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Nonsmooth Extremum Seeking Control With User-Prescribed
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Abstract—This article introduces a new class of nonsmooth
extremum seeking controllers (ESCs) with convergence bounds
given by class-KL functions that have a uniformly bounded set-
tling time. These ESCs are characterized by nominal average sys-
tems that render uniformly globally fixed-time stable (UGFxTS),
the set of minimizers of the response map of a stable nonlinear
plant. Given that, under suitable tuning of the parameters of the
controllers, the ESCs inherit the convergence properties of their
average systems, the proposed dynamics can achieve a better
transient performance compared to the traditional ESCs based on
gradient descent or Newton flows. Moreover, for the case when
the plant is a static map, the convergence time of the proposed
algorithms can be prescribed a priori by the users for all initial
conditions without the need of retuning the gain of the learning
dynamics of the ESC. Since autonomous feedback controllers with
fixed-time convergence properties are necessarily non-Lipschitz
continuous, standard averaging and singular perturbation tools,
traditionally used in ESC, are not applicable anymore. We address
this issue by using averaging and singular perturbation tools for
nonsmooth and set-valued systems, which further allows us to
consider ESCs modeled by discontinuous vector fields that are
typical in fixed-time and finite-time optimization problems.

Index Terms—Adaptive control, extremum seeking, optimiza-
tion.

I. INTRODUCTION

Extremum seeking control (ESC) has shown to be a powerful tech-
nique for the solution of model-free optimization problems in dynami-
cal systems [1]–[4]. Stability, convergence, and robustness guarantees
for different types of constrained and unconstrained smooth ESCs have
been extensively studied in the literature [5]–[8]. Recently, ESC has
also been extended to nonsmooth and hybrid settings that are able
to overcome some of the intrinsic limitations of smooth feedback
controllers [9], [10]. An early use of nonsmooth ESC can also be found
in [11, Sec. 5].

In this article, we extend and generalize some of these results
by introducing a new class of nonsmooth ESCs that have stability
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properties characterized by class-KL functions1 β with the “fixed-
time convergence property,” namely, there exists a continuous settling
time function r �→ T (r) and a positive number T ∗ > 0 such that
lims→T (r) β(r, s) = 0 and T (r) < T ∗, for all r ≥ 0. Functions with
this attribute are also said to be of class-KLT [12], and they characterize
the convergence properties of systems whose solutions converge to a
particular set in a finite time T (r) that can be upper bounded by a
constantT ∗ that is independent of the distance r of the initial conditions
to the set. This powerful property has motivated the development of new
algorithms in the context of regulation, optimization, and estimation
problems, see [13]–[16] and [17]. Nevertheless, ESCs with fixed-time
convergence properties remain completely unexplored in the literature,
and, as we will show in this article, they have the potential of inducing
dramatical improvements in the transient performance of the closed-
loop system for certain classes of plants having response maps with
strong monotonicity properties.

In order to design ESCs with KLT convergence bounds, which we
call fixed-time extremum seeking controllers (FxTESCs), our starting
point is the averaging-based paradigm considered in [3], [5], [18], and
[19], which, due to its modular approach, can accommodate different
types of optimization algorithms, making a direct connection between
the bounds that characterize the convergence of the trajectories of the
nominal average system and the actual control signal generated by the
ESCs. However, since most of the existing results in the literature rely
on averaging and singular perturbation tools for Lipschitz continuous
systems, they are not suitable for the design and analysis of ESCs with
KLT convergence bounds. Instead, in this article, we use averaging and
singular perturbation tools for nonsmooth and set-valued systems [9],
[20]–[22], which allows us to additionally consider ESCs based on
differential inclusions that may be related to discontinuous optimization
algorithms. Moreover, we also develop Newton-like fixed-time ESCs
that remove from the convergence bound T ∗ the dependence on the
unknown parameters of the Hessian matrix of the response map. To the
best of our knowledge, the ESCs for dynamical systems presented in
this article are the first that have convergence bounds characterized by
class-KLT functions. For static maps and specific continuous ESC algo-
rithms, preliminary results with sketches of the proofs were presented
in the conference papers [1] and [2]. In contrast to these works, this
article addresses the general ESC problem in dynamic plants, considers
a general family of possibly discontinuous ESCs (which subsume those
considered in [1] and [2]), derives tighter convergence bounds for the
algorithms, new auxiliary averaging results for nonsmooth systems, and
also presents the complete stability analysis. Moreover, in contrast to [1]
and [2], the results of this article are also applicable to ESC algorithms
with nominal average systems having only finite-time convergence
properties, thus, addressing another existing gap in the literature of
ESC.

The rest of this article is organized as follows. Section II introduces
the notation and preliminaries. Section III presents the problem state-
ment. Section IV presents the main results for gradient-based ESCs,

1A function β : R≥0 × R≥0 → R≥0 is of class KL if it is nondecreasing in
its first argument, nonincreasing in its second argument, limr→0+ β(r, s) = 0
for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.
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Section V studies Newton-like algorithms, and finally Section VI gives
some conclusions.

II. NOTATION AND PRELIMINARIES

Given a compact set A ⊂ Rn and x ∈ Rn, we define |x|A :=
mins∈A ‖x− s‖2. We use S1 := {x ∈ R2 : x2

1 + x2
2 = 1}, and rB to

denote a closed ball of radius r > 0 in the Euclidean space of appropri-
ate dimension, and centered at the origin. We define D ∈ Rn×2n as the
matrix that maps a vector x = [x1, x2, . . . , x2n]


 ∈ R2n to a vector
x̃ := [x1, x3, . . . , x2n−1]


 that has only the odd components of x. A
set-valued mapping M : Rn ⇒ Rp is: (a) outer semicontinuous (OSC)
at x, if for each sequence {xi, yi} → (x, y) ∈ Rn × Rp satisfying
yi ∈ M(xi) for all i ∈ Z≥0, we have y ∈ M(x); (b) locally bounded
(LB) at x, if there exists an open neighborhood Nx ⊂ Rn of x such
that M(Nx) is bounded.

In this article, we consider systems of the form

x ∈ C, ẋ ∈ F (x) (1)

where x ∈ Rn is the state, C ⊂ dom(F ) is a closed set (called the
flow set), and F : Rn ⇒ Rn is a set-valued mapping that is said to
satisfy the Basic Conditions if it is OSC, LB, and convex-valued with
respect to C. A solution to system (1) is an absolutely continuous
function x : dom(x) → Rn that satisfies: a) x(0) ∈ C; b) x(t) ∈ C
for all t ∈ dom(x); and c) ẋ(t) ∈ F (x(t)) for almost all t ∈ dom(x).
A solution x is said to be complete if dom(x) = [0,∞). System (1) is
said to render a compact set A ⊂ C uniformly globally asymptotically
stable (UGAS) if there exists a class KL function β such that every
solution of (1) satisfies |x(t)|A ≤ β(|x(0)|A, t), for all t ∈ dom(x).
If, additionally, the function β is of class KLT , we say that system
(1) renders the set A UGFxTS. We also consider ε-parameterized
systems, given by x ∈ C, ẋ ∈ Fε(x), where C is compact. In this case,
a compact set A ⊂ C is said to be globally practically asymptotically
stable (GPAS) as ε → 0+ if there exists a class KL function β such
that for each ν > 0 there exists ε∗ > 0 such that for all ε ∈ (0, ε∗)
every solution xε satisfies |xε(t)|A ≤ β(|xε(0)|A, t) + ν, for all t ∈
dom(xε). The notion of GPAS can be extended to systems that depend
on multiple parameters ε = [ε1, ε2, . . . , ε�]


. In this case, and with
some abuse of notation, we say that the system renders the set A GPAS
as (ε�, . . . , ε2, ε1) → 0+, where in general the parameter εk depends
on εk−1, for each k ∈ Z≥2.

