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a b s t r a c t

A result by Guo and Jin (2010) considered boundary control of a string with point damping at the
exact midpoint. An interpretation of the model admits a system of first-order hyperbolic (transport)
PDEs with actuation at the boundary of one PDE. The unactuated second PDE exhibits recirculation
phenomena. The recirculation coupling of these two PDEs gives rise to a stabilization problem with
nonlocal terms that prior has not been considered. In this paper, we consider a general class of
2 × 2 hyperbolic PDEs where both the unactuated PDE and the actuated PDE have strict-feedback
recirculation (from the outlet in the ‘‘upstream direction’’). In addition, the state of the unactuated
PDE feeds, in a non-local fashion, into the domain of the actuated PDE. We introduce a novel set of
transformations through which we arrive at a simple target system with desirable exponential stability
characteristics. A backstepping observer and output feedback controller design are also given for this
2 × 2 hyperbolic PDE system. We then apply our control design to the string-and-midway-antidamper
application found in Guo and Jin and illustrate the result with simulations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Systems of coupled partial differential equations have been
studied from control-theoretic perspectives due to their wide
applicability to flexible structures. In Dáger and Zuazua (2006),
the authors study flexible strings. In Pasumarthy (2006), power-
preserving interconnections of several port-Hamiltonian systems
(possibly infinite-dimensional) are studied. In Lasiecka (2002), a
structural-acoustic model of an aircraft cockpit model consisting
of coupled wave and plate equations is investigated.

Boundary stabilization of coupled linear first-order hyper-
bolic systems is widely studied in the literature. Stabilization of
two-state hetero-directional systems exhibiting in-domain and
boundary coupling is studied in Di Meglio et al. (2011). In Coron
et al. (2013), the extension to 2 × 2 quasi-linear hyperbolic
systems are studied. In Di Meglio et al. (2013), an extension
to systems of n + 1 coupled first-order hyperbolic linear PDEs
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(consisting of n equations convecting in one direction and 1 con-
trolled equation counter-convecting in the opposite direction) are
investigated. In Hu et al. (2016), the generalization of Di Meglio
et al. (2013) to n+m, with m controlled equations, is explored. A
result for the output feedback regulation extension to the gener-
alized n+m problem is generated in Deutscher (2017), in which
additional disturbances are considered, and an observer designed.
A result for the underactuated case of 1 + 2 systems (exhibiting
an uncontrolled heterodirectional pair) is generated in Chen et al.
(2017). An adaptive extension to the output-feedback design for
stabilization of n + 1 first-order hyperbolic systems is found
in Anfinsen et al. (2016), allowing the control design to work
even for the case of unknown or incorrect constant parameters.
This adaptive result is extended to include spatially-varying pa-
rameters in the 2 × 2 case (Anfinsen & Aamo, 2017). In a similar
vein, Hasan (2014) contributes the addition of an observer design
for n + 1 first-order hyperbolic systems with additional ODE
dynamics. An extension to this problem integrating semilinear
dynamics into the case of the 2 × 2 hyperbolic system with
ODE dynamics is generated in Hasan et al. (2016). In Auriol and
Di Meglio (2016), a new control design is proposed to achieve
stabilization in minimum-time. In Su et al. (2017, 2018), coupled
first-order hyperbolic systems with nonlocal terms are studied.
However, to our best knowledge, no boundary controller has been
developed to compensate for recirculation in the unactuated part
of first-order hyperbolic systems.
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Recirculation models the phenomenon of pointwise damping,
found in many engineering applications such as power transmis-
sion lines, aerial cable systems, and suspension bridges, all of
which are represented by string equations with midway point
damping. The stabilization of these systems has drawn much
attention in the past few decades. In Chen et al. (1987), the
decay rate of damping for certain strings is given by solving a
simple matrix eigenvalue problem. In Guo and Jin (2010), output
feedback control is designed by using an infinite-dimensional
observer to achieve an arbitrary decay rate for the string with
midway damping. Other studies on strings with point damp-
ing can be found in Khapalov (1997), Liu (1988), Ammari et al.
(2000), Ho (1993) and the references therein.

It is commonly known that there is some relationship be-
tween the coupled first order hyperbolic equations and the wave
equations through a Riemann transformation (Su et al., 2017,
2018). However, these cases are primarily restricted to a single
wave equation. Upon application of the Riemann transforma-
tion on coupled wave equations, recirculation terms arise in the
corresponding coupled first-order hyperbolic equations. In this
paper, we give the relationship between the coupled first-order
hyperbolic equations with recirculation and string equations with
a midway point damping (equivalent to two coupled wave equa-
tions). As the backstepping approach (Krstic, 2009) is not easily
applied directly to the string with a midway point damping,
using a decomposition of the string system into coupled first-
order hyperbolic system is advantageous for control design. With
an additional novel decoupling transformation, the design of a
backstepping controller becomes feasible.

