
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 3, MARCH 2022 1179

Stochastic Nonlinear Prescribed-Time
Stabilization and Inverse Optimality

Wuquan Li , Senior Member, IEEE, and Miroslav Krstic , Fellow, IEEE

Abstract—We solve the prescribed-time mean-square
stabilization and inverse optimality control problems for
stochastic strict-feedback nonlinear systems by develop-
ing a new nonscaling backstepping design scheme. A key
novel design ingredient is that the time-varying function
is not used to scale the coordinate transformations and is
only suitably introduced into the virtual controllers. The ad-
vantage of this approach is that a simpler controller results
and the control effort is reduced. By using this method, we
design a new controller to guarantee that the equilibrium
at the origin of the closed-loop system is prescribed-time
mean-square stable. Then, we redesign the controller and
solve the prescribed-time inverse optimal mean-square sta-
bilization problem, with an infinite gain margin. Specifically,
the designed controller is not only optimal with respect to
a meaningful cost functional but also globally stabilizes
the closed-loop system in the prescribed-time. Finally, two
simulation examples are given to illustrate the stochastic
nonlinear prescribed-time control design.

Index Terms—Inverse optimality, nonscaling design,
prescribed-time stabilization, stochastic nonlinear
systems.

I. INTRODUCTION

R ESEARCH on stochastic stability of systems modeled
by stochastic differential equations has attracted much

attention in the past two decades [1]–[4]. For the stochastic
nonlinear control, there are mainly two Lyapunov-based con-
troller design approaches: quartic Lyapunov functions-based de-
sign [5], [6] and weighted quadratic Lyapunov functions-based
design [7], which are further developed by [8]–[12]. In recent
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years, attempts have been made toward studying stochastic
nonlinear finite-time control. Specifically, [13] and [14] estab-
lish the Lyapunov criterion of stochastic finite-time stability.
By designing state-feedback controllers, [15]–[17] solve the
finite-time stabilization problems for stochastic nonlinear strict-
feedback systems; [18] discusses the finite-time stability of
homogeneous stochastic nonlinear systems whose coefficients
have negative degrees of homogeneity; [19] relaxes the con-
straint on the differential operator and gives a more general
stochastic finite-time stability criteria. It should be noted that
all the above mentioned results [13]–[19] achieve stochastic
finite-time stabilization within some stochastic settling time,
which typically depends on initial conditions and is often un-
known (only almost sure finiteness can be ensured). However,
the unknown and stochastic character of the settling time makes
the results in [13]–[19] difficult to use in many real applications.
In several real-world applications, discussed in [20], [25], and
[26], stabilization is required within a known finite time to meet
the control objectives, motivating the study of prescribed-time
control.

In the prescribed-time control, the user can prescribe a known
specific convergence time, irrespective of initial conditions. In
this direction, [20] develops a scaling design method to solve
the prescribed-time regulation problem of nonlinear systems in
normal form, in which the system state is scaled by a time-
varying function that grows unbounded toward the terminal time;
[21] demonstrates the differences between the prescribed-time
control [20] and the traditional finite-time control [22], [23]; [24]
presents the prescribed-time consensus design for networked
first-order multiagent systems; [25] solves the prescribed-time
estimation problem for linear systems in the observer canonical
form. By leveraging the prescribed-time state-feedback con-
trol [20] and the prescribed-time observer [25], [26] designs
a prescribed-time output feedback controller for linear time-
invariant systems in controllable canonical form; [27] and [28]
focus on the prescribed-time stabilization of nonlinear strict-
feedback-like systems; [29] and [30] study the prescribed-time
output-feedback stabilization problems for reaction–diffusion
equations. It should be emphasized that all the above-mentioned
results [20], [30] on prescribed-time control are focused on de-
terministic systems. However, as demonstrated by [1], [4], [31]–
[33], and [42], the perturbations and unmodeled dynamics in
practical systems are often described by noise entering the
model; thus, the research of stochastic control has drawn con-
siderable attention and is gaining importance in econometrics,
biology, environmental science, and other areas. Therefore, from
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both practical and theoretical points of view, it is imperative
to study the prescribed-time control of stochastic nonlinear
systems.

The inverse optimal control problem has traditionally been
studied as a differential game problem, which circumvents the
task of solving a Hamilton–Jacobi equation and results in a
controller optimal with respect to a meaningful cost functional.
This approach requires the knowledge of a control Lyapunov
function and a stabilizing control law of a particular form. In
this direction, [34]–[36] focus on the inverse optimal control of
deterministic systems. For stochastic nonlinear systems, [37] is
the first paper to study the inverse optimality. Subsequently, [38]
solves the inverse optimal gain assignment problem for systems
driven by noise of unknown covariance. The work [39] studies
the inverse optimal control for high-order stochastic nonlinear
systems whose Jacobian linearization is neither controllable nor
feedback linearizable. The work [40] addresses the inverse opti-
mal stabilization problem for stochastic nonholonomic systems.
However, the controllers in [37]–[40] can only ensure global
asymptotic stability in probability. To the authors’ knowledge,
there is no related results about prescribed-time inverse optimal
control of stochastic nonlinear systems.

Motivated by the above observations, we study the prescribed-
time mean-square stabilization and prescribed-time inverse op-
timality control for stochastic strict-feedback nonlinear systems.
The contributions of this article are fourfold.

1) For prescribed-time control, we consider a general system
model in addition to those in the existing results [5]–[21]
and [24]–[30]. Different from the time-invariant sys-
tems [5]–[19], we focus on designing controllers charac-
terized by a time-varying function that grows unbounded
toward the terminal time, which makes the studied system
essentially time-varying. Unlike the deterministic sys-
tems [20], [21] and [24]–[30], the systems studied in this
article are perturbed by stochastic noise. In this article, the
inherent time-varying character of the closed-loop system
and the complexity of the stochastic process involved
makes the controller design and the stability analysis
much more difficult.

2) We present a new nonscaling design framework for
stochastic nonlinear systems in this article. Different from
the scaling design in [20], [21] and [24]–[26] where
the time-varying function is used to scale the states in
all the transformations, our approach does not use the
scaling function in the coordinate transformations. To
achieve prescribed-time stabilization, the time-varying
scaling function is suitably used to design virtual con-
trollers. In this way, a simpler controller can be designed
since the computation burden for the derivative of the
time-varying scaling function can be largely reduced
with nonscaling transformations. Therefore, the control
effort can be saved. This advantage is especially obvious
when the system order is high. It should be emphasized
that even for the deterministic nonlinear systems, the
nonscaling design scheme proposed in this article is
new.

3) Compared with the stochastic finite-time stability re-
sults [13]–[19] where the settling time is stochastic, un-
known, and heavily relies on the initial conditions, the
prescribed-time control developed in this article has a
clear advantage that the settling time is deterministic,
known, and irrespective of initial conditions, which al-
lows the user to prescribe the convergence time a priori.
Therefore, our control schemes are more practical in real
applications.

4) We propose a new prescribed-time inverse optimal control
design in this article. In [37]–[40], asymptotic stabiliza-
tion controllers are constructed to minimize cost func-
tionals which are characterized by time-invariant value
functions. In this article, we design a prescribed-time
mean-square stable controller to minimize a cost func-
tional equipped with time-varying value functions.

The remainder of this article is organized as follows. Sec-
tion II is on preliminaries. Section III is focused on nonscaling
controller design and stability analysis. Section IV is devoted to
prescribed-time inverse optimal stabilization. Section V gives
two examples to illustrate the theoretical results. Section VI
includes concluding remarks. Finally, some useful lemmas and
the proof of a crucial technical lemma are provided in the
appendices.

II. PRELIMINARIES

The following notation will be used throughout the article.
R+, Rn, Z, and Z+ denote the set of nonnegative real numbers,
the real n-dimensional space, the set of integers, and the set of
positive integers, respectively. For a given vector or matrix X ,
XT denotes its transpose, Tr{X} denotes its trace when X is
square, and |X| is the Euclidean norm of a vector X . Defining

|A| =
(∑n

i=1

∑m
j=1 a

2
ij

) 1
2

for a matrix An×m. For any a, b ∈
R, let a ∧ b = min{a, b} and a ∨ b = max{a, b}.χA(·) denotes
the indicator function of A. Let C1,2(R+ ×Rn;R+) denote
all nonnegative functions V (t, x) on R+ ×Rn which are C1

in t and C2 in x. K denotes the set of all functions: R+ →
R+, which are continuous, strictly increasing, and vanishing at
zero; K∞ denotes the set of all functions which are of class K
and unbounded. For a K∞ function γ whose derivative exists
and is also a K∞ function, �γ denotes the transform �γ(r) =
r(γ̇)−1(r)− γ((γ̇)−1(r)), where (γ̇)−1(r) stands for the inverse
function of dγ(r)

dr .
We introduce the following scaling functions:

μ1(t) =
T

t0 + T − t
(1)

μ(t) =

(
T

t0 + T − t

)m

= μm
1 (t)∀ t ∈ [t0, t0 + T ) (2)

where m ≥ 2 is a integer and T > 0 is the freely prescribed
time.

