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a b s t r a c t

We study the adaptive output-feedback stabilization problem of stochastic strict-feedback systems
with sensor uncertainty. Specifically, we consider the simultaneous presence of sensor uncertainty,
unknown growth rate and stochastic disturbance, which has not been treated heretofore. By developing
a new stochastic adaptive dual-domination approach, an adaptive observer and an output-feedback
controller are designed, in which two gains are suitably selected to dominate the unknown sensor
sensitivity and unknown growth rate, respectively. By using the nonnegative semimartingale conver-
gence theorem, it is proved that the closed-loop system has an almost surely unique solution on
[0, +∞) and that regulation to the equilibrium at the origin of the closed-loop system is achieved
almost surely. Finally, two simulation examples are given to illustrate the control design.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since stochastic noise and nonlinearity exist widely in appli-
cations, the research of stochastic nonlinear control has drawn
considerable attention and is gaining importance in economet-
rics, biology, environmental science and other areas. Over the
past two decades, significant results have been obtained on the
controller design for stochastic nonlinear systems. For the state-
feedback control design, Deng and Krstic (1997a, 1997b) and
Deng, Krstic, and Williams (2001) develop stochastic backstep-
ping control design with the quartic Lyapunov functions; Pan and
Basar (1998, 1999) focus on the optimal and near-optimal con-
troller design under risk-sensitive cost function criterion. When
it turns to the output-feedback control design, Deng and Krstic
(1999) present the first result on global output-feedback stabi-
lization in probability for stochastic nonlinear continuous-time
systems. Furthermore, Deng and Krstic (2000) generalize the
results in Deng and Krstic (1999) to systems with noise whose
covariance is time varying and bounded but the bound is not
known a priori. Since then, significant contributions have been
made in studying the output-feedback control of stochastic non-
linear systems with different structures by many researchers.

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Alessandro
Abate under the direction of Editor Ian R. Petersen.
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For example, Liu and Zhang (2006) address the output-feedback
design for systems in observer canonical form under long-term
average tracking risk-sensitive cost criteria; Liu, Zhang, and Jiang
(2007) investigate the decentralized adaptive output-feedback
stabilization for large-scale stochastic nonlinear systems with un-
certainties; Wu, Xie, Shi, and Xia (2009) design output-feedback
controllers for stochastic systems with Markovian switching; Li,
Xie, and Zhang (2011) solve the output-feedback stabilization
problem for stochastic high-order nonlinear systems by com-
pletely removing the power order restriction and largely relaxing
the nonlinear growth condition; Li and Liu (2017) study the adap-
tive output-feedback control problem by developing a general
stochastic convergence theorem.

It should be emphasized that all the above-mentioned re-
sults (Deng & Krstic, 1999, 2000; Li & Liu, 2017; Li et al., 2011; Liu
& Zhang, 2006; Liu et al., 2007; Wu et al., 2009), on the output-
feedback control of stochastic nonlinear systems, do not consider
the sensor uncertainty in their systems’ outputs. However, in
practice, as shown in circuits and electrical devices (Carr, 1993)
and mechanical systems (Kolovsky, 1999), the sensor sensitiv-
ity θ (t) in the system output is not always a constant. Due
to manufacturing reasons, there always exists a sensitivity er-
ror in θ (t). For example, as demonstrated in Lantto (1999), the
displacement sensor of a magnetic bearing suspension system
experiences ±10% sensitivity error. Recently, motivated by Carr
(1993), Kolovsky (1999) and Lantto (1999), Chen, Qian, Sun, and
Liang (2018) propose a dual-domination approach to solve the
output feedback stabilization problem for nonlinear systems with
unknown measurement sensitivity in the output. However, the
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results in Chen et al. (2018) contain two limitations: the growth
rate for nonlinear functions should be accurately known and there
is no noise in the studied system.

In many applications, systems do not merely suffer from un-
known sensor uncertainty but are often subject to stochastic
perturbations and unknown growth rate, simultaneously, in their
dynamics (Hinrichsen & Pritchard, 1996; Ugrinovskii, 1998; Won-
ham, 1970). For example, as demonstrated by Ugrinovskii (1998),
the two-mass spring system is a typical stochastic physical sys-
tem. Once the performance of the spring has deteriorated through
wear, the value of the spring coefficient is deemed to belong
between suitable bound and is thus unknown. Besides, for the
output-feedback control of the spring system, the displacement
sensor most commonly used is an inductive type sensor with ex-
cellent linearity and signal-to-noise ratio (Lantto, 1999). The sen-
sor sensitivity is practically the same in both X- and Y -directions,
but may differ from its assumed value because of manufacturing
reasons. In view of the above-mentioned facts, the two-mass
spring system can be practically modeled as a stochastic nonlin-
ear system with sensor uncertainty and unknown growth rate.
Specifically, the sensor uncertainty comes from the displacement
sensor and the unknown growth rate is produced by the un-
known nominal value of the spring coefficient. To the best of
the authors’ knowledge, there is no previously published work
which can solve such an output-feedback control problem, which
contains sensor uncertainty, unknown growth rate and stochas-
tic noise simultaneously. From a practical point of view, it is
imperative to study the output-feedback control of such systems.

Motivated by the above observations, we study the adaptive
output-feedback stabilization control of stochastic strict-feedback
systems with unknown growth rate and sensor uncertainty. The
contributions of this paper are four-fold:

(1) In contrast to the previous work in the literature (Chen
et al., 2018; Deng & Krstic, 1999, 2000; Li & Liu, 2017; Li, Liu,
& Feng, 2019; Li et al., 2011; Liu & Zhang, 2006; Liu et al., 2007;
Wu et al., 2009), the system model studied in this paper is more
general since it considers sensor uncertainty, unknown growth
rate and stochastic noise simultaneously.

(2) This paper is not an easy generalization from the deter-
ministic system (Chen et al., 2018) to stochastic systems. In fact,
even when there is no noise in the studied systems, the results
in this paper are new and more general than those in Chen
et al. (2018) since this paper considers an unknown growth rate.
For the controller design, due to the effect of unknown growth
rate, the information of the bounding function for the system
uncertainty cannot be used directly, which makes the constant
gain approach in Chen et al. (2018) inapplicable since it cannot
guarantee stability. In this paper, we introduce a new dynamic
gain in the observer and control design. The existence of stochas-
tic noise and unknown growth rate makes the stability analysis
in this paper much more involved and difficult than that of Chen
et al. (2018); advanced stochastic analysis techniques are needed
to prove the stability.

(3) A new adaptive observer is designed in this paper. On the
one hand, we design an adaptive observer driven only by the
input u, not using the information of output y. In the existing
results (Lei & Lin, 2006; Li & Liu, 2017; Yan & Liu, 2011), the
adaptive observers are driven by both u and y. Nevertheless, the
existence of unknown sensor sensitivity θ (t) in the output makes
the observers in Lei and Lin (2006), Li and Liu (2017) and Yan and
Liu (2011) inapplicable since they require y = x1 (i.e. θ (t) ≡ 1)
to construct an estimate error in the stability analysis. On the
other hand, by using the information of the allowable sensitivity
error, we design a new adaptive law for the dynamic gain in
the observer, which can effectively dominate the nonlinear terms
arising from the controller and unknown state x1.

(4) A new domination approach is developed in Proposition 3
to prove the boundedness of the closed-loop system. Firstly, a
new change of coordinates is introduced with two constants: the
first constant is used to dominate the unknown sensor sensitivity
and another suitably constructed constant can effectively domi-
nate the nonlinear terms arising from unknown growth rate and
the gains of the observer and controller. Then, by using the Itô
formula and the nonnegative semimartingale convergence theo-
rem, we prove boundedness of all the states in the closed-loop
system.

The remainder of this paper is organized as follows.
Section 2 describes the problem to be investigated. Section 3
shows controller design. Section 4 analyzes stability of the closed-
loop system. Section 5 gives two examples to illustrate the theo-
retical results. Section 6 includes concluding remarks.
Appendices A–E collect the useful tools, the proofs of Theorem 1
and Propositions 1–3, respectively.

Notations: R+ and Rn denote the set of all nonnegative real
numbers and the real n-dimensional space, respectively. For a
given vector or matrix X , XT denotes its transpose, Tr{X} denotes
its trace when X is square, and |X | is the Euclidean norm of

a vector X . Defining |A| =

(∑n
i=1

∑m
j=1 a

2
ij

)1/2

for a matrix

An×m. In denotes the n-dimensional identity matrix. λmax(M) and
λmin(M) denote the maximum and minimum eigenvalues of a
square matrix M . For any a, b ∈ R, let a ∧ b = min{a, b} and
a ∨ b = max{a, b}. C(Rn, R) denotes the set of all continuous
functions mapping from Rn to R and χA(·) denotes the indicator
function of A. C i denotes the set of all functions with continuous
ith derivatives. For any given V ∈ C2 associated with stochastic
system dx = f (t, x)dt + g(t, x)dω, the differential operator L is
defined as L V (x) ≜ ∂V (x)

∂x f (t, x) +
1
2Tr

{
gT (t, x) ∂2V (x)

∂x2
g(t, x)

}
.