The algorithms considered in this article make use of sinusoidal
excitation signals that we model as solutions of n uncoupled linear
oscillators evolving on the n-torus Tn := S1 × · · · × S1 ⊂ R2n. The
state of the oscillators is μ ∈ R2n, and their dynamics are

μ ∈ Tn, ε1μ̇ = −2πRθμ, ε1 > 0 (2)

where the matrix Rθ ∈ R2n×2n is defined as a block diagonal ma-
trix parametrized by a vector of gains θ = [θ1, θ2, . . . , θn]


. The
ith diagonal block of Rθ is defined as the skew symmetric matrix
Ri := [0,−θi; θi, 0] ∈ R2×2, where θi is a positive rational number
that satisfies θi �= θj , θi �= 2θj , and θi �= 3θj for all i �= j. The odd
entries μi of the solutions μ of system (2) can be explicitly computed
as μi(t) = μi(0) cos(

2π
ε1

θit) + μi+1(0) sin(
2π
ε1

θit), with μi(0)
2 +

μi+1(0)
2 = 1, for all i ∈ {1, 3, 5, . . . , n− 1}. The following lemma,

corresponding to [23, Lemma 2], will also be instrumental for our
results.

Lemma 1: Consider the dynamics (1) with C = Rn and F being
singled-valued with unique equilibrium point at the origin, and suppose
∃a, b > 0 and γ1 = 1− 1

2α
, γ2 = 1 + 1

2α
, with α > 1, and a positive

definite, radially unbounded and smooth Lyapunov function V satisfy-
ing V̇ (x) ≤ −aV (x)γ1 − bV (x)γ2 , for all x ∈ Rn. Then, the origin
x∗ = 0 is UGFxTS for (1) with T ∗ = απ√

ab
. �

III. PROBLEM STATEMENT AND MOTIVATION

Consider a nonlinear dynamic plant with input u ∈ Rn, output y ∈
R, and state x ∈ Ξ ⊂ Rp, modeled by the equations

ẋ = f(x, u), y = h(x, u) (3)

where f is locally Lipschitz, and h is continuously differentiable. In
this article, we assume that the operational space Ξ for the states of the
plant (3) is closed and bounded. In practice, boundedness of Ξ can be
related to the physical limitations of the plant, or to operational sets that
are rendered forward invariant by using internal feedback controllers
that implement mechanisms such as Lipschitz projections or barrier
functions. Compactness of Ξ is also guaranteed when the dynamics
(3) have the bounded-input bounded-state property and u is uniformly
bounded (as will be the case in our results).

In order to have a well-defined ESC problem, we also make the
following standard stability assumption on system (3).

Assumption 1: There exists a continuous function 	x : Rn → Rp,
such that for each compact set Ku ⊂ Rn the constrained dynamical
system (x, u) ∈ Ξ×Ku, ẋ = f(x, u), u̇ = 0, renders UGAS the com-
pact set MKu := {(x, u) ∈ Ξ×Ku : x = 	x(u)}. �

The existence of a UGAS quasi-steady-state manifold 	x for the
plant (3) is a standard assumption in ESC, see [3], [5], and [6].

The response map of the plant (3) is defined asφ(u) := h(	x(u), u),
which is assumed to satisfy the following.

Assumption 2: The function u �→ φ(u) is twice continuously differ-
entiable, and the set Aφ := argminu∈Rnφ(u) is nonempty and com-
pact. �

Based on these assumptions, the ESC problem that we study in this
article consists on regulating the input u of system (3) toward the set
Aφ, by using only output measurements of y, without any knowledge
of the mathematical form of f , h, or φ.

A. Transient Limitations of Gradient-Descent-Based ES

To motivate the FxTESCs considered in this article, we first review
the convergence properties of the standard gradient descent-based
extremum seeking controller (GDESC) studied in [3], [6], and [5]. This
controller is characterized by the feedback law and the dynamics

u := û+ aDμ, ˙̂u = −k1ξ (4)

where k1 := ε0k and (k, ε0, a) are positive tunable parameters. The
auxiliary states (ξ, μ) of (4) have dynamics

ξ̇ = −k2 (ξ − FG(y, μ)) , μ̇ = −k3Rθμ, μ ∈ Tn (5)

where k2 := ε0/ε2, k3 := 2πε0/ε1, and

0 < ε0 � ε1 � ε2 � 1/k. (6)

The mapping FG in (5) is defined as FG(y, μ) := yM(μ), with
M(μ) := 2

a
Dμ. We study the transient performance of this controller

under the following additional assumption on the response map φ.
Assumption 3: There exists κ > 0 such that |∇φ(u)|2 ≥

2κ(φ(u)− φ(u∗)) for all u ∈ Rn. Moreover, ∇φ is L-globally Lip-
schitz, and Aφ = {u∗}. �

Typical examples of response maps that satisfy the inequality of
Assumption 3 include strongly convex functions, such as positive defi-
nite quadratic functions, which are ubiquitous in the literature of ESC,
e.g., [3], [8], and [24]. However, Assumptions 1–3 do not necessarily
ask for convexity of h or linearity of (3). Indeed, response maps φ
satisfying Assumptions 2 and 3 can be generated by different classes
of plants (3) having linear/nonlinear dynamics f and nonlinear/linear
outputsh. Nevertheless, it is important to note that in the context of ESC,
the goal is to achieve model-free optimization; thus, the mathematical
forms of the functions (f, h) are generally unknown.