Obviously, μ(t) is a monotonically increasing function on
[t0, t0 + T ) with μ(t0) = 1 and limt→t0+T μ(t) = +∞ (in this
article, limt→t0+T means t approaches t0 + T “from the left”
or “from below”).

Authorized licensed use limited to: Miroslav Krstic. Downloaded on February 27,2022 at 17:33:20 UTC from IEEE Xplore.  Restrictions apply. 



LI AND KRSTIC: STOCHASTIC NONLINEAR PRESCRIBED-TIME STABILIZATION AND INVERSE OPTIMALITY 1181

Consider the following Itô stochastic nonlinear system:

dx = f(t, x, u(t, x))dt+ gT (t, x)dω ∀ x0 ∈ Rn (3)

where x ∈ Rn and u(t, x) ∈ R are the system state and control
input. ω is an m-dimensional independent standard Wiener
process defined on the complete probability space (Ω,F ,Ft, P )
with a filtration Ft satisfying the usual conditions (i.e., it is in-
creasing and right continuous whileF0 contains allP -null sets).
The functions f : R+ ×Rn ×R → Rn and g : R+ ×Rn →
Rm×n are continuous of their arguments and are locally Lips-
chitz in x (i.e., for every real number T1 satisfying 0 < T1 < T
and integer k ≥ 1, there exists a positive constant KT1,k such
that |f(t, x, u(t, x))− f(t, y, u(t, y))| ∨ |g(t, x))− g(t, y)| ≤
KT1,k|x− y| holds for all t ∈ [t0, t0 + T1] and all x, y ∈ Rn

with |x| ∨ |y| ≤ k). By [2, Th. 3.15], system (3) has an almost
surely unique strong solution x(t) on [t0, ρ∞), where ρ∞ is the
finite escape time.

For any given W (t, x) ∈ C1,2 associated with Itô stochastic
system (3), the differential operator L is defined as LW �
∂W
∂t + ∂W

∂x f(t, x, u(t, x)) + 1
2Tr{g(t, x)∂

2W
∂x2 gT (t, x)}.

Next, we give the definitions of prescribed-time mean-square
stable and prescribed-time inverse optimal mean-square stabi-
lization.

Definition 1: For stochastic system (3) with f(t, 0, 0) = 0
and g(t, 0) = 0, the equilibrium x(t) = 0 is prescribed-time
mean-square stable if there exist positive constants ki (1 ≤ i ≤
4) such that

E|x(t)|2 ≤ k1|x(t0)|2(1 + μk2
1 (t))e−k3μ

k4
1 (t)

∀ t ∈ [t0, t0 + T ). (4)

Definition 2: The problem of prescribed-time inverse optimal
mean-square stabilization for system (3) is solvable if there exist
a K∞ function γ(x) whose derivative is also a K∞ function, a
matrix-valued function R(x) such that R(x) = RT (x) > 0 for
all x, a nonnegative function l(t, x) which is positive definite on
x for fixed t, a nonnegative function S(t, x) which is positive
definite and radially unbounded on x for fixed t, and a con-
tinuous feedback control law u = α(t, x), which makes system
(3) prescribed-time mean-square stable and minimizes the cost
functional

J(u) = lim sup
r→∞

E

[
S(τr, x(τr)) +

∫ τr

t0

(l(t, x(t))

+μk5(t)γ(|Ru(t)|))dt] (5)

where r ∈ Z+, k5 ∈ Z and τr = (t0 + T ) ∧ inf{t : t ≥
t0, |x(t)| ≥ r}.

Remark 1: In Definition 1, by (1), we have
limt→t0+T E|x|2 = 0. Besides, denoting

	(t) = k1|x(t0)|2(1 + μk2
1 (t))e−k3μ

k4
1 (t) (6)

then we have

d	

dt
= k1

k2
T
|x(t0)|2e−k3μ

k4
1 μk2+1

1

·
(
1− k3k4

k2
(μk4−k2

1 + μk4
1 )

)

≤ k1
k2
T
|x(t0)|2e−k3μ

k4
1 μk2+1

1

(
1− k3k4

k2
μk4
1

)
. (7)

It can be deduced from (7) that E|x|2 is a strictly decreasing
function in [T ∗, t0 + T ), where

T ∗ = max

{
t0, t0 + T − T (

k3k4
k2

)1/k4

}
. (8)

From (8), it is obvious that t0 ≤ T ∗ < t0 + T .
Remark 2: In Definition 1, the prescribed-time mean-square

stability is characterized by four positive constants ki (1 ≤
i ≤ 4). Since k1, k2, k3, and k4 are free and independent
from each other, it is difficult to decide whether this stabil-
ity is uniform or not. However, for some special cases, we
can get the uniform stability. For example, if k3k4

k2
≥ 1

2 and

k4 ≥ k2, from the first equality in (7), we get d�
dt ≤ 0 on

[t0, t0 + T ). Subsequently, it follows from (4) in Definition 1
that E|x(t)|2 ≤ 2k1|x(t0)|2e−k3 ∀ t ∈ [t0, t0 + T ), which im-
plies that the mean-square stable is uniform. Therefore, with (4),
we conclude that the equilibrium x(t) = 0 of stochastic system
(3) is uniform prescribed-time mean-square stable in this case.

Remark 3: Although the prescribed-time inverse optimal con-
trol in Definition 2 is motivated by [36]–[39], Definition 2 has
the following two novel features.

1) The inverse optimal controller u = α(t, x) can make
system (3) achieve prescribed-time mean-square stable
while the controllers in [36]–[39] can only ensure global
asymptotic stability in probability.

2) The value functions l(t, x) and S(t, x) are time-varying,
while they are time-invariant in [36]–[39]. Besides, the
cost functional (5) is scaled with a time-varying function
μk5(t), which can be viewed as a penalty factor on the
controller.

In the following lemma, under some mild conditions, we
prove that the finite escape time ρ∞ of the strong solution to
system (3) is as least t0 + T . Besides, we provide a basic tool for
analyzing the prescribed-time mean-square stability. The proof
of this lemma is given in Appendix B.

Lemma 1: Consider the system (3). If there exist a non-
negative function U(t, x) ∈ C1,2([t0, t0 + T )×Rn;R+) and
positive constants c0 and M0 such that

lim
|x|→+∞

inf
t∈[t0,T1]

U(t, x) = +∞ ∀T1 ∈ (t0, t0 + T ) (9)

LU(t, x) ≤ −c0μU + μM0 ∀ t ∈ [t0, t0 + T ) (10)

then the following conclusions hold.
1) System (3) has an almost surely unique strong solution

on [t0, t0 + T ) for any x0 ∈ Rn.
2) The function U(t, x) satisfies

EU(t, x(t)) ≤ e−c0
∫ t
t0

μ(s)dsU(t0, x0) +
M0

c0∀ t ∈ [t0, t0 + T ). (11)

Next, we give an example to illustrate and verify the inequality
(11) in Lemma 1.
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Example 1: Consider the system

dx = − μ(t)xdt+ dω ∀ t ∈ [0, 1) (12)

where μ(t) = 1
(1−t)2 , t ∈ [0, 1), and ω is a scalar standard

Wiener process.
The unique solution of (12) is

x(t) = e1−
1

1−t

(
x(0) +

∫ t

0

e
1

1−s−1dω(s)

)
∀t ∈ [0, 1) (13)

where x(0) is the deterministic initial condition.
Noting

E

{∫ t

0

e
2

1−s−2ds

}
≤ te

2
1−t−2 < +∞ ∀t ∈ [0, 1) (14)

we have

E

{∫ t

0

e
1

1−s−1dω(s)

}
= 0 (15)

E

(∫ t

0

e
1

1−s−1dω(s)

)2

=

∫ t

0

e
2

1−s−2ds. (16)

It follows from (13), (15), and (16) that

E
{
x2(t)

}
= e2−

2
1−tx2(0) + e2−

2
1−t

∫ t

0

e
2

1−s−2ds (17)

holds for ∀t ∈ [0, 1).
Choosing U(t, x) = (t+ 1)x2, it is obvious that

lim
|x|→+∞

inf
t∈[0,T1]

U(t, x) = lim
|x|→+∞

x2 = +∞ (18)

holds for ∀T1 ∈ (0, 1).
In addition, from (12), we get

LU(t, x) = x2 − 2(t+ 1)μx2 + t+ 1

=
1

t+ 1
U − 2μU + t+ 1

≤ μU − 2μU + μ

= − μU + μ ∀t ∈ [0, 1). (19)