2. Problem formulation

Consider a class of stochastic nonlinear systems described by

dxi = (xi+1 + fi(t, x))dt + gi(t, x)dω, i = 1, . . . , n − 1, (1)
dxn = (u + fn(t, x))dt + gn(t, x)dω, (2)
y = θ (t)x1, (3)

where x = (x1, . . . , xn)T ∈ Rn, u ∈ R and y ∈ R are the system
state, control input and measurement output. The functions fi :

R+
× Rn

→ R and gi : R+
× Rn

→ R1×r are piecewise
continuous in t , locally bounded and locally Lipschitz continuous
in x uniformly in t ∈ R+, fi(t, 0) = 0, gi(t, 0) = 0, i = 1, . . . , n.
The sensor sensitivity θ (t) is an unknown continuous function
of t ∈ R+. ω is an r-dimensional independent standard Wiener
process defined on the complete probability space (Ω, F , Ft , P)
with a filtration Ft satisfying the usual conditions (i.e., it is
increasing and right continuous while F0 contains all P-null sets).

For system (1)–(3), we need the following assumptions.

Assumption 1. There exists an unknown positive constant c (c is
called the unknown growth rate) such that

|fi(t, x)| ≤ c(|x1| + · · · + |xi|), (4)
|gi(t, x)| ≤ c(|x1| + · · · + |xi|), i = 1, . . . , n. (5)

Assumption 2. The sensor sensitivity θ (t) is an unknown contin-
uous function satisfying θ (t) ∈ [1 − θ̄ , 1 + θ̄ ], where 0 < θ̄ < 1
is the allowable sensitivity error.

Remark 1. As demonstrated by Deng and Krstic (1999, 2000), Li
and Liu (2017), Li et al. (2011), Liu and Zhang (2006), Liu et al.
(2007) and Wu et al. (2009), the linear growth condition (4)–(5)
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in Assumption 1 is a natural condition frequently used to solve
the output-feedback control problems of stochastic nonlinear
systems. In addition, as shown in Chen et al. (2018), Assumption 2
is crucial to guarantee the stability of system (1)–(3). However,
it is obvious that system (1)–(3) is substantially different from
those in Chen et al. (2018), Deng and Krstic (1999, 2000), Li and
Liu (2017), Li et al. (2011), Liu and Zhang (2006), Liu et al. (2007)
and Wu et al. (2009). Unlike Deng and Krstic (1999, 2000), Li
and Liu (2017), Li et al. (2011), Liu and Zhang (2006), Liu et al.
(2007) and Wu et al. (2009), there is sensor sensitivity θ (t) in (3),
which is neither known nor differentiable. Different from Chen
et al. (2018), stochastic noise exists in (1)–(2) (the noise ω is
an r-dimensional independent standard Wiener process), and the
growth rate c of the drift terms and diffusion terms is unknown,
see (4)–(5).

The objective of this paper is to design an adaptive output-
feedback controller for system (1)–(3) such that the closed-loop
system has an almost surely unique solution on [0, +∞) and
that regulation to the equilibrium at the origin of the closed-loop
system is achieved almost surely.

3. Adaptive output-feedback controller design

In this section, we first design an observer and then design an
adaptive output-feedback controller for system (1)–(3).

Firstly, we choose suitable design parameters ai > 0 and
bi > 0, i = 1, . . . , n, such that the matrices A and B are Hurwitz,
where

A =

⎡⎢⎢⎣
−a1 1 · · · 0

...
...

. . .
...

−an−1 0 · · · 1
−an 0 · · · 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−bn −bn−1 · · · −b1

⎤⎥⎥⎦ .

(6)

For any positive constant σ , there exist P = PT and Q = Q T

satisfying

ATP + PA ≤ −2In, (7)
DP + PD ≥ 0, (8)

BTQ + QB ≤ −2In, (9)
DQ + QD ≥ 0, (10)

where D = diag[σ , 1 + σ , . . . , n − 1 + σ ].
For system (1)–(3), we construct the following observer

˙̂x1 = x̂2 − La1x̂1, (11)
˙̂x2 = x̂3 − L2a2x̂1, (12)

...
˙̂xn = u − Lnanx̂1, (13)

where L(t) ≥ 1 is a dynamic gain to be designed later.
Introducing the following coordinates

ei =
xi − x̂i
Li−1+σ

, i = 1, . . . , n, (14)

z1 =
x1
Lσ

, zi =
x̂i

Li−1+σ Li−1
0

, v =
u

Ln+σ Ln0
, i = 2, . . . , n, (15)

and choosing the output-feedback controller as

v = −bnL−σ y − bn−1z2 − · · · − b2zn−1 − b1zn, (16)

then from (1)–(3) and (11)–(16) we have

de =

(
LAe + L1−σ ax1 −

L̇
L
De

)
dt + Fedt + Gedω, (17)

dz =

(
LL0Bz + LL0Bzbn(1 − θ (t))z1 + LD2e2

+
L
L0

D1(e1 − z1) −
L̇
L
Dz

)
dt + Fzdt + Gzdω, (18)

where L0 ≥ 1 is a constant gain to be designed, e = (e1, . . . , en)T ,
z = (z1, . . . , zn)T , a = (a1, . . . , an)T , D2 = (1, 0, . . . , 0)T and

Bz =

⎡⎢⎢⎣
0
...

0
1

⎤⎥⎥⎦ , D1 =

⎡⎢⎢⎢⎢⎢⎣
0
a2
1
L0
a3
...

1
Ln−2
0

an

⎤⎥⎥⎥⎥⎥⎦ , Fe =

⎡⎢⎢⎢⎣
1
Lσ f1
1

L1+σ f2
...

1
Ln−1+σ fn

⎤⎥⎥⎥⎦ , (19)

Fz =

⎡⎢⎢⎣
1
Lσ f1
0
...

0

⎤⎥⎥⎦ , Ge =

⎡⎢⎢⎢⎣
1
Lσ g1
1

L1+σ g2
...

1
Ln−1+σ gn

⎤⎥⎥⎥⎦ , Gz =

⎡⎢⎢⎣
1
Lσ g1
0
...

0

⎤⎥⎥⎦ . (20)

Remark 2. The observer (11)–(13) and the controller (16) is
different from those in Deng and Krstic (1999, 2000), Li and Liu
(2017), Li et al. (2011), Liu and Zhang (2006), Liu et al. (2007)
and Wu et al. (2009), in the sense that the information of x1 is
not used. Since the sensor sensitivity θ (t) in (3) is unknown, the
information of the state x1 is unavailable and it cannot be directly
used in constructing the observer and controller.

Choose the Lyapunov function

V1(e, z) = (m1 + 1)eTPe + zTQz, (21)

where m1 = |Q |
2
|a|2.

In the following theorem, a new stochastic adaptive dual-
domination approach is developed to solve the stabilization prob-
lem of system (1)–(3). Specifically, a dynamic gain L(t) and a
constant gain L0 are suitably chosen to dominate the unknown
growth rate c and the unknown sensor sensitivity θ (t), respec-
tively. The proof of this theorem can be found in Appendix B.

Theorem 1. For system (17)–(18), if the allowable sensitivity error
satisfies 0 < θ̄ < min{1, 1

bn|Q |
} and Assumptions 1–2 hold, using

the gains L(t) and L0 defined by

L̇ =

( x̂1
Lσ

)2
+

(
y

(1 − θ̄ )Lσ

)2

, L(0) = 1, (22)

L0 ≥ max
{
1,

m1 + k1 + 1
2ρ

, 12|P|
2
}
, (23)

the unknown growth rate c and the unknown sensor sensitivity θ (t)
is dominated in the sense of the Lyapunov inequality

L V1 ≤ −

(
L(m1 + 1) − k2 − k3

)
(|z|2 + |e|2), (24)

where

ρ = 1 − bnθ̄ |Q |, (25)
k1 = 4 + 4|Q |

2
+ 2|a||Q | + 2(m1 + 1)|P|

2
|a|2, (26)

k2 = (2c + c2)|Q | + (c2(n + 1)n3
+ cn)(m1 + 1)

·|P|

n∑
i=1

L2i−2
0 , (27)

k3 = (c2(n + 1)n3
+ c(n2

+ 2n
3
2 ))(m1 + 1)|P|. (28)

Remark 3. If the growth rate c of the drift terms and diffusion
terms is known, Assumption 1 reduces to the norm assumption
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frequently used in the output-feedback control of stochastic non-
linear systems, such as that in Deng and Krstic (1999, 2000), Li
et al. (2011), Liu and Zhang (2006), Liu et al. (2007), Sun, Shao,
Chen, and Meng (2018) and Wu et al. (2009). In this case, from
(27)–(28), k2 and k3 are completely known. Then, a constant gain
rather than a dynamic gain, can be chosen as L >

k2+k3
m1+1 to make

L V1 in (24) negative definite. From Theorem 1.1 in Deng and
Krstic (1999), system (1)–(3) is globally asymptotically stable in
probability. However, from Assumption 1, the growth rate c is
completely unknown in this paper, which means that k2 and k3
in (24) are unknown. In this case, the stability analysis of system
(1)–(3) becomes challenging since the negative definiteness of
L V1 in (24) cannot be ensured. To deal with this difficult prob-
lem, a dynamic gain L(t) is introduced in (22), and an elaborate
stability analysis process is developed in the next section.

