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a b s t r a c t

The Stefan system is a representative model for a liquid–solid phase change which describes the
dynamics of a material’s temperature profile and the liquid–solid interface position. Our previous work
designed a boundary feedback control to stabilize the phase interface position modeled by the Stefan
system. This paper resolves two issues our previous work did not study, that are, the robustness
analysis under the unknown heat loss and the digital control action. First, we introduce the one-
phase Stefan problem with a heat loss by modeling a 1-D diffusion Partial Differential Equation (PDE)
dynamics of the liquid temperature and the interface position governed by an Ordinary Differential
Equation (ODE) with a time-varying disturbance. We focus on the closed-loop system under the control
law proposed in our previous work, and show an estimate of L2 norm in a sense of Input-to-State
Stability (ISS) with respect to the unknown heat loss. Second, we consider the sampled-data control
of the one-phase Stefan problem without the heat loss, by applying Zero-Order-Hold (ZOH) to the
control law in our previous work. We prove that the closed-loop system under the sampled-data
control law satisfies the global exponential stability in the spatial L2 norm. Analogous ISS result for
the two-phase Stefan problem which incorporates the dynamics of the solid phase is also obtained.
Numerical simulation verifies our theoretical results for showing the robust performance under the
heat loss and the digital control implemented to vary at each sampling time.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Liquid–solid phase transitions are physical phenomena which
ppear in various kinds of science and engineering processes.
epresentative applications include sea-ice melting and freez-
ng (Koga & Krstic, 2020a), continuous casting of steel (Petrus,
entsman, & Thomas, 2012), cancer treatment by cryosurgeries
Rabin & Shitzer, 1998), additive manufacturing for materials
f both polymer (Koga, Straub, Diagne and Krstic, 2020) and
etal (Koga, Krstic and Beaman, 2020), crystal growth (Conrad,

✩ A portion of this article is based on the conference paper (Koga et al.,
2018), which has received the O. Hugo Schuck Best Paper Award in 2019.
The material in this paper was partially presented at the 2018 American
Control Conference, June 27–29, 2018, Milwaukee, WI, USA. This paper was
recommended for publication in revised form by Associate Editor Aneel Tanwani
under the direction of Editor Daniel Liberzon.
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I. Karafyllis), krstic@ucsd.edu (M. Krstic).
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005-1098/© 2021 Elsevier Ltd. All rights reserved.
Hilhorst, & Seidman, 1990), lithium-ion batteries (Koga, Camacho-
Solorio, & Krstic, 2021), and thermal energy storage systems
(Koga, Makihata, Chen, Krstic and Pisano, 2020). Physically, these
processes are described by a temperature profile along a liquid–
solid material, where the dynamics of the liquid–solid interface is
influenced by the heat flux induced by melting or solidification.
A mathematical model of such a physical process is called the
Stefan problem (Gupta, 2003), which is formulated by a diffusion
PDE defined on a time-varying spatial domain. The domain’s
length dynamics is described by an ODE dependent on the Neu-
mann boundary value of the PDE state. Apart from the thermody-
namical model, the Stefan problem has been employed to model
several chemical, electrical, social, and financial dynamics such
as tumor growth process (Friedman & Reitich, 1999), domain
walls in ferroelectric thin films (McGilly, Yudin, Feigl, Tagantsev,
& Setter, 2015), spreading of invasive species in ecology (Du &
Lin, 2010), information diffusion on social networks (Lei, Lin, &
Wang, 2013), and optimal exercise boundary of the American put
option (Chen, Chadam, Jiang, & Zheng, 2008).

While the numerical analysis of the one-phase Stefan prob-
lem is broadly covered in the literature, their control related
problems have been addressed relatively fewer. In addition to

https://doi.org/10.1016/j.automatica.2021.109538
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t, most of the proposed control approaches are based on finite
imensional approximations with the assumption of an explic-
tly given moving boundary dynamics (Armaou & Christofides,
001; Daraoui, Dufour, Hammouri, & Hottot, 2010). For control
bjectives, infinite-dimensional approaches have been used for
tabilization of the temperature profile and the moving interface
f a 1D Stefan problem, such as enthalpy-based feedback (Petrus
t al., 2012) and geometric control (Maidi & Corriou, 2014). These
orks designed control laws ensuring the asymptotical stability
f the closed-loop system in the L2 norm. However, the results
n Maidi and Corriou (2014) are established based on the assump-
ions on the liquid temperature being greater than the melting
emperature, which must be ensured by showing the positivity
f the boundary heat input.
Recently, boundary feedback controllers for the Stefan prob-

em have been designed via a ‘‘backstepping transformation’’
Krstic, 2009; Krstic & Smyshlyaev, 2008; Smyshlyaev & Krstic,
004) which has been used for many other classes of infinite-
imensional systems. For instance, Koga, Diagne, and Krstic (2019)
esigned a state feedback control law, an observer design, and
he associated output feedback control law by introducing a
onlinear backstepping transformation for moving boundary PDE,
hich achieved the exponentially stabilization of the closed-loop
ystem in the H1 norm without imposing any a priori assump-
ion, with ensuring the robustness with respect to the physical
arameters’ uncertainty. Koga, Bresch-Pietri and Krstic (2020)
eveloped a delay-compensated control for the Stefan problem
ith proving the robustness to the delay mismatch.
All the aforementioned results have not focused on two issues

rising in practical situation. First, they consider the one-phase
tefan problem which neglects the cooling heat caused by the
olid phase, but any analysis on the system incorporating the
ooling heat at the liquid–solid interface has not been established.
he one-phase Stefan problem with a prescribed heat flux at the
nterface was studied in Sherman (1967) and the existence and
niqueness of the solution was proved. Regarding the added heat
lux at the interface as the heat loss induced by the remaining
ther phase dynamics, it is reasonable to treat the prescribed
eat flux as the disturbance of the system. The norm estimate of
ystems with a disturbance is often analyzed in terms of Input-
o-State Stability (ISS) (Sontag, 2008), which serves as a criterion
or the robustness of the controller or observer design (Arcak &
okotovic, 2001; Freeman & Kokotovic, 2008). The characteriza-
ions of ISS have been investigated in Sontag and Wang (1995,
996), which have been utilized for the derivation of small gain
heorems (Jiang, Mareels, & Wang, 1996; Jiang, Teel, & Praly,
994). Recently, the ISS for infinite dimensional systems with
espect to the boundary disturbance was developed in Karafyllis
nd Krstic (2016, 2017b, 2019) using the spectral decomposi-
ion of the solution of linear parabolic PDEs in one dimensional
patial coordinate with Strum–Liouville operators. An analogous
esult for the diffusion equations with a radial coordinate in
-dimensional balls is shown in Camacho-Solorio, Moura, and
rstic (2018) with proposing an application to robust observer
esign for battery management systems (Moura, Chaturvedi, &
rstic, 2014).
Second, the aforementioned results assumed the control in-

ut to be varying continuously in time; however, in practical
mplementation of the control systems it is impossible to dy-
amically change the control input continuously in time due to
imitations of the sensors, actuators, and software. Instead, the
ontrol input can be adjusted at each sampling time at which
he measured states are obtained or the actuator is manipulated.
ne of the most fundamental and well known method to de-
ign such a ‘‘sampled-data’’ control is the so-called ‘‘emulation

esign’’ that applies ‘‘Zero-Order-Hold’’ (ZOH) to the nominal

2

‘‘continuous-time’’ control law. A general result for nonlinear
ODEs to guarantee the global stability of the closed-loop sys-
tem under such a ZOH-based sampled-data control was studied
in Karafyllis and Kravaris (2009b), and the sampled-data observer
design under discrete-time measurement is developed in Karafyl-
lis and Kravaris (2009a) by introducing inter-sampled output
predictor. As further extensions, the stability of the sampled-data
control for general nonlinear ODEs under actuator delay is shown
in Karafyllis and Krstic (2012, 2017a) by applying predictor-
based feedback developed in Krstic (2009), and results for a
linear parabolic PDE are given in Karafyllis and Krstic (2018)
by employing Sturm–Liouville operator theory. The sampled-data
control for parabolic PDEs has been intensively developed by Frid-
man and coworkers by utilizing linear matrix inequalities (Am
& Fridman, 2014; Fridman, 2013; Fridman & Blighovsky, 2012;
Selivanov & Fridman, 2016). However, none of the existing work
on the sampled-data control has studied the class of the Ste-
fan problem described by a parabolic PDE with state-dependent
moving boundaries ‘‘(a nonlinear system)’’.

1.2. Contributions and results

The contributions of the paper are as follows:

• proving ISS of the closed-loop system of the one-phase
Stefan problem under the control law proposed in Koga et al.
(2019) with respect to unknown heat loss,

• ensuring the global exponential stability of the closed-loop
system under the sampled-data control for the one-phase
Stefan problem,

• and deriving analogous ISS result for the two-phase Stefan
problem by incorporating the dynamics of the solid phase
temperature with utilizing the control design in Koga and
Krstic (2020b).

First, we revisit the result of our conference paper (Koga,
Karafyllis, & Krstic, 2018) which proved ISS of the one-phase
Stefan problem under the control law proposed in Koga et al.
(2019) with respect to the heat loss at the interface. We con-
sider a prescribed open-loop control of the one-phase Stefan
problem in which the solution of the system is equivalent with
the proposed closed-loop control. Using the result of Sherman
(1967), the well-posedness of the solution and the positivity
conditions are proved. Then, we apply the closed-loop control
through the backstepping transformation as in Koga et al. (2019).
The well-posedness of the closed-loop solution and the positivity
conditions for the model to be valid are ensured by showing
the differential equation of the control law. The associated target
system has the disturbance at the interface dynamics due to the
heat loss. An estimate of the L2 norm of the closed-loop system
is developed in the sense of ISS through Lyapunov analysis.