To guarantee convergence to Aφ, a time-scale separation is induced
between the dynamics of the plant (3) and the dynamics of the controller
(4), (5). In particular, by introducing the new time scale τ := tε0, and
by using the definition of D, the dynamics of the closed-loop system
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can be written as follows:
dû
dτ

= −kFu(û, ξ),
dξ
dτ

= − 1

ε2
(ξ − FG(y, μ)) (7a)

dμ
dτ

= −2π

ε1
Rθμ, ε0

dx
dτ

= f(x, û+ aDμ) (7b)

where according to (4), the learning dynamics of the GDESC are char-
acterized by the mapping Fu(û, ξ) = ξ. When ε0 is sufficiently small,
system (7) is a singularly perturbed system with fast “boundary layer dy-
namics” corresponding to the dynamics of the plant, and slow “reduced
dynamics” corresponding to the dynamics of the states (û, ξ, μ). By
Assumption 1, the plant has a well-defined quasi-steady-state manifold
	x(·). Thus, the reduced dynamics are as follows:

dû
dτ

= −kFu(û, ξ),
dξ
dτ

= − 1

ε2
(ξ − FG(φ(û+ aDμ), μ))

ε1
dμ
dτ

= −2πRθμ, μ ∈ Tn

where we used the definitions of φ and FG. Let μ̃ := Dμ. For small
values of a, we can perform a Taylor expansion of φ(û+ aμ̃) around
the point û, leading to φ(û+ aμ̃) = φ(û) + aμ̃
∇φ(û) +O(a2). By
using the definitions of M(·), the fact that the solutions of the oscillator
are given by sinusoids with unitary amplitude, and [2, Lemma 6], we
can average the dynamics of the states (û, ξ) along the trajectories μ̃.
Since Fu is independent of μ̃, the resulting average system is

dûA

dτ
= −kFu(û

A, ξA), ε2
dξA

dτ
= −ξA + F̃G(û

A, a) (8)

where the function F̃G is given by

F̃G(û
A, a) := ∇φ(ûA) +O(a). (9)

For each ε2 > 0, system (8) is a O(a)-perturbed version of a nom-
inal average system with O(a) = 0. In turn, since ε2 � 1/k, this
nominal average system is also a singularly perturbed system with
exponentially stable boundary layer ξA-dynamics with equilibrium
point ξA∗ = ∇φ(ûA), and reduced nominal average dynamics with
state ûr , given by

dûr

dτ
= −kFu(ûr,∇φ(ûr)) = −k∇φ(ûr) (10)

which is a gradient descent (GD) flow with gain k > 0. Therefore,
by using the Lyapunov function V (ûr) = φ(ûr)− φ(u∗), it can be
shown that under Assumption 3, all solutions of the GD flow (10)

satisfy the bound |ûr(τ)|Aφ
≤
√

L
κ
|ûr(0)|Aφ

e−kκτ , for all τ ≥ 0. This

establishes a UGAS result for system (10) with an exponential class-KL
functionβ(r, s) =

√
L
κ
re−kκs. After some manipulations (see proof of

Th. 1), we can now repeatedly apply singular perturbation and averaging
theory [18, Th. 1], as well as structural robustness results for smooth
ODEs [25, Lemma 7.20], to conclude that for each pair Δ > ν > 0
there exists ε∗2 > 0 such that for each ε2 ∈ (0, ε2) there exists a∗ > 0,
such that for each a ∈ (0, a∗) there exists ε∗1 > 0, such that for each
ε1 ∈ (0, ε∗1) there exists ε∗0 > 0, such that for each ε0 ∈ (0, ε∗0) all the
input trajectoriesugenerated by the GDESC in (7) satisfy the following:

|u(τ)|Aφ
≤ β(|û(0)|Aφ

, τ) + 0.5ν (11)

for all τ ≥ 0, provided |û(0)|Aφ
≤ Δ and |ξ(0)| ≤ Δ, where β is the

same KL function of system (10); see [6], [5], and [19] for similar
results under different notation and/or definitions of the gains ki,
i ∈ {1, 2, 3}, which might scale the time argument of (11). This fact
highlights an important property of system (7): as (ε0, ε1, a, ε2) → 0+,
the transient performance of the control signal is approximately char-
acterized by the transient performance of the reduced nominal average
dynamics. Since for the GD flow (10) we know the form of β, for any
ν > 0, we can compute an approximate lower bound τ ∗

v for the amount
of time τ needed in (11) to have |u(τ)|Aφ

≤ ν for all τ ≥ τ ∗
v . By direct

Fig. 1. Example of closed-loop system with a fixed-time gradient-
based extremum seeking controller with α1 ∈ (0, 1) and α2 < 0.

computation, we obtain the following:

kτ ∗
v =

1

κ
log

(
2

√
L

κ

|û(0)|Aφ

ν

)
(12)

which shows that for constant values of (k, ν) (resp. (τ ∗
v , ν)), the value

of τ ∗
v (resp. k) grows logarithmically with |û(0)|Aφ

. Since (11) holds
only when |û(0)|Aφ

≤ Δ, the maximum value of kτ ∗
v over all initial

conditions satisfying |û(0)|Aφ
≤ Δ also grows logarithmically with

Δ, for any parameters (ε0, ε1, a, ε2) in the GDESC that guarantee the
satisfaction of the bound (11).

B. ES Controllers With Fixed-Time Convergence Bounds

In order to improve the convergence properties of the GDESC, we
can consider a new class of ESCs that generate bounds of the form (11)
with the additional property that β ∈ KLT . To achieve this property,
let us assume first that ξ and û are scalars, and consider the dynamics
(7) with the following map:

Fu(û, ξ) = sign(ξ)|ξ|1−α1 + sign(ξ)|ξ|1−α2

with α1 ∈ (0, 1) and α2 < 0. Since ξ ∈ R, we can write sign(ξ) =
ξ/|ξ|, which leads to the function

Fu(û, ξ) = −k

(
ξ

|ξ|α1
+

ξ

|ξ|α2

)
(13)

which is defined to be zero whenever ξ = 0. Fig. 1 shows a scheme
of the closed-loop system (7) with an ESC implementing learning
dynamics characterized by the function (13). In general, the mapping
Fu is not Lipschitz continuous without further conditions on (α1, α2).
However, even in cases when Fu is discontinuous at the point ξ = 0,
the existence of generalized solutions in the sense of Krasovskii can
always be guaranteed [25, Lemma 5.26]. Functions of this form have
been extensively studied in the literature of fixed-time stabilization by
using the notion of homogeneity (in the bilimit), see for instance [26,
Sec. 5.1], [14, Sec. 1], [23, Sec. 4-A], [27, Ex. 1], or [28, Lemma 2.1].
However, in the context of ESC, they remained unexplored.