4. Stability analysis

In this section, we focus on the stability analysis of the closed-
loop system (1)–(3), (11)–(13), (15)–(16) and (22)–(23). Before
giving the main results, we first present three fundamental propo-
sitions. Specifically, Proposition 1 characterizes the existence
and uniqueness of a global solution to the closed-loop system.
Then Proposition 2 proves the boundedness of L(t) on [0, +∞),
which is crucial in the whole stability analysis process. After that,
Proposition 3 focuses on the property analysis of z, e.

Proposition 1. If Assumptions 1–2 hold, then the system composed
of (17)–(18) and L̇(t) in (22) has an almost surely unique solution
(L(t), z(t), e(t)) on [0, +∞).

Proof. The proof is given in Appendix C.

Proposition 2. If Assumptions 1–2 hold, then L(t) defined in (22) is
bounded on [0, +∞) a.s.

Proof. Denoting Ω1 = {limt→+∞ L(t) = +∞}, we suppose
P{Ω1} > 0. By using the nonnegative semimartingale con-
vergence theorem in Lemma A.3, we get a contradiction. Thus,
P{Ω1} = 0, which means that L(t) is bounded on [0, +∞) a.s.
The detailed proof process is given in Appendix D.

Proposition 3. If Assumptions 1–2 hold, then z and e are bounded
on [0, +∞) a.s. Meanwhile,

∫
+∞

0 |z|2dt < +∞ a.s. and
∫

+∞

0 |e|2dt
< +∞ a.s.

Proof. The proof of this proposition includes three steps:
Step 1. We first introduce two new coordinate transformations

with L0 and L∗ to rescale the (x1, x̂2, . . ., x̂n)T -system and (x1 −

x̂1, . . . , xn − x̂n)T -system as ε-system and ξ -system respectively,
where ε = (ε1, . . ., εn)T , ξ = (ξ1, . . . , ξn)T and L∗ is a design
parameter.

Step 2. We then prove

L V3(ε, ξ ) ≤ −|ε|2 − |ξ |
2
+ (2m2 + m3)L̇(t), (29)

where V3(ε, ξ ) = εTPε + ξ TPξ , m2 and m3 are two positive
constants.

Step 3. We finally use the nonnegative semimartingale conver-
gence theorem to prove∫

+∞

0
(|e|2 + |z|2)ds < +∞ a.s.; (30)

z and e are bounded on [0, +∞) a.s. (31)

The detailed proofs of Steps 1–3 are given in Appendix E.

Remark 4. From (E.37) and (E.38) in Appendix E, we obtain that
the new adaptive law L̇ in (22) can dominate the terms arising
from unknown state x1, which is crucial for stability analysis.

Remark 5. From (24), we know that the proof of boundedness
of z and e is a difficult problem with the effect of the unknown
constants k2 and k3. In the proof of Proposition 3 (see Appendix E),
a new domination approach is developed to prove boundedness
of z and e. Two constants L0 and L∗ are introduced in (E.1) and
(E.2) to dominate the unknown terms. Specifically, as proved in
Theorem 1, L0 can dominate the unknown sensor sensitivity θ (t);
L∗ is elaborately constructed in (E.3) to dominate L(t), L0 and
unknown terms arising from unknown growth rate c. Combining
this domination approach with the nonnegative semimartingale
convergence theorem, the boundedness of z and e is proved.

Based on Propositions 1–3, we now give the main results on
stability analysis for system (1)–(3) in the following theorem.

Theorem 2. For system (1)–(3), if the allowable sensitivity error
satisfies 0 < θ̄ < min{1, 1

bn|Q |
} and Assumptions 1–2 hold, using

the observer (11)–(13) and controller (16) with the gains L(t) and
L0 defined in (22)–(23), the following conclusions hold:

(1) The closed-loop system composed of (1)–(3), (11)–(13), (15)–
(16) and (22)–(23) has an almost surely unique solution on [0, +∞)
for any initial condition (x0, x̂0) ∈ Rn

× Rn;
(2) The closed-loop system is almost surely regulated to the equi-

librium at the origin. Specifically, limt→+∞ x(t) = limt→+∞ x̂(t) =

0, a.s., where x̂ = (x̂1, . . . , x̂n)T .

Proof. From Propositions 1–3, we obtain that the closed-loop
system composed of (17)–(18) and (22)–(23) has an almost surely
unique solution (L, e, z) on [0, +∞) and (L, e, z) is bounded on
[0, +∞). By (14)–(15), conclusion (1) holds.

From Proposition 2, we know that L(t) is bounded on [0, +∞)
a.s. By (14)–(15) and Proposition 3 we have∫

+∞

0
(|x|2 + |x̂|2)ds < +∞ a.s.; (32)

x and x̂ are bounded on [0, +∞) a.s. (33)

Noting the drift terms and diffusion terms in the closed-loop
system composed of (1)–(3), (11)–(13), (15)–(16) and (22)–(23)
are local bounded in x and x̂, from (32)–(33) and Lemma A.4 we
obtain limt→+∞ x(t) = limt→+∞ x̂(t) = 0 a.s.

5. Two simulation examples

In this section, we give two simulation examples to show the
effectiveness of the control scheme developed in the last two
sections.

Example 1. Consider the following system

dx1 = x2dt + c1x1dω, (34)
dx2 = udt + ln(1 + (x22)

c2 )dt + c3 sin(x1)dω, (35)

y = θ (t)x1, (36)

where θ (t) = 1 + 0.25|sin(10t)|, c1, c2 ≥ 1 and c3 are unknown
constants.

It is obvious that

|c1x1| = c1|x1|, (37)
|ln(1 + (x22)

c2 )| ≤ (2c2 − 1)|x2|, (38)

|c3 sin(x1)| ≤ c3|x1|. (39)
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Fig. 1. The response of the closed-loop system (34)–(36) and (40)–(43).

From (37)–(39), Assumption 1 is satisfied with c = max{2c2 −

1, c1, c3}.
Choosing the parameters a1 = 2, a2 = 1, b1

= 1, b2 = 0.25, σ = 0.4, by (9)–(10) we obtain 1
b2|Q |

=

0.4350. From the definition of θ̄ in Theorem 1 we have 0 <

θ̄ < min{1, 0.4350} = 0.4350. By Assumption 2 we get θ (t) ∈

(0.5650, 1.4350), which means that θ (t) = 1 + 0.25|sin(10t)|
satisfies Assumption 2.

By following the design procedure developed in Section 3 and
choosing c1 = 1, c2 = 2, c3 = 1.5, L0 = 15.7, we can get the
observer and controller as

˙̂x1 = x̂2 − 2Lx̂1, (40)
˙̂x2 = u − L2x̂1, (41)
u = −61.6225L2y − 15.7Lx̂2, (42)

L̇ =

(
x̂1
L0.4

)2

+

(
y

0.75L0.4

)2

. (43)

In the practical simulation, we randomly set the initial conditions
as x1(0) = 1, x2(0) = −6, x̂1(0) = −4, x̂2(0) = 5, L(0) = 1.
The response of the closed-loop system (34)–(36) and (40)–(43)
is given in Fig. 1. From Fig. 1, we observe that limt→+∞ x1(t) =

limt→+∞ x2(t) = limt→+∞ x̂1(t) = limt→+∞ x̂2(t) = 0, a.s., from
which the effectiveness of the controller is demonstrated.

Example 2. Consider the one-link manipulator which contains
motor dynamics and stochastic disturbances; see Fig. 2. The sys-
tem is described as in Chen, Jiao, Li, and Li (2010) and Xue, Zhang,
Zhang, and Xie (2018)

Dq̈ + Bq̇ + N sin(q) = τr + τd, (44)
M τ̇r + Hτr = u − Kmq̇, (45)

where q, q̇, q̈ denote the link position, velocity and acceleration,
respectively. τr is the torque produced by the electrical subsys-
tem, and τd = c1 sin(q)ω̇ is the torque disturbance with unknown
constant c1 and the torque stochastic disturbance ω defined in
system (1)–(3). u is the control input used to represent the
electromechanical torque. D is the mechanical inertia, B is the
coefficient of viscous friction at the joint, N is a positive constant
related to the mass of the load and the coefficient of gravity, M
is the armature inductance, H is the armature resistance, and Km
is the back electromotive force coefficient.

Fig. 2. Model of one-link manipulator.

Introducing x1 = MDq, x2 = MDq̇, x3 = Mτr , (44)–(45) can be
transformed into

dx1 = x2dt, (46)

dx2 = x3dt −

(
B
D
x2 + MN sin

(
x1
MD

))
dt

+ c1M sin
(

x1
MD

)
dω, (47)

dx3 = udt −

(
Km

MD
x2 +

H
M

x3

)
dt, (48)

y = θ (t)x1, (49)

where θ (t) = 1 + 0.09|sin(t)|, c1 > 0, B > 0 and H > 0 are
unknown constants. We choose D = 1 kg m2, N = 4, M = 0.5H ,
Km = 1 N m/A. It can be verified that Assumption 1 is satisfied
with c = max{ B

D , N
D ,

C1
D , Km

MD , H
M }.

