U . We assume that, for every x̄0 ∈ U ,
the ordinary differential equation

˙̄x = f̄ (x̄) (3)

with initial condition x̄(0) = x̄0 has a unique maximal solution.
e will see in Section 5 that the oscillatory closed-loop system
f the form (1) approximates the behavior of an averaged system
f the form (3) in the following sense.

efinition 2 ([33]). We say that solutions of (1) in the variables
2) approximate the solutions of (3) if, for all ε,∆ > 0 and every

ompact subset K of U , there exists ω0 > 0, such that, for every
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0 ∈ R and every x̄0 ∈ U , the following implication holds: If the
aximal solution x̄ of (3) with initial condition x̄(t0) = x̄0 satisfies

x̄(t) ∈ K for every t ∈ [t0, t0 + ∆], then, for every ω ≥ ω0, the
maximal solution x of (1) with initial condition x(t0) = (φωt )

−1(x̄0)
satisfies |φωt (x(t)) − x̄(t)| ≤ ε for every t ∈ [t0, t0 +∆].

If the solutions of (1) in the variables (2) approximate the
solutions of (3), then certain stability properties of (3) carry over
to (1). This statement is made precise by the following result.

Proposition 1 ([33]). Assume that the solutions of (1) in the vari-
ables (2) approximate the solutions of (3). Then, for every point x∗

of U, the following implication holds: If x∗ is locally asymptotically
stable for (3), then x∗ is practically locally uniformly asymptotically
stable for (1) in the variables (2).

3. Description of the VYPa model

In this section, we first recall the kinematic model of a vehicle
yaw-like and pitch actuated (VYPa) from [8] (and also [9,10,12,
14]), and then we extend it to a dynamic model. The model is
sketched in Fig. 1. Let e1, e2, e3 be the standard unit vectors of
R3 and let ⟨·, ·⟩ denote the Euclidean inner product on R3. The
vectors e1, e2, e3 define the axes of a fixed reference frame. The
current orientation of the vehicle is described by a rotation matrix
R ∈ SO(3) and the orthonormal vectors Re1, Re2, Re3 define the
axes of the body frame. It is assumed that the orientation of the
vehicle is restricted to the subset

O :=
{
R ∈ SO(3)

⏐⏐ ⟨e3, Re2⟩ = 0, ⟨e3, Re3⟩ > 0
}

(4)

of SO(3). Note that O is not a subgroup of SO(3) and that O is not
commutative (i.e., there exist R1, R2 ∈ O such that R1R2 ̸= R2R1).
The restriction of the orientation to elements of O excludes roll
motions about Re1. Let × denote the usual cross product on R3.
For every R ∈ O, we have

e3 × Re3 = sin(α(R)) (−Re2), (5)

where

α = α(R) := arcsin(⟨e3 × Re3,−Re2⟩) (6)

is the pitch angle between the e3-reference axis and the Re3-
body axis. Note that α(R) ∈ (−π/2, π/2) for every R ∈ O.
We frequently suppress the dependence of α on R ∈ O in the
notation. It is assumed that the vehicle can measure α at any time.
It is further assumed that the orientation of the vehicle can be
controlled through two types of on-board actuators. The first type
of actuators generates a pitch moment about −Re2. The second
type of actuators is assumed to generate a yaw-like moment
about e3. Because of the measurements of α for every R ∈ O, such
a yaw-like moment can be realized by movable actuators that
generate a torque about the axis that originates from a rotation
of Re3 about Re2 by the angle α. Suitably aligned actuators for
this purpose are shown in Fig. 1. Alternatively, for each R ∈ O,
a torque about the e3-reference axis can also be realized by the
α-dependent superposition

sin(α) Re1 + cos(α) Re3 = e3 (7)

of torques about the Re1- and Re3-body axes. Infinitesimal rota-
tions of the vehicle about −Re2 and e3 are compatible with the
set O of admissible orientations. Using the rank theorem, one can
prove in fact the following statement.

Remark 2. The set O is a two-dimensional embedded submani-
fold of SO(3) and, for every R ∈ O, the tangent space TRO to O at
R is given by

T O = span{−Rê , sin(α(R)) Rê + cos(α(R)) Rê }, (8)
R 2 1 3

3

Fig. 1. Illustration of the VYPa model. The vehicle has body-fixed actuators to
generate a pitch moment about −Re2 and movable actuators to generate a yaw-
ike moment about e3 . Another body-fixed actuator induces a forward motion
into the direction of Re1 .

where the vector space isomorphism ·̂ :R3
→ so(3) is defined by

Ω̂ :=

⎡⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤⎦ , (9)

and so(3) denotes the tangent space to SO(3) at the identity.