With (18) and (19), from (11) in Lemma 1, we have

EU(t, x(t)) ≤ e1−
1

1−tx2(0) + 1 ∀t ∈ [0, 1). (20)

Next, we verify whether (20) holds for system (12).
By (17), we obtain

EU = (t+ 1)e2−
2

1−tx2(0) + (t+ 1)e2−
2

1−t

·
∫ t

0

e
2

1−s−2ds ∀t ∈ [0, 1). (21)

Let

h1(t) = (t+ 1)e1−
1

1−t ∀t ∈ [0, 1). (22)

By (22), we have

dh1(t)

dt
= e1−

1
1−t

(
1− t+ 1

(1− t)2

)
≤ 0 ∀t ∈ [0, 1). (23)

By (22) and (23), we get

h1(t) ≤ h1(0) = 1 ∀t ∈ [0, 1). (24)

From (22) and (24), we have

(t+ 1)e2−
2

1−tx2(0) ≤ e1−
1

1−tx2(0) ∀t ∈ [0, 1). (25)

Let

h2(t) =
1

2
e

2
1−t −

∫ t

0

e
2

1−s ds. (26)

From (26), we get

dh2(t)

dt
= e

2
1−t

(
1

(1− t)2
− 1

)
≥ 0 ∀t ∈ [0, 1) (27)

which means that

h2(t) ≥ h2(0) =
1

2
e2 > 0 ∀t ∈ [0, 1). (28)

It follows from (26) and (28) that

1

2
e

2
1−t ≥

∫ t

0

e
2

1−s ds ∀t ∈ [0, 1) (29)

which implies that

(t+ 1)e2−
2

1−t

∫ t

0

e
2

1−s−2ds ≤ 1

2
(t+ 1) ≤ 1∀t ∈ [0, 1). (30)

From (21), (25), and (30), we get (20). Thus, the inequality (11)
in Lemma 1 is verified.

III. NONSCALING CONTROLLER DESIGN AND

PRESCRIBED-TIME STABILIZATION FOR STOCHASTIC STRICT

FEEDBACK DOMINATED SYSTEMS

A. Problem Formulation

Consider a class of stochastic nonlinear systems described by

dxi = (xi+1 + fi(t, x))dt+ gTi (t, x)dω,

i = 1, . . . , n− 1, (31)

dxn = (u+ fn(t, x))dt+ gTn (t, x)dω (32)

where x = (x1, . . . , xn)
T ∈ Rn and u ∈ R are the system state

and control input. The functions fi : R
+ ×Rn → R and gi :

R+ ×Rn → Rm are continuous of their arguments and are
locally Lipschitz in x (i.e., for every real number T1 sat-
isfying 0 < T1 < T and integer k ≥ 1, there exists a posi-
tive constant K̄T1,k such that |fi(t, x)− fi(t, y)| ∨ |gi(t, x)−
gi(t, y)| ≤ K̄T1,k|x− y| holds for all t ∈ [t0, t0 + T1] and all
x, y ∈ Rn with |x| ∨ |y| ≤ k), fi(t, 0) = 0, gi(t, 0) = 0, i =
1, . . . , n. ω is an m-dimensional independent standard Wiener
process whose definition can be found in system (3).

To proceed further, we need the following assumption.
Assumption 1: For i = 1, . . . , n, there exist positive constants

ci1 and ci2 such that

|fi(t, x)| ≤ ci1(|x1|+ · · ·+ |xi|) (33)

|gi(t, x)| ≤ ci2(|x1|+ · · ·+ |xi|). (34)

In this section, for system (31)–(32) with Assumption 1, we first
develop a novel nonscaling design scheme, by which a new time-
varying controller is designed; then we analyze the prescribed-
time mean-square stability of the closed-loop system.

B. Controller Design

Next, we design a time-varying controller for system (31)–
(32) step by step.

Authorized licensed use limited to: Miroslav Krstic. Downloaded on February 27,2022 at 17:33:20 UTC from IEEE Xplore.  Restrictions apply. 



LI AND KRSTIC: STOCHASTIC NONLINEAR PRESCRIBED-TIME STABILIZATION AND INVERSE OPTIMALITY 1183

Step 1. Define V1 = 1
4ξ

4
1 , ξ1 = x1, from (31), (33)–(34), and

the definition of L, we have

LV1(ξ1) = ξ31x2 + ξ31f1 +
3

2
ξ21 |g1|2

≤ ξ31(x2 − x∗
2) + ξ31x

∗
2 + ξ41

(
c11 +

3

2
c212

)
. (35)

Choosing

x∗
2 = − μδ1

(
c1 + c11 +

3

2
c212

)
ξ1 � −μδ1α1ξ1 (36)

which substitutes into (35) yields

LV1(ξ1) ≤ − c1μ
δ1ξ41 + ξ31(x2 − x∗

2) (37)

where δ1 = 1, c1 > 0 is a design parameter and α1 = c1 +
c11 +

3
2c

2
12.

Deductive Step: Assume that at step k − 1, there are set of
virtual controllers x∗

2, . . . , x
∗
k defined by

x∗
2 = −μδ1α1ξ1, ξ1 = x1, (38)

x∗
3 = −μδ2α2ξ2, ξ2 = x2 − x∗

2, (39)

...
...

x∗
k = −μδk−1αk−1ξk−1, ξk−1 = xk−1 − x∗

k−1 (40)

such that

LVk−1(ξ̄k−1) ≤ −
k−1∑
i=1

(ci − ak−1,i)μ
δiξ4i

+ ξ3k−1(xk − x∗
k) (41)

where α1, . . . , αk−1 are positive constants, ci > 0 is a de-
sign parameter, ak−1,1, . . . , ak−1,k−2 are arbitrary positive con-
stants, ak−1,k−1 = 0, ξ̄k−1 = (ξ1, . . . , ξk−1)

T , Vk−1(ξ̄k−1) =
1
4

∑k−1
i=1 ξ

4
i and

δ1 = 1, δi = 3 · 5i−2, 2 ≤ i ≤ k − 1. (42)

To complete the induction, at the kth step, we consider the
ξk-system.

Define ξk = xk − x∗
k, and from (38)–(40), we obtain

ξk = xk +

k−1∑
i=1

βi(t)xi (43)

βi(t) =
k−1∏
j=i

μδjαj . (44)

Noting that ∂2(βixi)
∂xi∂xj

= 0, by (31), (43), and Itô’s formula, we
get

dξk =

(
xk+1 + fk +

k−1∑
i=1

β̇ixi +

k−1∑
i=1

βi(xi+1 + fi)

)
dt

+

(
gTk +

k−1∑
i=1

βig
T
i

)
dω. (45)

We choose the Lyapunov function

Vk(ξ̄k) = Vk−1(ξ̄k−1) +
1

4
ξ4k. (46)

It follows from (41), (45)–(46), and the definition of L that

LVk(ξ̄k) ≤ −
k−1∑
i=1

(ci − ak−1,i)μ
δiξ4i + ξ3k−1ξk

+ ξ3kxk+1 + ξ3kfk + ξ3k

k−1∑
i=1

βi(xi+1 + fi)

+ ξ3k

k−1∑
i=1

β̇ixi +
3

2
ξ2k

∣∣∣∣gTk +
k−1∑
i=1

βig
T
i

∣∣∣∣
2

. (47)

For i = 1, . . . , k, by (33)–(34) and (38)–(40), we get

|fi(t, x)| ≤ ĉi1(μ
δ1 |ξ1|+ · · ·+ μδi−1 |ξi−1|+ |ξi|) (48)

|gi(t, x)| ≤ ĉi2(μ
δ1 |ξ1|+ · · ·+ μδi−1 |ξi−1|+ |ξi|) (49)

where ĉi1 and ĉi2 are positive constants.
By (42), (48), and Lemma A.2, we have

ξ3k−1ξk ≤ ak,k−1,1μ
δk−1ξ4k−1

+
1

4

(
4

3
ak,k−1,1

)−3

ξ4k, (50)

ξ3kfk ≤ ĉk1|ξk|3(μδ1 |ξ1|+ · · ·+ μδk−1 |ξk−1|+ |ξk|)

≤
k−1∑
i=1

ak,i,2μ
δiξ4i + μδk−1

(
ĉk1 +

3

4
ĉ
4/3
k1

·
k−1∑
i=1

(4ak,i,2)
−1/3

)
ξ4k (51)

where ak,k−1,1 and ak,i,2 are arbitrary positive constants.
From (44) and the definition of δk, we have

βi = μδi+···+δk−1

k−1∏
j=i

αj , (52)

|β̇i| ≤
⎛
⎝m

T

k−1∑
j=i

δj

⎞
⎠μδi+···+δk−1+1

k−1∏
j=i

αj . (53)