Choosing the parameters a1 = 1.5, a2 = 0.75, a3 = 0.125,
b1 = 3, b2 = 3, b3 = 1, σ = 0.3, by solving the matrix
inequalities (9)–(10) we get 1

b3|Q |
= 0.0992. From the definition

of θ̄ in Theorem 1 we have 0 < θ̄ < min{1, 0.0992} = 0.0992.
By Assumption 2 we get θ (t) ∈ (0.9008, 1.0992). It is obviously
that θ (t) = 1 + 0.09|sin(t)| satisfies Assumption 2.

By following the design procedure developed in Section 3 and
choosing c1 = 2, B = 1 N ms/rad,H = 0.5 �, L0 = 17.2, we can
get the observer and controller as

˙̂x1 = x̂2 − 1.5Lx̂1, (50)
˙̂x2 = x̂3 − 0.75L2x̂1, (51)
˙̂x3 = u − 0.125L3x̂1, (52)
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Fig. 3. The response of the closed-loop system (46)–(49) and (50)–(54).

u = −5088.4L3y − 887.52L2x̂2 − 51.6Lx̂3, (53)

L̇ =

(
x̂1
L0.3

)2

+

(
y

0.91L0.3

)2

. (54)

In the practical simulation, we randomly set the initial conditions
as x1(0) = 0.35, x2(0) = −1, x3(0) = 4, x̂1(0) = 5, x̂2(0) = −1.5,
x̂3(0) = −6, L(0) = 1. The response of the closed-loop system
(46)–(49) and (50)–(54) is given in Fig. 3. From Fig. 3, we observe
that limt→+∞ xi(t) = limt→+∞ x̂i(t) = 0, a.s., i = 1, 2, 3, from
which the effectiveness of the controller is demonstrated.

Remark 6. It can be observed from Examples 1–2 that the system
(34)–(36) and (46)–(49) are both with time-varying sensor uncer-
tainty, unknown growth rate and stochastic noise simultaneously.
For the output-feedback control of the system (34)–(36) and
(46)–(49), the method in Chen et al. (2018) fails since there are
unknown growth rate and stochastic noise in the studied system.
Although the method in Lei and Lin (2006), Li and Liu (2017) and
Yan and Liu (2011) can deal with the unknown growth rate, their
adaptive observer designs require y = x1 to construct an estimate
error in the stability analysis. In other words, the existence of
time-varying sensor uncertainty in system (34)–(36) and (46)–
(49) makes the observers in Lei and Lin (2006), Li and Liu (2017)
and Yan and Liu (2011) inapplicable since x1 is unavailable. Our
control schemes (40)–(43) and (50)–(54) have the following novel
features: (1) To overcome the difficulties caused by the time-
varying sensor uncertainty, our adaptive observers are driven
only by the input u, not using the information of output y;
(2) We design new adaptive laws (43) and (54) for the dy-
namic gains in the observers and controllers, which dominate the
nonlinear terms arising from the controllers and unknown state
x1. By using advanced stochastic analysis techniques developed
in Propositions 1–3 and Theorem 2, we prove that the control
schemes (40)–(43) and (50)–(54) solve the output-feedback sta-
bilization problems for system (34)–(36) and (46)–(49). It should
be emphasized that our control schemes are not routine combi-
nations of the existing methods in Chen et al. (2018), Lei and Lin
(2006), Li and Liu (2017) and Yan and Liu (2011). In fact, when
the time-varying sensor uncertainty and the unknown growth
rate simultaneously appear in stochastic systems, the observer
design and the stability analysis are completely different from
that in Chen et al. (2018), Lei and Lin (2006), Li and Liu (2017)
and Yan and Liu (2011) due to the effect of stochastic noise.

6. Concluding remarks

In this paper we have addressed the adaptive output-feedback
stabilization problem of stochastic strict-feedback systems with
sensor uncertainty. In contrast to the previous work, the system
model studied in this paper is more general since it considers
sensor uncertainty, unknown growth rate and stochastic noise
simultaneously. In fact, even when there is no noise in the system,
the results in this paper are new and more general than the exist-
ing results since this paper considers an unknown growth rate. To
solve the output-feedback stabilization problem, we first design
a new observer, which is driven only by the input u, not using
the information of output y. Besides, we construct a new adaptive
law for the dynamic gain in the observer, which dominates the
nonlinear terms arising from the controller and unknown state x1.
We then develop a stochastic adaptive dual-domination approach
to design an adaptive output-feedback controller. For the stability
analysis, we propose a new domination approach in Proposition 3
to prove the boundedness of the closed-loop system, and use
advanced stochastic analysis techniques to prove that the closed-
loop system has an almost surely unique solution on [0, +∞)
and that the closed-loop system is almost surely regulated to
the equilibrium at the origin. It is worth emphasizing that the
existence of stochastic noise and unknown growth rate makes the
stability analysis in this paper much more involved and difficult
than that of Chen et al. (2018), Jiang, Xie, and Zhang (2019), Sun
et al. (2018) and Xie and Jiang (2019).

For the adaptive output-feedback control of stochastic non-
linear systems, many important issues are still open and worth
investigating, such as the adaptive output-feedback controls in
the case when there are uncertain parameters in the studied
systems, using the control scheme developed in this paper to
solve the adaptive output-feedback control problems of stochastic
underactuated mechanical system (Li, Liu, & Feng, 2017) and
random benchmark systems (Li, Liu, & Feng, 2020), etc.

Acknowledgments

The work is supported by National Natural Science Founda-
tion of China under Grant (No. 61973150), the Young Taishan
Scholars Program of Shandong Province of China under Grant
(No. tsqn20161043), Shandong Provincial Natural Science Foun-
dation for Distinguished Young Scholars, China under Grant (No.
ZR2019JQ22), and Shandong Province Higher Educational Excel-
lent Youth Innovation team, China (No. 2019KJN017).



W. Li, X. Yao and M. Krstic / Automatica 120 (2020) 109112 7

Appendix A. Useful tools

In this part, four lemmas are collected, which are frequently
used in the controller design and stability analysis.

Lemma A.1 (Krstic & Deng, 1998). For (x, y) ∈ R2, the following
Young’s inequality holds:

xy ≤
νp

p
|x|p +

1
qνq |y|q, (A.1)

where ν > 0, the constants p > 1 and q > 1 satisfy (p − 1)(q − 1)
= 1.

Lemma A.2 (Yang & Lin, 2004). For p ∈ [1, +∞) and any xi ∈

R, i = 1, . . . , n, the following inequality holds:

(|x1| + · · · + |xn|)p ≤ np−1(|x1|p + · · · + |xn|p). (A.2)

Lemma A.3 (Mao, 2008). Let A (t), t ≥ t0 and U (t), t ≥ t0 be
two 1-dimensional continuous adapted increasing processes with
A (t0) = U (t0) = 0 a.s., W (t), t ≥ t0 be a 1-dimensional continuous
local martingale with W (t0) = 0 a.s., and ξ be a nonnegative Ft0-
measurable stochastic variable. If Y (t) ≜ ξ+A (t)−U (t)+W (t), t ≥

t0 is nonnegative, then{
lim

t→+∞
A (t) < +∞

}
⊆

{
lim

t→+∞
Y (t) exists and is finite

}
∩

{
lim

t→+∞
U (t) < +∞

}
a.s. (A.3)

Lemma A.4 (Li & Liu, 2017). Suppose that system dx = f (t, x)dt +

g(t, x)dω has a unique solution on [t0, +∞), and that f (t, x) and
g(t, x) are locally bounded in x ∈ Rn uniformly in [t0, +∞). If the
solution x(t) of the above system satisfies

(i) x(t) is bounded on [t0, +∞) a.s.; and
(ii) limt→+∞

∫ t
t0

α(x(s))ds exists and is finite a.s. with α ∈

C(Rn, R), then limt→+∞ α(x(t)) = 0 a.s.