Because of Remark 2, well-defined smooth pitch and yaw-like
vector fields Xp and Xy on O are given by

Xp(R) := −Rê2, (10)

Xy(R) := sin(α(R)) Rê1 + cos(α(R)) Rê3 (11)

ith α(R) as in (6). The manifold O and the vector fields Xp,
y also appear in [8–10,12,14], but they are represented by a
arametrization as follows.

emark 3. Define Φ :R3
→ SO(3) by

Φ(φ, α, θ ) := exp(θ ê3) exp(−αê2) exp(φê1), (12)

where exp : so(3) → SO(3) is the matrix exponential function and
· :R3

→ so(3) is defined by (9). Then, we have Φ(0, α, θ ) ∈ O and

Xp(Φ(0, α, θ )) =
∂Φ

∂α
(0, α, θ ), (13)

Xy(Φ(0, α, θ )) =
∂Φ

∂θ
(0, α, θ ) (14)

for every α ∈ (−π/2, π/2) and every θ ∈ R. The second
rgument of Φ is the same as the pitch angle α in (6).

The configuration manifold Q of the VYPa model is the set
3

× O with the submanifold O of SO(3) as in (4). An element
p, R) ∈ Q represents the position p ∈ R3 of the vehicle center
nd the orientation R ∈ O of the vehicle. It is assumed that the
ranslational motion of the vehicle is restricted by nonholonomic
elocity constraints such that

˙ = v Re1, (15a)

here v ∈ R is the translational velocity component. The vehicle
is moving forward if v is positive. A uniform forward motion is
preferred. Fig. 1 shows a suitably placed actuator along the Re1-
body axis for this purpose. Since Xp(R) and Xy(R) span the tangent
pace to O at every R ∈ O, we can write the rotational velocity as

˙ p y
R = Ω Xp(R) +Ω Xy(R), (15b)
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hereΩp andΩy are the pitch velocity and the yaw-like velocity,
espectively. For the kinematic VYPa model in [8–10,12], the
ranslational velocity component v is a positive constant and the
elocities Ωp, Ωy serve as inputs. Here, we consider a dynamic
second-order) VYPa model in which v, Ωp, Ωy are given by the
ifferential equations

m v̇ = a − k v, (15c)

p Ω̇
p

= τ p − κpΩ
p, (15d)

Jy Ω̇y
= τ y − κyΩ

y, (15e)

here τ p, τ y are torque inputs and a, m, Jp, Jy, k, κp, κy are
unknown positive real constants. One may interpret m as the
body mass and Jp, Jy can be seen as moments of inertia. The terms
−k v, −κpΩp, and −κyΩ

y model the impact of linear damping;
for example, due to air resistance. In (15c), the constant a > 0
describes a constant forward force, which leads to convergence
of the translational velocity v to the forward velocity a/k. In
summary, the dynamic VYPa model is the nonholonomic second-
order system (15) with configuration manifold Q = R3

× O and
wo inputs τ p and τ y to control the pitch and yaw-like moment
bout −Re2 and e3, respectively.

emark 4. The nonholonomic velocity constraints for the trans-
ational motion in (15a) only allow changes of the position along
he direction of the alignment vector Re1. In reality, however, one
an expect that a vehicle (such as an aerial vehicle) will also have
lateral velocity along the direction of Re2 due to Coriolis effects
nd a vertical velocity along the direction of Re3 due to gravity.
he VYPa model does not take these (undesired) velocities into
ccount. Therefore, in some sense, one may say that the nonholo-
omic velocity constraints simplify the problem of source seeking
ince the constraints prevent undesired drifts into the lateral and
ertical direction. It is considerably more challenging to design
source seeking method for an underacted torque-controlled

ehicle without nonholonomic velocity constraints.

. Problem statement and control law

Next we formulate the control problem for the dynamic VYPa
odel (15) and propose a solution. As explained in the previous
ection, we assume that the vehicle can measure the pitch angle
in order to generate a yaw-like moment about the e3-axis. The

emaining state variables are not assumed to be measurable by
he vehicle. In particular, the vehicle cannot determine its current
osition with respect to a references frame. Also the velocity
omponents v, Ωp, and Ωy in (15c)–(15e) are unknown quan-
ities. The only additional information about the current system
tate is given by real-time measurements of a purely position-
ependent scalar signal. To this end, the vehicle is equipped with
suitable sensor so that it can measure the signal value at any

ime. We assume that the signal is given by a smooth real-valued
unction ψ on R3, which is subsequently referred to as the signal
unction. However, we do not assume that the signal function ψ is
nalytically known. The vehicle can only measure the value of ψ
t the current position of the sensor. Moreover, the vehicle cannot
tore data to compare different measurement results at different
ime instances.

We consider the signal function ψ as a cost (or objective)
unction. We are interested in a control law for the dynamic
YPa model (15) that asymptotically stabilizes the vehicles about
ositions where ψ attains a minimum value. A minimum point of
is called a source of the signal. Here, we propose a perturbation-

ased approach to seek a source. That is, we feed in suitable
scillatory perturbation signals and extract information about the
radient of ψ from the response of the measured value of ψ at
 a

4

he position of the sensor. Note that the inputs τ p and τ y in (15)
ave a direct impact on the vehicle’s orientation, but the value
f ψ only depends on the position. Therefore, it is reasonable to
ttach the sensor to the vehicle in such a way that changes in
he vehicle’s orientation lead to changes in the sensor’s position.
e follow the approach in [8] (and also [9,10,14]) and place the

ensor at the point p + ρ Re1, where ρ > 0 is the fixed (but
nknown) distance of the sensor to the position p ∈ R3 of the
ehicle center. Such a displaced sensor is also indicated in Fig. 1. A
easurement of ψ in the current configuration (p, R) ∈ Q results

n the real number

= ψ(p + ρ Re1). (16)

ne may view (16) as the output of the VYPa model (15).
Now we introduce the constituents of the proposed source

eeking method. Let T be a positive real number. Our control
aw employs perturbation signals, which are generated by mea-
urable, bounded, T -periodic functions up, uy

