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a b s t r a c t

This paper proposes a novel general framework with new Lyapunov stability theorems for control
problems of systems with unbounded delays. Under this framework, the delayed input can be captured
in the stability estimate by augmenting it as a state with initial conditions. Then by applying the novel
framework, we consider the stabilization problems of linear systems with distributed unbounded input
delays via the so-called predictor feedback controllers. Both time-invariant and time-varying cases
are considered. It is shown that under the new framework, the previous works on low-gain based
truncated predictor feedback controllers can be improved by removing an implicit assumption on
initial conditions. It is also shown that the predictor feedback controllers can exponentially stabilize
both time-invariant and time-varying linear systems with distributed unbounded input delays. Several
examples are provided to illustrate the effectiveness of the predictor feedback controllers.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In practical systems, time delay is often one of the main causes
f instability and poor performance. As a result, analysis and
ontrol of systems with time delays has long been a research
opic of considerable attraction, see, for example, (Fridman, 2014;
u et al., 2003; Gu & Niculescu, 2003; Hale & Lunel, 1993;
iculescu, 2001; Richard, 2003) and references therein. Time-
elayed systems are usually very challenging to deal with mainly
ecause they involve infinite dimensional spaces. Many math-
matical tools have been developed to deal with time-delayed
ystems. These tools can be typically classified as frequency do-
ain methods and time domain methods. Frequency domain
ethods study the roots of characteristic equations of time-
elayed systems, and is thus usually applicable to time-invariant
inear systems, see, for example, Chen and Latchman (1995),
hen et al. (2008), Li et al. (2017), Zhong (2004, 2005). Time
omain methods usually focus on constructing an appropriate
yapunov function or functional satisfying specific conditions,
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and is thus in general more powerful than the frequency domain
method. Lyapunov Krasovskii functional theorem and Lyapunov
Razumikhin function theorem are two commonly-used theorems
of time domain methods, and have been widely used in analysis
and control of time-delayed systems, see, for example, Bekiaris-
Liberis and Krstic (2011, 2016), Chakrabarty et al. (2018), Chen
et al. (2017), Jankovic (2010), Krstic (2010), Lin and Fang (2007),
Yoon and Lin (2015), Zhou et al. (2012).

However, all of these aforementioned works only focus on
bounded delays. Unbounded delays, which are more general but
more challenging to deal with, are rarely considered. Unbounded
delays are also often called infinite delays in some existing liter-
ature. Both expressions will be used in the rest of this paper and
systems with infinite or unbounded delays will be simply denoted
as infinite-delayed systems for convenience. Unbounded delays
do exist or are needed to describe the behaviors of some practical
systems. Applications of systems with unbounded delays arise in
the fields of biology (Culshaw et al., 2003; Djema et al., 2018; Josić
et al., 2011), mechanics (Atay, 2003; Roesch & Roth, 2005), social
science (Kuang & Smith, 1993), networked control (Gopalsamy
& He, 1994; Jessop & Campbell, 2010; Michiels et al., 2009;
Sipahi et al., 2007) and so on. In our previous works (Xu et al.,
2018, 2019, 2020b), three challenges in handling systems with
unbounded delays in comparison to systems with bounded delays
were revealed. These challenges arise mainly because the states
of systems with unbounded delays always contain a part of their
initial conditions. In 1970s–1990s, some mathematicians devel-
oped some fundamental theories and stability results on systems
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ith infinite delays, see, for example, Hale (1974), Hale and Kato
1978), Hino (1983), Hino et al. (1990), Kato (1978), Sawano
1979), Zhang (1990, 2002). Results on stability of infinite-delay
ystems are also obtained by Kolmanovskii and Myshkis (1999)
nd Solomon and Fridman (2013). Kolmanovskii and Myshkis
1999) provide a Lyapunov theorem for asymptotic stability of
onlinear infinite-delay systems. Solomon and Fridman (2013)
tudy stability of linear time-invariant systems with unbounded
elays. More recently, we proposed several more general Lya-
unov theorems for studying stabilities of nonlinear systems with
nfinite delays in Xu et al. (2020b).

Input delays, as one of the most important topics concerned
ith time-delayed systems, have been well studied. Artstein
1982) proposed a reduction method to handle systems with
nput delays, which can be seen as a pioneering work in this
opic. More recently, another important milestone on this topic
as developed in a series of works (Bekiaris-Liberis et al., 2013;
ekiaris-Liberis & Krstic, 2011, 2016; Krstic, 2010), where more
igorous stability analysis results for linear systems with bounded
nput delays were provided. A key idea of these works is to intro-
uce a model where the delayed control input is dealt with as a
tate, i.e., the controller state. The controllers given in these works
re called the predictor feedback controllers. However, these
orks only focused on bounded input delays though (Artstein,
982) indeed mentioned the potential of the reduction method
or handling systems with unbounded input delays without any
igorous theoretical authentication or stability analysis. In other
ords, how to deal with systems with unbounded input delays
ia predictor feedback controllers remains to be an open problem.
In this paper, we propose a novel general framework for

ontrol problems of systems with unbounded delays and applies
t to design of predictor feedback controllers for linear systems
ith distributed unbounded input delays. The contributions of
his paper in comparison with those existing relevant works can
e summarized as follows.
First, we propose a novel general framework with new Lya-

unov stability theorems for control problems of systems with
nbounded delays. Under this new framework, the delayed input
an be captured in the stability analysis by augmenting it as a
tate, i.e., the controller state, with initial conditions. The idea of
he controller state originates from (Krstic & Smyshlyaev, 2008)
nd is further developed by Bekiaris-Liberis and Krstic (2011),
rstic (2010), but with transformations that do not extend to
nbounded delays. In this work, we use a different approach
or the infinite-delay systems. Our new framework provides a
ore general system model compared with that in our previ-
us work (Xu et al., 2020b). Our Lyapunov theorems are also
ore general compared with those by Kolmanovskii and Myshkis

1999) and Solomon and Fridman (2013) as our results can be
pplied to verify asymptotic stability, global asymptotic stabil-
ty and exponential stability of nonlinear infinite-delay systems.
oreover, the model under this framework is also more general
hen it reduces to the case of bounded delays in comparison with
he model in those existing works on bounded delays (Bekiaris-
iberis et al., 2013; Bekiaris-Liberis & Krstic, 2011, 2016; Krstic,
010).
Second, we apply the framework to stabilization problems

f linear systems with distributed unbounded input delays. Pre-
ictor feedback controllers are designed and analyzed for both
ime-invariant and time-varying cases. We first show that under
ur new framework, the results obtained in Xu et al. (2020b),
here a low-gain based truncated predictor feedback controller is
esigned, can be improved by removing an implicit assumption
n initial conditions. Next, we further analyze the stabilities of
ime-invariant linear systems with distributed unbounded in-

ut delays under the predictor feedback controller. It is shown

2

that the predictor feedback controller can exponentially stabilize
the time-invariant linear systems with distributed unbounded
input delays. A distinctive advantage of the predictor feedback
controller, compared with the low-gain controller in Xu et al.
(2020b), is that it can be applied to the case where the open
loop dynamics are exponentially unstable. Last but not least, it is
shown that our framework can also be used to analyze the stabil-
ities of time-varying linear systems with distributed unbounded
input delays under predictor feedback controllers.