Appendix B. Proof of Theorem 1

Step 1. We first prove that V1 satisfies (24).
Denoting V11(e) = eTPe, from (7)–(8), (17) and (22) we obtain

L V11(e) ≤

[(
LAe + L1−σ ax1 −

L̇
L
De

)TPe + eTP
(
LAe

+ L1−σ ax1 −
L̇
L
De

)]
+ 2eTPFe + |P||Ge|

2

≤ −2L|e|2 + 2L1−σ eTPax1 −
L̇
L
eT (DP + PD)e

+ 2eTPFe + |P||Ge|
2

≤ −2L|e|2 + 2L1−σ eTPax1 + 2eTPFe
+ |P||Ge|

2. (B.1)

Similarly, let V12(z) = zTQz, from (9)–(10), (18) and (22) we get

L V12(z) ≤

(
LL0Bz + LL0Bzbn(1 − θ (t))z1 + LD2e2

+
L
L0

D1(e1 − z1) −
L̇
L
Dz

)T

Qz + zTQ
(
LL0Bz

+ LL0Bzbn(1 − θ (t))z1 + LD2e2 −
L̇
L
Dz

+
L
L0

D1(e1 − z1)
)

+ 2zTQFz + |Q ||Gz |
2

≤ −2LL0|z|2 + 2LL0zTQBzbn(1 − θ (t))z1

+ 2zTQ
(

L
L0

D1e1 + LD2e2 −
L
L0

D1z1

)
+ 2zTQFz + |Q ||Gz |

2. (B.2)

By (21) and (B.1)–(B.2) we have

L V1 ≤ −2L(m1 + 1)|e|2 + 2L1−σ (m1 + 1)eTPax1
+ 2(m1 + 1)eTPFe + (m1 + 1)|P||Ge|

2

− 2LL0|z|2 + 2LL0zTQBzbn(1 − θ (t))z1

+ 2zTQ
(

L
L0

D1e1 + LD2e2 −
L
L0

D1z1

)
+ 2zTQFz + |Q ||Gz |

2. (B.3)

Noting x1 = Lσ z1, using Lemma A.1 with ν =
1
2 , p = q = 2,

x = 2|e| and y = |P||a||z|, we have

2L1−σ (m1 + 1)eTPax1
≤ 2L(m1 + 1)|P||a||e||z1|

≤
1
2
L(m1 + 1)|e|2 + 2L(m1 + 1)|P|

2
|a|2|z|2. (B.4)

By (4), (14) and (19) we get

|Fe| ≤ c
(

|x1|
Lσ

+
|x1| + |x2|

L1+σ
+ · · · +

|x1| + · · · + |xn|
Ln−1+σ

)
≤ c

(
n|x1|
Lσ

+
(n − 1)|x2|

L1+σ
+ · · · +

|xn|
Ln−1+σ

)
≤ c

(n|x1|
Lσ

+
(n − 1)(|x̂2| + L1+σ

|e2|)
L1+σ

+ · · ·

+
(|x̂n| + Ln−1+σ

|en|)
Ln−1+σ

)
. (B.5)

From Lemma A.2 we have

|e2| + · · · + |en| ≤ |e1| + · · · + |en| ≤
√
n|e|. (B.6)

It follows from (15) and (B.5)–(B.6) that

|Fe| ≤ c
(
n|z1| + (n − 1)L0|z2| + · · · + Ln−1

0 |zn|

+ (n − 1)
√
n|e|

)
≤ c

(
n

n∑
i=1

Li−1
0 |zi| + (n − 1)

√
n|e|

)
. (B.7)

From (B.7) we obtain

2(m1 + 1)eTPFe ≤ 2c(m1 + 1)|e||P|

(
n

n∑
i=1

Li−1
0 |zi|

+ (n − 1)
√
n|e|

)
≤ 2cn(m1 + 1)|P|

(
1
2

n∑
i=1

L2i−2
0 |z|2

+
n + 2

√
n

2
|e|2

)
≤ c(n2

+ 2n
3
2 )(m1 + 1)|P||e|2

+ cn(m1 + 1)|P|

n∑
i=1

L2i−2
0 |z|2. (B.8)

From (5), (14)–(15) and (20), taking a similar process as in (B.5)–
(B.7) we get

|Ge| ≤ c
(
n

n∑
i=1

Li−1
0 |zi| + (n − 1)

√
n|e|

)
, (B.9)
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which and Lemma A.2 implies

(m1 + 1)|P||Ge|
2

≤ c2(n + 1)n3(m1 + 1)|P|

( n∑
i=1

L2i−2
0 |z|2 + |e|2

)
. (B.10)

By (19) and Lemma A.1 we have

2zTQ
L
L0

D1e1 + 2zTQLD2e2

≤ 2
L
L0

|Q ||D1||e1||z| + 2L|Q ||z||e2|

≤
L
4
|Q |

2
|D1|

2
|e1|2 +

4L
L20

|z|2 +
L
4
|e2|2 + 4L|Q |

2
|z|2

≤
Lm1

4
|e|2 +

4L
L20

|z|2 +
L
4
|e|2 + 4L|Q |

2
|z|2

≤
L
4
(m1 + 1)|e|2 +

4L
L20

|z|2 + 4L|Q |
2
|z|2 (B.11)

and

−2zTQ
L
L0

D1z1 ≤ 2
L
L0

|Q ||D1||z|2 ≤
2|a|L
L0

|Q ||z|2, (B.12)

where |D1| ≤ (
∑n

i=1 a
2
i )

1
2 = |a|, |D2| = 1.

From (4)–(5), (15) and (20), using Lemma A.1 we have

2zTQFz + |Q ||Gz |
2

≤ 2c|Q ||z|2 + c2|Q ||z|2

=(2c + c2)|Q ||z|2. (B.13)

Substituting (B.4), (B.8) and (B.10)–(B.13) into (B.3) we get

L V1 ≤ −
5L
4
(m1 + 1)|e|2 + (c2(n + 1)n3

+ c(n2
+ 2n

3
2 ))

· (m1 + 1)|P||e|2 + 2L(m1 + 1)|P|
2
|a|2|z|2

+ (c2(n + 1)n3
+ cn)(m1 + 1)|P|

n∑
i=1

L2i−2
0 |z|2

− 2LL0(1 − bn|1 − θ (t)||Q |)|z|2 +

(4L
L20

+ 4L|Q |
2

+
2|a|L
L0

|Q | + (2c + c2)|Q |

)
|z|2. (B.14)

By Assumption 2 and the definition of θ̄ we have

1 > 1 − bn|1 − θ (t)| · |Q | ≥ 1 − bnθ̄ |Q | = ρ > 0. (B.15)

By (B.14)–(B.15) we get

L V1 ≤ −LL0

(
2ρ −

4 + 4|Q |
2
+ 2(m1 + 1)|P|

2
|a|2

L0

−
(c2(n + 1)n3

+ cn)(m1 + 1)|P|
∑n

i=1 L
2i−2
0

LL0

−
2|a||Q |

L0
−

(2c + c2)|Q |

LL0

)
|z|2 −

(
5L
4
(m1 + 1)

− (c2(n + 1)n3
+ c(n2

+ 2n
3
2 ))(m1 + 1)|P|

)
|e|2

≤ −LL0

(
2ρ −

k1
L0

−
k2
LL0

)
|z|2

−

(
L(m1 + 1) − k3

)
|e|2, (B.16)

where k1, k2 and k3 are defined in (26)–(28). By (23) and (B.16)
we get (24).

Step 2. We then prove that the unknown growth rate c and the
unknown sensor sensitivity θ (t) can be dominated by (22) and (23).

From (22), (24) and (27)–(28) we know that the dynamic
gain L(t) can dominate the unknown k2 and k3 arising from the
unknown growth rate c. From (23) and (25), we can observe that
larger allowable sensitive error θ̄ yields larger L0, which means
that the constant gain L0 can dominate the unknown sensor
sensitivity θ (t).

Appendix C. Proof of Proposition 1

For the system composed of (17)–(18) and L̇(t) in (22), it is
obviously that the drift terms and diffusion terms satisfy the
local Lipschitz condition. Therefore, by Theorem 3.15 in Mao and
Yuan (2006), the considered system has an almost surely unique
solution (L(t), z(t), e(t)) on [0, tf ), where tf = limτ→+∞ inf{t ≥

0 : |z(t)|+|e(t)|+|L(t)| ≥ τ }. In the following, we prove tf = +∞.
Substituting (3) and (14)–(15) into (22) yields

L̇ =

(
x̂1
Lσ

)2

+

(
y

(1 − θ̄ )Lσ

)2

= (z1 − e1)2 +

(
θ (t)
1 − θ̄

)2

z21 . (C.1)

By Assumption 2, Lemma A.2 and (C.1) we have

L̇ ≤ 2z21 + 2e21 +

(
1 + θ̄

1 − θ̄

)2

z21

≤ M0(|z|2 + |e|2), (C.2)

where M0 = 2 + ( 1+θ̄

1−θ̄
)2.

Choosing V2 = V1 +
1
2λ L

2 with λ =
M0

m1+1 , from (24) and (C.2)
we have

L V2 ≤ − (L(m1 + 1) − k2 − k3) (|z|2 + |e|2)

+
1
λ
M0L(|z|2 + |e|2)

= −

(
L
(
m1 + 1 −

M0

λ

)
− k2 − k3

)
(|z|2 + |e|2)

= (k2 + k3)(|z|2 + |e|2). (C.3)

From (C.3) and the definitions of V1 and V2 we get

L V2 ≤
k2 + k3

λmin{Q } ∧ (m1 + 1)λmin{P}
V2. (C.4)

By (C.4) and Theorem 3.19 in Mao and Yuan (2006), we obtain
tf = +∞.

Appendix D. Proof of Proposition 2

Denoting Ω1 = {limt→+∞ L(t) = +∞}, we suppose P{Ω1} >

0. Defining the stopping time

σ = inf
{
t ≥ 0 : L(t) ≥

k2 + k3
m1 + 1

}
. (D.1)

It is obviously that σ < +∞ a.s. on Ω1. From (17), (18), (21) and
(24) we have

V1(t) = V1(0) +

∫ t

0
L V1(s)ds +

∫ t

0

(
∂V1

∂e
Ge +

∂V1

∂z
Gz

)
dω

= V1(0) +

∫ t∧σ

0
L V1(s)ds +

∫ t

t∧σ

L V1(s)ds

+

∫ t

0

(
∂V1

∂e
Ge +

∂V1

∂z
Gz

)
dω
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≤ V1(0) +

∫ t∧σ

0
(k2 + k3 − L(m1 + 1))(|z|2 + |e|2)ds

−

∫ t

t∧σ

(L(m1 + 1) − k2 − k3)(|z|2 + |e|2)ds

+

∫ t

0

(
∂V1

∂e
Ge +

∂V1

∂z
Gz

)
dω

≜ V1(0) + A1(t) − U1(t) + W1(t). (D.2)

It can be easily shown that A1(t) and U1(t) are two continuous
adapted increasing processes with A1(0) = U1(0) = 0.