: R → R with
ero mean. To avoid undesired interferences between up, uy, we
emand that their zero-mean anti-derivatives Up,Uy

: R → R
atisfy the orthonormality condition

2
T

∫ T

0
U i(σ )U j(σ ) dσ =

{
1 if i = j,
0 if i ̸= j (17)

or all i, j ∈ {p, y}. For instance, if T = 2π , then we can define up

and uy by up(σ ) := cos(σ ) and uy(σ ) := 2 cos(2σ ), respectively.
o incorporate measurements of the output (16) in a suitable
ay into our feedback law, we introduce two design functions
, γh : R → R, where the second function, γh, depends on a
arameter h > 0. For the moment, we only demand that β and
h are smooth. Later, in Section 6, we will narrow the class of
uitable design functions by requiring additional properties of β
nd γh. Finally, let λ be a positive real constant. We propose the
eedback law
p

= −λ sinα + ω up(ωt)β(y − η), (18a)

τ y = ω uy(ωt) γh(h (y − η)) (18b)

or the dynamic VYPa model (15), where h and ω are (sufficiently
arge) positive real control parameters, α is the measured pitch
ngle in (6), y is the measured signal value in (16), and η is the
eal-valued state of the filter

˙ = h (y − η) (19)

ith filter input y and filter output y − η. We note that an im-
lementation of the proposed feedback law (18) requires neither
osition measurements nor knowledge of the gradient of the
nknown signal function.
The closed-loop system is obtained by substituting (18) into

15). An averaging analysis in Section 5 will reveal that the closed-
oop system approximates the behavior of a certain averaged
ystem if the control parameter ω > 0 is sufficiently large. We
ill also see in Section 5 that the averaged system can be written
s system (15) under the control law
p

= −λ sinα −
1
2
ρ

Jp
(ββ ′)(y − η) (20a)

· ⟨gradψ(p + ρ Re1), Re3⟩, (20b)

τ y = −
1
2
ρ

Jy
h (γhγ ′

h)(h (y − η)) cosα (20c)

· ⟨gradψ(p + ρ Re1), Re2⟩, (20d)

here (ββ ′)(x) denotes the product of β and its derivative β ′

valuated at some x ∈ R, and (γhγ ′

h)(x) is defined correspondingly.
ote that the inner products in (20b) and (20d) involve the
nknown gradient of ψ . We will choose the design functions β
nd γ in such a way that the products ββ ′ and γ γ ′ in (20a)
h h h
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nd (20c) always attain positive values. Then, we have access
o the negative directional derivatives of ψ along Re3 and Re2.
oreover, if the pitch angle α is close to 0, then the directional
erivative of ψ along Re3 in (20b) is approximately the same as
he directional derivative of ψ along e3. This indicates that the
econd term on the right-hand side of (20a), (20b) minimizes ψ
ith respect to its third argument (i.e., along the e3-axis). The

irst term on the right-hand side of (20a), (20b) asymptotically
tabilizes the pitch angle α about 0. Next, we indicate the impact
of (20c), (20d) on the VYPa model (15). Recall that the constant
force in (15c) leads to a non-zero constant forward velocity. For
this reason, we cannot expect that the position of the vehicle
converges to a minimum point of ψ . However, if we induce a
uitable yaw-like moment, then we can at least ensure that the
ehicle tends to a motion around a minimum point. This is done
y means of the directional derivative of ψ along Re2 in (20d).
f the directional derivative of ψ along Re2 is negative, then
minimum point is to the left of the vehicle and the torque

n (20c), (20d) causes a counter-clockwise motion. Conversely,
f the directional derivative of ψ along Re2 is positive, then a
inimum point is to the right of the vehicle and the torque

n (20c), (20d) causes a clockwise motion. Thus, in summary, we
an expect that, under suitable assumptions, the inputs in (20)
ead to a vanishing pitch angle, minimization of ψ with respect
o third argument, and a motion of the vehicle around a minimum
oint of ψ . If ω > 0 is sufficiently large, then approximately the
ame effect occurs for the inputs in (18).
Finally, we indicate the intention of the design function γh

nd its dependence on the parameter h. One can show that, in
eneral, a constant multiple of the gradient term in (20d) does
ot lead to an asymptotically stable motion of the vehicle around
minimum point of ψ . However, asymptotic stability can be

nduced if the gradient term in (20d) is amplified and reduced
n a suitable way. This is done by means of the scaling factor
(γhγ ′

h)(h (y − η)) in (20c). Note that, if the parameter h > 0 is
ufficiently large, then h (y−η) approximates the time derivative
f the sensed signal y. We will choose the design function γh in
uch a way that the product γhγ ′

h is a strictly increasing function.
hen, depending on whether y is increasing or decreasing, the
caling factor h (γhγ ′

h)(h (y−η)) amplifies or reduces the yaw-like
oment in (20c), (20d). Such a scaling can lead to the desired
ffect that the vehicle converges to certain levels set of the signal
unction. To derive a simple stability result, we will also demand
hat the equilibrium value h (γhγ ′

h)(0) of the scaling factor is
ndependent of h. All required properties of the design functions
and γh that we need to prove stability are made precise later

n Assumptions 3 and 5.
By applying the feedback law (18), (19) to the dynamic VYPa

odel (15), we obtain the closed-loop system

ṗ = v Re1, (21a)