Second, we consider the sampled-data control of the one-
phase Stefan problem by applying ZOH to the continuous-time
control law developed in Koga et al. (2019). The approach em-
ployed in this paper is distinct from the methodology developed
in literature. Namely, we solve the growth of the system’s energy
analytically in time under the proposed sampled-data feedback
control that is in the form of an energy-shaping design. Then, a
perturbation that is incorporated in the closed-loop system due to
the error between the continuous-time design and the sampled-
data design can be represented analytically, and the closed-loop
stability is proven by using Lyapunov method. Finally, the similar
procedure is performed to extend the ISS result to the two-phase
Stefan problem by utilizing the control design in Koga and Krstic
(2020b). We note that, in our other paper (Koga, Makihata et al.,
2020), the sampled-data control is implemented in experiments
of melting paraffin.
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.3. One-phase and two-phase results

We present results for both one-phase (Part I) and two-phase
Part II) Stefan systems. We do that for several reasons. First, for
edagogical reasons, we introduce novel concepts for the Stefan
ystem, such as ISS and sampled-data control, first for the one-
hase system. This brings clarity and lays the foundation for the
wo-phase system, so that the extension from one phase to two
hases can be done in a minimum amount of space. Second, we
resent the one-phase and two-phase cases separately because
he one-phase case is not simply a special case of the two-phase
roblem, particularly in the presence of heat loss.

.4. Organization of the paper

This paper is organized as follows. The one-phase Stefan prob-
em with heat loss is presented in Section 2. Section 3 introduces
ur result for the ISS with respect to the heat loss with its proof.
ection 4 is devoted to the sampled-data control law for the
ne-phase Stefan problem and the stability proof of the closed-
oop system. The extension of the ISS result to the two-phase
tefan problem is addressed in Section 5. Supportive numerical
imulations are provided in Section 6. The paper ends with some
inal remarks in Section 7.

.5. Notation and definition

Throughout this paper, partial derivatives and L2-norm are
enoted as ut (x, t) =

∂u
∂t (x, t), ux(x, t) =

∂u
∂x (x, t), and ∥u[t]∥ =∫ s(t)

0 u(x, t)2dx, where u[t] is a function defined on [0, s(t)] with
real values defined by (u[t])(x) = u(x, t) for all x ∈ [0, s(t)]. R+ :=

[0,+∞), and Z+ is the set of nonnegative integers {0, 1, 2, . . .}.
C0(U;Ω) is the class of continuous mappings on U ⊆ Rn, which
takes values in Ω ⊆ R, and Ck(U;Ω), where k ≥ 1 is the class
of continuous functions on U , which have continuous derivatives
of order k on U and takes values in Ω . A continuous function η :

[0, a) → R+ is said to belong to class-K if it is strictly increasing
and η(0) = 0. A continuous function ζ : [0, a)×R+ → R+ is said
to belong to class-K L if, for each fixed s, the mapping ζ (r, s)
belongs to class-K with respect to r and, for each fixed r , the
mapping β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞.

Part I: One-Phase Stefan System

2. One-phase Stefan problem with heat loss

Consider a physical model which describes the melting or
solidification mechanism in a pure one-component material of
length L in one dimension. In order to mathematically describe
the position at which phase transition occurs, we divide the
domain [0, L] into two time-varying sub-domains, namely, the
interval [0, s(t)] which contains the liquid phase, and the interval
[s(t), L] that contains the solid phase. A heat flux enters the
material through the boundary at x = 0 (the fixed boundary
of the liquid phase) which affects the liquid–solid interface dy-
namics through heat propagation in liquid phase. In addition, due
to the cooling effect from the solid phase, there is a heat loss
at the interface position x = s(t). As a consequence, the heat
equation alone does not provide a complete description of the
phase transition and must be coupled with the dynamics that
describes the moving boundary. This configuration is shown in
Fig. 1.

The energy conservation and heat conduction laws yield the
heat equation of the liquid phase, the boundary conditions, and
the initial values as follows
Tt (x, t) = αTxx(x, t), for t > 0, 0 < x < s(t), (1) i

3

Fig. 1. Schematic of the one-phase Stefan problem.

− kTx(0, t) = qc(t), for t > 0, (2)

T (s(t), t) = Tm, for t > 0, (3)

s(0) = s0, and T (x, 0) = T0(x), for x ∈ (0, s0], (4)

where α :=
k
ρCp

, and T (x, t), qc(t), ρ, Cp, and k are the dis-
ributed temperature of the liquid phase, the manipulated heat
lux, the liquid density, the liquid heat capacity, and the liquid
eat conductivity, respectively.
The first problem we consider in this paper assumes that the

eat loss at the interface caused by the solid phase temperature
ynamics is unknown but described as a time-varying function,
enoted as qf(t). Note that the heat loss is assumed not to be
ependent on any of the heat input qc(t), the initial values (T0, s0),
nd the state variables (T , s). A full physical model for the heat
oss is given in Part II of this paper as the two-phase Stefan prob-
em. Then, the local energy balance at the liquid–solid interface
= s(t) is given by

∆H∗ṡ(t) = −kTx(s(t), t) − qf(t), (5)

here ∆H∗ represents the latent heat of fusion. In (5), the left
and side represents the latent heat, and the first and second
erm of the right hand side represent the heat flux by the liquid
hase and the heat loss caused by the solid phase, respectively.
s the governing equations (1)–(5) suffice to determine the dy-
amics of the states (T , s), the temperature in the solid phase is
ot needed to be modeled.

emark 1. As the moving interface s(t) depends on the temper-
ture, the problem defined in (1)–(5) is nonlinear.

There are two underlying assumptions to validate the model
1)–(5). First, the liquid phase is not frozen to solid from the
oundary x = 0. This condition is ensured if the liquid tem-
erature T (x, t) is greater than the melting temperature. Second,
he material is not completely melt or frozen to single phase
hrough the disappearance of the other phase. This condition is
uaranteed if the interface position remains inside the material’s
omain. In addition, these conditions are also required for the
ell-posedness (existence and uniqueness) of the solution in this
odel. With these model validity conditions, we emphasize the

ollowing remark.

emark 2. To maintain the model (1)–(5) to be physically vali-
ated, the following conditions must hold (Alexiades, 1992):

T (x, t) ≥Tm, ∀x ∈ (0, s(t)), ∀t > 0, (6)

< s(t) <L, ∀t > 0. (7)

A mathematically rigorous definition of such a physically
eaningful solution is given in Sherman (1967) and stated as

ollows.

efinition 1. Let s0 > 0 be a given constant, qc, qf : R+ → R+,
0 : [0, s0] → [Tm,∞) with T0(s0) = Tm be given functions. The
nitial–boundary value problem (1)–(5) has a solution if there ex-

0 1
sts a pair of functions s ∈ C (R+; (0, L))∩C ((0,+∞); (0, L)), T :



S. Koga, I. Karafyllis and M. Krstic Automatica 127 (2021) 109538

D
c
t
T
(

s

A
q

c
b

3

h
a
i
e
a

L
b

q

w

q

T

−

L
a

L

f

S
o
T

f

B

→ [Tm,∞) with D =
⋃

t≥0(t × [0, s(t)]) such that (i) T , Tx are
ontinuous for t > 0, x ∈ [0, s(t)], (ii) Tt , Txx are continuous for
> 0, x ∈ (0, s(t)), (iii) T is continuous for t = 0, x ∈ (0, s0] with
m ≤ lim inf(x,t)→(0,0)(T (x, t)) ≤ lim sup(x,t)→(0,0)(T (x, t)) < +∞,
iv) (1), (2), (3), (4), (5) hold.

Based on the above conditions, we impose the following as-
umption on the initial data and the heat loss.

ssumption 1. s0 > 0, T0(x) ∈ C1([0, s0]; [Tm,+∞)) with
T0(s0) = Tm.

Assumption 2. The heat loss qf(t) is a nonnegative and contin-
uous function, i.e., qf ∈ C0(R+;R+).

By the virtue of the theorem on page 55 and Lemma 1 on
page 61 in Sherman (1967), we have the following result.

Lemma 3. Let Assumptions 1–2 hold, qc(t) be a nonnegative
continuous function qc ∈ C0(R+;R+), and it holds

ks0
β

+

∫ t

0
(qc(τ ) − qf(τ ))dτ +

k
α

∫ s0

0
(T0(x) − Tm)dx > 0 (8)

for all t ≥ 0, where β :=
k

ρ∆H∗ . Then there exists a unique pair
of functions s ∈ C0(R+; (0,+∞)) ∩ C1((0,+∞); (0,+∞)), T :

D → [Tm,+∞) with D =
⋃

t≥0(t × [0, s(t)]) such that (i) T , Tx
are continuous for t > 0, x ∈ [0, s(t)], (ii) Tt , Txx are continuous for
t > 0, x ∈ (0, s(t)), (iii) T is continuous for t = 0, x ∈ (0, s0] with
Tm ≤ lim inf(x,t)→(0,0)(T (x, t)) ≤ lim sup(x,t)→(0,0)(T (x, t)) < +∞,
(iv) (1), (2), (3), (4), (5) hold.

Lemma 3 implies that Tx(s(t), t) ≤ 0 for all t ≥ 0 (a direct
consequence of the fact that T (s(t), t) = Tm and T : D →

[Tm,+∞), i.e., T (x, t) ≥ Tm for all t ≥ 0, x ∈ [0, s(t)]. Lemma 3
does not imply that there exists a solution to the initial–boundary
value problem (1)–(5) since s ∈ C1(R+; (0,+∞)) and hence it
does not guarantee that s(t) < L for all t ≥ 0.

3. ISS for one-phase Stefan problem

This section is devoted to the analysis of ISS with respect to
the heat loss qf(t).