In this paper, we examine a more general result in unsta-
ble coupled first-order hyperbolic systems with the recircula-
tion phenomenon. Specifically, we study first-order hyperbolic
systems in a strict-feedback configuration, where the ‘‘down-
stream’’ subsystem not only exhibits recirculation, but also is
coupled to the ‘‘upstream’’ (controlled) subsystem. In this config-
uration, the challenge lies in designing a controller to compensate
for recirculation through a nontrivial actuation path. We design
a backstepping transformation along with a novel decoupling
transformation which admits a simple target system. We also give
the corresponding backstepping observer and output feedback
controller designs. The main contributions hence are:

(1) Stabilization of systems of first-order hyperbolic PDEs with
novel recirculation (non-local) coupling

(2) Design of a novel decoupling transformation
(3) Relaxing the restrictions on the damped point found in Guo

and Jin (2010) and Liu (1988).

The rest of this paper is organized as follows: In Section 2,
we present our main problem. In Section 3, we design the state
feedback controller for the coupled first-order hyperbolic system
via the backstepping method, and establish exponential stability
for the closed-loop system. We design the backstepping observer
and output feedback controller in Section 4. In Section 5, we apply
our control design for both the midway and non-midway damped
string models. Finally, Section 6 gives some concluding remarks.

2. Problem statement

In this paper, we consider the following coupled hyperbolic
equations (see Fig. 1)

ηt (x, t) = g1(x)η(1, t) − ληx(x, t) +

∫ 1

x
f (x, y)η(y, t)dy (1)

ξt (x, t) = ξx(x, t) + h(x)η(x, t) +

∫ 1

0
f21(x, y)η(y, t)dy

Fig. 1. Flow diagram of the open-loop system (1)–(4).

+

∫ x

0
f22(x, y)ξ (y, t)dy

+ g2(x)η(1, t) + g3(x)ξ (0, t) (2)

η(0, t) = c1ξ (0, t) + c2η(1, t) +

∫ 1

0
d(y)η(y, t)dy (3)

ξ (1, t) = U(t) (4)

where U(t) is the control law and 0 < λ ≤ 1, c1, c2 ∈ R,
f (x, y) ∈ C(D1), f21(x, y) ∈ C([0, 1] × [0, 1]), f22(x, y) ∈ C(D),
where D1 = {(x, y)|0 ≤ x ≤ y ≤ 1},D = {(x, y)|0 ≤ y ≤ x ≤ 1},
g1(x), g2(x), h(x), d(x) ∈ C([0, 1]). (3) is a recirculation boundary
condition, which is novel, which introduce instability. The other
coupling terms on the right side of Eqs. (1) and (2) (see Su et al.,
2017, 2018) may introduce instability, which is studied in Su et al.
(2017, 2018) .

3. Stabilization of system (1)–(4)

We will design four transformations in succession to sta-
bilize system (1)–(4). These transformations can be composed
together to admit a single transformation, but we have chosen to
leave them separate during the analysis as to not obfuscate their
respective purposes.

3.1. Control design

The first backstepping transformation is as follows:

α(x, t) = η(x, t) −

∫ 1

x
q(x, y)η(y, t)dy (5)

with its associated inverse transformation:

η(x, t) = α(x, t) +

∫ 1

x
p(x, y)α(y, t)dy (6)

The objective of (5) is to shift the unstable non-local couplings
of (1) into the x = 0 boundary, and (5) will admit the following
intermediate target system:

αt (x, t) = −λαx(x, t) (7)

ξt (x, t) = ξx(x, t) +

∫ 1

0
H(x, y)α(y, t)dy + g2(x)α(1, t)

+

∫ x

0
f22(x, y)ξ (y, t)dy + h(x)α(x, t)

+ g3(x)ξ (0, t) +

∫ 1

x
h(x)p(x, y)α(y, t)dy (8)

α(0, t) = c1ξ (0, t) + c2α(1, t) +

∫ 1

0
G(y)α(y, t)dy (9)

ξ (1, t) = U(t) (10)

where

H(x, y) = f21(x, y) + f21(x, y)
∫ y

0
q(z, y)dz
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G(y) = (d(y) − q(0, y))
[
1 +

∫ y

0
p(z, y)dz

]
The kernels q(x, y) and p(x, y) are given by the following first-
order hyperbolic PDEs defined on the triangle {(x, y)|0 ≤ x ≤ y ≤

1}:

λqx(x, y) + λqy(x, y) = f (x, y) −

∫ y

x
q(x, z)f (z, y)dz

λq(x, 1) =

∫ 1

x
q(x, y)g1(y)dy − g1(x)

λpx(x, y) + λpy(x, y) = f (x, y) +

∫ y

x
p(x, z)f (z, y)dz

λp(x, 1) = −g1(x).