Ṙ = Ωp Xp(R) +Ωy Xy(R), (21b)

m v̇ = a − k v, (21c)

p Ω̇
p

= −κpΩ
p
− λ sin(α(R)) + ω up(ωt)β

(
ξ (p, R, η)

)
, (21d)

Jy Ω̇y
= −κyΩ

y
+ ω uy(ωt) γh

(
h ξ (p, R, η)

)
, (21e)

η̇ = h ξ (p, R, η), (21f)

where the real-valued function ξ on R3
× O × R, defined by

ξ (p, R, η) := ψ(p + ρ Re1) − η, (22)

escribes the difference y − η in (18) and (19).
5

5. Averaging analysis

Now we explain in more detail why the inputs in (18) have
approximately the same effect on (15) as the inputs in (20) if the
parameter ω > 0 is sufficiently large. To this end, we write the
closed-loop system (21) as a so-called affine connection system
on the configuration manifold Q = R3

×O. The reader is referred
to the textbook [34] for an introduction to affine connection
systems and approximations of symmetric product.

Since the configuration manifold Q is the Cartesian product
f R3 and O, for every point q = (p, R) of Q , the tangent space

to Q at q can be written as the Cartesian product of R3 and the
angent space to O at R. Recall that the tangent space to O at R is
panned by the vectors Xp(R) and Xy(R) in (10) and (11). Thus, we
an define vector fields Zt, Zp, Zy, Y0, Yp, Yy on Q by

Zt(q) := (Re1, 0), (23)

Zp(q) := (0, Xp(R)), (24)

Zy(q) := (0, Xy(R)), (25)

Y0(q) :=
a
m Zt(q) −

λ
Jp

sin(α(R)) Zp(q), (26)

p(q) :=
1
Jp
β
(
ξ (p, R, η)

)
Zp(q), (27)

Yy(q) :=
1
Jy
γh

(
h ξ (p, R, η)

)
Zy(q) (28)

or every q = (p, R) ∈ Q , where we suppress the dependence
n the parameter h and the filter state η in the notation. The
ector field Zt describes the direction of the translation motion
ue to the nonholonomic velocity constraints. The vector field
0 will play the role of a drift, which originates from the con-
tant forward force in (21c) and the feedback term −λ sin(α(R))
n (21d). The configuration-dependent parts of the oscillatory
erms in (21d) and (21e) are described by the vector fields Yp
nd Yy, respectively. Let TQ denote the tangent bundle of Q . The
ector fields Zt, Zp, Zy generate a subbundle D of TQ . To describe

the linear velocity-dependent damping terms in (21c)–(21e), we
choose a smooth bundle map B : TQ → TQ such that B◦Zt =

k
mZt,

B ◦ Zp =
κp
Jp
Zp, and B ◦ Zy =

κy
Jy
Zy. Finally, to describe the second-

order dynamics of the VYPa, we choose an affine connection ∇ on
Q such that ∇ZZt = 0, ∇ZZp = 0, and ∇ZZy = 0 for every vector
field Z on Q . Then we can write (21a)–(21e) equivalently as the
affine connection system

∇q̇q̇ = Y0(q) − B(q̇) +

∑
i=p,y

ω ui(ωt) Yi(q) (29)

on Q with velocity constraint D.
We consider the vector fields Yp and Yy in (29) as control

vector fields and the functions t ↦→ ω up(ωt) and t ↦→ ω uy(ωt) as
oscillatory inputs. This point of view allows us to identify system
(29) as a member of a certain class of affine connection systems
subject to the oscillatory controls. A general averaging theory for
this class of systems is established in [17]. It is shown in [17] that,
for sufficiently large ω > 0, an oscillatory system of the form
(29) approximates the behavior of a certain averaged system. The
averaged system involves so-called symmetric products of the
control vector fields from the oscillatory system. The averaging
analysis in [17] reveals that the symmetric products originate
from certain iterated Lie brackets on the tangent bundle of the
configuration manifold. Equivalently, without using Lie brackets,
the symmetric product of two smooth vector fields X and Y on Q
can be defined as the vector field

⟨X :Y ⟩ := ∇XY + ∇YX (30)

on Q ; see also [35,36]. Recall that the zero-mean anti-derivatives
Up and Uy of up and uy are assumed to satisfy the orthonormality
condition (17). In the terminology of Definition 2, we conclude
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rom the averaging analysis in [17] that the solutions of (29) in
he variables
˙̃ = q̇ −