3.1. Problem setup

The steady-state solution (Teq(x), seq) of the system (1)–(5)
with qc(t) = 0 and qf(t) = 0 yields a uniform melting tem-
perature Teq(x) = Tm and a constant interface position given by
the initial data. In Koga et al. (2019), the authors developed the
exponential stabilization of the interface position s(t) at a desired
reference setpoint sr with zero heat loss qf(t) = 0 through the
following state feedback control design of qc(t):

qc(t) = −c
(

k
α

∫ s(t)

0
(T (x, t) − Tm)dx +

k
β
(s(t) − sr)

)
, (9)

where c > 0 is the control gain which can be chosen by user.
To maintain the positivity of the heat input qc(t) as stated in
Lemma 3, the control law (9) at t = 0 must be positive, which
leads to the necessity of the following assumption:

Assumption 4. The setpoint is chosen to verify

s0 +
β

α

∫ s0

0
(T0(x) − Tm)dx < sr < L. (10)

The proof of qc(t) ≥ 0 for all t ≥ 0 will be given later. Finally,
we impose the following conditions.
4

Assumption 5. The total energy of the heat loss is bounded,
i.e., there exists M > 0 such that∫

∞

0
qf(t)dt < M. (11)

Assumption 6. qf : R+ → R+ is bounded and the control
gain c is chosen sufficiently large to satisfy c >

β

ksr
q̄f, where

¯ f := sup0≤t≤∞ {qf(t)}.

We prove the ISS of the reference error system with the
ontrol design (9) with respect to the heat loss at the interface
y studying the norm estimate.

.2. Open-loop system and analysis

The well-posedness of the one-phase Stefan problem with
eat flux at the interface was developed in Sherman (1967) with
prescribed open-loop heat input for qc(t). To apply the result,

n this section we focus on an open-loop control which has an
quivalent solution as the closed-loop control introduced later,
nd prove the well-posedness of the open-loop system.

emma 7. Suppose that Assumptions 1–4 hold, and qc(t) is given
y the following open-loop control:

c(t) = q0e−ct
+ c

∫ t

0
e−c(t−τ )qf(τ )dτ , ∀t ≥ 0, (12)

here

0 = −c
(

k
α

∫ s0

0
(T0(x) − Tm)dx +

k
β
(s0 − sr)

)
. (13)

hen the initial–boundary value problem (1)–(5) has a unique solu-
tion.

Proof. Since Assumption 4 leads to q0 > 0, the open-loop
controller (12) remains positive and continuous for all t > 0 by
Assumption 2. Taking the time derivative of (12) yields q̇c(t) =

c(qc(t) − qf(t)), which leads to∫ t

0
(qc(τ ) − qf(τ ))dτ = −

1
c
(qc(t) − q0). (14)

et E(t) be the left hand side of (8). Substituting (14) and (12),
nd noting that E(0) =

k
α

∫ s0
0 (T0(x) − Tm)dx +

k
β
s0 = −

1
c q0 +

k
β
sr,

we get

E(t) = e−ct
[
E(0) +

ksr
β

(ect − 1) −

∫ t

0
ecτqf(τ )dτ

]
. (15)

et f (t) be a function in time defined by

(t) = E(0) +
ksr
β

(ect − 1) −

∫ t

0
ecτqf(τ )dτ . (16)

ince E(t) = e−ct f (t), we can see that E(t) > 0 for all t ≥ 0 if and
nly if f (t) > 0 for all t > 0. By (16), we have f (0) = E(0) > 0.
aking the time derivative of (16) yields

˙(t) = ect
(
ksrc
β

− qf(t)
)
. (17)

y Assumption 6, (17) leads to ḟ (t) > 0 for all t ≥ 0. Therefore,
f (t) > 0 for all t ≥ 0, and we conclude E(t) > 0 for all
t ≥ 0, and hence condition (8) holds. By virtue of Lemma 3
there exists a unique pair of functions s ∈ C0(R+; (0,+∞)) ∩

C1((0,+∞); (0,+∞)), T : D → [Tm,+∞) with D =
⋃

t≥0(t ×

[0, s(t)]) for which properties (i)–(iv), described in the statement
of Lemma 3, hold.
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In order to prove that this pair of functions s ∈ C0(R+;

0,+∞))∩C1((0,+∞); (0,+∞)), T : D → [Tm,+∞) is a solution
f the initial–boundary value problem (1)–(5), we have to show
hat s(t) < L for all t ≥ 0.

Integrating (5) and using the definition of β and (4), we get
or all t ≥ 0:

s(t) − s0 = −β

∫ t

0
Tx(s(τ ), τ )dτ −

β

k

∫ t

0
qf(τ )dτ (18)

On the other hand, using (1) and (2), we get for all t > 0:

Tx(s(t), t) =Tx(0, t) +

∫ s(t)

0
Txx(ξ, t)dξ

= −
1
k
qc(t) +

1
α

∫ s(t)

0
Tt (ξ, t)dξ . (19)

Eq. (3) implies that d
dt

(∫ s(t)
0 (T (ξ, t) − Tm)dξ

)
=
∫ s(t)
0 Tt (ξ, t)dξ

for all t > 0. Combining the previous equation with (4), (18), and
(19), we get for all t > 0:

s(t) =s0 −
β

α

∫ s(t)

0
(T (x, t) − Tm)dx +

β

α

∫ s0

0
(T0(x) − Tm)dx

+
β

k

∫ t

0
(qc(τ ) − qf(τ ))dτ . (20)

sing the fact that q̇c(t) = −c(qc(t)−qf(t)) for all t > 0, we obtain
that

∫ t
0 (qc(τ )− qf(τ ))dτ = −

qc(t)−qc(0)
c for all t ≥ 0. Consequently,

we obtain from (20), (12) and (13):

s(t) = sr −
β

α

∫ s(t)

0
(T (x, t) − Tm)dx −

β

ck
qc(t). (21)

The fact that s(t) < L for all t ≥ 0 is a direct consequence of (21),
(10) and the fact that qc(t) ≥ 0 for t ≥ 0 and T (x, t) ≥ Tm for
t ≥ 0 and x ∈ [0, s(t)]. The proof of Lemma 7 is complete.

3.3. Closed-loop analysis and ISS proof

While the open-loop input (12) ensures the well-posedness
of system (1)–(5) with (12), the analysis does not enable to
prove an ISS property. In addition, the open-loop design requires
knowledge of the heat loss at the interface qf(t), which cannot
be done in practice. In this section, we show that the closed-
loop solution with the control law proposed in Koga et al. (2019)
is equivalent to the open-loop solution of system (1)–(5) with
(12). The controller is using the liquid temperature profile and
the interface position (T (x, t), s(t)). The heat loss qf(t) is regarded
as a disturbance, and the norm estimate of the reference error is
derived in a sense of ISS.

Our first main result is stated in the following theorem.

Theorem 8. Under Assumptions 1–6, the closed-loop system con-
sisting of (1)–(5)with the control law (9) has a unique solution in the
sense of Definition 1, and is ISS with respect to the heat loss qf(t) at
the interface, i.e., there exist a class-K L function ζ and a class-K
function η such that the following estimate holds:

Ψ (t) ≤ ζ (Ψ (0), t) + η

(
sup
τ∈[0,t]

qf(τ )
)
, (22)

or all t ≥ 0, in the L2 norm

Ψ (t) =
(
∥T [t] − Tm∥

2
+ (s(t) − sr)2

) 1
2 . (23)

Moreover, there exist positive constants M1 > 0 and M2 > 0 such
that the explicit functions of ζ and η are given by ζ (Ψ (0), t) =

M1Ψ (0)e−λt , η(supτ∈[0,t] qf(τ )) = M2 supτ∈[0,t] qf(τ ), where λ =

1 min
{
α , c

}
, which ensures the exponentially ISS.
32 s2r

a

5

The proof of Theorem 8 is established in the remainder of this
section.

3.3.1. Reference error system
Let u(x, t) and X(t) be reference error variables defined by

u(x, t) := T (x, t) − Tm, and X(t) := s(t) − sr . Then, the system
1)–(5) is rewritten as

ut (x, t) =αuxx(x, t), (24)

ux(0, t) = − qc(t)/k, (25)

(s(t), t) =0, (26)

Ẋ(t) = − βux(s(t), t) − d(t), (27)

here d(t) =
β

k qf(t). The controller is designed to stabilize
u, X)-system at the origin for d(t) = 0.

.3.2. Backstepping transformation
Introduce the following backstepping transformation

(x, t) =u(x, t) −
β

α

∫ s(t)

x
φ(x − y)u(y, t)dy

− φ(x − s(t))X(t), (28)

hich maps into

wt (x, t) =αwxx(x, t) + ṡ(t)φ′(x − s(t))X(t)

+ φ(x − s(t))d(t), (29)

wx(0, t) =
β

α
φ(0)u(0, t), (30)

w(s(t), t) =εX(t), (31)

Ẋ(t) = − cX(t) − βwx(s(t), t) − d(t). (32)

The objective of the transformation (28) is to add a stabilizing
term −cX(t) in (32) of the target (w, X)-system which is easier
to prove the stability for d(t) = 0 than (u, X)-system. By tak-
ing the derivative of (28) with respect to t and x respectively
along the solution of (24)–(27), to satisfy (29), (31), (32), we
derive the conditions on the gain kernel solution which yields the
solution as

φ(x) = cβ−1x − ε. (33)

By matching the transformation (28) with the boundary condition
(30), the control law is derived as

qc(t) = −c
(

k
α

∫ s(t)

0
u(y, t)dy +

k
β
X(t)

)
. (34)

ewriting (34) by T (x, t) and s(t) yields (9).