The closed-loop system of Fig. 1 can be studied by following similar
steps as in the previous section. In this case, instead of (10), the reduced
nominal average dynamics are given by

dûr

dτ
= −k

(
∇φ(ûr)

|∇φ(ûr)|α1
+

∇φ(ûr)

|∇φ(ûr)|α2

)
(14)

which can be analyzed by using the smooth Lyapunov function
VG(ûr) =

1
2
(φ(ûr)− φ(u∗))2, which, under Assumption 3, is ra-

dially unbounded and positive definite with respect to u∗. The
time derivative of VG along the solutions of system (14) satisfies
dVG(ûr(τ))

dτ ≤ −k(c1VG(ûr)
γ1 + c2VG(ûr)

γ2) for all ûr �= u∗, where

α̃1 = 2− α1 > 0, α̃2 = 2− α2 > 0, c1 := 2
2+3α̃1

4 κ
α̃1
2 > 0, c2 :=

2
2+3α̃2

4 κ
α̃2
2 > 0, γ1 := 2+α̃1

4
∈ (0, 1), and γ2 := 2+α̃2

4
> 1. It fol-

lows by [26, Th. 5.8] and the smoothness of VG that the point u∗

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on December 04,2021 at 01:29:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 12, DECEMBER 2021 6159

Fig. 2. Left: Approximate (finite-time) reachable set of the GDESC and the FxTESC with û(0) ∈ K = [−100 100]× [−100 100]. The insets illustrate
the convergence of all solutions of the FxTESC to the optimal point; Right: Time history of one solution of the GDESC and the FxTESC with identical
initialization, in logarithmic scale (top) and linear scale (bottom). The dashed lines show the trajectories of the GD and FxTG flows.

is UGFxTS for system (14). Moreover, if we set α2 = −α1, the
assumptions of Lemma 1 hold withα = 2/α1 and

√
ab = 4kκ, and we

obtain the following estimate on the bound for the settling time Tk(·)
of (14):

T ∗
G :=

π

2kα1κ
. (15)

Finally, note that all the previous computations hold when ξ and ûr are
vectors in Rn, and an explicit function βG,k ∈ KLT for system (14)
can be computed by using Lemma 3 in the Appendix. Therefore, for
the ESC of Fig. 1, the dynamics (14) can be seen as general fixed-time
gradient (FxTG) flows in Rn with the UGFxTS property.

Remark 1: FxTG flows have been recently studied in the context of
model-based optimization and fixed-time stabilization in [28, Lemma
2.1], [15], and [16]. Continuity of the function (13) can be guaranteed
as in [1] and [15]. �

The key implication of the fixed-time bound (15), which is indepen-
dent of the initial conditions of system (14), is that for positive values of
(k, κ) and p = (ν, α1), with α1 ∈ (0, 1), the value of τ ∗

ν obtained from
(12) will be larger than T ∗

G whenever ûr(0) ∈ ΩG,p := {ur0 ∈ Rn :
|ur0|Aφ

> 0.5ν exp( π
2α1

)}. Therefore, if for any pair Δ > ν > 0,
the parameters (ε0, ε1, a, ε2) of the FxTESC shown in Fig. 1 can be
selected such that the bound (11) holds with the KLT function βG,k (a
result that we will establish in the following section), then the conver-
gence time of the FxTESC will outperform the convergence time of the
GDESC for all initial conditions ûr(0) in the set ΩG,p ∩ (Aφ +ΔB),
which is nonempty when Δ is sufficiently large or ν is sufficiently
small.

Remark 2: Since the bound (15) is independent of the initial con-
ditions of the system, a universal gain k can now be used to induce a
desired convergence time T ∗

G via the class KLT function βG,k. This
property is fundamentally different from the asymptotic or exponential
(semiglobal practical) convergence properties of the smooth ESCs
considered in [3], [5], [18], and [19]. Note, however, that the parameters
(ε0, ε1, a, ε2) will still depend on ν and Δ, since their role is to
guarantee that the ESC approximates the behavior (on compact sets) of
its reduced nominal average dynamics (14). �

Example 1: In order to illustrate the previous discussion, let us
consider a simple plant in R2 with f(x, u) = 10× [−x1 + u1,−x2 +
u2]


 and output y = (x1 − 1)2 + (x2 − 5)2. Since f(x, u) describes
a stable linear system that generates bounded states under bounded
inputs, Assumption 1 holds. We set Δ = 100, and we simulate the
closed-loop system (7) using the following parameters: a = 0.01, ε0 =
4× 10−5, ε1 = 1× 10−4, ε2 = 5× 10−1, andk = 0.02, which satisfy
the relations of (6). For the oscillator (2), we used 2πθ1 = 3.5, 2πθ2 =
4, and μ(0) = [0, 1, 0, 1]
. For the FxTESC with learning dynamics
(13), we usedα1 = 0.5 = −α2. Since in this caseφ(u) = (u1 − 1)2 +

(u2 − 5)2, it follows that Assumption 3 holds with κ = L = 2. Using
(15), we obtain T ∗

G = 78.53. Fig. 2 compares the behavior of the
trajectories of the GDESC and the FxTESC. We emphasize that both al-
gorithms used the same parameters (a, k, ε0, ε1, ε2). In the left figures,
we have numerically approximated the reachable set of both algorithms
from initial conditions with û(0) ∈ [−100 100]× [−100 100], and
x(0) = ξ(0) = [1, 1]
 by running 1× 103 simulations with random
initializations on this set. The insets show that all solutions generated
by the FxTESC converge to a ν-neighborhood (with ν = 1× 10−7)
of the optimal point u∗ = [1, 5]
 before the time T ∗

G. On the other
hand, the right plots show the time history of one solution of the
GDESC and FxTESC, respectively, with identical initialization. As
expected, and as shown by the dashed lines, the trajectories generated
by both ESCs are almost identical to the trajectories of their reduced
nominal average dynamics (10) and (14). In particular, as highlighted
in the upper logarithmic plot, the trajectory generated by the FxTESC
approximately inherits the “fixed-time convergence property” of system
(14). �

Remark 3 (Finite-Time Versus Fixed-Time Stability in ESC): In con-
trast to the property of UGFxTS, the property of finite-time stability is
characterized by a class-KL function that satisfies lims→T (r) β(r, s) =
0, but where T (·) is not necessarily uniformly bounded, see [29].
The ESC shown in Fig. 1 can induce this weaker property by using
α1 = α2 = 1, which generates reduced nominal average dynamics
given by the discontinuous flow dû

dτ = −2k ∇φ(û)
|∇φ(û)| , studied in [30]

using generalized solutions in the context of differential inclusions.
Under κ-strong convexity of φ and L-globally Lipschitz of ∇φ, the
lower bound τ ∗

v on the convergence time of this system satisfies
kτ ∗

v ≤ (2κ)−1L|ûr(0)|Aφ
, which grows linearly with |ûr(0)|Aφ

. Thus,
in the ESC case, the bound on kτ ∗

v would also grow linearly with
Δ, which is a weaker property compared to the constant bound (15).
Other optimization flows with finite-time convergence properties are
presented in [30] and [17]. Note that when α1 = α2 = 0 in (13), the
FxTESC of Fig. 1 reduces to the standard GDESC. �

Next, we formalize and generalize the previous discussion by char-
acterizing an entire family of FxTESCs.