∑
i=p,y

U i(ωt) Yi(q) (31)

pproximate the solutions of

˙̄q
˙̄q = Y0(q̄) − B( ˙̄q) −

∑
i,j=p,y

Λij⟨Yi :Yj⟩(q̄), (32)

here the scalar coefficients Λij are given by

ij :=
1
2T

∫ T

0
U i(σ )U j(σ ) dσ =

{
1
4 if i = j,
0 if i ̸= j. (33)

direct computation shows that the terms with non-vanishing
oefficients are given by

Λpp ⟨Yp :Yp⟩(q̄) =
( τp
Jp

+
λ
Jp

sin(α(R̄))
)
Zp(q̄), (34a)

−Λyy ⟨Yy :Yy⟩(q̄) =
τy
Jy
Zy(q̄) (34b)

with τp and τy as in (20). Moreover, one can show that the
averaged filter system is the same as the original system (19). In
summary, we obtain that the solutions of the closed-loop system
(21) in the variables

p̃ = p, R̃ = R, ṽ = v, η̃ = η, (35a)

Ω̃p
= Ωp

−
1
Jp

Up(ωt)β
(
ξ (p, R, η)

)
, (35b)

Ω̃y
= Ωy

−
1
Jy

Uy(ωt) γh
(
h ξ (p, R, η)

)
(35c)

pproximate the solutions of
˙̄p = v̄ R̄e1, (36a)
˙̄R = Ω̄p Xp(R̄) + Ω̄y Xy(R̄), (36b)

m ˙̄v = a − k v̄, (36c)

p
˙̄Ωp

= −κp Ω̄
p
− λ sin(α(R̄)) (36d)

−
1
2
ρ

Jp
(ββ ′)(ξ (p̄, R̄, η̄)) (36e)

· ⟨gradψ(p̄ + ρ R̄e1), R̄e3⟩, (36f)

Jy ˙̄Ωy
= −κy Ω̄

y (36g)

−
1
2
ρ

Jy
h (γhγ ′

h)(h (ξ (p̄, R̄, η̄))) cos(α(R̄)) (36h)

· ⟨gradψ(p̄ + ρ R̄e1), R̄e2⟩, (36i)
˙̄η = h ξ (p̄, R̄, η̄). (36j)

n particular, this justifies our statement in the previous sec-
ion that, for sufficiently large ω > 0, the inputs in (18) have
pproximately the same effect on (15) as the inputs in (20).

. Local stability analysis for a radially symmetric signal

As indicated in Section 4, one can expect that, under suitable
ssumptions, the inputs in (18) lead to a motion of the VYPa along
certain level set of the signal function. A proof of asymptotic
tability is, in general, difficult; in particular if the level sets
ave a complicated shape. In the subsequent analysis, we only
nvestigate the case of spherical level sets. That is, we assume that
he signal function ψ is radially symmetric in the following sense.

ssumption 1. There exists a point p∗ of R3 and there exists a
mooth real-valued function ϕ on the half-open interval from 0
o +∞ such that

(p) = ϕ
(
|p − p∗|

2) (37)

for every p ∈ R3, where | · | denotes the Euclidean norm.
6

From now on, we suppose that Assumption 1 is satisfied with
p∗ and ϕ as therein. If ϕ attains its minimum value at 0, then p∗

is the source of the signal. We do not assume that p∗ and ϕ are
known; only the existence of p∗ and ϕ must be ensured. Later,
we will also impose a certain growth condition on ϕ to prove
asymptotic stability. The assumption that the signal function is
radially symmetric is also made in [8] for a kinematic source-
seeking VYPa. In [8], it is assumed that the function ϕ is of the
form ϕ(σ ) = ψ∗ + µσ with unknown ψ∗ ∈ R and µ > 0.

Note that, for every orientation R ∈ O of the vehicle, the vec-
tors −Re2, e3 × (−Re2), e3 form a positively oriented orthonormal
asis for R3, where × is the usual cross product. Instead of using
he original configuration variables (p, R) ∈ Q , it turns out to be
dvantageous to carry out the stability analysis in the variables

r = ⟨p − p∗,−Re2⟩, (38a)

s = ⟨p − p∗, e3 × (−Re2)⟩, (38b)

z = ⟨p − p∗, e3⟩, (38c)

= α(R), (38d)

here ⟨·, ·⟩ is the Euclidean inner product on R3. The variables
r, s, z are the components of the vector p−p∗ relative to the basis
−Re2, e3×(−Re2), e3, and α is the pitch angle defined in (6). Since
e assume that the sensed signal is radially symmetric, the four
ariables in (38) provide a full description of the configuration of
he source-seeking VYPa. The squared distance of the sensor to
he source can be written as

p + ρ Re1 − p∗|
2

= d(r, s, z, α), (39)

here

(r, s, z, α) := r2 + (s + ρ cosα)2 + (z + ρ sinα)2. (40)

ecall that the difference y−η in (18) and (19) is described by the
unction ξ defined in (22). By a slight abuse of notation, we use
he letter ξ again to describe the difference y−η in the variables
38); i.e., we set

(r, s, z, α, η) := ϕ
(
d(r, s, z, α)

)
− η. (41)

direct computation leads to the result that the closed-loop
ystem (21) can be equivalently written in the variables (38) as
he system

ṙ = sΩy, (42a)