.3.3. Inverse transformation
Suppose that the transformation from (w, X) to (u, X) can be

ormulated by

(x, t) =w(x, t) −
β

α

∫ s(t)

x
ψ(x − y)w(y, t)dy

− ψ(x − s(t))X(t), (35)

here ψ is a gain kernel function to be determined. Taking the
erivatives of (35) in x and t along (29)–(32), to match with
24)–(27), one can obtain the conditions for ψ to satisfy, which
eads to the unique solution given by

(x) = eλ̄x (p1 sin (ωx)+ ε cos (ωx)) , (36)

where λ̄ =
βε

2α , ω =

√
4αc−(εβ)2

4α2
, p1 = −

1
2αβω

(
2αc − (εβ)2

)
,

nd 0 < ε < 2
√
αc is to be chosen later. Thus, we deduce that

β
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he transformation (28) with (33) is invertible, where the inverse
ransformation is given by (35) with (36). Finally, using (35), the
oundary condition (30) is rewritten as

x(0, t) = −
β

α
ε

[
w(0, t) −

β

α

∫ s(t)

0
ψ(−y)w(y, t)dy

−ψ(−s(t))X(t)
]
. (37)

In other words, the target (w, X)-system is described by (29),
(31), (32), and (37). Note that the boundary condition (31) and
the kernel function (33) are modified from the one in Koga et al.
(2019), while the control design (34) is equivalent. The target
system derived in Koga et al. (2019) requires H1-norm analysis
for stability proof. However, with the unknown heat loss at the
interface, H1-norm analysis fails to show the stability due to the
non-monotonic moving boundary dynamics. The modification of
the boundary condition (31) enables to prove the stability in L2
norm as shown later.

3.3.4. Analysis of closed-loop system
Here, we prove that the closed-loop system has a unique so-

lution in the sense of Definition 1, which satisfies some required
physical conditions.

Lemma 9. Under Assumptions 1–6, the closed-loop solution of
(1)–(5) with the control law (9) is equivalent to the open-loop
solution of (1)–(5) with the control law (12) for all t ≥ 0, and has
a unique solution in the sense of Definition 1 which satisfies

qc(t) >0, ∀t ≥ 0, (38)

(x, t) ≥0, ux(s(t), t) ≤ 0, ∀x ∈ (0, s(t)),∀t ≥ 0, (39)

0 <s(t) < sr, ∀t ≥ 0. (40)

roof. Taking the time derivative of the control law (9) along
ith the system (1)–(5) leads to the following differential
quation

˙c(t) = −cqc(t) + cqf(t), (41)

hich has the same explicit solution as the open-loop control
12). Hence, the closed-loop solution is equivalent to the open-
oop solution with (12). Thus, qc(t) : R+ → R+, and by virtue
f Lemma 7 the closed-loop system (1)–(5) with (9) has a unique
olution which satisfies (38)–(40).

.3.5. Stability analysis
To conclude the ISS of the original system, first we show the

SS of the target system (29), (31), (32), and (37) with respect to
he disturbance d(t). We consider

(t) =
1
2α

∥w∥
2
+

ε

2β
X(t)2. (42)

hen, as proven in Appendix, for a sufficiently small ε > 0, the
following inequality is derived:

V̇ (t) ≤ −bV (t) + Γ d(t)2 + a|ṡ(t)|V (t), (43)

here a =
2βε
α

max
{
1, αc

2sr
2β3ε3

}
, b =

1
8 min

{
α

s2r
, c
}
, and Γ =

ε
βc +

2s3r
α2

(
csr
β

+ ε

)2
. Let z(t) be defined by

(t) := s(t) + 2
∫ t

0
d(τ )dτ . (44)

y (11) and (40), we have

< z(t) < z̄ := sr +
2βM

(45)

k

6

The time derivative of (44) is given by

ż(t) = −βux(s(t), t) + d(t) (46)

Since ṡ(t) = −βux(s(t), t) − d(t) and recalling ux(s(t), t) < 0 and
(t) > 0, the following inequality holds:

ṡ(t)| ≤ −βux(s(t), t) + d(t) = ż(t). (47)

pplying (47) to (43) leads to

˙ (t) ≤ −bV (t) + Γ d(t)2 + aż(t)V (t). (48)

onsider the following functional

(t) = V (t)e−az(t). (49)

aking the time derivative of (49) with the help of (48) and
pplying (45), we deduce

˙ (t) ≤ −bW (t) + Γ d(t)2. (50)

ince (50) leads to the statement that either Ẇ (t) ≤ −
b
2W (t) or

W (t) ≤
2
bΓ d(t)2 is true, following the procedure in Sontag (2008)

(proof of Theorem 5 in Section 3.3), one can derive

W (t) ≤ W (0)e−
b
2 t +

2
b
Γ sup
τ∈[0.t]

d(τ )2. (51)

y (49), we have V (t) = W (t)eaz(t). Applying (51), we get
V (t) ≤ eaz(t)W (0)e−

b
2 t+ 2

bΓ supτ∈[0.t] d(τ )2. Again by (49), we have
(0) = V (0)e−az(0). Combining these two with the help of (45),

inally we obtain the following estimate on the L2 norm of the
arget system

(t) ≤ V (0)eaz̄e−
b
2 t +

2
b
Γ eaz̄ sup

τ∈[0.t]
d(τ )2. (52)

ue to the invertibility of the transformation from (u, X) to (w, X)
ogether with the boundedness of the domain 0 < s(t) < sr , there
xist positive constants M > 0 and M > 0 such that the following

inequalities hold:

MΨ (t)2 ≤ V (t) ≤ MΨ (t)2, (53)

where Ψ (t) is the L2 norm of the original system defined in
(23). Finally, applying (53) to (52), one can derive the norm esti-
mate on the original (T , s)-system as Ψ (t) ≤

√
Meaz̄
M Ψ (0)e−

b
4 t +

2Γ eaz̄
bM supτ∈[0.t] d(τ ), which completes the proof of Theorem 8.

4. Sampled-data control for the one-phase Stefan problem

4.1. Problem statement and main result

In practical implementation, the actuation value cannot be
changed continuously in time. Instead, by obtaining the measured
value as signals discretely in time, the control value needs to
be implemented at each sampling time. One of the most typical
design for such a sampled-data control is the application of ‘‘Zero-
Order-Hold’’ (ZOH) to the nominal continuous time control law.
Through ZOH, during the time intervals between each sampling,
the control maintains the value at the previous sampling time. Let
tj be the jth sampling time for j ∈ Z+ = {0, 1, 2, . . .}, and τj be
defined by

τj = tj+1 − tj. (54)

he application of ZOH to the nominal control law (9) leads to
he following design for the sampled-data control

c(t) = − c
(

k
α

∫ s(tj)

0
(T (x, tj) − Tm)dx +

k
β
(s(tj) − sr )

)
,

∀t ∈ [tj, tj+1), (55)
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f which the right hand side is constant during the time interval
∈ [tj, tj+1). Let us denote qj = qc(t) for t ∈ [tj, tj+1). Hereafter,

all the variables with subscript j denote the variables at t = tj.
Moreover, we neglect the heat loss in this setup, namely,

qf(t) = 0, ∀t ≥ 0, (56)

is assumed. First, we introduce the following assumption on the
sampling scheduling.

Assumption 10. The sampling schedule has a finite upper
diameter and a positive lower diameter, i.e., there exist constants
0 < r ≤ R such that

sup
j∈Z+

{τj} ≤R, (57)

inf
j∈Z+

{τj} ≥r. (58)

Since the sampled-data control input is not a continuous func-
tion in time but a piecewise continuous function, we require an
alternative definition of the solution.

Definition 2. Let an increasing sequence {tj : j ∈ Z+} with
t0 = 0 and limj→+∞(tj) = +∞ be given. Let also a sequence
{qj : j ∈ Z+} be given. Let s0 > 0 be a given constant and
T0 : [0, s0] → [Tm,+∞) with T0(s0) = Tm be a given function.
The initial–boundary value problem (1)–(5), qc(t) = qj for all t ∈

[tj, tj+1), j ∈ Z+ with qf(t) ≡ 0 has a solution if there exists a pair
of functions s ∈ C0(R+; (0, L)) ∩ C1(I; (0, L)), T : D → [Tm,+∞)
with I = R+ \ {tj : j ∈ Z+}, D =

⋃
t≥0(t × [0, s(t)]) such

that (i) T , Tx are continuous for t ∈ I, x ∈ [0, s(t)], (ii) T [t] ∈

C1((0, s(t)]) ∩ C2((0, s(t))) for all t > 0, (iii) limt→tj (T (x, t)) =

T (x, tj) for all x ∈ (0, s(t)), j ∈ Z+, (iv) Tt , Txx are continuous
for t ∈ I, x ∈ (0, s(t)), (v) (3) holds for all t ≥ 0, (vi) Tm ≤

lim inf(x,t)→(0,tj)(T (x, t)) ≤ lim sup(x,t)→(0,tj)(T (x, t)) < +∞ for
j ∈ Z+, (vii) (1) holds for t ∈ I , x ∈ (0, s(t)), (viii) (2), (5) hold
for t ∈ I , (ix) (4) holds for x ∈ (0, s0].

Our main theorem is given next.

Theorem 11. Consider the closed-loop system (1)–(5), (55), (56)
under Assumption 1, 4. Then for every 0 < r ≤ R < 1/c, there
exists a constant M := M(r) for which the following property holds:
for every sequence {tj ≥ 0 : j = 0, 1, 2, . . .} with t0 = 0 for which
Assumption 10 holds, the initial–boundary value problem (1)–(5)
with (55), (56) has a unique solution in the sense of Definition 2,
which satisfies (6), (7), as well as the estimate Ψ (t) ≤ MΨ (0)
exp(−bt), where b =

1
8 min

{
α

s2r
, c
}
, for all t ≥ 0, in the L2

orm (23).

The proof of Theorem 11 is established through several steps
n the next sections. The positive constant M in (22) has a depen-
ency on r > 0 as

(r) = M1 +
M2

1 − (1 − cr)2 e
cr
8
, (59)

or some positive constants M1 > 0 and M2 > 0 that are not
ependent on r > 0.