By (38)–(40), (42), (52), and Lemma A.2, we obtain

ξ3k

k−1∑
i=1

βixi+1 ≤ |ξk|3
k−1∑
i=1

μδi+···+δk−1

· (
k−1∏
j=i

αj)
(|ξi+1|+ μδiαi|ξi|

)

≤ μδk−1αk−1ξ
4
k +

k−1∑
i=1

μ2δi+δi+1+···+δk−1

· (α2
i + 1)

⎛
⎝ k−1∏

j=i−1

αj

⎞
⎠ |ξi||ξk|3

≤
k−1∑
i=1

ak,i,3μ
δiξ4i + μ7δk−1/3

(
αk−1
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+
3

4

k−1∑
i=1

(4ak,i,3)
−1/3(α2

i + 1)4/3

·
⎛
⎝ k−1∏

j=i−1

αj

⎞
⎠

4/3)
ξ4ks (54)

where ak,i,3 is an arbitrary positive constant and α0 = 1.
It follows from (42), (48), (52), and Lemma A.2 that

ξ3k

k−1∑
i=1

βifi ≤
k−1∑
i=1

(μδ1 |ξ1|+ · · ·+ μδi−1 |ξi−1|+ |ξi|)

·
(
ĉi1μ

δi+···+δk−1

k−1∏
j=i

αj |ξk|3
)

≤ (μδ1 |ξ1|+ · · ·+ μδk−2 |ξk−2|+ |ξk−1|)

·
(
c̄k−1,1(k − 1)μδ1+···+δk−1

k−1∏
j=1

αj |ξk|3
)

≤
k−1∑
i=1

ak,i,4μ
δiξ4i +

3

4
μ2δk−1

( k−1∑
i=1

(4ak,i,4)
−1/3

·
⎛
⎝c̄k−1,1(k − 1)

k−1∏
j=1

αj

⎞
⎠

4/3)
ξ4k (55)

where ak,i,4 is an arbitrary positive constant and c̄k−1,1 =
max{ĉ11, ĉ21, . . . , ĉk−1,1}.

By Lemma A.2, it can be deduced from (40), (42), and (53)
that

ξ3k

k−1∑
i=1

β̇ixi ≤ |ξk|3
k−1∑
i=1

⎛
⎝k−1∏

j=i

αj

⎞
⎠
⎛
⎝m

T

k−1∑
j=i

δj

⎞
⎠

· μδi+···+δk−1+1
(|ξi|+ μδi−1αi−1|ξi−1|

)

≤
k−1∑
i=1

⎛
⎝k−1∏

j=i

αj

⎞
⎠
⎛
⎝2 m

T

k−1∑
j=i

δj

⎞
⎠

· μδi+···+δk−1+1|ξi|ξk|3

≤
k−1∑
i=1

ak,i,5μ
δiξ4i +

3

4
μ2δk−1

k−1∑
i=1

(4ak,i,5)
−1/3

·
⎛
⎝k−1∏

j=i

αj

⎞
⎠

4/3⎛
⎝2 m

T

k−1∑
j=i

δj

⎞
⎠

4/3

ξ4k (56)

where ak,i,5 is an arbitrary positive constant and α0 = ξ0 = 0.
By (49) and (52), we obtain

3

2
ξ2k

∣∣∣∣gTk +

k−1∑
i=1

βig
T
i

∣∣∣∣
2

≤ 3

2
ξ2k

(
ĉk2(μ

δ1 |ξ1|+ · · ·+ μδk−1 |ξk−1|+ |ξk|)

+
k−1∑
i=1

μδi+···+δk−1

k−1∏
j=i

αj ĉi2(μ
δ1 |ξ1|+ · · ·

+ μδi−1 |ξi−1|+ |ξi|)
)2

≤ 3

2
ξ2k

(
ĉk2|ξk|+

k−1∑
i=1

μδi+···+δk−1

·
⎛
⎝ĉk2 +

k−1∑
s=i

k−1∏
j=s

αsĉs2

⎞
⎠ |ξi|

)2

≤ 3

2
kĉ2k2ξ

4
k +

3

2
k

k−1∑
i=1

μ2δi+···+2δk−1

·
⎛
⎝ĉk2 +

k−1∑
s=i

k−1∏
j=s

αsĉs2

⎞
⎠

2

ξ2i ξ
2
k. (57)

From (42), we have

3δi + 4(δi+1 + · · ·+ δk−1)

=

{
5δk−1, if i = 1,
5δk−1 − 2δi, if 2 ≤ i ≤ k − 1.

(58)

By (58) and Lemma A.2, (57) can be written as

3

2
ξ2k

∣∣∣∣gTk +

k−1∑
i=1

βig
T
i

∣∣∣∣
2

≤
k−1∑
i=1

ak,i,6μ
δiξ4i + μ5δk−1

(
3

2
kĉ2k2 +

9

16
k2

·
k−1∑
i=1

a−1
k,i,6

⎛
⎝ĉk2 +

k−1∑
s=i

k−1∏
j=s

αsĉs2

⎞
⎠

4)
ξ4k (59)

where ak,i,6 is an arbitrary positive constant.
From (42), (50)–(51), (54)–(56), and (59), we can choose

δk = max

{
δk−1, 2δk−1,

7

3
δk−1, 5δk−1

}

= 5δk−1 = 3 · 5k−2. (60)

With (60), substituting (50)–(51), (54)–(56), and (59) into (47)
yields

LVk(ξ̄k) ≤ −
k−1∑
i=1

(ci − ak,i)μ
δiξ4i + ξ3k(xk+1 − x∗

k+1)

+ ξ3kx
∗
k+1 + μδkξ4k

(
ĉk1 + αk−1 +

3

2
kĉ2k2

+
3

4
ĉ
4/3
k1

k−1∑
i=1

(4ak,i,2)
−1/3

+
3

4

k−1∑
i=1

(4ak,i,3)
−1/3(α2

i + 1)4/3

⎛
⎝ k−1∏

j=i−1

αj

⎞
⎠

4/3
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+
3

4

k−1∑
i=1

(4ak,i,4)
−1/3

⎛
⎝c̄k−1,1(k − 1)

k−1∏
j=1

αj

⎞
⎠

4/3

+
3

4

k−1∑
i=1

(4ak,i,5)
−1/3

⎛
⎝k−1∏

j=i

αj

⎞
⎠

4/3

·
⎛
⎝2 m

T

k−1∑
j=i

δj

⎞
⎠

4/3

+
9

16
k2

k−1∑
i=1

a−1
k,i,6 (ĉk2

+
k−1∑
s=i

k−1∏
j=s

αsĉs2

⎞
⎠

4

+
1

4

(
4

3
ak,k−1,1

)−3)
(61)

where

ak,i = ak−1,i +
6∑

j=2

ak,i,j , i = 1, . . . , k − 2 (62)

ak,k−1 = ak−1,k−1 +
6∑

j=1

ak,i,j . (63)

Choosing the virtual controller

x∗
k+1 = − μδkξk

(
ck + ĉk1 + αk−1 +

3

2
kĉ2k2

+
1

4
(
4

3
ak,k−1,1)

−3 +
3

4
ĉ
4/3
k1

k−1∑
i=1

(4ak,i,2)
−1/3

+
3

4

k−1∑
i=1

(4ak,i,3)
−1/3(α2

i + 1)4/3

⎛
⎝ k−1∏

j=i−1

αj

⎞
⎠

4/3

+
3

4

k−1∑
i=1

(4ak,i,4)
−1/3

⎛
⎝c̄k−1,1(k − 1)

k−1∏
j=1

αj

⎞
⎠

4/3

+
3

4

k−1∑
i=1

(4ak,i,5)
−1/3

⎛
⎝k−1∏

j=i

αj

⎞
⎠

4/3⎛
⎝2 m

T

k−1∑
j=i

δj

⎞
⎠

4/3

+
9

16
k2

k−1∑
i=1

a−1
k,i,6

⎛
⎝ĉk2 +

k−1∑
s=i

k−1∏
j=s

αsĉs2

⎞
⎠

4)

� − μδkαkξk (64)

with which (61) can be rewritten as

LVk(ξ̄k) ≤ −
k∑

i=1

(ci − ak,i)μ
δiξ4i + ξ3k(xk+1 − x∗

k+1) (65)

where ck > 0 is a design parameter and ak,k = 0.
Step n . Similar to (64)–(65), by choosing the actual control

law

u = − μδnαnξn (66)

we have

LVn(ξ̄n) ≤ −
n∑

i=1

(ci − an,i)μ
δiξ4i (67)

where cn > 0 is a design parameter, δn = 3 · 5n−2, αn is a posi-
tive constant, an,n = 0, an,1, . . . , an,n−1 are positive constants,
ξn = xn − x∗

n and Vn(ξ̄n) =
1
4

∑n
i=1 ξ

4
i .