Next, the following transformation

β(x, t) = ξ (x, t) −

∫ x

0
k(x, y)ξ (y, t)dy

−

∫ x

0
l(x, y)α(y, t)dy −

∫ 1

x
ρ(x, y)α(y, t)dy (11)

and its associated inverse transformation

ξ (x, t) = β(x, t) +

∫ x

0
m(x, y)β(y, t)dy

+

∫ x

0
n(x, y)α(y, t)dy +

∫ 1

x
σ (x, y)α(y, t)dy (12)

are utilized to shift the unstable terms found in (2) to the x =

1 boundary, where they can be neutralized via the boundary
controller. The transformation (11) will admit the system

αt (x, t) = −λαx(x, t) (13)
βt (x, t) = βx(x, t) (14)

α(0, t) = c1β(0, t) + c2α(1, t) +

∫ 1

0
G(y)α(y, t)dy (15)

β(1, t) = W1(t) (16)

where

W1(t) = U(t) −

∫ 1

0
[k(1, y)ξ (y, t) + l(1, y)α(y, t)] dy. (17)

We treat W1 as a pseudo-controller to be designed. After W1 is
determined, the controller U can be expressed.

The kernels k(x, y) and l(x, y) are defined on the triangle
{(x, y)|0 ≤ y ≤ x ≤ 1}, and are given by

ky(x, y) + kx(x, y) =

∫ x

y
k(x, z)f22(z, y)dz − f22(x, y)

lx(x, y) − λly(x, y) = −H(x, y) + k(x, y)c(y) + λl(x, 0)G(y)

+

∫ x

0
k(x, z)H(z, y)dz

k(x, 0) = λl(x, 0)c1
λl(x, x) + l(x, x) = ρ(x, x) + λρ(x, x) − c(x)

while the kernel ρ(x, y) is defined on the triangle {(x, y)|0 ≤ x ≤

y ≤ 1} and obeys the following PDE:

ρx(x, y) − λρy(x, y) = −H(x, y) +

∫ x

0
k(x, z)H(z, y)dz

+ λl(x, 0)G(y), (18)
ρ(0, y) = 0 (19)

λρ(x, 1) = −g2(x) +

∫ x

0
k(x, y)g2(y)dy

+ λl(x, 0)c2, (20)

Then, the following proposed decoupling transformation

w(x, t) = c1β(x, t) + c2α(1 − λx, t)

+

∫ 1

λx
G(y)α(y − λx, t)dy (21)

and its inverse

β(x, t) =
1
c1
w(x, t) −

c2
c1
α(1 − λx, t)

−
1
c1

∫ 1

λx
G(y)α(y − λx, t)dy (22)

will admit the system

αt (x, t) = −λαx(x, t), (23)
wt (x, t) = wx(x, t) + λG(λx)w(0, t), (24)
α(0, t) = w(0, t), (25)
w(1, t) = W (t), (26)

where

W (t) = c1W1(t) + c2α(1 − λ, t) +

∫ 1

λ

G(y)α(y − λ, t)dy

Again, W acts as a pseudo-controller to be designed. Once W is
determined, W1 can be expressed. The decoupling transformation
(21) takes the instability in the x = 0 boundary of α and shifts it
into the interior of w.

Finally, we use the transformation

z(x, t) = w(x, t) −

∫ x

0
θ (x, y)w(y, t)dy (27)

and its inverse transformation

w(x, t) = z(x, t) +

∫ x

0
ζ (x, y)z(y, t)dy (28)

to shift the instability in w to the boundary x = 1, where it can be
neutralized by the boundary controller. The kernels θ (x, y), ζ (x, y)
satisfy the following PDEs:

θx(x, y) + θy(x, y) = 0 (29)

θ (x, 0) =

∫ x

0
θ (x, y)λG(λy)dy − λG(λx) (30)

ζx(x, y) + ζy(x, y) = 0 (31)

ζ (x, 0) = −λG(λx) (32)

The resulting (terminal) target system is:

αt (x, t) = −λαx(x, t) (33)
zt (x, t) = zx(x, t) (34)
α(0, t) = z(0, t) (35)
z(1, t) = 0. (36)

As one may notice upon inspection, the terminal target sys-
tem is a simple cascade of two first-order hyperbolic PDEs. It
is quite trivial to see that this cascade is exponentially (in fact,
finite-time) stable.