IV. GRADIENT-BASED FIXED-TIME ES CONTROLLERS

Consider the closed-loop system (7) with general learning dynamics
in (4) now modeled as follows:

˙̂u ∈ −k1Fu(û, ξ) (16)

where Fu : Rn × Rn ⇒ Rn is a set-valued map, and k1 = ε0k.
Assumption 4: The set-valued mappings Fu(·, ·) and F̂G(·) :=

Fu(·,∇φ(·)) satisfy the Basic Conditions. �
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The regularity properties of Assumption 4 are standard in the analysis
of nonsmooth systems, and they also hold when Fu and F̂G are single-
valued continuous functions. However, by working with differential
inclusions, we will be able to consider ESCs with learning dynamics
that are not necessarily continuous. In this case, solutions must be
understood in a generalized sense by considering the set-valued map
F̂K
G (û) :=

⋂
δ>0 conF̂G(û+ δB), where con(·) stands for the closed

convex hull, see [9, Sec. 6.1], for examples, in the context of ESC.
When F̂G is LB, the set-valued map F̂K

G satisfies the Basic Conditions
[25, Lemma 5.16].

The following stability assumption characterizes the ESCs consid-
ered in this article.

Assumption 5: For each k > 0, system ˙̂u ∈ −kF̂G(û) renders the
setAφ UGFxTS with some βG,k ∈ KLT , with continuous settling time
function satisfying Tk(r) ≤ T ∗

k for all r ≥ 0. �
Remark 4: Assumption 5 can be certified via Lyapunov functions

(c.f. Lemma 1 or [26, Th. 5.8] for differential inclusions), or by studying
the homogeneity properties in the bi-limit of the mapping F̂G, see [14],
[26], [31], and [15], [16] for different examples of gradient-based
optimization dynamics ˙̂u ∈ −kF̂G(û) that satisfy Assumption 5. �

We are now ready to state the first main result of this article.
Theorem 1: Suppose that Assumptions 1, 2, 4, and 5 hold. Then, ∀

k > 0 and ∀ Δ > ν > 0, ∃ ε∗2 > 0 such that ∀ ε2 ∈ (0, ε∗2), ∃ a∗ > 0
such that ∀ a ∈ (0, a∗), ∃ ε∗1 > 0 such that ∀ ε1 ∈ (0, ε∗1), ∃ ε∗0 > 0
such that ∀ ε0 ∈ (0, ε∗0), all solutions of (7) with learning dynamics
(16), and |û(0)|Aφ

≤ Δ, |ξ(0)| ≤ Δ, induce the bound

|u(τ)|Aφ
≤ βG,k(|û(0)|Aφ

, τ) + ν, ∀τ ≥ 0

and βG,k(|û(0)|Aφ
, τ) = 0 for all τ ≥ T ∗

k . �
Proof: Let k, Δ, and ν be given. Without loss of

generality we assume ν ∈ (0, 1). Let Assumption 5 gen-
erate the function βG,k ∈ KLT . We define the set K̃ :
=
{
u ∈ Rn : |u|Aφ

≤ βG,k

(
maxy∈Aφ+ΔB |y|Aφ

, 0
)
+ 1
}

. By
construction, this set is compact since without loss of generality
βG,k can be taken to be continuous or to be upper bounded by a
continuous class KL function [25, pp. 69]. Thus, there exists M > 0
such that K̃ ⊂ MB. By continuity of ∇φ, there exists M̃ > Δ such
that |F̃G(u, a)|+ ν ≤ M̃ for all |u| ≤ M and all a ∈ (0, 1), where
F̃G is defined in (9). Using this construction, we divide the proof in
two main steps.

Step 1: Stability: The closed-loop system (7) is in standard form for
the application of singular perturbation theory for nonsmooth systems
(see [20] and [22]). The boundary layer dynamics are ẋ = f(x, û+

aμ̃), ˙̂u = 0, ξ̇ = 0, μ̇ = 0. By Assumption 1, the plant dynamics
(3) have a well-defined quasi-steady-state manifold x∗ = 	x(û+ aμ̃).
Therefore, the closed-loop system has a well-defined reduced system,
given by the following:

dû
dτ

∈ −kFu(û, ξ), ε1
dμ
dτ

= −2πRθμ, μ ∈ Tn, (17a)

dξ
dτ

= − 1

ε2
(ξ − FG(φ(û+ aμ̃), μ̃)) (17b)

where we used φ(û+ aμ̃) = h(	x(û+ aμ̃), û+ aμ̃). Since the dy-
namics of μ render forward invariant (and UGAS) the set Tn, we
focus on the properties of the states (û, ξ). Indeed, note that since
0 < ε1 � ε2, system (17) is also in the standard form for the application
of singular perturbation theory. The fast dynamics correspond to the
linear oscillator that generates sinusoidal functions τ �→ μ̃(τ). The
reduced dynamics are obtained by using [2, Lemma 6] and by averaging
the dynamics of (û, ξ) along the trajectories μ̃. The resulting average
system has state ζA = [ûA
, ξA
]
 and dynamics

dûA

dτ
∈ −kFu(û

A, ξA), ε2
dξA

dτ
= −ξA + F̃G(û

A, a) (18)

with F̃G given by (9). When a = 0, this system is also in the standard
form for the application of singular perturbation theory, with ε2 acting

as small parameter. Using the definition of F̃G and the exponential
stability properties of the low-pass filter in (17), we obtain the reduced
nominal average dynamics dûr

dτ ∈ −kFu(ûr,∇φ(ûr)) = −kF̂G(ûr).
By Assumption 5, this system renders the set Aφ UGFxTS with pair
(βG,k, T

∗
k).

Now, for the purpose of analysis, let us restrict the dynamics (18)
to evolve in the compact flow set C = K̃ × M̄B, where M̄ := M̃ +
1; and the dynamics (17) and (7) to evolve in the compact flow set
C = K̃ × M̄B × Tn × Ξ. Applying [21, Th. 2] and [25, Th. 7.21] to
the restricted system (18), we immediately obtain that the compact set
Aζ := Aφ × M̄B is GPAS as (a, ε2) → 0+ with βG,k ∈ KLT . Since
by the definition of solutions to (1), we have that |ξA(τ)|M̄B = 0 for
all τ ∈ dom(ζA), we also have that |ζA(τ)|Aζ

= |ûA(τ)|Aφ
. Thus, for

each ν ′ ∈ (0, 0.5ν) there exists ε∗2 > 0 such that for all ε2 ∈ (0, ε∗2)
there exists a∗ > 0 such that for each a ∈ (0, a∗) every solution of the
restricted system (18) satisfies the bound

|ζA(τ)|Aζ
≤ βG,k(|ζA(0)|Aζ

, τ) + 0.5ν ′. (19)

Next, since the fast oscillator dynamics of (17) render UGAS the set
Tn, and also generate a well-defined average system corresponding
to (18), by Lemma 2 in the Appendix, we can directly establish
that the restricted system (17) renders the set Aζ × Tn GPAS as
(ε1, a, ε2) → 0+ with class KLT function βG,k. This implies that for
each ν ′ ∈ (0, 0.5ν) there exists ε∗2 > 0 such that for each ε2 ∈ (0, ε∗2)
there exists a∗ ∈ (0, ν ′/2), such that for each a ∈ (0, a∗) there exists
ε∗1 > 0, such that for each ε1 ∈ (0, ε∗1) each solution of the restricted
system (17) satisfies the bound |ζ(τ)|Aζ

≤ βG,k(|ζ(0)|Aζ
, τ) + ν′

2
, for

all τ ∈ dom(ζ, μ), with ζ = (û, ξ). Since |μ(τ)|Tn = 0, it follows
that |ζ̂(τ)|Ã = |ζ(τ)|Aζ

for all τ ∈ dom(ζ̂), where ζ̂ = [û
, ξ
, μ
]


and Ã = Aζ × Tn. Thus, the overall state ζ̂ of the restricted system
(17) satisfies |ζ̂(τ)|Aφ

≤ βG,k(|ζ̂(0)|Aφ
, τ) + ν′

2
, for all τ ∈ dom(ζ̂).