Choosing the design parameters as

ci > an,i, i = 1, . . . , n− 1 (68)

cn > 0 (69)

from (42) and (67)–(69), we have

LVn(ξ̄n) ≤ − 1

4
c

n∑
i=1

μδiξ4i ≤ −cμVn (70)

where c = 4min1≤i≤n−1{ci − an,i, cn}.
Remark 4: From the design process, it can be observed that

the order of μ in the controller is suitably constructed so that
the negative term −μδiξ4i dominates the nonnegative terms
produced by Itô’s formula. For example, the order of μ in
the virtual controller (64) is carefully chosen as δk = 3 · 5k−2.
On the one hand, if δk < 3 · 5k−2, from (57)–(59), we con-
clude that some nonlinear terms like μpξ41 (p > 1) appear,
which cannot be dominated by −μδ1ξ41 , losing the guaran-
tee of stability. On the other hand, if δk > 3 · 5k−2, although
the stochastic prescribed-time stability is achieved, the con-
trol effort will be larger. Therefore, a good choice of δk is
nontrivial. In fact, it can be deduced from (47)–(60) that the
minimum suitable value of δk is mainly decided by the Hes-
sian term 3

2ξ
2
k

∣∣gTk +
∑k−1

i=1 βig
T
i

∣∣2 [more details are found in
(57)–(60)].

C. Stability Analysis

In the following theorem, we give the main stability results
on system (31)–(32).

Theorem 1: Consider the plant consisting of (31)–(32), (66),
and (68)–(69). If Assumption 1 holds, then the following con-
clusions hold.

1) The plant has an almost surely unique strong solution on
[t0, t0 + T ).

2) The equilibrium at the origin of the plant is prescribed-
time mean-square stable with limt→t0+T E|x|2 =
limt→t0+T Eu2 = 0. Moreover, for ∀ t ∈ [t0, t0 + T ),
the following estimates hold:

E|x|2 ≤ √
n

(
n+

n−1∑
i=1

α2
iμ

2δi

)

·
(
x4
1(t0) +

n∑
k=2

⎛
⎝xk(t0) +

k−1∑
i=1

k−1∏
j=i

αjxi(t0)

⎞
⎠

4)1/2

· e−
cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)
(71)

Eu2 ≤ √
nα2

nμ
2δn

(
x4
1(t0)

+

n∑
k=2

⎛
⎝xk(t0) +

k−1∑
i=1

k−1∏
j=i

αjxi(t0)

⎞
⎠

4)1/2

· e−
cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)
. (72)
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Proof: From (66), for every real number T1 satisfying 0 <
T1 < T and integer k ≥ 1, there exists a positive constant K̃T1,k

such that

|u(t, x)− u(t, y)| ≤ K̃T1,k|x− y| (73)

holds for all t ∈ [t0, t0 + T1] and all x, y ∈ Rn with |x| ∨ |y| ≤
k. Besides, fi(t, x) and gi(t, x) are locally Lipschitz in x. Thus,
the plant satisfies the local Lipschitz condition.

From (38)–(40), we have

x=

⎡
⎢⎢⎢⎣

1 0 0 · · · 0 0
−α1μ

δ1 1 0 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 −αn−1μ

δn−1 1

⎤
⎥⎥⎥⎦ξ � H1(μ)ξ. (74)

By (74), we get

|x| ≤
(
n+

n−1∑
i=1

α2
iμ

2δi

)1/2

|ξ| (75)

which means that

|ξ| ≥
(
n+

n−1∑
i=1

α2
iμ

2δi

)−1/2

|x|. (76)

Noting that Vn(ξ̄n) =
1
4

∑n
i=1 ξ

4
i , by (70) and (76), the condi-

tions (9) and (10) in Lemma 1 hold.
Therefore, by Lemma 1, conclusion 1) holds and

EVn(t, x) ≤ e−c
∫ t
t0

μ(s)dsVn(t0, x0) ∀ t ∈ [t0, t0 + T ).
(77)

By (77) and Schwarz inequality, we obtain

E|ξ|2 ≤ {
E|ξ|4}1/2

≤ 2
√
n {EVn}1/2

≤ 2
√
ne−

c
2

∫ t
t0

μ(s)dsV 1/2
n (t0, x0)∀ t ∈ [t0, t0 + T ). (78)

By (2) and (78), we get

E|ξ|2 ≤ 2
√
ne

− cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)

· V 1/2
n (t0, x0), ∀ t ∈ [t0, t0 + T ). (79)

From (43)–(44), (75), and (79), we have

E|x|2 ≤ √
n

(
n+

n−1∑
i=1

α2
iμ

2δi

)

·
(
x4
1(t0) +

n∑
k=2

⎛
⎝xk(t0) +

k−1∑
i=1

k−1∏
j=i

αjxi(t0)

⎞
⎠

4)1/2

· e−
cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)
∀ t ∈ [t0, t0 + T ). (80)

Noting that c > 0, T > 0, and m ≥ 2, by (2), we obtain

lim
t→t0+T

μke
− cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)
= 0 (81)

holds for any k ∈ R.
By (80) and (81), we get

lim
t→t0+T

E|x|2 = 0. (82)

Similar to (80) and (82), it follows from (66) and (79) that

Eu2 ≤ √
nα2

nμ
2δn

(
x4
1(t0)

+
n∑

k=2

⎛
⎝xk(t0) +

k−1∑
i=1

k−1∏
j=i

αjxi(t0)

⎞
⎠

4)1/2

· e−
cTm

2(m−1)

(
1

(t0+T−t)m−1 − 1
Tm−1

)
∀ t ∈ [t0, t0 + T ),

(83)

lim
t→t0+T

E|u|2 = 0. (84)

Remark 5: In this section, we propose a new nonscaling
backstepping design scheme for stochastic nonlinear system
(31)–(32) to achieve prescribed-time mean-square stable. The
merit of this design is not using the time-varying μ to scale
the coordinate transformations ξi = xi − x∗

i , i = 1, . . . , n, and
μ is suitably introduced into the virtual controller x∗

i . This
approach is essentially different from the scaling method devel-
oped in [20], [21], and [24]–[26] where the scaled transformation
ξi = μk(xi − x∗

i ) is used for the controller design at every step.
The main advantage of our approach is that a simpler controller
is designed and the computation burden arising from the deriva-
tive of μ is largely reduced with nonscaling transformations.
Therefore, the control effort can be saved.

It should be emphasized that, even when there is no noise in
system (31)–(32), the design method developed in this article is
also new for deterministic nonlinear systems. For the prescribed-
time control of deterministic nonlinear systems, to the best of the
authors’ knowledge, only the scaling design method is studied
in [20], [21], and [24]–[26]. Next, we use a scalar example to
demonstrated the differences between the two methods.

Consider the scalar system

ẋ = u+ ϕ(t, x) (85)

where ϕ(t, x) is a known continuous function.
The scaling method in [20], [21], and [24]–[26]: With the

scaling transformation z = μx and the Lyapunov functionU1 =
1
2z

2, we have

u = − ϕ(t, x)− k0

(
T

t0 + T − t

)m

x

− m

T

(
T

t0 + T − t

)
x (86)

|x(t)| =
(
1− t− t0

T

)m

e
− k0Tm

m−1 ( 1
(t0+T−t)m−1 − 1

Tm−1 )

· |x(t0)| ∀ t ∈ [t0, t0 + T ) (87)

where k0 is a positive constant.
The nonscaling method in this article: Using the nonscaling

transformation z = x and the Lyapunov function U2 = 1
2z

2, we
get

u = − ϕ(t, x)− k0

(
T

t0 + T − t

)m

x (88)

|x(t)| = e
− k0Tm

m−1 ( 1
(t0+T−t)m−1 − 1

Tm−1 )

· |x(t0)| ∀ t ∈ [t0, t0 + T ). (89)
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From (86)–(89), the above two approaches can both make sys-
tem (85) achieve prescribed-time stable with limt→t0+T |x| =
limt→t0+T |u| = 0. However, compared with the controller (86),
our controller (88) is simpler, and, thus, it is easier for implemen-
tation. With the order of the system increasing, this advantage
becomes more obvious. From (87) and (89), we find that the
cost for a simpler controller is the relatively slower converge
speed.

Remark 6: From the controller design and the stability anal-
ysis developed above, it can be observed that the linear growth
condition in Assumption 1 guarantees the existence of the
moments of x and u. This is a reasonable assumption since
if the f ′

is and g′is grow too fast, the moments of x and u will
go to infinity in very short time [2]. In addition, as shown by
[33, Th. 5.4, Pg. 133], [41, Th. 10.7.2, Pg. 210], and [42,
Th. 4.4 in Pg. 61], the linear growth condition in Assumption
1 is crucial to make stochastic systems achieve mean-square
stable.