Recently, we have also obtained some results on predictor
feedback and integrator backstepping for infinite-delayed sys-
tems in Xu et al. (2021) where time-invariant linear systems
with an infinite-delayed integrator are considered by applying
stability theorems in our previous work (Xu et al., 2020b). In
contrast, the present paper develops a novel general framework
for control problems of systems with unbounded delays under
which predictor feedback control for both time-invariant and
time-varying linear systems with distributed unbounded input
delays can be dealt with.

The rest of this paper is organized as follows. In Section 2,
a novel framework for control problems of systems with un-
bounded delays, including a system model, a stability definition,
and Lyapunov theorems, is given. In Section 3, we apply the novel
framework to design of predictor feedback controllers for both
time-invariant and time-varying linear systems with distributed
infinite input delays and the stability analysis of the resulting
closed loop control system. Simulation examples are given in
Section 4 and conclusions are drawn in Section 5.

Notations: Throughout this paper, the following notations are
sed. Rn denotes the n-dimensional Euclidean space. |·| repre-
ents the absolute value of real numbers, the module of complex
umbers, the l2 norm of vectors or the induced 2-norm of matri-
es. For a symmetric and positive definite matrix P , the notation
P

1
2 denotes its unique positive definite square root. For any two
ymmetric matrices P1 and P2, the notation P1 ≥ P2 means
hat P1 − P2 is positive semi definite. A continuous function α :

0,+∞) → [0,+∞) is of class K if it is strictly increasing and
(0) = 0. It is of class K∞ if it is of class K and unbounded. A
unction β : [0,+∞) × [0,+∞) → [0,+∞) is of class KL if
t is continuous and for each fixed r , the mapping β(·, r) is of
lass K and for each fixed s, the mapping β(s, ·) is decreasing
nd limr→+∞ β(s, r) = 0. Let B be a normed vector space. Then
functional f : B → Rn is said to be completely continuous if it

s continuous and maps any bounded set in B into a bounded set
n Rn. Let x be a continuous function of time variable t . Then we
se ẋ to denote its right hand derivative.

. A novel general framework for control problems of systems
ith unbounded delays

In this section, we introduce a novel general framework for
ontrol problems of systems with unbounded delays. Under such
framework, many control problems concerned with infinite-
elayed systems can be addressed.

.1. System model

Suppose +∞ ≥ r ≥ 0 and [−r, 0] = (−∞, 0] if r = +∞. Let
x and Bu be two vector spaces equipped with semi norms ∥ · ∥Bx
nd ∥ · ∥Bu , respectively. Let xt ∈ Bx and ut ∈ Bu be defined by
t (θ ) = x(t + θ ), θ ∈ [−r, 0] and ut (θ ) = u(t + θ ), θ ∈ [−r, 0],
espectively. Consider the following system,

˙(t) = f (t, xt , ut ), t ≥ t0, (1)

where x ∈ Rn, u ∈ Rm, xt ∈ Bx, ut ∈ Bu, f : R × Bx × Bu → Rn is
completely continuous on R×B ×B and f (t, 0, 0) = 0. In system
x u
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1), x and u are respectively plant state and controller state with
x and Bu being plant state space and controller state space,
espectively. The initial conditions xt0 and ut0 are determined by
paces Bx and Bu, and they satisfy ∥xt0∥Bx < +∞ and ∥ut0∥Bu <

+∞. Furthermore, we consider the following controller,

u(t) = g(t, xt , ut ), t ≥ t0, (2)

where g : R × Bx × Bu → Rn is completely continuous on
R × Bx × Bu and g(t, 0, 0) = 0. Then the closed loop system can
be written as

ẋ(t) =f (t, xt , ut ),

u(t) =g(t, xt , ut ), t ≥ t0. (3)

It is noted that controller (2) is more general than that in Xu
et al. (2020b), which is recalled as follows,

ut = ḡ(t, xt ), t ≥ t0, (4)

where ḡ : R × Bx → Bu is continuous on R × Bx, ḡ(t, 0) = 0
and maps R × (bounded set in Bx) into a bounded set in Bu.
Controller (4) is more restrictive than controller (2) in many
aspects. First, controller (4) does not allow the feedback of the
delayed control input u. Second, it implies an implicit property of
initial conditions, that is, u(t0 − η) = ḡ(t0, xt0 )(−η),∀η ≥ 0. This
is a rather restrictive property as it requires the initial conditions
of u to be determined by the initial conditions of x on the whole
history. On the contrary, this property is not required in controller
(2). In fact, controller (2) can include controller (4) as its special
case. Consider the following controller,

u(t) = ḡ(t, xt )(0) ≜ g(t, xt ), t ≥ t0, (5)

which is in the form of controller (2). If its initial condition
satisfies u(t0 − η) = ḡ(t0, xt0 )(−η),∀η ≥ 0, then it reduces to
controller (4), which implies that controller (4) is a special case
of controller (2).

2.2. Hypothesizes for system model

For systems with bounded delays, the choice of phase spaces
Bx and Bu is not critical from the view point of the qualitative
theory (Hale & Kato, 1978; Hale & Lunel, 1993). However, it is
critical for systems with unbounded delays mainly because the
states of systems with unbounded delays always contain a part
of their initial conditions (Hale & Kato, 1978). The phase spaces
Bx and Bu in this paper are supposed to satisfy the following
hypothesis.

Hypothesis 2.1. (Kato, 1978) Let B be a vector space equipped
with semi norm ∥ · ∥B. For any A > σ ≥ 0, if x(t) is well defined
on [−r, A) and continuous on [σ , A) and xσ ∈ B, then for any
t ∈ [σ , A),

(1) xt ∈ B;
(2) xt is continuous in t with respect to ∥ · ∥B;
(3) There exist constants M0 > 0, K > 0, and a nonnegative

and continuous function M(t) such that limt→+∞ M(t) = 0 and

|x(t)| ≤ M0∥xt∥B,

∥xt∥B ≤ K sup
σ≤s≤t

|x(s)| + M(t − σ )∥xσ∥B.

Hypothesis 2.1 has been commonly adopted in the study
of systems with infinite delays since it was first proposed in
1970s (Hale & Kato, 1978; Hino, 1983; Kato, 1978; Sawano,
1979). It was also adopted in our recent work (Xu et al., 2020b)
where new stability and stabilization results on infinite-delayed
systems were given. It can be verified that the spaces Rn and
C([−τ , 0],Rn), which are frequently applied in the study of
3

non-delayed and bounded-delay systems, satisfy Hypothesis 2.1.
Moreover, there are also many spaces for infinite-delay sys-
tems satisfying this hypothesis, which can be found in Hale and
Kato (1978), Hino (1983), Kato (1978), Sawano (1979), Xu et al.
(2020b).

In addition, the following hypothesis is required for our new
framework.

Hypothesis 2.2. The controller state u(t) in controller (2) is
continuous for t ≥ t0 and its right hand derivative satisfies

u̇(t) = h(t, xt , ut ), t ≥ t0, (6)

where h : R × Bx × Bu → Rn is completely continuous on
R × Bx × Bu and h(t, 0, 0) = 0.