Finally, since by Assumption 1, the plant dynamics have a well-defined
UGAS quasi-steady-state manifold 	x(·), we can apply again Lemma
2 in the Appendix to establish that the restricted system (7) renders
the set Ã × Ξ GPAS as (ε0, ε1, a, ε2) → 0+ with βG,k ∈ KLT . Since
|(û, ξ, μ)(τ)|Ã = |û(τ)|Aφ

for all τ ∈ dom(x, û, ξ, μ), by using the
definition of u in (4), and the facts that a ∈ (0, ν ′/2) and |μ| = 1, we
obtain the KLT bound of the theorem.

Step 2: Completeness of Solutions: We now show completeness of
solutions for the unrestricted system (7) with learning dynamics (16),
flow set C = Rn × Rn × Tn × Ξ, and initial conditions satisfying
|û(0)|Aφ

≤ Δ, and |ξ(0)| ≤ Δ. Let the parameters (ε0, ε1, a, ε2) be
generated as in Step 1 such that the KLT bound holds for u. Due to this
bound, the construction of K̃, and Assumption 1, any solution of system
(7) with learning dynamics (16), and length(dom(û, ξ, μ, x)) < ∞,
must stop due to ξ leaving the set M̄B. To show that this cannot occur,
note that by the stability result of Step 1 and the uniform bound on ûA,
every solution of system (18) satisfies ∇φ(ûA(τ)) +O(a) ∈ M̃B for
all τ ≥ 0. By [32, Lemma 5], the low-pass filter dynamics in (18) render
forward invariant the set M̃B. It follows that every solution ζA of
system (18) with ζA(0) ∈ (Aφ +ΔB)×ΔB is complete. Since ∇φ
is locally Lipschitz, and ∇φ(Aφ) = 0 due to the optimality of the set
Aφ, it follows that since |ûA(τ)|Aφ

≤ 0.5ν ′ for all τ ≥ T ∗
k , there exists

ϕ > 0 such that |∇φ(uA(τ)) +O(a)| ≤ ϕν ′ for all τ ≥ T ∗
k . Thus,

by linearity and exponential stability of the low-pass filter, there exists
T ′ > 0 such that the trajectories ξA of (18) with |ξA(0)| ≤ Δ also
satisfy |ξA(τ)| ≤ 2ϕν ′, for all τ ≥ T ′. Since the trajectories of system
(18) converge to a 2ϕν ′-neighborhood of the set Aφ × {0}, by [25,
Corollary 7.7] for the restricted system (18) there exists a UGAS set
Ωa,ε2 ⊂ (Aφ × {0}) + 2ϕν ′B. By [21, Th. 1& 2], there exists ε∗∗1 > 0
such that for each ε′1 ∈ (0,min{ε1, ε∗∗1 }) the trajectories ζ = (û, ξ)

generated by system (17) restricted to K̃ × M̄B × Tn satisfy: (a)
∃T ′′ > 0, such that ζ(τ) ∈ Ωa,ε2 + ϕν ′B ⊂ (Aφ × {0}) + 3ϕν ′B
for all τ ≥ T ′′, such that τ ∈ dom(ζ); and (b) the trajectories ζ
and ζA are (τ, ε)-close [25, Definition 5.23] with τ = T ′′ + 1 and
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Fig. 3. Example of closed-loop system with a fixed-time Newton-based
extremum seeking controller with α1 ∈ (0, 1) and α2 < 0.

ε = 0.5ν ′. Thus, it follows that the trajectories (û, ξ, μ) generated
by system (17) with |û(0)|Aφ

≤ Δ and |ξ(0)| ≤ Δ belong to the set

K̃ × (M̃ + 0.5ν ′)B × Tn for all τ ≥ 0. Completness of solutions for
the closed-loop system (7) follows now by applying again the exact
same procedure, using Assumption 1, [25, Corollary 7.7], [21, Th. 1
and 2], and (τ, ε)-closeness of solutions between the trajectories (û, ξ)
of system (7) and (17), and the fact that M̃ + ν ′ < M̄ . �

Remark 5: The result of Theorem 1 also holds for ESCs that
have only finite-time convergence properties (c.f. Remark 3). In this
case, Theorem 1 holds with Tk(Δ) instead of T ∗

k . Whereas ESC
with finite-time convergence properties has been numerically studied
in [9], [11], and [33], to our knowledge, a general convergence result,
such as Theorem 1, was absent in the literature. �

V. NEWTON-LIKE FIXED-TIME ES CONTROLLERS

We now extend the previous results to Newton-like ESCs with “fixed-
time” convergence properties. In this case, we make the following
additional assumption, which is also standard (see [4], [17], and [24]).

Assumption 6: There exists κ̃ > 0 such that the Hessian ofφ satisfies
∇2φ(u) � κ̃I for all u ∈ Rn. �

To further motivate the results of this section, we recall that the
reduced average nominal system associated to the standard Newton-like
ESC (NESC) of [24] is given by the Newton flow (NF):

dûr

dτ
= −k∇2φ(ûr)

−1∇φ(ûr). (20)

Using the Lyapunov function VN (ûr) =
1
2
|∇φ(ûr)|2, it follows

that V̇N = −2kVN (ûr), and by using the Comparison Lemma and
Assumptions 3 and 6, we obtain that the solutions of (20) satisfy
|ûr(τ)|Aφ

≤ L
κ
e−kτ |û(0)|Aφ

for all τ ≥ 0. Now, consider the fixed-
time Newton-like ESC (FxTNESC) of Fig. 3 that generates the follow-
ing closed-loop system in the τ -time scale:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dû
dτ
dξ1
dτ
dξ2
dτ
dμ
dτ
dx
dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−kFu(û, ξ)

− 1

ε2
(ξ1FH(y, μ̃)ξ1 − ξ1)

− 1

ε2
(ξ2 − FG(y, μ̃))

−2π

ε1
Rθμ̃

1

ε0
f(x, û+ aμ̃)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where μ ∈ T n, and where the learning dynamics Fu are now defined
as follows:

Fu(û, ξ) := ξ1

(
ξ2

|ξ2|α1
+

ξ2
|ξ2|α2

)
(22)

with Fu := 0 whenever ξ2 = 0. As shown in [2], the parameters
(α1, α2) can be selected again as in Remark 1 to guarantee continuity
of Fu. The input u, the dynamic oscillator, the mappings (FG,M),
and the constants (k1, k2, k3, a) are defined again as in Section III.
However, system (21) has an extra state ξ1 with dynamics depending
on the mappingFH , defined asFH(y, μ̃) := yN(μ̃), whereN : Rn →
Rn×n is matrix-valued function with entriesNij satisfyingNij = Nji,
Nij = 16

a2 (μ̃
2
i − 1

2
) ∀ i = j, and Nij = 4

a2 μ̃iμ̃j ∀ i �= j, where μ̃i is
the ith entry of the vector μ̃.