.2. Some key properties of the closed-loop system

We first provide the following lemma.

emma 12. The closed-loop system consisting of the plant (1)–(5)
nder the sampled-data control law (55) has a unique solution in the
7

ense of Definition 2, which is equivalent to the open-loop solution
f (1)–(5) with the control law of

c(t) = qj = q0
j−1∏
i=0

(1 − cτi) , ∀t ∈ [tj, tj+1), ∀j ∈ Z+ (60)

here q0 = −c
(

k
α

∫ s0
0 (T0(x) − Tm)dx +

k
β
(s0 − sr )

)
. Furthermore,

he closed-loop solution satisfies

˙(t) > 0, ∀t ≥ 0, (61)

0 < s(t) < sr , ∀t ≥ 0. (62)

roof. There are three steps to prove Lemma 12.

I) Equivalence with open-loop solution
We introduce the reference error states u(x, t) = T (x, t) − Tm

nd X(t) = s(t)−sr . The governing equations (1)–(5) are rewritten
s the following reference error system

ut (x, t) =αuxx(x, t), (63)

ux(0, t) = − qc(t)/k, (64)

(s(t), t) =0, (65)

Ẋ(t) = − βux(s(t), t). (66)

efine the internal energy as follows:

(t) =
k
α

∫ s(t)

0
u(x, t)dx +

k
β
X(t). (67)

aking the time derivative of (67) along the solution of (63)–(66)
eads to the following energy conservation law
d
dt

Ẽ(t) = qc(t). (68)

Noting that qc(t) is constant for t ∈ [tj, tj+1) as qc(t) = qj under
OH-based sampled-data control, taking the integration of (68)
rom t = tj to t = tj+1 yields

j+1 − Ẽj = τjqj, (69)

here Ẽj = Ẽ(tj) and τj = tj+1 − tj. The sampled-data control
55) and the internal energy (67) at each sampling time satisfy
he following relation:

j = −cẼj. (70)

ubstituting (70) into (69), we obtain Ẽj+1 =
(
1 − cτj

)
Ẽj, which

eads to the explicit solution as follows:

j = Ẽ0
j−1∏
i=0

(1 − cτi) . (71)

ubstituting (71) into (70) gives (60). Therefore, the closed-loop
ystem (1)–(5) with qf(t) ≡ 0 under the sampled-data feedback
ontrol (55) is equivalent to the open-loop system with the con-
rol input (60). Moreover, under Assumption 4, 10, and the fact
hat c < 1

R , the input (60) is positive, i.e.,

qj > 0, ∀j ∈ Z+ (72)

(II) Existence of solution with s(t) in (0,+∞)
To show the existence of the closed-loop solution, first we

consider a solution under qc(t) = q0 for all t ≥ 0. By virtue of
Lemma 3, there exists a unique pair of functions s ∈ C0(R+; (0,
∞)) ∩ C1((0,+∞); (0,+∞)), T : D → [Tm,+∞) with D =⋃

t≥0(t × [0, s(t)]) such that (i) T , Tx are continuous for t >

0, x ∈ [0, s(t)], (ii) Tt , Txx are continuous for t > 0, x ∈

(0, s(t)), (iii) T is continuous for t = 0, x ∈ (0, s ] with T ≤
0 m
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im inf(x,t)→(0,0)(T (x, t)) ≤ lim sup(x,t)→(0,0)(T (x, t)) < +∞, (iv) (1)
holds for t > 0, x ∈ (0, s(t)), (v) −kTx(0, t) = q0, (3), (5) hold for
t > 0, (vi) (4) holds.

Next, we consider the solution with qc(t) = q1 for all t ≥ 0
with setting s1 = s(t1) and T1(x) = T (x, t1) for all x ∈ [0, s1]. By
virtue of Lemma 3, there exists a unique s̃ ∈ C0(R+; (0,∞)) ∩

C1((0,+∞); (0,+∞)), T̃ : D̃ → [Tm,+∞) with D̃ =
⋃

t≥0(t ×

[0, s̃(t)]) such that (i) T̃ , T̃x are continuous for t > 0, x ∈ [0, s̃(t)],
ii) T̃t , T̃xx are continuous for t > 0, x ∈ (0, s̃(t)), (iii) T̃ is contin-
uous for t = 0, x ∈ (0, s0] with Tm ≤ lim inf(x,t)→(0,0)(T̃ (x, t)) ≤

lim sup(x,t)→(0,0)(T̃ (x, t)) < +∞, (iv) T̃t (x, t) = αT̃xx(x, t) for t > 0,
x ∈ (0, s̃(t)), (v) −kT̃x(0, t) = q1, T̃ (s̃(t), t) = Tm, ρ∆H∗ ˙̃s(t) =

−kT̃x(s̃(t), t) hold for t > 0, (vi) s̃(0) = s1 and T̃ (x, 0) = T1(x) for
x ∈ (0, s1]. We then set

s(t1 + p) = s̃(p), T (x, t1 + p) = T̃ (x, p), (73)

for all p ∈ (0, t2 − t1], and for all x ∈ (0, s̃(p)). We then set
s2 = s(t2) and T2(x) = T (x, t2) for all x ∈ [0, s2]. Repeating
the above process ad infinitum, we construct a unique pair of
functions s ∈ C0(R+; (0,+∞)) ∩ C1(I; (0, L)), T : D → [Tm,+∞)
with I = R+ \ {tj : j ∈ Z+}, D =

⋃
t≥0(t × [0, s(t)]) such

that (i) T , Tx are continuous for t ∈ I, x ∈ [0, s(t)], (ii) T [t] ∈

C1((0, s(t)]) ∩ C2((0, s(t))) for all t > 0, (iii) limt→tj (T (x, t)) =

T (x, tj) for all x ∈ (0, s(t)), j ∈ Z+, (iv) Tt , Txx are continuous
for t ∈ I, x ∈ (0, s(t)), (v) (3) holds for all t ≥ 0, (vi) Tm ≤

lim inf(x,t)→(0,tj)(T (x, t)) ≤ lim sup(x,t)→(0,tj)(T (x, t)) < +∞ for
j ∈ Z+, (vii) (1) holds for t ∈ I , x ∈ (0, s(t)), (viii) (2), (5) hold
for t ∈ I , (ix) (4) holds for x ∈ (0, s0], where

qc(t) = qj, ∀t ∈ [tj, tj+1), ∀j ∈ Z+ (74)

(III) Existence of solution in the sense of Definition 2 (i.e.,
s(t) ∈ (0, L))

As remarked in the paragraph below Lemma 3, the pair of
functions above satisfies Tx(s(t), t) ≤ 0 for all t ≥ 0. Hence, by (5)
with qf(t) ≡ 0, one can deduce (61), and s0 < s(t) for all t ≥ 0.
We show s(t) < sr for all t ≥ 0. Integrating (68) from t = tj to
t ∈ [tj, tj+1) leads to

E(t) − Ẽj = (t − tj)qj, ∀t ∈ [tj, tj+1). (75)

With the help of (70) and (71), Eq. (75) yields

E(t) =
(
1 − c(t − tj)

)
Ẽj, ∀t ∈ [tj, tj+1). (76)

By Assumption 10 and since c < 1
R , we have 0 < c < 1

τj
for all

j ∈ Z+. In addition, for all t ∈ [tj, tj+1) and for all j ∈ Z+, it holds
t−tj ≤ τj. Hence, we have 1−c(t−tj) > 0, for all t ∈ [tj, tj+1) and
for all j ∈ Z+. Applying this to (76) and noting that Ẽj < 0, for all
j ∈ Z+, deduced from (71) and Assumption 4, one can obtain

E(t) < 0, ∀t ≥ 0. (77)

Substituting (77) into (67) and applying u(x, t) > 0 for all x ∈

(0, s(t)) and t ≥ 0, we have X(t) < 0 for all t ≥ 0, which leads
to s(t) < sr for all t ≥ 0. Thus, (62) holds, which guarantees
s(t) ∈ (0, L) for the solution in the sense of Definition 2.

4.3. Stability analysis

To conclude Theorem 11, we follow similar procedure to
Section 3.3, and prove the closed-loop stability.

4.3.1. State transformation
We apply the same backstepping transformation as in

Section 3.3, namely, the direct transformation (28) with the gain
kernel function (33), and the inverse transformation (35) with the
8

kernel function (36). Here, we do not have an unknown heat loss,
but instead we have a perturbation by error of continuous-time
design and the sampled-data design. The perturbation is given in
the spatial derivative of the transformation at x = 0, which is

wx(0, t) = −
qc(t)
k

−
β

α
εu(0, t) −

c
α

∫ s(t)

0
u(y, t)dy −

c
β
X(t). (78)

ubstituting the design of the sampled-data control qc(t) = qj =

cẼj for all t ∈ [tj, tj+1) and for all j ∈ Z+, and applying (67) and
76), the boundary condition (78) is given by

x(0, t) =δ(t) −
β

α
εu(0, t), (79)

δ(t) :=
c2

k
Ẽj · (t − tj), ∀t ∈ [tj, tj+1), j ∈ Z+. (80)

inally, applying the inverse transformation (35) to (79), and
btaining other equations similarly to Section 3.3, one can derive
he following closed-form of the target system:

wt (x, t) =αwxx(x, t) + ṡ(t)φ′(x − s(t))X(t), (81)

wx(0, t) =δ(t) −
β

α
ε

[
w(0, t) −

β

α

∫ s(t)

0
ψ(−y)w(y, t)dy

−ψ(−s(t))X(t)] , (82)

(s(t), t) =εX(t), (83)

Ẋ(t) = − cX(t) − βwx(s(t), t). (84)