Remark 2.1. Hypothesis 2.2 implies a property of system (3),
that is, compatibility of initial conditions. In system (3), the initial
condition of the controller state is said to be compatible with the
control law if

u(t0) = g(t0, xt0 , ut0 ). (7)

The compatibility of initial conditions is also assumed in some
existing works on predictor feedback controllers for systems with
bounded delays (Bekiaris-Liberis & Krstic, 2016). It can be seen
that the initial condition of the controller state is compatible if
and only if it is continuous at initial time t0.

Remark 2.2. It follows from the results by Hale and Kato (1978,
Theorem 2.1) that the existence of solutions to the considered
system (3) can be ensured under Hypotheses 2.1 and 2.2. More-
over, the uniqueness of solutions to (3) can be ensured if Lipschitz
or Lipschitz-like conditions are additionally satisfied, see Hale and
Kato (1978, Theorem 2.2) and our previous work Xu et al. (2020a,
Theorem 3.9) for reference.

2.3. Stability definition and Lyapunov theorems

In this subsection, we provide the following new definition on
stabilities of system (3).

Definition 2.1. Define Γ (t) = ∥xt∥Bx +∥ut∥Bu . The zero solution
of system (3) is said to be

(1) uniformly stable if there exist a class K function α and a
positive constant δ0, independent of t0, such that

Γ (t0) < δ0 implies Γ (t) ≤ α(Γ (t0)),∀t ≥ t0;

(2) uniformly asymptotically stable if there exist a class KL
function β and a positive constant δ0 > 0, independent of t0, such
that

Γ (t0) < δ0 implies Γ (t) ≤ β(Γ (t0), t − t0),∀t ≥ t0;

(3) globally uniformly asymptotically stable if there exists a
lass KL function β such that

(t) ≤ β(Γ (t0), t − t0),∀t ≥ t0;

(4) exponentially stable if there exists α > 0, β > 0, δ0 > 0
uch that for any t0 ≥ 0,

(t0) < δ0 implies Γ (t) ≤ αe−β(t−t0)Γ (t0),∀t ≥ t0;

(5) globally exponentially stable if there exist α > 0 and β > 0
uch that for any t0 ≥ 0, any xt0 ∈ Bx and any ut0 ∈ Bu,

(t) ≤ αe−β(t−t0)Γ (t0),∀t ≥ t0.
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The stabilities defined in Definition 2.1 can be also given via
the ε−δ language, which is adopted in Xu et al. (2020b). However,
by following the similar proof of Lemma 4.5 in Khalil (1996), one
can see that these two types of definitions are equivalent.

System (3) and its stability definition 2.1 are novel in the
sense that the delayed input can be captured in the stability
analysis. Such an idea originated in Bekiaris-Liberis and Krstic
(2011), Krstic (2010) for systems with bounded input delays, and
was widely adopted since then (Bekiaris-Liberis & Krstic, 2016;
Cai et al., 2019). This idea is now extended to the case of infinite-
delayed systems in this work. It should be noted that in the
existing works on bounded input delays such as (Bekiaris-Liberis
& Krstic, 2011, 2016; Cai et al., 2019; Krstic, 2010), the systems
are described by an ODE–PDE cascade. In contrary, the system
description in this work does not rely on PDEs. Moreover, system
(3) is also more general when it reduces to the case of systems
with bounded delays as it allows more general choices of plant
state space Bx, while the plant state space is always chosen as
the Euclidean space Rn in the existing works (Bekiaris-Liberis &
Krstic, 2011, 2016; Cai et al., 2019; Krstic, 2010).

Then based on the stability results in our previous work (Xu
et al., 2020b), we have the following Lyapunov theorems for
system (3).

Theorem 2.1. Consider system (3) under Hypotheses 2.1–2.2.
Assume that f and h map R × (bounded set in Bx × Bu) into a
bounded set in Rn. If there exists a continuous functional V : R ×

Bx × Bu → R such that ∀xt ∈ Bx, ut ∈ Bu,
(1) a1(|x(t)|) + a2(|u(t)|) ≤ V (t, xt , ut );
(2) V (t, xt , ut ) ≤ b1(∥xt∥Bx ) + b2(∥ut∥Bu );
(3) V̇ (t, xt , ut ) ≤ −c1(|x(t)|) − c2(|u(t)|);
where a1, a2, b1, b2, c1, c2 are class K functions, then system (3)

is uniformly asymptotically stable in the sense of Definition 2.1.
Moreover, if a1, a2, b1, b2 are of class K∞, then system (3) is globally
uniformly asymptotically stable in the sense of Definition 2.1.

Theorem 2.2. Consider system (3) under Hypotheses 2.1–2.2.
Assume that there exist Lf > 0, Lg > 0 and r > 0 such that for
all ∥φ∥Bx < r and ∥ψ∥Bu < r,

|f (t, φ, ψ)| ≤Lf (∥φ∥Bx + ∥ψ∥Bu ),

|h(t, φ, ψ)| ≤Lg (∥φ∥Bx + ∥ψ∥Bu ). (8)

If there exists a continuous functional V : R × Bx × Bu → R such
that for all xt ∈ Bx, ut ∈ Bu,

(1) a1|x(t)|α + a2|u(t)|α ≤ V (t, xt , ut );
(2) V (t, xt , ut ) ≤ b1∥xt∥αBx + b2∥ut∥

α
Bu ;

(3) V̇ (t, xt , ut ) ≤ −c1|x(t)|α − c2|u(t)|α;
where a1, a2, b1, b2, c1, c2, α are positive constants, then system

(3) is exponentially stable in the sense of Definition 2.1. Moreover,
if condition (8) holds for all φ ∈ Bx, ψ ∈ Bu, then system (3) is
globally exponentially stable in the sense of Definition 2.1.

Both theorems can be proved by applying the results in Xu
et al. (2020b) and considering the augmented system composed
of (3) and (6). We only provide the proof of Theorem 2.2. The
proof of Theorem 2.1 is similar and thus omitted.

Proof of Theorem 2.2. Define Z(t) = col(x(t), u(t)) ∈ Rn+m and
Zt = col(xt , ut ) ∈ Bx ×Bu. Define the norms |Z(t)| = |x(t)|+ |u(t)|
and ∥Zt∥z = ∥xt∥Bx + ∥ut∥Bu . It follows from system (3) and
Hypothesis 2.2 that

Ż = f̄ (t, Zt ), (9)

where f̄ (t, Zt ) = col(f (t, xt , ut ), h(t, xt , ut )). It further follows
from the conditions that
 i

4

(1) min{a1,a2}

2α |Z(t)|α ≤ V (t, Zt ) ≤ 2max{b1, b2}∥Zt∥αz ;
(2) V̇ (t, Zt ) ≤ −

min{c1,c2}

2α |Z(t)|α;

here V (t, Zt ) = V (t, xt , ut ). Therefore, by Theorem 3.5 in Xu
et al. (2020b), there exist αz, βz > 0 such that

Zt∥z ≤ αze−βz (t−t0)∥Zt0∥z, (10)

hich implies that

∥xt∥Bx + ∥ut∥Bu

αze−βz (t−t0)(∥xt0∥Bx + ∥ut0∥Bu ). (11)

he global exponential stability is established and the theorem is
hus proved. □

. Applications of the framework: Predictor feedback con-
rollers for systems with distributed unbounded input delays

The novel framework proposed in Section 2 will be applied
o solving the stabilization problems of systems with distributed
nbounded input delays via predictor feedback controllers in this
ection. Both time-invariant and time-varying linear systems with
istributed unbounded input delays will be considered.