In this article, if Assumption 1 is not satisfied, by taking
a similar design procedure as that in Section III, it is easily
concluded that α1, . . . , αk−1 in (38)–(40), αk in (64), and αn

in (66) will be not constants but abstract functions (similar to
[5, (3.23)], it is nearly impossible to express them as an explicit
form of x1, . . ., xn for system (31)–(32)]. Next, we explain what
prevents to generalize the design in this article if Assumption 1
fails.

1) If the drift terms f1(t, x), . . . , fn−1(t, x) and the diffusion
terms g1(t, x), . . . , gn−1(t, x) do not satisfy Assumption
1, it follows from the design process that αn−1 will be
an abstract nonnegative smooth function of x1, . . ., xn−1,
which implies that H1(μ) in (74) will be an abstract func-
tion of x1, . . ., xn−1. Although we can clearly describe
the structure μ in H1(μ, x), it is nearly impossible to tell
the concrete structure of x = (x1, . . . , xn)

T in H1(μ, x),
which means that we cannot analyze the mean-square
property of x since it is difficult to analyze E{H1(μ, x)}.
Thus, even we can get prescribed-time mean-square sta-
ble for ξ1, . . ., ξn from (70), it is difficult to achieve
prescribed-time mean-square stable for the states x1, . . .,
xn.

2) If the drift terms fn(t, x) and the diffusion terms gn(t, x)
do not satisfy Assumption 1, it follows from the design
process that αn in (66) will be an abstract nonnegative
smooth function of x1, . . ., xn. Therefore, it is difficult to
get the mean-square property of the controller u since it
is difficult to analyze E{αn}.

Nevertheless, in some special cases, the requirement of the
linear growth condition on f ′

is and g′is can be slightly relaxed.
For example, if fi(t, x) and gi(t, x) (1 ≤ i ≤ n− 1) satisfy As-
sumption 1, but fn(t, x) and gn(t, x) do not satisfy Assumption
1, by following the design and analysis method developed in
Section III, we can still solve the prescribed-time mean-square
stabilization problem to get (71). However, for the controller
u, we can only get a weaker result than (72) since αn in the
controller (66) may no longer be a constant but a function ofx. In
the simulation section, we use Example 4 to further demonstrate
this point.

IV. PRESCRIBED-TIME INVERSE OPTIMAL STABILIZATION

In this section, we redesign the controller to solve the
prescribed-time inverse optimal mean-square stabilization prob-
lem for system (31)–(32).

First, we rewrite (31)–(32) as

dx =

⎡
⎢⎢⎢⎣

x2 + f1(t, x)
...

xn + fn−1(t, x)
fn(t, x)

⎤
⎥⎥⎥⎦ dt+

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦udt

+

⎡
⎢⎢⎢⎣

gT1 (t, x)
...

gTn−1(t, x)
gTn (t, x)

⎤
⎥⎥⎥⎦ dω

= F (t, x)dt+G1udt+G2(t, x)dω. (90)

From the design in Section III, the controller

u = − μδnαnξn (91)

with ci = an,i +
1
4 and cn = 1

4 leads to

LVn|(90) ≤ − μVn (92)

where the definitions of δn+1, αn, ξn, and Vn can be found in
Section III.

In the following theorem, we give the main results on
prescribed-time inverse optimal mean-square stabilization for
system (31)–(32).

Theorem 2: If Assumption 1 holds for system (31)–(32), then
the control law

u∗(t, x) = −2

3
βμδnαnξn, β ≥ 2 ∀ t ∈ [t0, t0 + T ) (93)

solves the prescribed-time inverse optimal mean-square stabi-
lization problem for system (31)–(32) by minimizing the cost
functional

J(u) = lim sup
r→∞

E [2βVn(τr, x(τr))

+

∫ τr

t0

(
l(t, x(t)) +

27

16β2μ3δn(t)α3
n

u4(t)

)
dt

]
(94)

where

l(t, x) = 2β

(
μδnαnξ

4
n − ∂Vn

∂t
− ∂Vn

∂x
F

− 1

2
Tr

{
GT

2

∂2Vn

∂x2
G2

})
+ β(β − 2)μδnαnξ

4
n

(95)

is positive definite and radially unbounded but not necessarily
decrescent.

Proof: From (92) and (95), we obtain

l(t, x) ≥ 2βμVn + β(β − 2)μδnαnξ
4
n. (96)

By (2), (76), and the definition of Vn, we get

Vn ≥ 1

4n
|ξ|4 ≥ 1

4n
(
n+

∑n−1
i=1 α2

iμ
2δi

)2 |x|4. (97)

Noting β ≥ 2, from (96) and (97), we have
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l(t, x) ≥ 2βμVn

≥ βμ

2n
(
n+

∑n−1
i=1 α2

iμ
2δi

)2 |x|4. (98)

Since βμ

2n(n+
∑n−1

i=1 α2
iμ

2δi )2
is a positive scaling function and |x|4

is a positive definite function of x, l(t, x) is well defined. Thus,
J(u) is a meaningful cost functional.

Before proving the controller (93) minimizes (94), we first
prove it is a stabilizing controller for system (90). From (91)–
(92), noting β ≥ 2, we have

LVn|(90) = − 2

3
βμδnαnξ

4
n +

∂Vn

∂t
+

∂Vn

∂x
F

+
1

2
Tr

{
GT

2

∂2Vn

∂x2
G2

}

≤ − μδnαnξ
4
n +

∂Vn

∂t
+

∂Vn

∂x
F

+
1

2
Tr

{
GT

2

∂2Vn

∂x2
G2

}

≤ − μVn. (99)

By (99) and Theorem 1, the controller (93) can make system
(90) achieve prescribed-time mean-square stable.

Now, we prove optimality. By Dynkin’s formula in Lemma
A.1, we get

E

{
Vn(τr, x(τr))− Vn(t0, x(t0))

−
∫ τr

t0

LVn|(90)ds
}

= 0. (100)

From (94)–(95) and (100), we have

J(u) = lim sup
r→∞

E

[
2βVn(τr, x(τr)) +

∫ τr

t0

(l(t, x)

+
27

16β2μ3δnα3
n

u4

)
dt

]

= lim sup
r→∞

E

[
2βVn(t0, x(t0)) +

∫ τr

t0

(
2βLVn|(90)

+l(t, x) +
27

16β2μ3δnα3
n

u4

)
dt

]

= lim sup
r→∞

E

[
2βVn(t0, x(t0)) +

∫ τr

t0

(
2βξ3nu

+β2μδnαnξ
4
n +

27

16β2μ3δnα3
n

u4

)
dt

]
. (101)

By using Lemma A.3 with γ = r4/3, we obtain

−2βξ3nu = β2
(
−ξ3nμ

3δn/4α3/4
n

)( 2

β
μ−3δn/4α−3/4

n u

)

≤ β2μδnαnξ
4
n +

27

16β2μ3δnα3
n

u4. (102)

The equality in (102) holds when

u∗(t, x) = − 2

3
βμδnαnξn. (103)

Fig. 1. Pendulum system.

Therefore, the minimum of (94) is obtained with u(t, x) =
u∗(t, x) in (103), and

min
u

J(u) = 2βVn(t0, x(t0)). (104)

Thus, the theorem is proved.
Remark 7: Even though not explicit in the statement of Theo-

rem 2,Vn(t, x) solves the following family of Hamilton–Jacobi–
Bellman equations parameterized by β ∈ [2,+∞)

∂Vn

∂t
+

∂Vn

∂x
F +

1

2
Tr

{
GT

2

∂2Vn

∂x2
G2

}

− β

2
μδnαnξ

4
n +

l(t, x)

2β
= 0. (105)

Remark 8: By choosing k5 = −3δn, S(t, x) = 2βVn(t, x),
l(t, x) in (95), γ(r) = r4, and R(x) = ( 27

16β2α3
n
)1/4, Theorem

2 solves the prescribed-time inverse optimal mean-square stabi-
lization problem described in Definition 2.

V. TWO SIMULATION EXAMPLES

In this section, we give two simulation examples to show the
effectiveness of the prescribed-time control schemes developed
in this article.

Example 2: Consider the pendulum system shown in Fig. 1.
By Newton’s law of motion, the system is described as [43]

m0lθ̈ = −m0g sin θ − klθ̇ +
1

l
T̄ (106)

where l denotes the length of the rod,m0 denotes the mass of the
bob, and g denotes the acceleration due to gravity. Assume the
rod is rigid and has zero mass. Let θ denote the angle subtended
by the rod and the vertical axis through the pivot point. The
pendulum is free to swing in the vertical plane. The bob of the
pendulum moves in a circle of radius l. There is also a frictional
force resisting the motion, which we assume to be proportional
to the speed of the bob with a coefficient of friction k. T̄ is the
torque applied to the pendulum.