.3.2. Lyapunov method
First we show the stability of the target system (81)–(84). For

given t ≥ 0, we define

:= {n ∈ Z+|tn ≤ t < tn+1}, (85)

nd we firstly apply Lyapunov method for the time interval t ∈

[tj, tj+1) for all j = 0, 1, . . . , n − 1, and next for the interval from
tn to t . For both cases, we consider V =

1
2α ∥w∥

2
+

ε
2β X(t)

2. As

proven in Appendix, and applying (61), for a sufficiently small
ε > 0, the following inequality is derived:

V̇ ≤ −bV + 2srδ(t)2 + aṡ(t)V , (86)

where b =
1
8 min

{
α

s2r
, c
}
, a =

2βε
α

max
{
1, αc

2sr
2β3ε3

}
. Consider

W = Ve−as(t). (87)

Taking the time derivative of (87) and applying (86) yields

Ẇ ≤ −bW + 2srδ(t)2. (88)

(i) For t ∈ [tj, tj+1), for all j = 0, 1, . . . , n − 1,
Applying comparison principle to (88) for t ∈ [tj, tj+1) yields

W (t) ≤ W (tj)e−b(t−tj) + 2sre−bt
∫ t

tj

ebτ δ(τ )2dτ . (89)

etting t = tj+1 and substituting (80), we get

j+1 ≤ Wje−bτj +
2c4sr
k2

e−bτj Ẽ2
j Ij, (90)

where Wj = W (tj), and Ij is defined by Ij :=
∫ tj+1
tj

eb(τ−tj)(τ−tj)2dτ .
Then, by introducing the variable s = b(τ − tj) and integration
y substitution, with the help of bτj < 1

8 cτj <
1
8 for all j ∈ Z+

educed from the definition of b, Assumption 10 and the fact that
< 1

R , one can derive

Ij =
1
∫ bτj

ess2ds ≤
J
, (91)
b3 0 b3
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here J :=
∫ 1

8
0 ess2ds. Applying (91) to (90) yields

j+1 ≤Wje−bτj + Bj, (92)

Bj :=
2Jc4sr
k2b3

e−bτj Ẽ2
j . (93)

pplying (92) from j = n − 1 to j = 0 inductively, we get

n ≤ W0e−b
∑n−1

i=0 τi + Bn−1 +

n−2∑
i=0

Bie
−b

∑n−1
j=i+1 τj . (94)

y (93) and the solution of Ẽj given in (71), we have

n−2

i=0

Bie
−b

∑n−1
j=i+1 τj ≤

2Jc4sr Ẽ2
0e

−b
∑n−1

j=0 τj

k2b3

×

(
1 +

n−2∑
i=1

(
i−1∏
k=0

(1 − cτk)2 ebτk
))

. (95)

ince b =
1
8 min

{
α

s2r
, c
}
< c

8 , by using r = infj∈Z+
{τj} > 0 given

n Assumption 10, the following inequality holds

1 − cτi)2 ebτi ≤ (1 − cr)2 e
cr
8 := δ < 1, ∀j ∈ Z+. (96)

hus, the inequality (95) leads to

n−2

i=0

Bie
−b

∑n−1
j=i+1 τj ≤

2Jc4sr Ẽ2
0

k2b3(1 − δ)
e−b

∑n−1
j=0 τj . (97)

n the similar way, we get

n−1 ≤
2Jc4sr Ẽ2

0

k2b3(1 − δ)
e−b

∑n−1
j=0 τj . (98)

Recalling that τj = tj+1 − tj and t0 = 0, we get
∑n−1

j=0 τj = tn.
pplying (97) and (98) to (94), we arrive at

n ≤ (W0 + ÃE2
0 )e

−btn . (99)

here A =
2Jc4sr

k2b3(1−δ)
.

ii) For t ∈ [tn, tn+1),
Applying comparison principle to (88) from tn to t ∈ [tn, tn+1),

e get

(t) ≤ Wne−b(t−tn) + ÃE2
0e

−bt . (100)

inally, combining (99) and (100), we obtain

(t) ≤ (W0 + 2ÃE2
0 )e

−bt . (101)

ecalling the relation W = Ve−as(t) defined in (87), and applying
0 < s(t) < sr , the norm estimate for W in (101) leads to the
following estimate for V :

V (t) ≤ easr (V0 + 2ÃE2
0 )e

−bt . (102)

As presented in Section 3, due to the invertibility of the transfor-
mations, there exist positive constants M > 0 and M > 0 such
hat (53) holds. Moreover, due to the definition of the reference
nergy Ẽ(t) =

k
α

∫ s(t)
0 u(x, t)dx+ k

β
X(t) given in (67), using Young’s

nd Cauchy–Schwarz inequalities one can show Ẽ2
0 ≤ KΨ0, where

K = 2k2 max{ sr
α2
, 1
β2

}. Applying them to (102), we deduce that
here exists a positive constant M > 0 such that Ψ (t) ≤ MΨ0e−bt

holds, which completes the proof of Theorem 11.
9

Fig. 2. Schematic of the two-phase Stefan problem.

Part II: Two-Phase Stefan System

5. Two-phase Stefan problem with heat loss

In this section, we extend the ISS result to the ‘‘two-phase’’
Stefan problem, where the heat loss at the interface is precisely
modeled by the temperature dynamics in the solid phase, follow-
ing the work in Koga and Krstic (2020b). An unknown heat loss
is then accounted not at the interface, but at the boundary of the
solid phase. This configuration is depicted in Fig. 2.

5.1. Problem statement

The governing equations are described by the following cou-
pled PDE–ODE–PDE system:

∂Tl
∂t

(x, t) =αl
∂2Tl
∂x2

(x, t), for t > 0, 0 < x < s(t), (103)

∂Tl
∂x

(0, t) = − qc(t)/kl, Tl(s(t), t) = Tm, for t > 0, (104)

∂Ts
∂t

(x, t) =αs
∂2Ts
∂x2

(x, t), for t > 0, s(t) < x < L, (105)

∂Ts
∂x

(L, t) = − qf(t)/ks, Ts(s(t), t) = Tm, for t > 0, (106)

γ ṡ(t) = − kl
∂Tl
∂x

(s(t), t) + ks
∂Ts
∂x

(s(t), t), (107)

here γ = ρl∆H∗, and all the variables denote the same physical
alue with the subscript ‘‘l’’ for the liquid phase and ‘‘s’’ for the
olid phase, respectively. The solid phase temperature must be
ower than the melting temperature, which serves as one of the
onditions for the model validity, as stated in the following.

emark 3. To keep the physical state of each phase meaningful,
he following conditions must be maintained:

Tl(x, t) ≥Tm, ∀x ∈ (0, s(t)), ∀t > 0, (108)

s(x, t) ≤Tm, ∀x ∈ (s(t), L), ∀t > 0, (109)

0 <s(t) < L, ∀t > 0. (110)

The definition of the solution to the two-phase Stefan problem
s given below.

efinition 3. Let s0 ∈ (0, L) be a given constant, qc, qf : R+ →

+, Tl,0 : [0, s0] → [Tm,∞) with Tl,0(s0) = Tm, Ts,0 : [s0, L] →

−∞, Tm] with Ts,0(s0) = Tm be given functions. The initial–
oundary value problem (103)–(107) has a solution if there exists
pair of functions s ∈ C0(R+; (0, L)) ∩ C1((0,+∞); (0, L)), Tl :

→ [T ,∞) with D =
⋃

(t × [0, s(t)]), T : D →
l m l t≥0 s s
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−∞, Tm] with Ds =
⋃

t≥0(t × [s(t), L]) such that (i) Tl,
∂Tl
∂x

re continuous for t > 0, x ∈ [0, s(t)], and Ts, ∂Ts∂x are con-
inuous for t > 0, x ∈ [s(t), L], (ii) ∂Tl

∂t ,
∂2Tl
∂x2

are continuous

or t > 0, x ∈ (0, s(t)), and ∂Ts
∂t ,

∂2Ts
∂x2

are continuous for t >

, x ∈ (s(t), L) (iii) Tl is continuous for t = 0, x ∈ (0, s0]
with Tm ≤ lim inf(x,t)→(0,0)(Tl(x, t)) ≤ lim sup(x,t)→(0,0)(Tl(x, t)) <
+∞, and Ts is continuous for t = 0, x ∈ [s0, L) with −∞ ≤

lim inf(x,t)→(L,0)(Ts(x, t)) ≤ lim sup(x,t)→(L,0)(Ts(x, t)) < Tm (iv)
(103), (104), (105), (106), (107) hold, (v) s(0) = s0, Tl(x, 0) =

Tl,0(x), for x ∈ (0, s0], and Ts(x, 0) = Ts,0(x), for x ∈ [s0, L).

The following assumption on the initial data (Tl,0(x), Ts,0(x), s0)
:= (Tl(x, 0), Ts(x, 0), s(0)) is imposed.

Assumption 13. 0 < s0 < L, Tl,0(x) ∈ C0([0, s0]; [Tm,+∞)),
Ts,0(x) ∈ C0([s0, L]; (−∞, Tm]), and Tl,0(s0) = Ts,0(s0) = Tm.
Also, there exists constants T̄l, T̄s, ηl, ηs > 0 such that 0 ≤

Tl,0(x) − Tm ≤ T̄l
(
1 − exp Lηlα−1

l (x − s0)
)
for x ∈ [0, s0] and

−T̄s
(
1 − exp Lηsα−1

s (x − s0)
)

≤ Ts,0(x) − Tm ≤ 0 for x ∈ [s0, L].

The following lemma is provided to ensure the conditions of
the model validity.

Lemma 14. Let Assumption 13 hold, qc(t) and qf(t) be bounded
nonnegative continuous functions qc ∈ C0(R+; [0, q̄c)), qf ∈ C0(R+;

[0, q̄f)) for some q̄c, q̄f > 0, and

max
{
klεl
αl

(
1 +

αl

L2ηl

)
,
ksεs
αs

(
1 +

αs

L2ηs

)}
<
γ

4
, (111)

hold, where εl := max
{
T̄l, q̄cLk−1

l

}
, εs := max

{
T̄s, q̄fLk−1

s

}
.