Remark 6: In (21), the state ξ1 is a matrix of dimension n× n.
Therefore, the dynamics of ξ1 must be understood as a matrix differen-
tial equation. This notation, which is used to simplify our presentation,
is consistent with the notation used in the Newton-based ESCs of
[24]. �

By using [2, Lemma 6], we can analyze system (21) via singular
perturbation and averaging theory for nonsmooth systems. In partic-
ular, for the reduced dynamics of (21), we can carry out a Taylor
expansion of φ(û+ aμ̃) around the point û for small values of a,
where we now retain the second-order terms: φ(û+ aμ̃) = φ(û) +

aμ̃
∇φ(û) + a2

2
μ̃
∇2φ(û)μ̃+O(a3). Using this expansion, the def-

initions of the mappings M , N , FG, and FH , and [2, Lemma 6], we
obtain an average system with state ζA = (ûA, ξA) and dynamics

dûA

dτ
= Fu(û

A, ξA), ε2
dξA2
dτ

= −ξA2 + F̃G(û
A, a) (23a)

ε2
dξA1
dτ

= −ξA1 ∇2φ(ûA)ξA1 + ξA1 +O(a) (23b)

which is also a singularly perturbed system. When a = 0, and
for fixed-values of ûA, the fast dynamics render locally exponen-
tially stable [24, pp. 1761] the quasi-steady-state manifold ξ∗(ûA) =
(∇2φ(ûA)−1,∇φ(ûA)). Therefore, the reduced nominal average dy-
namics of (23) correspond to

˙̂ur = −k∇2φ(ûr)
−1

(
∇φ(ûr)

|∇φ(ûr)|α1
+

∇φ(ûr)

|∇φ(ûr)|α2

)
. (24)

Using again VN , we obtain that V̇N (ûr) = −kρ1VN (ûr)
χ1 −

kρ2VN (ûr)
χ2 < 0, for all ûr �= u∗, whereρ1 = 2χ1 > 0,ρ2 = 2χ2 >

0, χ1 = 2−α1
2

∈ (0.5, 1), χ2 = 2−α2
2

> 1. By [26, Th. 5.8] and the
smoothness ofVN , system (24) renders the pointAφ = {u∗}UGFxTS.
Moreover, using α2 = −α1, the assumptions of Lemma 1 hold with
α = 1/α1 and

√
ab = 2k, and we obtain the following estimate of the

fixed-time convergence bound:

T ∗
N :=

π

2kα1

. (25)

Note that in contrast to T ∗
G in (15), the expression for T ∗

N is now also
independent of the unknown parameters of Assumptions 3 and 6, and
an explicit function βN,u ∈ KLT can be obtained for system (24) via
Lemma 3 in the Appendix. Therefore, system (24) can be seen as a fixed-
time Newton-flow (FxTN), and by averaging and singular perturbation
theory we can expect that the FxTNESC will inherit (locally) the same
KL bound of (24).

The following theorem corresponds to the second main result of this
article.

Theorem 2: Consider the closed-loop system (21) with learning
dynamics (16), and suppose that Assumptions 1, 2, and 6 hold,
as well as Assumptions 4 and 5 with F̂G substituted by F̂N (·) :=
Fu(·, (∇2φ(·)−1,∇φ(·))), and βG,k substituted by βN,k. Then, ∀ k >
0 ∃Δ > 0, such that ∀ ν ∈ (0,Δ), ∃ ε∗2 > 0, such that ∀ ε2 ∈ (0, ε∗2),
∃ a∗ > 0, such that ∀a ∈ (0, a∗), ∃ ε∗1 > 0, such that ∀ ε1 ∈ (0, ε∗1),
∃ ε∗0 > 0, such that ∀ ε0 ∈ (0, ε∗0), all solutions of system (21) with
|û(0)|Aφ

≤ Δ, |ξ1(0)|∇2φ(Aφ)−1 ≤ Δ, and |ξ2(0)| ≤ Δ, induce the
bound

|u(τ)|Aφ
≤ βN,u(|û(0)|Aφ

, τ) + ν, ∀τ > 0

and βN,u(|û(0)|Aφ
, τ) = 0 for all τ ≥ T ∗

k . �
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Fig. 4. Left: Approximate (finite-time) reachable set of the NESC and the FxTNESC, with û(0) ∈ Aφ + 10B. The insets illustrate the convergence
of all solutions of the FxTNESC; Right: Time history of one solution of the NESC and the FxTNESC with identical initialization, in logarithmic scale
(top) and linear scale (bottom). The dashed lines show the trajectories of the NF and FxTN flows (20) and (24) with identical initialization.

Proof: The proof is almost identical to the proof of Theorem 1,
with the difference that the results hold only locally due to the local
stability properties of the boundary layer dynamics of system (23). In
particular, define Aξ := {∇2φ(Aφ)

−1} × {0}, and note that by the
stability properties of the boundary layer dynamics of (23), and by
the smoothness properties of φ, there exists δ > 0 and a∗∗ > 0 such
that for all ξ(0) ∈ ({∇2φ(Aφ)

−1} × {0}) + δB, a ∈ (0, a∗∗) and all
|ûA|Aφ

≤ δ, every solution ξA of the boundary layer dynamics of
system (23) is complete and satisfies |ξA(τ)|Aξ

≤ δ′′B for all time
τ ≥ 0, and δ′′ > 0. In turn, since βN,k is a class KLT function,
there existsΔ > 0 sufficiently small such that βN,k(Δ, 0) + 0.5δ < δ,
which implies that for Δ sufficiently small the set K̃ used in the proof
of Theorem 1 can be constructed such that K̃ ⊂ Aφ + δB. From here
we can repeat the same Steps 1 and 2 of the proof of Theorem 1. �

Remark 7: In the above-mentioned discussion, the parameter ε2 was
the same for the dynamic of ξ1 and ξ2. However, this was done only to
simplify the presentation, and in practice they can be different in order to
simplify the tuning of the algorithm. As in Theorem 1, the convergence
result of Theorem 2 covers a variety of Newton-based ESCs that go
beyond the one presented in Fig. 3, having fixed-time or finite-time (in
this case T ∗

k = Tk(Δ)) convergence properties, including ESCs with
discontinuous vector fields. �

For constant values of k > 0, α ∈ (0, 1), p = (ν, α1), and by using
the structure of the exponential KL bound of (20), the value of T ∗

N in
(25) will be smaller than the convergence time τ ∗

v of the NESC whenever
the initial conditions û(0) of the controllers are in the set ΩNp :=
{ur,0 ∈ Rn : Δ ≥ |ur,0|Aφ

> κν
2L exp(π/2α1)}. Since Theorem 2 is a

local result, in this caseΔ cannot be selected arbitrarily large. However,
this does not necessarily imply that the set ΩNp is empty, especially as
ν → 0+.