.1. Truncated predictor feedback controllers

In Xu et al. (2018) and Xu et al. (2020b), we propose a class
f low-gain controllers for handling stabilization problems of sys-
ems with distributed unbounded input delays. Such controllers
re also called truncated predictor feedback controllers in some
xisting works on systems with bounded input delays (Zhou,
014; Zhou et al., 2012). Consider the following system,

˙ =Ax +

∫
+∞

0
B0(η)u(t − η)dη

+

k∑
i=1

Biu(t − τi), (12)

here 0 ≤ τi ≤ τ , x ∈ Rn, u ∈ Rm and B0(η) is a matrix function
hose elements are all Lebesgue integrable on [0,+∞). Define
=

∫
+∞

0 e−AηB0(η)dη+
∑k

i=1 e
−AτiBi and the following controller

an be proposed,

= −BTPx, (13)

here P is a positive definite matrix designed through the low-
ain approach. The exponential stabilities of the closed loop sys-
em composed of (12) and (13) are proved in Xu et al. (2018)
nd Xu et al. (2020b). However, these proofs are established
ased on an implicit assumption of initial conditions, that is,
(−η) = −BTPx(−η), η ≤ 0. By using the new framework
roposed in Section 2, this implicit assumption can be removed.
herefore, in this subsection, we further analyze the stabilities
f the closed loop system composed of plant (12) and truncated
redictor feedback controller (13).
In this case, the following assumptions are made.

ssumption 3.1. There exists a non-increasing and positive
unction p(η), where

∫
+∞

0 p(η)dη < +∞ and p(u + v) ≤

(u)p(v),∀u, v ≥ 0, such that the following condition holds,

B0(η)| ≤ p(η). (14)

ssumption 3.2. The matrix A has all its eigenvalues on the

maginary axis and the matrix pair (A,B) is controllable.
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In this section, the plant state space can be chosen as the
Euclidean space Rn. The controller state space Bu is chosen as a
space of functions mapping from (−∞, 0] to Rn. The space Bu and
the norm ∥ · ∥Bu can be defined as follows,

Bu = {ψ : (−∞, 0] → Rn
: ∥ψ∥Bu < +∞},

∥ψ∥Bu = ( sup
−τ≤s≤0

|ψ(s)|q +

∫
+∞

0
p(η)|ψ(−η)|qdη)

1
q ,

here +∞ > q ≥ 1. It follows from Hale and Kato (1978,
xample 1.2) that Hypothesis 2.1 holds. In fact, one can verify that

∥xt∥Bq(
sup

−τ≤s≤0
|x(t + s)|q +

∫
+∞

0
p(η)|x(t − η)|qdη

) 1
q

≤ sup
t−τ≤s≤t

|x(s)| +
(∫ +∞

0
p(η)|x(t − η)|qdη

) 1
q

sup
t−τ≤s≤t

|x(s)|+

(∫ +∞

t−σ
p(η)|x(t − η)|qdη +

∫ t−σ

0
p(η)|x(t − η)|qdη

) 1
q

≤ sup
t−τ≤s≤t

|x(s)| +
(∫ +∞

0
p(t − σ + η)|x(σ − η)|qdη

+

∫ t−σ

0
p(η)dη sup

σ≤s≤t
|x(s)|q

) 1
q

≤ sup
t−τ≤s≤t

|x(s)| +
(
p(t − σ )

∫
+∞

0
p(η)|x(σ − η)|qdη

+

∫
+∞

0
p(η)dη sup

σ≤s≤t
|x(s)|q

) 1
q

≤ sup
σ≤s≤t

|x(s)| + e−(t−τ−σ ) sup
σ−τ≤s≤σ

|x(s)|

+ p(t − σ )
1
q ∥xσ∥Bq + (

∫
+∞

0
p(η)dη)

1
q sup
σ≤s≤t

|x(s)|

≜K sup
σ≤s≤t

|x(s)| + M(t − σ )∥xσ∥Bq ,

where K = 1+(
∫

+∞

0 p(η)dη)
1
q andM(s) = e−(s−τ )

+p(s)
1
q , s ≥ 0. It

s further noted that lims→+∞ M(s) = 0 and thus Hypothesis 2.1
s implied. Moreover, we have that

˙ = − BTPẋ = −BTP
(
Ax +

∫
+∞

0
B0(η)u(t − η)dη

+

k∑
i=1

Biu(t − τi)
)
, (15)

hich implies that Hypothesis 2.2 holds. Then similar to the
esults in our previous work (Xu et al., 2020b), we can obtain the
ollowing theorem.

heorem 3.1. Let Assumptions 3.1 and 3.2 be satisfied. There
xists γ ∗ > 0 such that system (12) under truncated predictor
eedback controller (13) is globally exponentially stable in the sense
f Definition 2.1 for all γ ∈ (0, γ ∗

], where P is the unique positive
efinite solution to the following algebraic Riccati equation,
TP + PA − PBBTP = −γ P . (16)

roof. Define φ =
∫ t

−∞

∫
+∞

t−s eA(t−s−η)B0(η)u(s)dηds +
∑k

i=1

∫ t
t−τi

eA(t−s−τi)Biu(s)ds and z = x + φ. Then one has that

ż = Az + Bu = (A − BBTP)z + BBTPφ. (17)
5

It can be verified that condition (8) of Theorem 2.2 is satisfied.
Furthermore, we define the following functionals,

V1 =|P
1
2 z|,

V21 =

∫ τ

0

∫ t

t−η
|u(θ )|dθdη,

20 =

∫ t

−∞

|u(η)|
∫

+∞

t−η
p(θ )dθdη,

V3 =|P
1
2 x|,

V4 =

k∑
i=1

∫ t

t−τi

|u(s)|ds.