Furthermore, suppose it holds

0 < γ s∞ +

∫ t

0
(qc(s) − qf(s))ds < γ L, (112)

for all t ≥ 0, where s∞ := s0 +
kl
αlγ

∫ s0
0 (Tl,0(x) − Tm)dx +

ks
αsγ

∫ L
s0
(Ts,0(x) − Tm)dx. Then the initial–boundary value problem

103)–(107) has a unique solution in the sense of Definition 3.

Lemma 14 is proven in Cannon and Primicerio (1971)
Theorem 1 in p.4 and Theorem 4 in p.8) by employing the
aximum principle. The variable s∞ is the final interface position

∞ = limt→∞ s(t) under the zero heat input qc(t) ≡ qf(t) ≡ 0 for
ll t ≥ 0. For (112) to hold for all t ≥ 0, we at least require it to
old at t = 0, which leads to the following assumption.

ssumption 15. The variable s∞ given by initial values satisfies
< s∞ < L.

Furthermore, we impose Assumption 6, and the restriction for
he setpoint is given as follows.

ssumption 16. The setpoint sr satisfies s∞ < sr < L.

Physically, Assumption 15 states that neither phase disappears
under qc(t) ≡ qf(t) ≡ 0, and Assumption 16 states that the choice
f the setpoint for the melting is far beyond s∞ from the heat

input. A graphical illustration of the assumptions can be found
in Koga and Krstic (2020b).

5.2. ISS for two-phase Stefan problem

We apply the boundary feedback control developed in (Koga
& Krstic, 2020b)

qc(t) = − c
(
kl
αl

∫ s(t)

0
(Tl(x, t) − Tm)dx

+
ks
∫ L

(Ts(x, t) − Tm)dx + γ (s(t) − sr)
)
, (113)
αs s(t)

10
to the two-phase Stefan problem with the unknown heat loss
qf(t) governed by (103)–(107). To satisfy the inequality (111), we
impose the following assumption.

Assumption 17. qf(t) ∈ C0(R+; [0, q̄f)) for some q̄f > 0, and the
inequality (111) holds with q̄c = q0 + q̄f, where

0 = −c
(
kl
αl

∫ s0

0
(Tl,0(x) − Tm)dx +

ks
αs

∫ L

s0

(Ts,0(x) − Tm)dx

+γ (s0 − sr)) .

As in the previous procedure, the equivalence of the closed-
loop system under the control law (113) with the system under
an open-loop input is presented in the following lemma.

Lemma 18. Under Assumptions 6, and 13–17, the closed-loop
system consisting of (103)–(107) with the control law (113) has a
unique solution in the sense of Definition 3 satisfying (108)–(110)
for all t ≥ 0, which is equivalent to the open-loop solution of
(103)–(107) with qc(t) = q0e−ct

+c
∫ t
0 e−c(t−τ )qf(τ )dτ , for all t ≥ 0.

The proof of Lemma 18 is established by following the same
rocedure as Lemmas 7, 9 with the help of Lemma 14. We
mit the proof in this paper. Note that the open-loop control is
ounded by qc(t) ≤ q0e−ct

+ q̄fc
∫ t
0 e−c(t−τ )dτ = q0e−ct

+ q̄f(1 −
−ct ) ≤ q0 + q̄f. We present ISS result for the closed-loop system
n the following theorem.

heorem 19. Under Assumptions 6 and 13–17, the closed-loop
ystem consisting of (103)–(107) with the control law (113) has a
nique solution in the sense of Definition 3, and is ISS with respect
o the heat loss qf(t) at the boundary of the solid phase. Moreover,
here exist positive constants M1 > 0 and M2 > 0 such that the
ollowing estimate holds:

(t) ≤ M1Ψ (0)e−λt
+ M2 sup

τ∈[0,t]
qf(τ ), (114)

or all t ≥ 0, where λ =
1
32 min

{
αl
L2
, 2αs

L2
, c
}
, in the L2 norm Ψ (t) =(∫ s(t)

0 (Tl[t] − Tm)2dx +
∫ L
s(t)(Ts[t] − Tm)2dx +(s(t) − sr)2

) 1
2 .

roof. The conditions (108)–(110) are ensured by Lemma 18. To
rove ISS, by following the procedure in Koga and Krstic (2020b),
irst we introduce the reference error states as u(x, t) := Tl(x, t)−
m, v(x, t) := Ts(x, t) − Tm, and

X(t) := s(t) − sr +
βs

αs

∫ L

s(t)
(Ts(x, t) − Tm)dx. (115)

hen, the total PDE–ODE–PDE system given in (103)–(107) is
educed to the following PDE–ODE system

ut (x, t) =αluxx(x, t), 0 < x < s(t), (116)

x(0, t) = − qc(t)/kl, u(s(t), t) = 0, (117)

Ẋ(t) = − βlux(s(t), t) − d(t), (118)

here d(t) =
βs
ks
qf(t). Note that the formulation of the above

system is equivalent to (24)–(27), and hence essentially we follow
similar procedure to Section 3.3. Therefore, applying the same
transformation (u, X) ⇒ (w, X) by (28) and (33), and the inverse
transformation (w, X) ⇒ (u, X) by (35) and (36), the target
(w, X)-system is given by (29), (31), (32), and (37). Then, consid-
ering the Lyapunov function V (t) =

1
2αl

∥w∥
2
+

ε
2βl

X(t)2, as proven

in Appendix, for a sufficiently small ε > 0, the inequality (43) is
derived.

However, the dynamics of the interface is distinct in the two-
phase Stefan problem from the one-phase Stefan problem, and
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S
r

ence the definition of z(t) given by (44) in Section 3.3 should be
modified. We introduce

z(t) := s(t) +
2βs

αs

∫ L

s(t)
v(x, t)dx + 2

∫ t

0
d(τ )dτ . (119)

The time derivative of (119) is given by

ż(t) = −βlux(s(t), t) − βsvx(s(t), t) ≥ 0, (120)

where the positivity follows from ux(s(t), t) < 0 and vx(s(t), t) >
0 derived from Hopf’s lemma. Since ṡ(t) = −βlux(s(t), t) +

βsvx(s(t), t), it holds that |ṡ(t)| ≤ −βlux(s(t), t) − βsvx(s(t), t) =

ż(t). Applying this inequality to (43) leads to

V̇ (t) ≤ −bV (t) + Γ d(t)2 + aż(t)V (t). (121)

By (11), (110), Assumption 13, and (120), we have 0 < z(t) −

z(0) < z̄ := L +
2βM
k −

2βs
αs

∫ L
s0
v0(x)dx. By this and (121),

applying the same procedure for the derivation from (48) to (52)
in Section 3, we derive that there exist positive constants N1 > 0
and N2 > 0 such that the following norm estimate holds:

Φ(t) ≤ N1Φ(0)e−
b
4 t + N2 sup

τ∈[0,t]
qf(τ ), (122)

here Φ(t) =

(∫ s(t)
0 u(x, t)2dx + X(t)2

) 1
2
, b =

1
8 min

{
αl
L2
, c
}
. Let

us define the following threefunctionals V1(t) =
∫ s(t)
0 (Tl(x, t) −

Tm)2dx, V2(t) =
∫ L
s(t)(Ts(x, t) − Tm)2dx, and V3(t) = (s(t) − sr)2.

Taking the time derivative of V2 along with the solid phase dy-
namics (105) and (106), and applying Young’s, Cauchy–Schwarz,
Poincare’s and Agmon’s inequalities, we get

V̇2(t) ≤ −
αs

4L2
V2(t) +

4Lαs

k2s
qf(t)2. (123)

Applying the same procedure as the derivation from (50) to (51),
and taking the square root, one can derive√
V2(t) ≤

√
V2(0)e

−
αs

16L2
t
+ 4L

√
2Lks−1 sup

τ∈[0,t]
qf(τ ). (124)

Taking the square of (115), and applying Young’s and Cauchy–
Schwarz inequalities with 0 < s(t) < L leads to

X(t)2 ≤ 2V3(t) + 2Lβ2
s αs

−2V2(t). (125)

Applying the same manner to s(t) − sr = X(t) −
βs
αs

∫ L
s(t)(Ts(x, t) −

m)dx obtained by (115), one can also derive

3(t) ≤ 2X(t)2 + 2Lβ2
s αs

−2V2(t). (126)

ombining (122), (124), (125), and (126) using the definitions of
1, V2, V3, and noting that Φ(t)2 = V1(t)+ X(t)2, Ψ (t)2 = V1(t)+
2(t)+V3(t), it holds that Ψ (t)2 ≤ V1 +

(
1 +

2Lβ2s
α2s

)
V2 +2X(t)2 ≤

2Φ(t)2 +

(
1 +

2Lβ2s
α2s

)
V2, which yields Ψ (t) ≤

√
2
(
N1Φ(0)e−

b
4 t

+N2 supτ∈[0,t] qf(τ )
)

+

√(
1 +

2Lβ2s
α2s

)(
√
V2(0)e

−
αs

16L2
t
+

4L
√
2L

ks

supτ∈[0,t] qf(τ )
)
. Thus, the inequality (114) is derived for some

M1 > 0 and M2 > 0, which completes the proof of Theorem 19.