ṡ = v cosα − r Ωy, (42b)

ż = v sinα, (42c)

α̇ = Ωp, (42d)

m v̇ = a − k v, (42e)

p Ω̇
p

= −κpΩ
p
− λ sinα + ω up(ωt)β

(
ξ (r, s, z, α, η)

)
, (42f)

Jy Ω̇y
= −κyΩ

y
+ ω uy(ωt) γh

(
h ξ (r, s, z, α, R, η)

)
, (42g)

η̇ = h ξ (r, s, z, α, η) (42h)

n the open subset U := R3
× (−π/2, π/2)×R4 of R8. Moreover,

he change of variables (35) becomes

r̃ = r, s̃ = s, z̃ = z, (43a)

α̃ = α, ṽ = v, η̃ = η, (43b)

˜ p
= Ωp

−
1
Jp

Up(ωt)β
(
ξ (r, s, z, α, η)

)
, (43c)

Ω̃y
= Ωy

−
1
Jy

Uy(ωt) γh
(
h ξ (r, s, z, α, η)

)
(43d)

and the averaged system (36) can be written as the system
˙̄r = s̄ Ω̄y, (44a)
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˙̄s = v̄ cos ᾱ − r̄ Ω̄y, (44b)
˙̄z = v̄ sin ᾱ, (44c)
˙̄α = Ω̄p, (44d)

m ˙̄v = a − k v̄, (44e)

Jp ˙̄Ωp
= −κp Ω̄

p
− λ sin ᾱ, (44f)

−
ρ

Jp
(ββ ′)

(
ξ (r̄, s̄, z̄, ᾱ, η̄)

)
(44g)

· ϕ′
(
d(r̄, s̄, r̄, ᾱ)

)
(z̄ cos ᾱ − s̄ sin ᾱ) (44h)

Jy ˙̄Ωy
= −κy Ω̄

y (44i)

+
ρ

Jy
h (γhγ ′

h)
(
h ξ (r̄, s̄, z̄, ᾱ, η̄)

)
(44j)

· ϕ′
(
d(r̄, s̄, r̄, ᾱ)

)
r̄ cos ᾱ (44k)

˙̄η = h ξ (r̄, s̄, z̄, ᾱ, η̄) (44l)

n U . We already know from Section 5 that the solutions of (21)
n the variables (35) approximate the solutions of (36). It follows
hat the solutions of (42) in the variables (43) approximate the
olutions of (44). Thus, as a consequence of Proposition 1, we can
tate the following implication.

roposition 2. If a point x∗ of U is locally asymptotically stable
or (44), then x∗ is practically locally uniformly asymptotically stable
or (42) in the variables (43).

Because of Proposition 2, practical stability for the closed-
oop system follows if we can prove local asymptotic stability for
he averaged system. A necessary condition for local asymptotic
tability is the existence of an equilibrium point. We write such
n equilibrium x∗ ∈ U component-wise as

∗ = (r∗, s∗, z∗, α∗, v∗,Ω
y
∗
,Ωp

∗
, η∗). (45)

sing that the constants a and k in (44e) are positive, one can
easily check that a point x∗ ∈ U is an equilibrium of (44) if and
only if the following condition is satisfied:

Assumption 2. The components of x∗ in (45) satisfy the equa-
tions

s∗ = 0, z∗ = 0, α∗ = 0, (46a)

a = k v∗, v∗ = r∗Ωy
∗
, Ωp

∗
= 0, (46b)

Jy κyΩy
∗

= ρ h (γhγ ′

h)(0) r∗ ϕ
′(r2

∗
+ ρ2), (46c)

η∗ = ϕ(r2
∗

+ ρ2). (46d)

Suppose that x∗ ∈ U is an equilibrium of (44); i.e., Assump-
tion 2 is satisfied. Then z∗ = 0 means that the third position
component p3 of the vehicle is equal to the desired value p3

∗
.

Moreover, the pitch angle α∗ and the pitch velocity Ωp
∗ are both

equal to zero. Because of s∗ = 0 and a = k v∗, we conclude
that the vehicle moves with positive forward velocity v∗ in the
(p3 = p3

∗
)-plane along the circle of radius |r∗| > 0 centered at

p∗. If r∗ is positive, then also Ωy
∗ is positive, which means that

the vehicle moves counter-clockwise around p∗. Otherwise r∗ and
Ω

y
∗ are negative and the motion around p∗ is clockwise. Finally, it

follows from (46b) and (46c) that the squared equilibrium radius
satisfies the equation
Jy κy a
k ρ = h (γhγ ′

h)(0) r
2
∗
ϕ′(r2

∗
+ ρ2). (47)

ote that the expression on the left-hand side of (47) is a positive
onstant while the expression on the right-hand side of (47)
epends on the choice of the parameter h > 0 and the design
unction γ .
h i

7

Next, we derive sufficient conditions to guarantee local
asymptotic stability for the averaged system (44). For this pur-
pose, we assume that x∗ ∈ U is an equilibrium of (44) and we
compute the linearization of (44) about x∗. Using (46a) and (46d),
we compute the Jacobian⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 νrs 0 0 0 0 0 0
νsr 0 0 0 νsv 0 νsy 0
0 0 0 νzα 0 0 0 0
0 0 0 0 0 ναp 0 0
0 0 0 0 νvv 0 0 0
0 0 νpz νpα 0 νpp 0 0
νyr νys 0 0 0 0 νyy νyη
νηr νηs 0 0 0 0 0 νηη