With the similar proof as in Xu et al. (2020b), we can obtain the
following results concerned with their derivatives,

V̇1 ≤ −
γ

2
|P

1
2 z| + |P|

3
2 |B|

2
|φ|

≤ −
γ

2
|P

1
2 x| + ρ1(γ )

∫ t

t−τ
|u(η)|dη

+ ρ0(γ )
∫

+∞

0
p(η)|u(t − η)|dη,

˙21 =τ |u| −

∫ t

t−τ
|u(η)|dη,

˙20 =

∫
+∞

0
p(η)dη|u| −

∫
+∞

0
p(η)|u(t − η)|dη,

V̇3 ≤σ1(γ )|P
1
2 x| + σ2(γ )

k∑
i=1

|u(t − τi)|

+ |P
1
2 |

∫
+∞

0
p(η)|u(t − η)|dη,

V̇4 ≤k|u| −

k∑
i=1

|u(t − τi)|, (18)

where

ρ1(γ ) = (
γ

2
|P

1
2 | + |B|

2
|P

1
2 |

3
)

k∑
i=1

|Bi| sup
0≤s≤τi

|e−As
|,

0(γ ) = (
γ

2
|P

1
2 | + |B|

2
|P

1
2 |

3
)
∫

+∞

0
|e−Aη

|p(η)dη,

σ1(γ ) = −
γ

2
+

1
2
|B|

2
|P|,

σ2(γ ) = |P
1
2 | sup

i=1,...,k
|Bi|. (19)

urthermore, define the candidate Lyapunov functional,

=V1 + ρ0(γ )V20 + ρ1(γ )V21

+ o(γ )(V3 + |P
1
2 |V20 + σ2(γ )V4), (20)

here o(γ ) is to be determined. Via the fact that |u| ≤ |B||P
1
2 |

|P
1
2 x|, one has

V ≥o(γ )|P
1
2 x|

≥
o(γ )
2

|P
1
2 x| +

o(γ )

2|B||P
1
2 |

|u|, (21)

nd

≤(1 + o(γ ))|P
1
2 ||x|

+ b(γ )
∫

+∞

p(η)|u(t − η)|dη

0
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≤(1 + o(γ ))|P
1
2 ||x|

+ b(γ )
(∫

+∞

0
p(η)dη

)1− 1
q
∥ut∥Bu , (22)

here b(γ ) = |P
1
2 |

∫
+∞

0 |e−Aη
|p(η)dη +

(
ρ0(γ ) + o(γ )|P

1
2 |

)
∫

+∞

0 p(η)dη +
1

p(τ )

(
|P

1
2 |

∑k
i=1 |Bi| sup0≤s≤τi |e

−As
| + ρ1(γ )τ

o(γ )kσ2(γ )
)
. Moreover, it can be derived that

˙ ≤ −
γ

2
|P

1
2 x| +

(
ρ1(γ )τ + ρ0(γ )×∫

+∞

0
p(η)dη

)
|u| + o(γ )

(
σ1(γ )|P

1
2 x|

+ |P
1
2 |

∫
+∞

0
p(η)dη|u| + σ2(γ )k|u|

)
≤ − (

γ

2
− ρ ′(γ ))|P

1
2 x|, (23)

here ρ ′(γ ) = |B||P
1
2 |

(
ρ1(γ )τ + ρ0(γ )

∫
+∞

0 p(η)dη
)

+ o(γ )
(
|B|

|P|
∫

+∞

0 p(η)dη + σ2(γ )k|B||P
1
2 | + σ1(γ )

)
. In Xu et al. (2018)

and Xu et al. (2020b), we have already shown that limγ→0+
|B||P

1
2 |

γ 2

ρ1(γ )τ+ρ0(γ )
∫

+∞

0 p(η)dη) < +∞. Then we can choose γ ∗ > 0
and o(γ ) such that for any γ ∈ (0, γ ∗

],

γ

4
≥ |B||P

1
2 |(ρ1(γ )τ + ρ0(γ )

∫
+∞

0
p(η)dη),

γ

8
≥ o(γ )

(
|B||P|

∫
+∞

0
p(η)dη + σ2(γ )k|B||P

1
2 | + σ1(γ )

)
,

which leads to that

V̇ ≤ −
γ

8
|P

1
2 x|

≤ −
γ

16
|P

1
2 x| −

γ |u|

16|B||P
1
2 |

. (24)

t then follows from Theorem 2.2 that system (12) with controller
13) is globally exponentially stable in the sense of Definition 2.1.
he theorem is thus proved. □

Next, under the new framework proposed in this work, we can
urther consider a special case where the following assumption is
atisfied.
Assumption 3.2′ Define B′

=
∫

+∞

0 B0(η)dη +
∑k

i=1 Bi. The
atrix A has all its eigenvalues at zero and the matrix pair (A,B′)

is controllable.
In this case, we propose the following controller,

u = −B′TPx. (25)

The case where A has all its eigenvalues at zero is also discussed
in Xu et al. (2018) and Xu et al. (2020b). However, the proofs
are also established on an implicit assumption that u(−η) =

B′TPx(−η), η ≤ 0. By applying the new framework in this
paper, this implicit assumption can be also removed. The result
is summarized in the following theorem.

Theorem 3.2. Let Assumptions 3.1 and 3.2′ be satisfied. There
exists γ ∗ > 0 such that system (12) under truncated predictor
feedback controller (25) is globally exponentially stable in the sense
of Definition 2.1 for all γ ∈ (0, γ ∗

], where P is the unique positive
definite solution to the following algebraic Riccati equation,

ATP + PA − PB′B′TP = −γ P . (26)
 s

6

Proof. The proof follows the similar arguments as in those for
Theorem 3.1 in this paper and Theorem 4.2 in Xu et al. (2020b),
and is thus omitted. □

The algebraic Riccati Eqs. (16) and (26) originate from (Zhou
et al., 2008) and Zhou and Duan (2009). Since then, they have
been widely applied on stabilization of systems with bounded
input delays. In our previous works (Xu et al., 2018, 2020b), we
further show their potential in solving stabilization problems of
systems with unbounded input delays.

Remark 3.1. Theorems 3.1 and 3.2 are more general than the
results in Xu et al. (2018) and Xu et al. (2020b) as the implicit
assumptions on initial conditions can be removed under the new
framework. Moreover, if these implicit assumptions are addition-
ally assumed to be satisfied, then Theorems 3.1 and 3.2 reduce to
the results in Xu et al. (2018) and Xu et al. (2020b).

3.2. Predictor feedback controller: Time-invariant case

The truncated predictor feedback controller considered in the
previous subsection is only applicable to those linear systems
where their open loop dynamics are not exponentially unstable.
However, many practical systems with unbounded input delays
may have exponentially unstable open loop dynamics. By using
the predictor feedback controller, such systems can be dealt with.
Consider the following predictor feedback controller for system
(12),

u =Kz,

z =x +

∫ t

−∞

∫
+∞

t−s
eA(t−s−η)B0(η)u(s)dηds

+

k∑
i=1

∫ t

t−τi

eA(t−s−τi)Biu(s)ds. (27)

ne can first obtain that

˙ = (A + BK )z, (28)

where B =
∫

+∞

0 e−AηB0(η)dη +
∑k

i=1 e
−AτiBi. To proceed, the

following two assumptions are made.

Assumption 3.3. There exists a non-increasing and positive
function p(η), where

∫
+∞

0 p(η)dη < +∞ and p(u + v) ≤

p(u)p(v),∀u, v ≥ 0, such that the following conditions hold,

|B0(η)| ≤ p(η),∫
+∞

0
|e−Aηp(η)|dη < +∞. (29)

ssumption 3.4. The matrix pair (A,B) is stabilizable.