For k ∈ Z+, defining the stopping time

σk = k ∧ inf{t ≥ 0 : |e| + |z| ≥ k}, (D.3)

then from (17)–(18), (21) and (D.2) we have

W1(t ∧ σk)

=

∫ t

0
χ{0≤s≤σk}

(
∂V1

∂e
Ge +

∂V1

∂z
Gz

)
dω

=

∫ t

0
χ{0≤s≤σk}(2(m1 + 1)eTPGe + 2zTQGz)dω. (D.4)

On the other hand, it follows from the definitions of Ge and Gz in
(20) that

E
{∫ t

0
χ2

{0≤s≤σk}
(2(m1 + 1)eTPGe + 2zTQGz)2dt

}
< +∞, (D.5)

by which and Theorem 5.14 in Mao (2008) (P.25), we obtain that
W1(t ∧ σk) in (D.4) is a martingale.

Noting that {σk} is nondecreasing and limk→+∞ σk = +∞ a.s.,
we know that the continuous adapted process W1(t) is a local
martingale.

From (D.2) we have

lim
t→+∞

A1(t) =

∫ σ

0
(k2 + k3 − L(m1 + 1))(|z|2 + |e|2)ds

< +∞ a.s. on Ω1. (D.6)

By (D.2) and (D.6), using Lemma A.3 we get

lim
t→+∞

U1(t) =

∫
+∞

σ

(L(m1 + 1) − k2 − k3)(|z|2 + |e|2)ds

< +∞ a.s. on Ω1. (D.7)

Defining the stopping time

σ̃ = inf
{
t ≥ 0 : L(t) ≥

k2 + k3 + 1
m1 + 1

}
. (D.8)

We can obtain that σ < σ̃ < +∞ a.s. on Ω1. Then from (D.7) we
have∫

+∞

σ̃

(|z|2 + |e|2)ds

≤

∫
+∞

σ̃

(L(m1 + 1) − k2 − k3)(|z|2 + |e|2)ds

≤

∫
+∞

σ

(L(m1 + 1) − k2 − k3)(|z|2 + |e|2)ds

< +∞ a.s. on Ω1. (D.9)

It follows from (C.2) and (D.9) that

L(+∞) − L(σ̃ ) =

∫
+∞

σ̃

L̇ds

≤ M0

∫
+∞

σ̃

(|z|2 + |e|2)

< +∞ a.s. on Ω1, (D.10)

which is a contradiction. Thus, P{Ω1} = 0, which means that L(t)
is bounded on [0, +∞) a.s.

Appendix E. Proof of Proposition 3

Step 1. We first rescale the (x1, x̂2, . . . , x̂n)T -system and (x1 −

x̂1, . . . , xn − x̂n)T -system as ε-system and ξ -system respectively,
where ε = (ε1, . . . , εn)T and ξ = (ξ1, . . . , ξn)T .

Introducing the change of coordinates

ε1 =
x1
L∗σ

, εi =
x̂i

L∗i−1+σ Li−1
0

, i = 2, . . . , n (E.1)

and

ξi =
xi − x̂i

(L∗)i−1+σ
, i = 1, . . . , n, (E.2)

where L∗ is a constant satisfying

L∗ > max

{
L(+∞),

12L(+∞)
√
n − 1|P||a|

L0
,

1
L0

(
1 + cn|P|

n∑
i=1

L2i−2
0 + c2(n + 1)n3

|P|

n∑
i=1

L2i−2
0

)
,

3cn2
|P| + c2(n + 1)n3

|P| + 1,
12c(c + 1)|P|

L0
,

12
√
n
(
bn(1 + θ̄ ) +

n−1∑
i=1

bi
)
|P|L(+∞)

}
. (E.3)

It can be deduced from (1)–(3), (11)–(13) and (E.1)–(E.2) that

dε1 = (L∗L0ε2 − L∗L0a1ε1 + L∗ξ2 + L∗L0a1ε1)dt

+
1
L∗σ

f1dt +
1
L∗σ

g1dω, (E.4)

dε2 =

(
L∗L0ε3 − L∗L0a2ε1 +

L2

L∗L0
a2ξ1 + L∗L0a2ε1

−
L2

L∗1+σ L0
a2x1

)
dt, (E.5)

...

dεn =

( u
L∗n−1+σ Ln−1

0

− L∗L0anε1 +
Ln

(L∗L0)n−1 anξ1

+ L∗L0anε1 −
Ln

L∗n−1+σ Ln−1
0

anx1
)
dt (E.6)

and that

dξ1 =

(
L∗ξ2 − L∗a1ξ1 + L∗a1ξ1 − La1ξ1 +

La1
L∗σ

x1

)
dt

+
f1
L∗σ

dt +
g1
L∗σ

dω, (E.7)

dξ2 =

(
L∗ξ3 − L∗a2ξ1 + L∗a2ξ1 −

L2

L∗
a2ξ1 +

L2a2
L∗1+σ

x1

)
dt

+
f2

L∗1+σ
dt +

g2
L∗1+σ

dω, (E.8)

...

dξn =

(
−L∗anξ1 −

Ln

L∗n−1 anξ1 +
Lnan

L∗n−1+σ
x1 + L∗anξ1

)
dt

+
fn

L∗n−1+σ
dt +

gn
L∗n−1+σ

dω. (E.9)
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Let ε = (ε1, . . . , εn)T and ξ = (ξ1, . . . , ξn)T , from (E.4)–(E.9) we
have

dε =

(
L∗L0Aε + LΓ aξ1 + L∗L0aε1 + L∗D2ξ2 − LΓ aε1

+ Bz
u

L∗n−1+σ Ln−1
0

)
dt + F∗

ε dt + G∗

εdω (E.10)

and

dξ = (L∗Aξ + L∗aξ1 − LMaξ1 + LMaε1)dt

+ F∗dt + G∗dω, (E.11)

where Γ = diag[0, L
L∗L0

, . . . , ( L
L∗L0

)n−1
], M = diag[1, L

L∗ , · · ·,
( L
L∗ )

n−1
] and

F∗

ε =

⎡⎢⎢⎣
1

L∗σ f1
0
...

0

⎤⎥⎥⎦ , G∗

ε =

⎡⎢⎢⎣
1

L∗σ g1
0
...

0

⎤⎥⎥⎦ , (E.12)

F∗
=

⎡⎢⎣
f1
L∗σ

...
fn

L∗n−1+σ

⎤⎥⎦ , G∗
=

⎡⎢⎣
g1
L∗σ

...
gn

L∗n−1+σ

⎤⎥⎦ . (E.13)

Step 2. We then prove

L V3(ε, ξ ) ≤ −|ε|2 − |ξ |
2
+ (2m2 + m3)L̇(t), (E.14)

where V3(ε, ξ ) = εTPε + ξ TPξ , m2 and m3 are two positive
constants.

Consider the Lyapunov functions V31(ε) = εTPε for ε-system
(E.10), using (7) we obtain

L V31(ε) ≤ −2L∗L0|ε|2 + 2LεTPΓ aξ1 + 2L∗L0εTPaε1
− 2LεTPΓ aε1 + 2L∗εTPD2ξ2 + 2εTPF∗

ε

+ |P||G∗

ε |
2
+ 2εTPBz

u
L∗n−1+σ Ln−1

0

. (E.15)

Noting |D2| = 1 and |Γ | ≤
√
n − 1, by (E.3) and Lemma A.1 we

have

2LεTPΓ aξ1 ≤ |2LεTPΓ aξ1|

≤ 6(n − 1)
L
L0

|a|2|P|
2ξ 2

1 +
1
6
L∗L0|ε|2, (E.16)

2L∗L0εTPaε1 ≤ |2L∗L0εTPaε1|

≤ 6L∗L0|a|2|P|
2ε2

1 +
1
6
L∗L0|ε|2, (E.17)

2L∗εTPD2ξ2 ≤ |2L∗εTPD2ξ2|

≤ 6
L∗

L0
|P|

2ξ 2
2 +

1
6
L∗L0|ε|2, (E.18)

− 2LεTPΓ aε1 ≤ 2
√
n − 1L|P||a||ε|2

≤
1
6
L∗L0|ε|2. (E.19)

It follows from (4)–(5), (E.1), (E.3) and (E.12) that

2εTPF∗

ε + |P||G∗

ε |
2

≤ 2c(c + 1)|P||ε|2

≤
1
6
L∗L0|ε|2. (E.20)