Suppose we want to stabilize the pendulum at an angle θ =
θ0. First of all, we need to apply a torque T̄0 to make θ0 an
equilibrium

T̄0 −m0gl sin θ0 = 0. (107)

Motivated by [44], we consider the coefficient of friction k(t)
with a nominal value k0 and k(t) ∈ (k0 − 0.8, k0 + 0.8). Let
Δ(t) = k(t)− k0.Δ(t) is the Gaussian white noise process with
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zero mean and E(Δ(t))2 = σ2. We can then choose the value
of parameter σ such that k(t) obeys the bound −0.8 ≤ k(t)−
k0 ≤ 0.8 with a sufficiently high probability. For example, for
σ = 0.08, by Chebyshev’s inequality in [2], we can get

P (|k(t)− k0|2 > 0.64) ≤ σ2

0.64
= 0.01 (108)

which means that

P (|k(t)− k0| ≤ 0.8) = 1− P (|k(t)− k0| > 0.8)

= 1− P (|k(t)− k0|2 > 0.64)

≥ 0.99. (109)

Obviously, P (|k(t)− k0| ≤ 0.8) is increasing as σ2 ↓ 0.
To obtain a state model for the pendulum system, choose the

state variables x1 = θ − θ0 and x2 = θ̇, and the control u =
T̄ − T̄0. Then, from (106), we get the state-space form as

dx1 = x2dt (110)

dx2 =

(
1

m0l2
u− g

l
sin(x1 + θ0)− k0

m0
x2 +

1

m0l2
T̄0

)
dt

− σ

m0
x2dω. (111)

Choosing θ0 = π
6 , l = g and m0 = k0 = σ = 1

g2 , by (107), we

have T̄0 = 1
2 . Then (110)–(111) can be written as

dx1 = x2dt (112)

dx2 =

(
u− sin(x1 +

π

6
)− x2 +

1

2

)
dt− x2dω. (113)

Noting that
1

2
− sin(x1 +

π

6
)− x2

= sin
π

6
− sin(x1 +

π

6
)− x2

= −2 cos

(
1

2
x1 +

π

6

)
sin

x1

2
+ x2 (114)

we have ∣∣∣∣12 − sin(x1 +
π

6
)− x2

∣∣∣∣ ≤ |x1|+ |x2| (115)

which means that Assumption 1 is satisfied.
By following the design procedure developed in Section III,

we design the controller as

u = − μ3

(
11 + c1 + c2 + 9c41 +

3

4
(1 + 3c1 + c21)

4/3

)

· (x2 + c1μx1). (116)

For simulation, we select t0 = 0, T = 1, m = 2, the param-
eters c1 = 1, c2 = 1

2 , and randomly set the initial conditions
as x1(0) = −2, x2(0) = 0.6. Fig. 2 gives the response of the
closed-loop system (112), (113), and (116). From Fig. 2, we find
that limt→1 E|x|2 = 0, which means that prescribed-time mean-
square stabilization is achieved. Therefore, the effectiveness of
the controller design developed in Section III is demonstrated.

In Remark 6, we claim that even when Assumption 1 is not
satisfied, by following the controller design developed in this

Fig. 2. Response of the closed-loop system (112), (113), and (116).

article, we still solve the prescribed-time mean-square stabiliza-
tion problem when the nonlinear terms are in some special forms.
In the following example, we give the detailed design procedure
to demonstrate this point.

Example 3: Consider the following system:

dx1 = x2dt+ x1 sinx1dω (117)

dx2 = (u+ x1x2)dt+ x
5/3
1 dω. (118)

Since the drift term x1x2 and the diffusion term x
5/3
1 do not

satisfy the linear growth condition required in Assumption 1,
we give the detailed controller design process for the system
(117)–(118).

Step 1. Defining ξ1 = x1 and considering V1(ξ1) =
1
4ξ

4
1 , we

have

LV1 ≤ ξ31(x2 − x∗
2) + ξ31x

∗
2 +

3

2
ξ41 . (119)

Choosing the virtual controller

x∗
2 = −

(
c1 +

3

2

)
μξ1 (120)

(119) can be rewritten as

LV1 ≤ −c1μξ
4
1 + ξ31(x2 − x∗

2) (121)

where c1 > 5
4 is a design parameter.

Step 2. Choosing ξ2 = x2 − x∗
2, from (118) and (120), we

have

dξ2 =

(
u+ x1x2 +

m

T

(
c1 +

3

2

)
μ(m+1)/mx1

+

(
c1 +

3

2

)
μx2

)
dt

+

(
x
5/3
1 +

(
c1 +

3

2

)
μx1 sinx1

)
dω. (122)

With the Lyapunov functionV2 = V1 +
1
4ξ

4
2 , by (121) and (122),

we obtain

LV2 ≤ − c1μξ
4
1 + ξ31ξ2 + ξ32u+ ξ32 (x1x2

+
m

T

(
c1 +

3

2

)
μ(m+1)/mx1 +

(
c1 +

3

2

)
μx2

)

+
3

2
ξ22

(
x
5/3
1 +

(
c1 +

3

2

)
μx1 sinx1

)2

. (123)
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By using Lemma A.2, we get the following estimates:

ξ31ξ2 ≤ 1

4
μξ41 +

27

4
ξ42 , (124)

ξ32x1x2 ≤ |ξ1||ξ2|3|x2| ≤ 1

4
μξ41 +

3

4
x
4/3
2 ξ42 , (125)

m

T

(
c1 +

3

2

)
μ(m+1)/mx1ξ

3
2

≤ 1

4
μξ41 +

3

4
μ2(

m

T
)4/3

(
c1 +

3

2

)4/3

ξ42 , (126)

(
c1 +

3

2

)
μx2ξ

3
2

≤ 1

4
μξ41 + μ7/3

(
c1 +

3

2
+

3

4

(
c1 +

3

2

)8/3
)
ξ42 , (127)

3

2
ξ22

(
x
5/3
1 +

(
c1 +

3

2

)
μx1 sinx1

)2

≤ 1

4
μξ41 +

9

4
μ3

(
c1 +

3

2
+ x

2/3
1

)4

ξ42 . (128)

Noting that μ3 ≥ μ7/3 ≥ μ2, substituting (124)–(128) into
(123), we get

LV2 ≤ −
(
c1 − 5

4

)
μξ41 + ξ32u+ μ3ξ42

(
c1 +

33

4

+
3

4
x
4/3
2 +

3

4
(
m

T
)4/3

(
c1 +

3

2

)4/3

+
3

4

(
c1 +

3

2

)8/3

+
9

4

(
c1 +

3

2
+ x

2/3
1

)4
)
. (129)

Choosing the actual control law as

u = −
(
c1 + c2 +

33

4
+

3

4
x
4/3
2 +

3

4
(
m

T
)4/3

·
(
c1 +

3

2

)4/3

+
3

4

(
c1 +

3

2

)8/3

+
9

4

(
c1 +

3

2
+ x

2/3
1

)4
)
μ3ξ2 (130)

which substituting into (129) yields

LV2 ≤ −
(
c1 − 5

4

)
μξ41 − c2μ

3ξ42 ≤ −c̃0μV2 (131)

where c2 > 0 is a design parameter and c̃0 = 4min{c1 − 5
4 , c2}.

For simulation, we select t0 = 0, T = 2, m = 2, the param-
eters c1 = 3

2 , c2 = 1
2 , and randomly set the initial conditions as

x1(0) = −0.5, x2(0) = 2. Similar to (71), we obtain

E|x|2 ≤
(
1 +

72

(2− t)4

)
e−

2
2−t+1 ∀ t ∈ [0, 2) (132)

which means that

E|x|2 is bounded on [0, 2) and lim
t→2

E|x|2 = 0. (133)

From (130), using Lemma A.2, we obtain

Fig. 3. Response of the closed-loop system (117), (118), and (130).