Assumption 3.4 is more general than Assumption 3.2. It al-
ows exponentially unstable open loop dynamics, that is, the
atrix A can have eigenvalues with positive real parts. More-
ver, the matrix pair (A,B) is only assumed to be stabilizable in
ssumption 3.4 instead of controllable in Assumption 3.2.
Choose the same plant state space and controller state space

s those in the previous subsection and thus Hypothesis 2.1 is
atisfied. Furthermore, one has that

˙ = K (Az + Bu). (30)

ote that z is a functional of x and ut . Thus Hypothesis 2.2 is
atisfied. Then we can obtain the following theorem.

heorem 3.3. Choose K such that A+BK is Hurwitz. Then system
12) with predictor feedback controller (27) is globally exponentially

table in the sense of Definition 2.1.
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roof. It can be verified that condition (8) is satisfied. Since
A + BK is Hurwitz, then we can choose P such that

(A + BK ) + (A + BK )TP = −I. (31)

efine the following functionals,

V1 =|P
1
2 z|,

V2 =|x|,

30 =

∫ t

−∞

|u(s)|
∫

+∞

t−s
p(η)dηds,

V31 =

∫ τ

0

∫ t

t−s
|u(η)|dηds,

V32 =

k∑
i=1

∫ t

t−τi

|u(s)|ds. (32)

For the functional V1, it first follows from the fact |u| ≤ |K ||z|
that

V̇1 =
zTPż

|P
1
2 z|

= −
|z|2

2|P
1
2 z|

≤ −
|z|

2|P
1
2 |

≤ −
|u|

2|P
1
2 ||K |

, (33)

nd

˙1 ≤ −
|z|

2|P
1
2 |

≤ −
1

2|P
1
2 |

(|x| − |z − x|)

≤ −
|x|

2|P
1
2 |

+ M0

∫
+∞

0
p(η)|u(t − η)|dη

+ M1

∫ t

t−τ
|u(s)|ds, (34)

here M0 =
1

2|P
1
2 |

∫
+∞

0 |e−Aη
|p(η)dη and M1 =

1

2|P
1
2 |

∑k
i=1 |Bi|

sup0≤s≤τi |e
−As

|. For the functional V2, one has that

V̇2 =
xT

|x|
(Ax +

∫
+∞

0
B(η)u(t − η)dη +

k∑
i=1

Biu(t − τi))

≤|A||x| +

∫
+∞

0
p(η)|u(t − η)|dη

+ sup
i=1,2,...,k

|Bi|

k∑
i=1

|u(t − τi)|. (35)

And one can further obtain the following results,

V̇30 =

∫
+∞

0
p(η)dη|u| −

∫
+∞

0
p(η)|u(t − η)|dη,

V̇31 =τ |u| −

∫ t

t−τ
|u(s)|ds,

V̇31 =k|u| −

k∑
i=1

|u(t − τi)|. (36)

Then we can define the candidate Lyapunov functional as follows,

V =(c11 + c12)V1 + V2

+ c30V30 + c31V31 + c32V32, (37)

where c11, c12, c30, c31, c32 are positive constants to be deter-
mined. Then it can be derived that

V̇ ≤ − (
c11

1 − |A|)|x| + (c11M1 − c31)
∫ t

|u(s)|ds

2|P 2 | t−τ f

7

+ (c11M0 + 1 − c30)
∫

+∞

0
p(η)|u(t − η)|dη

+ ( sup
i=1,2,...,k

|Bi| − c32)
k∑

i=1

|u(t − τi)|

− (
c12

2|P
1
2 ||K |

− c30

∫
+∞

0
p(η)dη − c31τ − c32k)|u|. (38)

Choose c11, c12, c30, c31, c32 such that

c11 > 2|P
1
2 ||A|, c31 ≥ c11M1,

c30 ≥ c11M0 + 1, c32 ≥ sup
i=1,2,...,k

|Bi|,

c12 > 2|P
1
2 ||K |(c30

∫
+∞

0
p(η)dη + c31τ + c32k), (39)

which yields that

V̇ ≤ −c̄1|x| − c̄2|u|, (40)

where c̄1 =
c11

2|P
1
2 |

− |A| > 0 and c̄2 =
c12

2|P
1
2 ||K |

− c30
∫

+∞

0 p(η)dη −

c31τ − c32k > 0. It can be further verified that

V ≥ (c11 + c12)λmin(P
1
2 )

|u|
|K |

+ |x|, (41)

here λmin(P
1
2 ) denotes the smallest eigenvalue of P

1
2 and

V ≤((c11 + c12)|P
1
2 | + 1)|x|

+ M̄
∫

+∞

0
p(η)|u(t − η)|dη

≤((c11 + c12)|P
1
2 | + 1)|x|

+ M̄(
∫

+∞

0
p(η)|dη)1−

1
q ∥ut∥Bu , (42)

here M̄ = (c11+c12)|P
1
2 |(M0+

M1
p(τ ) )+c30

∫
+∞

0 p(η)dη+ 1
p(τ ) (c31τ+

32k). It then follows from Theorem 2.2 that system (12) under
controller (27) is globally exponentially stable in the sense of
Definition 2.1. The theorem is thus proved. □

Remark 3.2. When the infinite distributed delay reduces to the
special case of bounded distributed delay, by rewriting V30 in (32),
one can obtain a valid Lyapunov functional for the special case.
In this case, V30 =

∫ t
t−τ |u(s)|

∫ τ
t−s p(η)dηds, where τ is the delay

ound. However, for Lyapunov functionals for bounded delays,
here exist many more choices which are not limited to the form
f (32), as conditions (1)-(2) in Theorem 2.2 are often easy to be
atisfied for bounded delays.

Compared with the predictor feedback controller, the integra-
ion term is truncated in controllers (13) and (25). Therefore,
n some existing works (Zhou, 2014; Zhou et al., 2012), these
wo controllers are called the truncated predictor feedback con-
rollers. The truncated predictor feedback controllers are simpler
ut have more limitations, compared with the predictor feedback
ontrollers. One of the limitations is that the truncated predic-
or feedback controllers cannot handle delayed systems with
rbitrarily large input delays when the open loop dynamics is ex-
onentially unstable. Moreover, the truncated predictor feedback
ontrollers are usually designed by the low-gain method, which
ould lead to slow convergence. Comparisons between the two
ypes of controllers will be further illustrated in the simulation
art.
Our predictor feedback controller for systems with unbounded

elays can include that for systems with bounded delays (Bekiaris-
iberis & Krstic, 2011) as its special case. Moreover, different
rom (Bekiaris-Liberis & Krstic, 2011), where PDEs are applied
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o model and analyze the closed loop system, we use the novel
ramework proposed in our Theorems 2.1–2.2. In another relevant
ork (Mazenc et al., 2012), input-to-state stability of systems
ith bounded input delays under predictor feedback control law

s studied. It should be noted that our results can include the
ndisturbed case in Mazenc et al. (2012), i.e., δ(t) = 0, as special

cases. First, the Lyapunov functionals constructed in Mazenc et al.
(2012) satisfy our Theorem 2.1 when δ(t) = 0. Second, the
controllers (20) and (31) in Mazenc et al. (2012) are the special
cases of our controller (27). One only needs to write controller
(27) in the following form,

u =K̂ ẑ,

ẑ =Mz, (43)

here z is the same as that in (27) and M is an invertible matrix
atisfyingMA = AM . When the system reduces to the cases of one
onstant delay or bounded distributed delay, then our controller
educes to (20) and (31) in Mazenc et al. (2012) with M = eAτ
here τ is the delay bound.
More general distributed unbounded delays can be presented

n the form of Stieltjes integral, see Fridman and Shaikhet (2019)
or example. For systems with input delays given by Stieltjes
ntegral, one can construct a predictor following the reduction
pproach by Artstein (1982). However, in this case, stability anal-
sis will be more difficult as some new technical challenges arise.
ssumptions 3.1–3.4 should also be modified with new phase
paces chosen.