By (15), (16), (E.1), |Bz | = 1 and Lemma A.2 we get
u

L∗n−1+σ Ln−1
0

=
LnL0
L∗n−1

(
−bnθ (t)ε1 −

n−1∑
i=1

bi(
L∗

L
)n−iεn+1−i

)
. (E.21)

From (E.3), |Bz | = 1, Assumption 2 and Lemma A.2 we have

2εTPBz
u

L∗n−1+σ Ln−1
0

≤ 2LL0|P||ε|

(
bn(1 + θ̄ )|ε1| +

n−1∑
i=1

bi|εn+1−i|

)
≤ 2LL0

(
bn(1 + θ̄ ) +

n−1∑
i=1

bi
)
|P||ε|(|ε1| + · · · + |εn|)

≤ 2LL0
√
n
(
bn(1 + θ̄ ) +

n−1∑
i=1

bi
)
|P||ε|2

≤
1
6
L∗L0|ε|2. (E.22)

Substituting (E.16)–(E.20) and (E.22) into (E.15) yields that

L V31 ≤ −L∗L0|ε|2 + 6(n − 1)
L
L0

|a|2|P|
2ξ 2

1

+ 6L∗L0|a|2|P|
2ε2

1 + 6
L∗

L0
|P|

2ξ 2
2 . (E.23)

For ξ -system (E.11), by choosing V32(ξ ) = ξ TPξ and using (7) we
get

L V32(ξ ) ≤ −2L∗
|ξ |

2
+ 2L∗ξ TPaξ1 − 2Lξ TPMaξ1

+ 2Lξ TPMaε1 + 2ξ TPF∗
+ |P||G∗

|
2
. (E.24)

Noting |M| ≤
√
n, by Lemma A.1 we have

2L∗ξ TPaξ1 ≤ |2L∗ξ TPaξ1|

≤ 6L∗
|P|

2
|a|2ξ 2

1 +
1
6
L∗

|ξ |
2, (E.25)

−2Lξ TPMaξ1 ≤ |2Lξ TPMaξ1|

≤ 6L|PMa|2ξ 2
1 +

1
6
L|ξ |

2

≤ 6nL|P|
2
|a|2ξ 2

1 +
1
6
L∗

|ξ |
2 (E.26)

2Lξ TPMaε1 ≤ |2Lξ TPMaε1|

≤ 6nL|P|
2
|a|2ε2

1 +
1
6
L∗

|ξ |
2. (E.27)

On the other hand, from (4)–(5), (E.1)–(E.2), (E.13) and Lemma A.1
we get

|F∗
| ≤ c

(
n

n∑
i=1

Li−1
0 |εi| + (n − 1)

√
n|ξ |

)
, (E.28)

|G∗
| ≤ c

(
n

n∑
i=1

Li−1
0 |εi| + (n − 1)

√
n|ξ |

)
. (E.29)

Hence,

2ξ TPF∗
≤ 3cn2

|P||ξ |
2
+ cn|P|

n∑
i=1

L2i−2
0 |ε|2, (E.30)

|P||G∗
|
2

≤ c2(n + 1)n3
|P|

( n∑
i=1

L2i−2
0 |ε|2 + |ξ |

2
)

. (E.31)

Substituting (E.25)–(E.27) and (E.30)–(E.31) into (E.24) we obtain

L V32 ≤ −

(
3
2
L∗

− 3cn2
|P| − c2(n + 1)n3

|P|

)
|ξ |

2

+ 6L∗
|P|

2
|a|2ξ 2

1 + 6nL|P|
2
|a|2ξ 2

1
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+ 6nL|P|
2
|a|2ε2

1 + c2(n + 1)n3
|P|

n∑
i=1

L2i−2
0 |ε|2

+ cn|P|

n∑
i=1

L2i−2
0 |ε|2. (E.32)

Denoting V3(ε, ξ ) = V31(ε)+V32(ξ ), from (E.23) and (E.32) we get

L V3

≤ −

(
L∗L0 − c2(n + 1)n3

|P|

n∑
i=1

L2i−2
0 − cn|P|

n∑
i=1

L2i−2
0

)
|ε|2

−

(
3
2
L∗

− 3cn2
|P| − c2(n + 1)n3

|P| − 6
L∗

L0
|P|

2
)

|ξ |
2

+ 6(n − 1)
L
L0

|a|2|P|
2ξ 2

1 + 6L∗L0|a|2|P|
2ε2

1

+ 6L∗
|P|

2
|a|2ξ 2

1 + 6nL|P|
2
|a|2ξ 2

1

+ 6nL|P|
2
|a|2ε2

1 . (E.33)

By (23) we obtain 6 L∗
L0

|P|
2

≤
1
2 L

∗. From (E.3) and (E.33) we have

L V3

≤ −|ε|2 − |ξ |
2
+

(
6(n − 1)L∗

L0
|a|2|P|

2
+ 6nL∗

|a|2|P|
2

+ 6L∗
|a|2|P|

2
)

ξ 2
1 +

(
6L∗L0|a|2|P|

2
+ 6nL∗

|a|2|P|
2
)

ε2
1

= −|ε|2 − |ξ |
2
+ m2ξ

2
1 + m3ε

2
1, (E.34)

where

m2 =

(
6(n − 1)L∗

L0
+ 6nL∗

+ 6L∗

)
|a|2|P|

2, (E.35)

m3 =
(
6L∗L0 + 6nL∗

)
|a|2|P|

2. (E.36)

From (E.1)–(E.2) we have

m2ξ
2
1 + m3ε

2
1 =

m2(x1 − x̂1)2

L∗2σ +
m3x21
L∗2σ

≤
(2m2 + m3)(x21 + x̂21)

L∗2σ . (E.37)

By (3), (22), (E.37) and Assumption 2 we get

m2ξ
2
1 + m3ε

2
1 ≤ (2m2 + m3)

[(
y

(1 − θ̄ )L∗σ

)2

+

(
x̂1
L∗σ

)2
]

≤ (2m2 + m3)

[(
y

(1 − θ̄ )Lσ

)2

+

(
x̂1
Lσ

)2
]

≤ (2m2 + m3)L̇(t). (E.38)

Substituting (E.38) into (E.34) yields (E.14).
Step 3. We finally prove∫

+∞

0
(|e|2 + |z|2)ds < +∞ a.s.; (E.39)

z and e are bounded on [0, +∞) a.s. (E.40)

From (E.10)–(E.11) and (E.14) we obtain

V3(t) = V3(0) +

∫ t

0
L V3(s)ds +

∫ t

0

(
∂V3

∂ε
G∗

ε +
∂V3

∂ξ
G∗

)
dω

= V3(0) + (2m2 + m3)[L(t) − 1] −

∫ t

0
(|ε|2 + |ξ |

2)ds

+

∫ t

0

(
∂V3

∂ε
G∗

ε +
∂V3

∂ξ
G∗

)
dω

≜ V3(0) + A2(t) − U2(t) + W2(t), (E.41)

where

A2(t) = (2m2 + m3)[L(t) − 1], (E.42)

U2(t) =

∫ t

0
(|ε|2 + |ξ |

2)ds, (E.43)

W2(t) =

∫ t

0

(
∂V3

∂ε
G∗

ε +
∂V3

∂ξ
G∗

)
dω. (E.44)

We can find that A2(t) and U2(t) are two continuous adapted
increasing processes with A2(0) = U2(0) = 0. Taking the similar
lines as the proof of W1(t) to be a local martingale in Proposition 2,
we can prove that the continuous adapted process W2(t) is a local
martingale.

By Proposition 2 we have limt→+∞ L(t) < +∞ a.s. From (E.42)
we get

lim
t→+∞

A2(t) = (2m2 + m3)[L(+∞) − 1] < +∞ a.s. (E.45)

It can be induced from (E.41), (E.45) and Lemma A.3 that

lim
t→+∞

U2(t) =

∫
+∞

0
(|ε|2 + |ξ |

2)ds < +∞ a.s., (E.46)

lim
t→+∞

V3(t) exists and is finite. (E.47)

From (14)–(15), (E.1)–(E.2), (E.46)–(E.47) and the definition of
V3(ε, ξ ) we get (E.39) and (E.40).

References

Carr, J. J. (1993). Sensors and circuits. Englewood Cliffs: Prentice-Hall.
Chen, W., Jiao, L. C., Li, J., & Li, R. H. (2010). Adaptive nn backstepping

output-feedback control for stochastic nonlinear strict-feedback systems
with time-varying delays. IEEE Transactions on Systems, Man and Cybernetics,
Part B, 40(3), 939–950.

Chen, C. C., Qian, C., Sun, Z. Y., & Liang, Y. W. (2018). Global output feedback
stabilization of a class of nonlinear systems with unknown measurement
sensitivity. IEEE Transactions on Automatic Control, 63(7), 2212–2217.

Deng, H., & Krstic, M. (1997a). Stochastic nonlinear stabilization,part i: a
backstepping design. Systems & Control Letters, 32, 143–150.

Deng, H., & Krstic, M. (1997b). Stochastic nonlinear stabilization, part II: inverse
optimality. Systems & Control Letters, 32(3), 151–159.

Deng, H., & Krstic, M. (1999). Output-feedback stochastic nonlinear stabilization.
IEEE Transactions on Automatic Control, 44(2), 328–333.