Example 2: We consider the same plant and cost function of Ex-
ample 1, but this time we simulate the closed-loop system using the
FxTNESC of Fig. 3. We set α1 = 0.5 = −α2, and k = π/100, which
assigns T ∗

N = 100 via (25). To guarantee that the ESC behaves (on
compact sets) as its average system in the slowest time scale, we
use again a = 0.01, ε0 = 5× 10−5, ε1 = 1× 10−4, ε2,ξ1 = 1× 101,
ε2,ξ2 = 2× 10−1. For the oscillator we used 2πθ1 ≈ 5, 2πθ2 ≈ 3.5,
and μ(0) = [0, 1, 0, 1]
. We further used a low-pass filter to smooth
the Hessian estimation. This filter is not necessary for the simulation,
but it can simplify the tuning of the Newton-based ESCs (see [24]). We
computed again a numerical approximation of the reachable set (for the
state û) of the NESC and the FxTNES from initial conditions satisfy-
ing û ∈ Aφ + 10B, ξ2(0) = 1, ξ1(0) = [0.25,−0.1,−0.1, 0.25], via
1× 103 simulations with random initialization in this set. The result is
shown in the left plots of Fig. 4 . The fixed-time convergence property
of the proposed FxTNES is further illustrated in the logarithmic scale of
the upper right plots, shown in Fig. 4, which also shows the trajectories

of the reduced average nominal dynamics (20) and (24) using the same
gains k and with identical initialization. As shown in the lower right plot
of Fig. 4, the trajectories of the ESCs remain close to the trajectories of
their respective reduced average nominal dynamics. �

Remark 8: When the plant (3) is a static map, i.e., y = h(u), one
can take φ(u) = h(u) and ε0 = 1. In this case, Theorems 1 and 2
recover the results of [1] and [2], which are specialized for the learning
dynamics (13) and (22), now with sharper bounds T ∗

G and T ∗
N given

by (15) and (25), respectively. In this case, the convergence time T ∗
N

can be completely prescribed a priori by the user, without the need of
retuning the gain k for different initial conditions. A similar observation
holds for T ∗

G if a lower bound on κ is known a priori. When the
plant is dynamic, the bounds hold in the t-time scale with T ∗

G/ε0 and
T ∗
N/ε0. �

VI. CONCLUSION

In this article, we introduced a novel class of nonsmooth ESCs with
convergence bounds characterized by class-KLT functions that confer
suitable transient performance. Our main results can be used for the
design and analysis of different averaging-based ESCs that go beyond
those considered in this article, and which are not necessarily Lipschitz
continuous, or even continuous. In the latter case, the ESCs must be
analyzed using the framework of differential inclusions. When the plant
is a static map, the convergence time of the algorithms can be prescribed
a priori by the users without retuning the gain of the learning dynamics
for different initial conditions. Two numerical examples were presented
to illustrate our theoretical results. Future research directions will focus
on FxTESCs for multiagent systems.

APPENDIX

The following Lemma is a minor extension of [21, Th. 2], for the
case when the average dynamics have a compact set that is SGPAS
instead of UGAS. The proof follows directly by using [21, Th. 1], and
the same steps of the proof of [22, Th. 7], and therefore, it is omitted
due to space limitations.

Lemma 2: Consider the singularly perturbed system with state
(x1, x2, y) ∈ Rn × X2 × Xy and dynamics

ẋ1 ∈ Fδ(x), ẋ2 = Gδ(x, y), εẏ = H(x, y) (26)

where X2 ⊂ Rn and Xy ⊂ Rp are compact sets,x = [x

1 , x



2 ]


, and for
each δ > 0 the set-valued mapping Fδ : R2n ⇒ Rn satisfies the Basic
Conditions, and the mappings Gδ : R2n × Rp → Rn and H : R2n ×
Rp → Rp are Lipschitz continuous. Suppose the following holds.
1) Existence of Average: There exists δ∗ > 0 such that for each δ ∈

(0, δ∗) there exists a continuous function GA
δ : R2n → Rn such

that for each compact set K ⊂ Rn there exists a class-L function
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σK such that for each L > 0, and each solution ybl : [0, L] → Xy

of the system: (x, ybl) ∈ K × X2 × Xy , ẋ = 0, ẏbl = H(x, ybl),
the following holds | 1

L

∫ L

0
GA

δ (x)−Gδ(x, ybl(s))ds| ≤ σK(L).
2) SGPAS of Average System: There exists a compact set Ax ⊂ Rn

such that the system ẋA
1 ∈ Fδ(x

A), ẋA
2 = GA

δ (x
A) renders the set

Ax × X2 SGPAS as δ → 0+ with β ∈ KL.
Then, system (26) renders the compact set Ax × X2 × Xy SGPAS

as (ε, δ) → 0+ with β ∈ KL. �
Lemma 3: Suppose that V : R≥0 → R≥0 satisfies the Assumptions

of Lemma 1, and there exist λ1, λ2, p > 0 such that λ1|x|p ≤ V (x) ≤
λ2|x|p. Then, every solution of (1) satisfies the following:

|x(t)| ≤ c1 tan
(
max

{
0,−c2t+ arctan

(
c3|x(0)|

p
2α

)}) 2α
p

=: β(|x(0)|, t), ∀t ≥ 0, and β ∈ KLT , (27)

where c1 :=
(
a
b

)α
p

(
1
λ1

) 1
p

, c2 :=
√
ab

2α
, and c3 :=

√
b
a
λ

1
2α
2 . �

Proof: : Let ẏ = −ayγ1 − byγ2 , with γ1, γ2 as in Lemma 1.
Using steps as in the proof of [23, Lemma 2], and the fact
that y∗ = 0 is an equilibrium point, it follows that every

solution y satisfies 2α√
ab

arctan(
√

b
a
y

1
2α (t)) = max{0,−t+

2α√
ab

arctan(
√

b
a
y(0)

1
2α )} for all t ≥ 0. Solving for y and

using the generalized Comparison Lemma of [34, Lemma 1],
we obtain V (x(t)) ≤ (a/b)α tan(max{0,−

√
ab/(2α)t+

arctan(
√

b/aV (x(0))1/2α)})2α for all t ≥ 0. The result now
follows by using the upper and lower bounds of V , and the continuity
and monotonicity properties of the functions arctan : R≥0 → [0, π/2)
and tan : [0, π/2) → R. �
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