.3. Predictor feedback controller: Time-varying case

(Artstein, 1982) showed the potential of predictor feedback
ontrollers to handle time-varying linear systems with distributed
nbounded input delays. By applying our new framework, we can
lso consider the time-varying linear systems with distributed
nbounded input delays under predictor feedback controllers
ut with rigorous theoretical analysis. Consider the following
ime-varying linear system,

˙ = A(t)x +

∫
+∞

0
B(t, η)u(t − η)dη, (44)

here x ∈ Rn and u ∈ Rm. Let Φ(·, ·) denote the state transi-
ion matrix associated with A(t). Design the following predictor
eedback controller,

= K (t)z,

z = x +

∫ t

−∞

∫
+∞

t−s
Φ(t, s + η)B(s + η, η)u(s)dηds. (45)

It can be calculated that

ż = (A(t) + B̂(t)K (t))z, (46)

where B̂(t) =
∫

+∞

0 Φ(t, t + η)B(t + η, η)dη. The following
assumptions are made.

Assumption 3.5. There exist positive constants k1, k2, µ, and a
continuous differentiable matrix function K (t) ∈ Rm×n such that
|A(t)| ≤ µ, |K (t)| ≤ k1, |K̇ (t)| ≤ k2, and

ż = (A(t) + B̂(t)K (t))z (47)

is globally exponentially stable, i.e.,

|z(t)| ≤ αeβ(t−t0)|z(t0)|,∀t ≥ t0, (48)

for some α > 0, and β > 0.
 V

8

Assumption 3.6. There exist a positive constantM and a positive
nonincreasing and Lebesgue integrable function p(η) such that

|B(t, η)| ≤ p(η),
p(u + v) ≤ p(u)p(v),∀u, v ≥ 0,∫

+∞

0
|Φ(t, t + η)|p(η)dη ≤ M. (49)

Note that time-varying linear systems studied in Xu et al.
(2020b) also satisfy Assumptions 3.5–3.6 and thus can be in-
cluded as special cases. In Xu et al. (2020b), low-gain based
truncated predictor feedback controllers are designed for those
time-varying linear systems. The predictor feedback controller in
the form of (45) can be also designed for those systems. Moreover,
time-varying linear systems considered in this work are much
more general than those in Xu et al. (2020b).

Choose the same plant state space and controller state space
as those in previous subsections and thus Hypothesises 2.1 is
satisfied. Moreover, one has that

u̇ =K̇ (t)z + K (t)ż

=K̇ (t)z + K (t)(A(t) + B̂(t)K (t))z. (50)

Note that z is a functional of x and ut . Thus Hypothesis 2.2 is
satisfied. Then by applying the new framework proposed in this
paper, we can obtain the following result.

Theorem 3.4. Under Assumptions 3.5 and 3.6, system (44) with
predictor feedback controller (45) is globally exponentially stable in
the sense of Definition 2.1.

Proof. First of all, it follows from Assumption 3.6 that

|z| ≤|x| + |

∫ t

−∞

∫
+∞

t−s
Φ(t, s + η)B(s + η, η)u(s)dηds|

≤|x| +

∫ t

−∞

∫
+∞

t−s
|Φ(t, s + η)|p(η)|u(s)|dηds

=|x| +

∫ t

−∞

∫
+∞

0
|Φ(t, t + η)|p(η + t − s)|u(s)|dηds

≤|x| +

∫
+∞

0
p(s)|u(t − s)|ds

∫
+∞

0
|Φ(t, t + η)|p(η)dη

≤|x| + M
∫

+∞

0
p(s)|u(t − s)|ds, (51)

and similarly,

|z| ≥|x| − |

∫ t

−∞

∫
+∞

t−s
Φ(t, s + η)B(s + η, η)u(s)dηds|

≥|x| − M
∫

+∞

0
p(s)|u(t − s)|ds. (52)

Therefore, we can verify that condition (8) is satisfied under
Assumptions 3.5 and 3.6.

It further follows from Assumption 3.5 and Lemma A.1 that
there exist a symmetric and continuous differentiable matrix
function P(t) and positive constants ρ1 and ρ2 such that

ρ1I ≤ P(t) ≤ ρ2I,

AT
c (t)P(t) + P(t)Ac(t) + Ṗ(t) = −I, (53)

where Ac(t) = A(t) + B̂(t)K (t). Then we define the following
functionals,

V1 =|P
1
2 (t)z|,

=|x|,
2
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3 =

∫ t

−∞

|u(s)|
∫

+∞

t−s
p(η)dηds, (54)

nd choose the candidate Lyapunov functional as follows,

= (c1 + c2)V1 + V2 + c3V3, (55)

here c1, c2, c3 are positive constants to be determined. It can be
derived that

V̇ = (c1 + c2)
zT (AT

c (t)P(t) + P(t)Ac(t) + Ṗ(t))z

2|P
1
2 (t)z|

+
xT (A(t)x +

∫
+∞

0 B(t, η)u(t − η)dη)
|x|

+ c3(
∫

+∞

0
p(η)dη|u| −

∫
+∞

0
p(η)|u(t − η)|dη)

≤ − (c1 + c2)
|z|2

2|P
1
2 (t)||z|

+ a|x| +

∫
+∞

0
p(η)|u(t − η)|dη

+ c3(
∫

+∞

0
p(η)dη|u| −

∫
+∞

0
p(η)|u(t − η)|dη)

≤ −
c1|u|

2k1
√
ρ2

−
c2

2
√
ρ2

(|x| − M
∫

+∞

0
p(s)|u(t − s)|ds)

+ a|x| + c3

∫
+∞

0
p(η)dη|u|

− (c3 − 1)
∫

+∞

0
p(η)|u(t − η)|dη

= − (
c1

2k1
√
ρ2

− c3

∫
+∞

0
p(η)dη)|u| − (

c2
2
√
ρ2

− a)|x|

− (c3 − 1 −
c2M
2
√
ρ2

)
∫

+∞

0
p(s)|u(t − s)|ds. (56)

hoose c1, c2, c3 such that

c2 > 2a
√
ρ2,

c3 ≥ 1 +
c2M
2
√
ρ2

,

c1 > 2c3k1
√
ρ2

∫
+∞

0
p(η)dη. (57)

Then condition (3) of Theorem 2.2 is satisfied. Moreover, it can
be further obtained that