Deng, H., & Krstic, M. (2000). Output-feedback stabilization of stochastic non-
linear systems driven by noise of unknown covariance. Systems & Control
Letters, 39(3), 173–182.

Deng, H., Krstic, M., & Williams, R. J. (2001). Stabilization of stochastic nonlin-
ear systems driven by noise of unknown covariance. IEEE Transactions on
Automatic Control, 46(8), 1237–1253.

Hinrichsen, D., & Pritchard, A. J. (1996). Stability radii of systems with stochastic
uncertainty and their optimization via output feedback. SIAM Journal of
Control and Optimizations, 34(6), 1972–1998.

Jiang, M. M., Xie, X. J., & Zhang, K. M. (2019). Finite-time stabilization of
stochastic high-order nonlinear systems with FT-SISS inverse dynamics. IEEE
Transactions on Automatic Control, 64(1), 313–320.

Kolovsky, M. Z. (1999). Nonlinear dynamics of active and passive systems of
vibration protection. Berlin Heidelberg: Springer-Verlag.

Krstic, M., & Deng, H. (1998). Stabilization of uncertain nonlinear systems. New
York: Springer.

Lantto, E. (1999). Robust control of magnetic bearings in subcritical machines (Ph.D.
dissertation), Espoo, Finland: Department of Electrical Engineering,Helsinki
University of Technology.

Lei, H., & Lin, W. (2006). Universal adaptive control of nonlinear systems with
unknown growth rate by output feedback. Automatica, 42(10), 1783–1789.

Li, F. Z., & Liu, Y. G. (2017). General stochastic convergence theorem and stochas-
tic adaptive output-feedback controller. IEEE Transactions on Automatic
Control, 62(5), 2334–2349.

http://refhub.elsevier.com/S0005-1098(20)30310-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb7
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb14
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb15


12 W. Li, X. Yao and M. Krstic / Automatica 120 (2020) 109112

Li, W. Q., Liu, L., & Feng, G. (2017). Cooperative control of multiple stochastic
high-order nonlinear systems. Automatica, 82, 218–225.

Li, W. Q., Liu, L., & Feng, G. (2019). Distributed output-feedback tracking of
multiple nonlinear systems with unmeasurable states. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, http://dx.doi.org/10.1109/TSMC.2018.
2875453.

Li, W. Q., Liu, L., & Feng, G. (2020). Cooperative control of multiple nonlinear
benchmark systems perturbed by second-order moment processes. IEEE
Transactions on Cybernetics, 50(3), 902–910.

Li, W. Q., Xie, X. J., & Zhang, S. Y. (2011). Output-feedback stabilization of
stochastic high-order nonlinear systems under weaker conditions. SIAM
Journal on Control and Optimization, 49(3), 1262–1282.

Liu, Y., & Zhang, J. F. (2006). Practical output-feedback risk-sensitive control
for stochastic nonlinear systems with stable zero-dynamics. SIAM Journal on
Control and Optimization, 45(3), 885–926.

Liu, S. J., Zhang, J. F., & Jiang, Z. P. (2007). Decentralized adaptive output-feedback
stabilization for large-scale stochastic nonlinear systems. Automatica, 43(2),
238–251.

Mao, X. (2008). Stochastic differential equations and applications (2nd ed.).
Cambridge: Horwood.

Mao, X., & Yuan, C. (2006). Stochastic differential equations with Markovian
switching. London: Imperial College Press.

Pan, Z. G., & Basar, T. (1998). Adaptive controller design for tracking and
disturbance attenuation in parametric-feedback nonlinear systems. IEEE
Transactions on Automatic Control, 43(8), 1066–1083.

Pan, Z. G., & Basar, T. (1999). Backstepping controller design for nonlinear
stochastic systems under a risk-sensitive cost criterion. SIAM Journal on
Control and Optimization, 37(3), 957–995.

Sun, Z. Y., Shao, Y., Chen, C. C., & Meng, Q. H. (2018). Global output-feedback
stabilization for stochastic nonlinear systems:a double-domination approach.
International Journal of Robust and Nonlinear Control, 28(5), 4635–4646.

Ugrinovskii, V. A. (1998). Robust h∞ infinity control in the presence of stochastic
uncertainty. International Journal of Control, 71(2), 219–237.

Wonham, W. M. (1970). Random differential equations in control theory.
Probabilistic Methods in Applied Mathematics, 2, 131–212.

Wu, Z. J., Xie, X. J., Shi, P., & Xia, Y. Q. (2009). Backstepping controller design for a
class of stochastic nonlinear systems with Markovian switching. Automatica,
45(4), 997–1004.

Xie, X. J., & Jiang, M. M. (2019). Dynamic state feedback stabilization of stochastic
cascade nonlinear time-delay systems with SISS inverse dynamics. IEEE
Transactions on Automatic Control, 64(12), 5132–5139.

Xue, L. R., Zhang, T. L., Zhang, W. H., & Xie, X. J. (2018). Global adaptive
stabilization and tracking control for high-order stochastic nonlinear systems
with time-varying delays. IEEE Transactions on Automatic Control, 63(9),
2928–2943.

Yan, X. H., & Liu, Y. G. (2011). Global practical tracking by output-feedback
for nonlinear systems with unknown growth rate. Science China. Information
Sciences, 54(10), 2079–2090.

Yang, B., & Lin, W. (2004). Homogeneous observers, iterative design and global
stabilization of high order nonlinear systems by smooth output feedback.
IEEE Transactions on Automatic Control, 49(7), 1069–1080.

Wuquan Li received his Ph.D. degree in College
of Information Science and Engineering, Northeastern
University, China, in 2011. From 2012 to 2014, he
carried out his postdoctoral research with Institute of
Systems Science, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, China. Since
January 2011, he has been with School of Mathematics
and Statistics Science, Ludong University, where he is
currently a professor. He is Young Taishan Scholar and
Shandong Provincial Distinguished Young Scholar in
China. From 2018 to 2019, he was a visiting scholar in

University of California, San Diego, USA. His research interests include stochastic
nonlinear systems control and identification of stochastic nonlinear systems.

Xiaoxiao Yao received her Bachelor’s degree from the
Mathematics and Applied Mathematics, Ludong Uni-
versity, China, in 2017. Currently, she is a Master
candidate in System Control and Optimization, at the
College of Mathematics and statistical science, Ludong
University. Her research interests include stochastic
nonlinear systems control.

Miroslav Krstic is Distinguished Professor of Mechan-
ical and Aerospace Engineering, holds the Alspach
endowed chair, and is the founding director of the
Cymer Center for Control Systems and Dynamics at
UC San Diego. He also serves as Senior Associate Vice
Chancellor for Research at UCSD. As a graduate student,
Krstic won the UC Santa Barbara best dissertation
award and student best paper awards at CDC and
ACC. Krstic has been elected Fellow of seven scientific
societies – IEEE, IFAC, ASME, SIAM, AAAS, IET (UK), and
AIAA (Assoc. Fellow) – and as a foreign member of the

Serbian Academy of Sciences and Arts and of the Academy of Engineering of
Serbia. He has received the SIAM Reid Prize, ASME Oldenburger Medal, Nyquist
Lecture Prize, Paynter Outstanding Investigator Award, Ragazzini Education
Award, IFAC Nonlinear Control Systems Award, Chestnut textbook prize, Control
Systems Society Distinguished Member Award, the PECASE, NSF Career, and ONR
Young Investigator awards, the Schuck (’96 and ’19) and Axelby paper prizes,
and the first UCSD Research Award given to an engineer. Krstic has also been
awarded the Springer Visiting Professorship at UC Berkeley, the Distinguished
Visiting Fellowship of the Royal Academy of Engineering, and the Invitation
Fellowship of the Japan Society for the Promotion of Science. He serves as
Editor-in-Chief of Systems & Control Letters and has been serving as Senior
Editor in Automatica and IEEE Transactions on Automatic Control, as editor
of two Springer book series, and has served as Vice President for Technical
Activities of the IEEE Control Systems Society and as chair of the IEEE CSS Fellow
Committee. Krstic has coauthored thirteen books on adaptive, nonlinear, and
stochastic control, extremum seeking, control of PDE systems including turbulent
flows, and control of delay systems.

http://refhub.elsevier.com/S0005-1098(20)30310-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb16
http://dx.doi.org/10.1109/TSMC. 2018.2875453
http://dx.doi.org/10.1109/TSMC. 2018.2875453
http://dx.doi.org/10.1109/TSMC. 2018.2875453
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb28
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb28
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb28
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb29
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb29
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb29
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb29
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb29
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb30
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb30
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb30
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb30
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb30
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb31
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb32
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb32
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb32
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb32
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb32
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb33
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb33
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb33
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb33
http://refhub.elsevier.com/S0005-1098(20)30310-1/sb33

	Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty
	Introduction
	Problem formulation
	Adaptive output-feedback controller design
	Stability analysis
	Two simulation examples
	Concluding remarks
	Acknowledgments
	Appendix A. Useful tools
	Appendix B. Proof of Theorem 1
	Appendix C. Proof of Proposition 1
	Appendix D. Proof of Proposition 2
	Appendix E. Proof of Proposition 3
	References