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

with entries

νrs := Ωy
∗
, νsr := −Ωy

∗
, (49a)

νsv := 1, νsy := −r∗, νzα := v∗, (49b)

ναp := 1, νvv := −k/m, (49c)

νpz := −
ρ

J2p
(ββ)′(0)ϕ′(r2

∗
+ ρ2), (49d)

pα := −λ/Jp, νpp := −κp/Jp, (49e)

νyr := 2 ρ

J2y
h2 (γhγ ′

h)
′(0) r2

∗
ϕ′(r2

∗
+ ρ2)2 (49f)

+
ρ

J2y
h (γhγ ′

h)(0)
(
ϕ′(r2

∗
+ ρ2) + 2 r2

∗
ϕ′′(r2

∗
+ ρ2)

)
, (49g)

νys := 2 ρ

J2y
h2 (γhγ ′

h)
′(0) ρ r∗ ϕ′(r2

∗
+ ρ2)2 (49h)

+ 2 ρ

J2y
h (γhγ ′

h)(0) ρ r∗ ϕ′′(r2
∗

+ ρ2), (49i)

νyy := −
κy
Jy
, (49j)

νyη := −
ρ

J2y
h2 (γhγ ′

h)
′(0) r∗ ϕ′(r2

∗
+ ρ2), (49k)

νηr := 2 h r∗ ϕ′(r2
∗

+ ρ2), (49l)

νηs := 2 h ρ ϕ′(r2
∗

+ ρ2), νηη := −h. (49m)

he characteristic polynomial χ :C → C of (48) is of the form

(ζ ) = (ζ − νvv)χp(ζ )χy(ζ ), (50)

here χp and χy are polynomials of degree 3 and 4, respectively.
he first factor on the right-hand side of (50) has the negative
oot νvv . The second factor is given by

p(ζ ) = ζ 3 − νpp ζ
2
− νpα ναp ζ − νpz νzα ναp. (51)

ne can check that χp satisfies the Routh–Hurwitz criterion if and
nly if the following assumption holds.

ssumption 3. The inequalities
k κp λ
a ρ > (ββ ′)(0)ϕ′(r2

∗
+ ρ2) > 0 (52)

re satisfied.

Also the third polynomial χy in (50) can be computed explic-
tly. In particular, one can check that
a h ρ
J2y k

h (γhγ ′

h)(0)
∂
∂σ

⏐⏐
σ=r2∗

σ ϕ′(σ + ρ2) (53)

is the constant term of χy. A necessary condition to ensure that
χy satisfies the Routh–Hurwitz criterion is that (53) is positive.
For this reason, we suppose that ϕ satisfies the following growth
condition.

Assumption 4. The inequality
∂
∂σ

⏐⏐
σ=r2∗

σ ϕ′(σ + ρ2) > 0 (54)

s satisfied.
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Note that Assumption 4 is always satisfied if ϕ is of the form
ϕ(σ ) = ψ∗ + µσ with ψ∗ ∈ R and µ > 0 as in [8]. It
is left to ensure that the remaining inequalities of the Routh–
Hurwitz criterion for χy are satisfied. To this end, we demand that
the parameter-dependent design function γh has the following
properties, which can be satisfied by a suitable choice of γh.

Assumption 5. There exist positive real numbers h̄, b0, b1, and
b2 such that

h (γhγ ′

h)(0) = b0 and b1 ≤ (γhγ ′

h)
′(0) ≤ b2 (55)

for every h ≥ h̄.

Note that the polynomial χy depends on the choice of the
control parameter h > 0. If Assumptions 4 and 5 hold, then one
can show that there exists some h0 > 0 such that χy satisfies
the Routh–Hurwitz criterion for every h ≥ h0. The proof of
this statement requires lengthy but direct computations and is
omitted here.

Recall that the squared equilibrium distance r2
∗
is a solution of

Eq. (47). If Assumption 5 is satisfied, then the factor h (γhγ ′

h)(0)
in (47) is equal to a constant, and therefore the equilibrium
distance |r∗| is independent of the choice of the parameter h.

Suppose that Assumptions 1–5 hold. Then, we may conclude
from the findings in the preceding paragraphs that the Jacobian
(48) is Hurwitz for sufficiently large h > 0. It follows that the
averaged system (44) is locally asymptotically stable for suffi-
ciently large h > 0. By Proposition 2, this in turn implies that
the closed-loop system (42) in the variables (43) is practically
locally uniformly asymptotically stable for sufficiently large h >
0, where a suitable value of the parameter ω depends on the
choice of the parameter h. In summary, we obtain the following
stability result for the source-seeking VYPa.

Theorem 1. Suppose that the unknown scalar signal ψ satisfies As-
sumption 1. Suppose that x∗ is a point of U for which Assumptions 2
and 4 are satisfied. Suppose that the design functions β and γh satisfy
Assumptions 3 and 5. Then, there exists h0 > 0 such that, for every
h ≥ h0, the point x∗ is practically locally uniformly asymptotically
stable for (42) in the variables (43).