Remark 4. The extension of the sampled-data result in Section 4
to the two-phase Stefan problem is not trivial. The challenge lies
in the proof of the well-posedness of the solution which requires
to guarantee the inequality (111) to hold at every sampling time
t = tj for all j ∈ Z+ under the closed-loop system (103)–(107)
with the control law applying ZOH to (113).
 f
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Table 1
Physical properties of paraffin (liquid).
Description Symbol Value

Density ρ 790 kg m−3

Latent heat of fusion ∆H∗ 210 J g−1

Heat capacity Cp 2.38 J g−1 ◦C−1

Melting temperature Tm 37.0 ◦C
Thermal conductivity k 0.220 W m−1

6. Numerical simulation

Simulation results are performed for the one-phase Stefan
problem by considering a cylinder of paraffin whose physical
properties are given in Table 1. Here, we use the well known
boundary immobilization method combined with finite differ-
ence semi-discretization (Kutluay, Bahadir, & Özdes, 1997). The
setpoint and the initial values are chosen as sr = 2 [cm], s0 =

0.1 [cm], and T0(x) − Tm = T̄0(1 − x/s0) with T̄0 = 1 [◦C]. Then,
the setpoint restriction (10) is satisfied.

First, we incorporate the heat loss at the interface and apply
the continuous-time control law (9). The control gain is set as c =

5.0× 10−3 [/s], and the heat loss at the interface is set as qf(t) =

¯ fe−Kt , where K = 5.0 × 10−6 [/s]. The closed-loop responses
or q̄f = 1.0 × 102 [W/m2] (red), 2.0 × 102 [W/m2] (blue), and
.0 × 103 [W/m2] (green) are implemented as depicted in Fig. 3.
ig. 3(a) shows the dynamics of the interface, which illustrates
he convergence to the setpoint with an error due to the un-
nown heat loss at the interface. This error becomes larger as q̄f
ets larger, which is consistent with the ISS result. In addition,
he property 0 < s(t) < sr is observed, which is consistent
ith Lemma 9. Fig. 3(b) shows the dynamics of the proposed
losed-loop control law, and Fig. 3(c) shows the dynamics of the
oundary temperature T (0, t). These figures illustrate the other
onditions proved in Lemma 9. Hence, we can observe that the
imulation results are consistent with the theoretical result we
rove for the model validity conditions and ISS.
Second, we neglect the heat loss (i.e., qf(t) = 0) and apply the

ampled-data control law (55). We consider periodic sampling
ith period given by τj = R = 10 [min], for all j ∈ Z. The
ontrol gain is set as c = 5.0× 10−3/s, by which the require-
ent R < 1

c is satisfied. The time responses of the interface
osition, the control input, and the boundary temperature under
he closed-loop system are depicted in Fig. 4(a)–(c), respectively.
ig. 4(a) illustrates that the interface position s(t) converges to the

setpoint sr monotonically and smoothly without overshooting,
i.e., ṡ(t) > 0 and s0 < s(t) < sr hold for all t ≥ 0. Fig. 4(b) shows
hat the proposed sampled-data control law maintains constant
ositive value for every sampling period and is monotonically
ecreasing to zero. Fig. 4(c) illustrates that the boundary tem-
erature T (0, t) keeps greater than the melting temperature Tm
ith accompanying ‘‘spikes’’ at every sampling time t = τj up
o 2 h. Such spikes are caused by the large drop of the control
nput qc(t) at sampling time observed from Fig. 4(b), which affects
he boundary temperature directly as given in the boundary
ondition (2). Therefore, the numerical results are consistent with
he theoretical results we have established in Lemmas 12 for
he required properties and in Theorem 11 for the closed-loop
tability.

. Conclusions

In this paper we develop two new results for the control of the
tefan system, that are, ISS and the sampled-data control. First we
evisit the one-phase Stefan problem with heat loss at the inter-
ace studied in Koga et al. (2018), and show that the closed-loop
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Fig. 3. The responses of the system (1)–(5) with the heat loss qf(t) = q̄fe−Kt under the continuous-time feedback control (9). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. The responses of the system (1)–(5) without the heat loss (i.e., qf(t) ≡ 0) under the ZOH-based sampled-data control (55).
V

w

ystem under the control law in Koga et al. (2019) is well-posed
nd satisfies an estimate of the L2 norm in the sense of ISS with
espect to the heat loss. Second, we consider the sampled-data
ontrol of the one-phase Stefan problem by applying ZOH to the
ontinuous-time control law developed in Koga et al. (2019), and
how the global exponential stability of the closed-loop system
ithout the heat loss by analyzing the growth of the system’s
nergy. Finally, the similar procedure is performed to extend the
SS result to the two-phase Stefan problem by utilizing the control
esign in Koga and Krstic (2020b).
For the practical implementation it is significant to design an

bserver-based output feedback control with only the boundary
emperature measured at each sampling time, which will be
onsidered as one future work. Another interesting direction is
‘quantized control’’ which has a finite or regularly distributed
iscrete sets of the input value in addition to the sampling time
s a digital nature (Hayakawa, Ishii, & Tsumura, 2009; Selivanov
Fridman, 2016).
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ppendix. Stability analysis of target system

We prove the following lemma.

emma 20. Consider the target system governed by

wt (x, t) =αwxx(x, t) +
c
β
ṡ(t)X(t) + φ(x − s(t))d(t), (A.1)

wx(0, t) =δ(t) −
β

α
ε

[
w(0, t) −

β

α

∫ s(t)

0
ψ(−y)w(y, t)dy

−ψ(−s(t))X(t)] , (A.2)

w(s(t), t) =εX(t), (A.3)
12
Ẋ(t) = − cX(t) − βwx(s(t), t) − d(t), (A.4)

where φ(x) is defined by (33), and ψ(x) is defined by (36). Let V (t)
be a Lyapunov function defined by

V (t) =
1
2α

∥w∥
2
+

ε

2β
X(t)2. (A.5)

Then, there exists a positive constant ε∗ > 0 such that for all
ε ∈ (0, ε∗) the following inequality holds:

˙ (t) ≤ −bV (t) + Γ d(t)2 + 2srδ(t)2 + a|ṡ(t)|V (t), (A.6)

here a =
2βε
α

max
{
1, αc

2sr
2β3ε3

}
, b =

1
8 min

{
α

s2r
, c
}
, and Γ =

ε
βc +

2s3r
α2

(
csr
β

+ ε

)2
.

Proof. Note that Poincare’s and Agmon’s inequalities for the
system (A.1)–(A.3) with 0 < s(t) < sr lead to

∥w∥
2

≤ 2srε2X(t)2 + 4s2r ∥wx∥
2, (A.7)

w(0, t)2 ≤ 2ε2X(t)2 + 4sr∥wx∥
2. (A.8)

Taking the time derivative of (A.5) along with the solution of
(A.1)–(A.4), we have

V̇ (t) = − ∥wx∥
2
−
ε

β
cX(t)2 +

β

α
εw(0, t)2 − w(0, t)δ(t)

−
β

α
εw(0, t)

[
β

α

∫ s(t)

0
ψ(−y)w(y, t)dy

+ψ(−s(t))X(t)
]

−
ε

β
X(t)d(t) +

1
α

∫ s(t)

0
φ(x − s(t))w(x, t)dxd(t)

+
ṡ(t)
α

(
ε2

2
X(t)2 +

c
β

∫ s(t)

0
w(x, t)dxX(t)

)
. (A.9)
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pplying Young’s inequality to the last term in the first line, the
econd, third, and fourth lines of (A.9), we obtain

− w(0, t)f (t) ≤
1
8sr
w(0, t)2 + 2srδ(t)2, (A.10)

− w(0, t)
[
β

α

∫ s(t)

0
ψ(−y)w(y, t)dy + ψ(−s(t))X(t)

]
,

≤
γ1

2
w(0, t)2 +

β2

α2γ1

(∫ s(t)

0
ψ(−y)w(y, t)dy

)2

+
1
γ1
(ψ(−s(t))X(t))2 , (A.11)

−
ε

β
X(t)d(t) +

1
α

∫ s(t)

0
φ(x − s(t))w(x, t)dxd(t)

≤
1

2γ2

(
ε

β
X(t)

)2

+
(γ2 + γ3)

2
d(t)2

+
1

2α2γ3

(∫ s(t)

0
φ(x − s(t))w(x, t)dx

)2

, (A.12)

where γi > 0 for i = {1, 2, 3}. Applying (A.10)–(A.12) and
Cauchy–Schwarz, Poincare, and Agmon’s inequalities to (A.9) with
choosing γ1 = 16e

εsr
α , γ2 =

2ε
βc , and γ3 =

8(c2s2r +ε2)s3r
α2β2

, and setting
<

ln(2)α
sr

, we have

V̇ (t) ≤ −

(
1
4

−
βsr
α

(
38 +

cs2r
α

)
ε

)
∥wx∥

2

− ε

(
c
4β

+
ε

8sr
+ g(ε)

)
X(t)2 + Γ d(t)2 + 2srδ(t)2

+
|ṡ(t)|
2α

(
ε2X(t)2 +

2c
β

⏐⏐⏐⏐∫ s(t)

0
w(x, t)dxX(t)

⏐⏐⏐⏐) , (A.13)

where Γ =
(γ2+γ3)

2 , and g(ε) =
c
4β −

ε
4sr

−
β

α

(
36 +

cs2r
2α

)
ε2.

Since g(0) > 0 and g ′(ε) < 0 for all ε > 0, there exists ε∗

such that g(ε) > 0 for all ε ∈ (0, ε∗) and g(ε∗) = 0. Thus, set-

ting ε < min
{
ε∗, α

(
8βsr

(
38 +

cs2r
α

))−1
}
, the inequality (A.13)

leads to

V̇ (t) ≤ − bV (t) + Γ d(t)2 + 2srδ(t)2

+
|ṡ(t)|
2α

(
ε2X(t)2 +

2c
β

⏐⏐⏐⏐∫ s(t)

0
w(x, t)dxX(t)

⏐⏐⏐⏐) , (A.14)

where b =
1
2 min

{
α

8s2r
, c
}
. Applying (47) and Young’s inequality

o (A.14), the inequality (A.6) is derived.
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