E|u| ≤ Mμ
13/3

(
E
{
|ξ1|7/3

}
+ E

{
|ξ1|11/3

}
+ E|ξ2|

+ E
{
|ξ2|7/3

}
+ E

{
|ξ2|11/3

})
∀ t ∈ [0, 2) (134)

where M is a positive constant.
By (131), similar to (77), we obtain

E(ξ41 + ξ42) ≤
1

8
e−

4
2−t+2 ∀ t ∈ [0, 2). (135)

From the Lyapunov inequality, we know(
E
{
|ξ1|7/3

})3/7

≤
(
E
{
|ξ1|11/3

})3/11

≤ (
E
{|ξ1|4})1/4 (136)

E {|ξ2|} ≤
(
E
{
|ξ1|7/3

})3/7

≤
(
E
{
|ξ2|11/3

})3/11

≤ (
E
{|ξ2|4})1/4 . (137)

It follows from (134)–(137) that

E|u| is bounded on [0, 2) and lim
t→2

E|u| = 0. (138)

Fig. 3 gives the response of the closed-loop system (117),
(118), and (130). From Fig. 3, we can find that limt→2 E|x|2 =
limt→2 E|u| = 0, which verifies the properties in (133) and
(138). In other words, the prescribed-time mean-square stabi-
lization can be achieved. Therefore, the effectiveness of the
controller design developed in (119)–(130) is demonstrated.

VI. CONCLUSION

In this article, we have addressed the prescribed-time mean-
square stabilization and inverse optimality control design for
stochastic strict-feedback nonlinear systems. By developing a
new nonscaling backstepping design method, a new controller
is designed to guarantee that the equilibrium at the origin of
the closed-loop system is prescribed-time mean-square stable.
In addition, we redesign the controller to achieve an infinite
gain margin and prescribed-time inverse optimal mean-square
stabilization. Specifically, the optimal controller minimizes a
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meaningful cost functional and stabilizes the closed-loop system
in prescribed-time simultaneously.

For the stochastic nonlinear systems, many open issues are
worth investigating, such as prescribed-time output-feedback,
control for more general systems, etc.

APPENDIX

A. Useful Lemmas

Lemma A.1 [1]: Let V ∈ C1,2(R+ ×Rn;R+) and τ1, τ2 be
bounded stopping times such that 0 ≤ τ1 ≤ τ2 a.s. If V (t, x)
and LV (t, x) are bounded on t ∈ [τ1, τ2] a.s., then

E[V (τ2, x)− V (τ1, x)] = E

{∫ τ2

τ1

LV (t, x)dt

}
. (A.1)

Lemma A.2 [45]: Let x, y be real variables; then for any
positive real numbers a, m, and n, we have

axmyn ≤ b|x|m+n

+
n

m+ n

(
m+ n

m

)−m
n

a
m+n

n b−
m
n |y|m+n (A.2)

where b > 0 is any real number.
Lemma A.3 [46]: For any two vectors x and y, the following

holds:

xT y ≤ γ(|x|) + �γ(|y|) (A.3)

and the equality is achieved if and only if

y = γ̇(|x|) x
|x| (A.4)

where γ and its derivative γ̇ are both K∞ functions.

B. Proof of Lemma 1

Step 1. We first show that system (3) has an almost surely
unique solution on [t0, t0 + T ) for any initial condition x0 ∈
Rn.

Since system (3) has an almost surely unique solution x(t)
on [t0, ρ∞)with ρ∞ = (t0 + T ) ∧ limτ→+∞ inf{t0 ≤ t < t0 +
T : |x(t)| ≥ τ}, we need to prove ρ∞ = t0 + T a.s. If this is not
true, we can find positive constants ε and T2 (0 < T2 < T ) such
that

P {ρ∞ ≤ t0 + T2} > 2ε. (B.1)

For each integer k > 0, define

ρk = (t0 + T ) ∧ inf{t : t0 ≤ t < t0 + T, |x(t)| ≥ k}. (B.2)

Since ρk → ρ∞ a.s., there exists a sufficiently large integer k0
such that

P {ρk ≤ t0 + T2} > ε ∀k ≥ k0. (B.3)

Choosing

Ū = ec0
∫ t
t0

μ(s)dsU. (B.4)

From (10) and (B.4), we have

LŪ = ec0
∫ t
t0

μ(s)ds(LU + c0μU)

≤ M0μe
c0

∫ t
t0

μ(s)ds.
(B.5)

Fix k ≥ k0. For any t0 ≤ t ≤ t0 + T2, by (B.5) and Lemma
A.1, we have

EŪ(t ∧ ρk, x(t ∧ ρk))

= U(t0, x0) + E

{∫ t∧ρk

t0

LŪ(x(τ), τ)dτ

}

≤ U(t0, x0) +M0E

{∫ t∧ρk

t0

μ(τ)ec0
∫ τ
t0

μ(s)dsdτ

}

= U(t0, x0) +M0E

{∫ t∧ρk

t0

ec0
∫ τ
t0

μ(s)ds

· d
(∫ τ

t0

μ(s)ds

)}

= U(t0, x0) +
M0

c0
E
{
ec0

∫ τ
t0

μ(s)ds
} ∣∣∣∣

τ=t∧ρk

τ=t0

≤ U(t0, x0) +
M0

c0
ec0

∫ t
t0

μ(s)ds − M0

c0
. (B.6)

By (B.6), we get

EŪ((t0 + T2) ∧ ρk, x((t0 + T2) ∧ ρk))

≤ U(t0, x0) +
M0

c0
ec0

∫ t0+T2
t0

μ(s)ds.
(B.7)

It follows from (2) and (B.7) that

Eχρk≤t0+T2
Ū(ρk, x(ρk))

≤ U(t0, x0) +
M0

c0
ec0

∫ t0+T2
t0

μ(s)ds

= U(t0, x0) +
M0

c0
e

c0Tm

m−1 ( 1
(T−T2)m−1 − 1

Tm−1 )

< +∞. (B.8)

Define

bk = inf
{
Ū(t, x) : |x| ≥ k, t ∈ [t0, t0 + T2]

}
. (B.9)

By (9) and (B.4), we get

lim
k→+∞

bk = +∞. (B.10)

From (B.8), we obtain

U(t0, x0) +
M0

c0
e

c0Tm

m−1 ( 1
(T−T2)m−1 − 1

Tm−1 )

≥ bkP {ρk ≤ t0 + T2} > εbk.
(B.11)

Letting k → +∞ in both sides of (B.11), from (B.10), we
obtain

U(t0, x0) +
M0

c0
e

c0Tm

m−1 ( 1
(T−T2)m−1 − 1

Tm−1 )
= +∞ (B.12)

which is a contradiction with (B.8). Thus, we have ρ∞ = t0 +
T .

Step 2. We then prove the function U(t, x(t)) satisfies (11).
Let k be a positive integer. Define the stopping time

σk = inf{t : t0 ≤ t < t0 + T, |x(t)| ≥ k}. (B.13)

From Step 1, system (3) has an almost surely unique solution on
[t0, t0 + T ). Thus, σk → +∞ almost surely as k → +∞.

Let tk = σk ∧ t for any t ∈ [t0, t0 + T ). Noting Ū(t0, x0) =
U(t0, x0) and using Itô’s formula on the interval [t0, tk], we get

Ū(tk, x(tk)) = U(t0, x0) +
∫ tk
t0

LŪ(x(τ), τ)dτ

+
∫ tk
t0

∂Ū
∂x g

T (τ, x(τ))dω(τ).
(B.14)
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With the definition of tk, using (B.5), taking expectation on
both sides of (B.14), we obtain

EŪ(tk, x(tk))

= U(t0, x0) + E

{∫ tk

t0

LŪ(x(τ), τ)dτ

}

≤ U(t0, x0) +M0E

{∫ tk

t0

μ(τ)ec0
∫ τ
t0

μ(s)dsdτ

}

= U(t0, x0) +M0E

{∫ tk

t0

ec0
∫ τ
t0

μ(s)ds

· d
(∫ τ

t0

μ(s)ds

)}

= U(t0, x0) +
M0

c0
E
{
ec0

∫ τ
t0

μ(s)ds
} ∣∣∣∣

τ=tk

τ=t0

≤ U(t0, x0) +
M0

c0

(
ec0

∫ t
t0

μ(s)ds − 1
)
. (B.15)

By (B.4) and (B.15), we get

E
{
ec0

∫ tk
t0

μ(s)dsU(tk, x(tk))
}
≤ U(t0, x0)

+
M0

c0

(
ec0

∫ t
t0

μ(s)ds − 1
)

∀ t ∈ [t0, t0 + T ). (B.16)

Letting k → +∞, using Fatou Lemma, (B.16) can be rewrit-
ten as

E
{
ec0

∫ t
t0

μ(s)dsU(t, x(t))
}
≤ U(t0, x0)

+
M0

c0

(
ec0

∫ t
t0

μ(s)ds − 1
)

∀ t ∈ [t0, t0 + T ). (B.17)

By (B.17), we get

EU(t, x) ≤ e−c0
∫ t
t0

μ(s)dsU(t0, x0)

+
M0

c0

(
1− e−c0

∫ t
t0

μ(s)ds
)

≤ e−c0
∫ t
t0

μ(s)dsU(t0, x0)

+
M0

c0
∀ t ∈ [t0, t0 + T ). (B.18)

This completes the proof of Lemma 1.
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