Remark 5. Note that our linearization argument only allows a
proof of local asymptotic stability. In particular, we cannot make
any statement about the size of the domain of attraction. An
investigation of non-local stability properties might be subject of
future research.

Remark 6. Recall that the notion of practical local uniform
asymptotic stability in Definition 1 demands that the control
parameter ω is chosen sufficiently large. If ω is not large enough,
then we cannot expect a stable behavior of the closed-loop sys-
tem. On the other hand, in practical implementations, the range
of admissible values of ω is limited by a certain physically rea-
sonable upper bound. If this upper bound is rather small, then
the proposed method cannot be successfully applied.

7. Numerical test

We test the proposed source seeking method numerically for
the following choice of constants, parameters, and functions. The
physical constants m, Jp, Jy, k, κp, κy are set equal to 1. The
constant a that determines the forward force is set equal to 0.1.
Also the distance ρ of the sensor to the vehicle center is set equal
to 0.1. To simulate the measurements of the unknown scalar
signal, we have to select a signal function ψ which satisfies As-
sumption 1. We choose ψ of the form (37) with source position p
∗

8

at the origin and radial function ϕ defined by ϕ(σ ) := −4 e−σ/2.
In the simulations, at each time instance t , we compute the value
of ψ at current position of the sensor to obtain the scalar signal
value y(t) that is used in the feedback law (18) for the source-
seeking vehicle. Next, we specify the components of the feedback
law (18). We choose the functions up

:= cos and uy
:= sin to

generate the periodic perturbation signals. Then, the zero-mean
anti-derivatives of up and uy satisfy the orthonormality condition
(17). The constant λ is set equal to 1. There is a certain degree of
freedom in the choice of suitable design functions β and γh. Here,
we select a function β of the form

β(x) =

√
2β0

√
x + log(2 cosh x) (56)

with some β0 > 0. Then, we have (ββ)′(0) = β0 (cf. Assump-
tion 3). To satisfy Assumption 5, we choose a design function γh
f the form

h(x) =

√
1 + (b0 + b1 h x)2/(b1 h2) (57)

ith b0, b1 > 0. Then, we have h(γ ′

hγh)(0) = b0 and (γhγ ′

h)
′(0) =

1 for every h > 0. We set β0 := 15, b0 := 10, and b1 := 40.
or this choice of b0, we obtain that r±

∗
= ±0.2271 are two

olutions of Eq. (47). Let x±
∗

denote the corresponding equilibria
f the averaged system (44), where the remaining components of
±
∗

are given by the equations in Assumption 2. In particular, we
et Ωy,±

∗ = ±0.4404 for the equilibrium yaw-like velocities. One
can also check that Assumptions 3 and 4 are satisfied. We know
from the stability analysis in Section 6 that the Jacobian (48) is
Hurwitz if the control parameter h > 0 is sufficiently large. Here,
h = 10 turns out to be sufficient. This implies that the points
±
∗
are locally asymptotically stable for the averaged system (44).

ecause of Proposition 2, it follows that x±
∗
are practically locally

uniformly asymptotically stable for (42) in the variables (43).
Fig. 2 shows simulation results for the closed-loop system (21)

and for its averaged system (36) in the original variables (p, R)
of the state manifold Q . In all simulations, the initial time is 0.
The initial velocities are given by the equilibrium velocities of the
dynamic VYPa (15) with vanishing inputs; i.e., the initial forward
velocity is v∗ = 0.1 and the initial pitch and angular velocities
are zero. The initial position of the vehicle center is the point
(1, 0, 0.3) and the filter (19) is initialized by the measured value
of the signal at time 0. The initial orientation of the vehicle is
described by the vectors R(0)e1, R(0)e2, and R(0)e3 of the body
frame; cf. Fig. 1. The left column in Fig. 2 shows results for
R(0)e1 = +e2, R(0)e2 = −e1, and R(0)e3 = e3. The right column in
Fig. 2 shows results for R(0)e1 = −e2, R(0)e2 = +e1, and R(0)e3 =

e3. We can see that, depending on the initial orientation, the
vehicle tends either to a counter-clockwise motion (left column)
or to a clockwise motion (right column) around the source. For
the averaged system, we can observe that the vehicle tends to
a motion in the (p3 = 0)-plane along a circle of radius |r±

∗
| =

0.2271. The closed-loop system approximates the behavior of
the averaged system. We can see in Fig. 2 that the quality of
approximation improves with increasing parameter ω.
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v
R

Fig. 2. Simulation results for the initial conditions p(0) = (1, 0, 0.3), R(0) = exp(± π
2 ê3), v(0) = 0.1, Ωy(0) = 0, Ωp(0) = 0, η(0) = ψ(p(0) + ρ R(0)e1) and different

alues of the parameter ω. The last row (‘‘ω = ∞’’) shows the position trajectory of the averaged system. Counter-clockwise motions around the source occur for
(0) = exp(+ π

2 ê3) and clockwise motions occur for R(0) = exp(− π
2 ê3).
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