V ≥(c1 + c2)
√
ρ1|z| + |x|

≥(c1 + c2)
√
ρ1

k1
|u| + |x|, (58)

nd

≤(c1 + c2)
√
ρ2|z| + |x|

+ c3

∫
+∞

0
p(η)dη

∫
+∞

0
p(s)|u(t − s)|ds

≤(c1 + c2)
√
ρ2(|x| + M

∫
+∞

0
p(η)|u(t − η)|dη)

+ |x| + c3

∫
+∞

0
p(η)dη

∫
+∞

0
p(s)|u(t − s)|ds

≤
(
(c1 + c2)

√
ρ2 + 1

)
|x| + M̄∥ut∥Bu , (59)

here M̄ =
(
(c1+c2)

√
ρ2M+c3

∫
+∞

0 p(η)dη
)
×

(∫
+∞

0 p(η)dη
)1− 1

q .
hus conditions (1) and (2) of Theorem 2.2 are satisfied, which
mplies that the closed loop system is globally exponentially sta-
le in the sense of Definition 2.1. The theorem is thus proved. □
 t

9

emark 3.3. The main idea of the predictor feedback controller is
o reduce the delayed system to a non-delayed system. Therefore,
he predictor feedback controller method is also called reduction
ethod in Artstein (1982). It should be noted that although the
ontroller design was proposed in Artstein (1982), no rigorous
tability analysis is given. In Bekiaris-Liberis and Krstic (2011,
016), Krstic (2010), the authors provided rigorous stability anal-
sis for the cases of bounded input delays. We further provide
igorous stability analysis to the cases of distributed unbounded
nput delays in this work.

. Simulation examples

In this section, we will provide three examples to illustrate the
ffectiveness of the predictor feedback controllers.

.1. Example 1

The first example originates from (Zhou et al., 2014) and is also
sed in Xu et al. (2020b). Consider the following system, which
an be used to describe a spacecraft rendezvous process,

˙ = Ax +

∫
+∞

0
B0(η)u(t − η)dη + B1u(t − 2), (60)

here A, B0(η), B1 are given as follows,

=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

0(η) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ ηe−η, B1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ .
hoose ω = 7.2722 × 10−5rad/s. Then we have that

=

∫
+∞

0
e−AηB0(η)dη + e−2AB1

=

⎡⎢⎢⎢⎢⎢⎣
−2 4 × 10−4 0

−3 × 10−4
−2 0

0 0 −2
1 −3 × 10−4 0

3 × 10−4 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (61)

n this model, unbounded distributed input delays would occur
hen the control signals are sent through wireless networks, as
ointed out in Roesch and Roth (2005). It can be verified that
ssumptions 3.1–3.4 are all satisfied. Thus both the truncated
redictor feedback controller in the form of (13) and the predictor
eedback controller in the form of (27) can be designed for system
60). Figs. 1(a) and 1(b) show the state responses of the plant and
ontroller for Example 1 under controller (13) and controller (27),
espectively. It can be seen that both controllers are effective on
tabilizing the systems with distributed unbounded input delays.
oreover, although the predictor feedback controller (27) is of
ore complicated form, it leads to faster convergence than the
runcated predictor feedback controller (13).
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Fig. 1. State responses for Example 1 under two different controllers.
F
t
r
b

4.2. Example 2

In this example, we consider a system whose open loop
dynamic is exponentially unstable. Consider the following time-
delayed invented pendulum system borrowed from (Zhou &
Wang, 2016),

ẋ = Ax +

∫
+∞

0
B0(η)u(t − η)dη, (62)

where A and B0(η) are given as follows,

A =

⎡⎢⎣
0 1 0 0
140
17 0 0 0
0 0 0 1

−
140
17 0 0 0

⎤⎥⎦ , B0(η) =

⎡⎢⎣
0

−
15
34Γ1(η)
0

14
17Γ2(η)

⎤⎥⎦ , (63)

with Γ1(η) = 3e−3η and Γ2(η) = 9ηe−3η . In this model, un-
bounded distributed input delays would occur due to viscoelas-
ticity of materials, as pointed out in Kolmanovskii and Myshkis
(1999). It is noted that A has an eigenvalue with positive real part
and thus the low-gain based truncated predictor feedback con-
troller (13) cannot be adopted. However, the predictor feedback
controller (27) can be still applied here. It can be verified that
Assumptions 3.3–3.4 are satisfied, by calculating

B =

∫
+∞

0
e−AηB0(η)dη =

⎡⎢⎣ −0.1203
0.3610

−0.2816

⎤⎥⎦ . (64)
0.0214 s

10
Fig. 2 shows the state responses under the predictor feedback
controller. It can be seen that the system can be stabilized under
the predictor feedback controller.

4.3. Example 3

In this example, we further provide a simulation example on
time-varying linear systems with distributed infinite input de-
lays. Consider the following time-varying linear system adopted
from (Sanz et al., 2019),

ẋ =
2 + t2

1 + t2
x +

∫
+∞

0
ηe−η+arctan tu(t − η)dη. (65)

It can be obtained that

Φ(t, τ ) =et−τ+arctan t−arctan τ ,

B̂(t) =

∫
+∞

0
e−η+arctan t−arctan(t+η)

× e−η+arctan(t+η)ηdη =
1
4
earctan t .

urthermore, by choosing K (t) = −8e− arctan t , we can verify
hat Assumptions 3.5–3.6 are satisfied. Fig. 3 shows the state
esponses under the predictor feedback controller (45). It can
e seen that the controller can stabilize the time-varying linear
ystems with distributed unbounded input delays.
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Fig. 2. State responses for Example 2 under predictor feedback controller.

5. Conclusion

In this paper, we first propose a novel general framework to
andle control problems of systems with unbounded delays. This
ramework consists of a system model, stability definitions and
orresponding Lyapunov stability theorems. The system model
llows us to capture the delayed input in the stability via aug-
enting the delayed control input as a state, i.e., controller state,
ith initial conditions. Then we apply the novel framework to
tabilization problems of linear systems with distributed un-
ounded input delays via predictor feedback controllers. Both
ime-invariant and time-varying linear systems with distributed
nbounded input delays are considered. It is shown that un-
er our new framework, our previous works on low-gain based
runcated predictor feedback controllers can be improved by
emoving an implicit assumption on initial conditions. It is also
hown that the predictor feedback controllers can exponentially
tabilize both time-invariant and time-varying linear systems
ith distributed unbounded input delays. Several examples are
rovided to show the effectiveness of the predictor feedback
ontrollers. In the future, we will investigate how to extend our
ovel framework to stabilization problems of nonlinear systems
ith infinite delays.

ppendix

emma A.1 (Rugh, 1996). Consider the following time-varying
inear system,

˙ = A(t)x, (A.1)
11
Fig. 3. State responses for Example 3 under predictor feedback controller.

where A(t) ∈ Rn×n. Suppose that system (A.1) is globally exponen-
tially stable, and there exists a > 0 such that |A(t)| ≤ a for all t.
Then there exist a symmetric and continuously differentiable matrix
function P(t) and two positive constants ρ1 and ρ2 such that

ρ1I ≤ P(t) ≤ ρ2I,

AT (t)P(t) + P(t)A(t) + Ṗ(t) = −I. (A.2)
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