3.2. Summary of the transformations and controllers

From composing transformations (5), (11), (21) and (28) which
transform system (1)–(4) into system (33)–(36), the aggregate
transformation from (η, ξ ) → (α, z) can be found to be:

α(x, t) = η(x, t) −

∫ 1

x
q(x, y)η(y, t)dy (37)
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z(x, t) = w(x, t) −

∫ x

0
θ (x, y)w(y, t)dy

= c1ξ (x, t) − c1

∫ x

0
[k(x, y)ξ (y, t) + l(x, y)η(y, t)] dy

+ c1

∫ x

0
l(x, y)

∫ 1

y
q(y, z)η(z, t)dzdy

− c1

∫ 1

x
ρ(x, y)

[
η(y, t) −

∫ 1

y
q(y, z)η(z, t)dz

]
dy

+ c2η(1 − λx, t) − c2

∫ 1

1−λx
q(1 − λx, z)η(z, t)dz

+

∫ 1

λx
G(z)

[
η(z − λx, t) −

∫ 1

z−λy
q(z − λx, s)η(s, t)ds

]
dz

− c1

∫ x

0
θ (x, y)ξ (y, t)dy

+

∫ x

0
θ (x, y)

∫ y

0
[k(y, z)ξ (z, t) + l(y, z)η(z, t)] dzdy

−

∫ x

0
θ (x, y)

∫ y

0
l(y, z)

∫ 1

z
q(z, s)η(s, t)dsdzdy

+

∫ x

0
θ (x, y)

∫ 1

y
ρ(y, z)

[
η(z, t) −

∫ 1

z
q(z, s)η(s, t)ds

]
dzdy

− c2

∫ x

0
θ (x, y)

[
η(1 − λy, t) −

∫ 1

1−λy
q(1 − λy, z)η(z, t)dz

]
dy

−

∫ x

0
θ (x, y)

∫ 1

λy
G(z)η(z − λy, t)dzdy

+

∫ x

0
θ (x, y)

∫ 1

λy
G(z)

∫ 1

z−λy
q(z − λy, s)η(s, t)dsdzdy (38)

From the boundary condition, we get the control law

U(t) = −
c2
c1
η(1 − λ, t) +

∫ 1

0
K (x, y)ξ (y, t)dy

+

∫ 1

0
L (x, y)η(y, t)dy (39)

where the kernels K ,L are given by

K (x, y) = k(1, y) + θ (1, y) +

∫ 1

y
θ (1, z)k(z, y)dz (40)

L (x, y) = l(1, y) +

∫ y

0

(
l(1, z) −

1
c1
θ (1, z)ρ(z, y)

+
1
c1

∫ z

0
θ (1, z)l(z, s)q(s, y)ds

+
1
c1

∫ y

z
θ (1, z)ρ(z, s)q(s, y)ds

)
dz

+

∫ 1

y

(
−

1
c1
θ (1, z)l(z, y)

+
1
c1

∫ y

0
θ (1, z)l(z, s)q(s, y)ds

)
dz

+ 1[1−λ,1](y)
[
c2
c1

q(1 − λ, y) −
c2
c1
θ (1,

1 − y
λ

)

−
c2
c1

∫ 1

1−y
λ

θ (1, z)q(1 − λz, y)dz

+
1
c1

∫ 1−y
λ

0
θ (1, z)G(y + λz)dz

−
1
c1

∫ 1

1−y
λ

∫ 1

λz
θ (1, z)G(s)q(s − λz, y)dsdz

−
1
c1

∫ 1−y
λ

0

∫ y+λz

λz
θ (1, z)G(s)q(s − λz, y)dsdz

]

+ 1[0,1−λ](y)
[
−

1
c1

G(y + λ)

+
1
c1

∫ y+λ

λ

G(z)q(z − λ, y)dz

+
1
c1

∫ 1

0
θ (1, z)G(y + λz)dz

−
1
c1

∫ 1

0

∫ y+λz

λz
θ (1, z)G(s)q(s − λz, y)dsdz

]
. (41)

3.3. Closed-loop system stability

Lemma 1. The target system (33)–(36) is exponentially stable in
the L2- sense.

The stability of system (33)–(36) can be easily obtained using
the following Lyapunov–Krasovskii functional:

V (t) =

∫ 1

0

[
e−δ1xα(x, t)2 + c2eδ2xz(x, t)2

]
dx (42)

with δ1, δ2 > 0 and c2 > λ. The details of the proof are omitted.
Since the transformations (5), (11), (21) and (28) are all invert-

ible, we can infer the exponential stability property for (1)–(4).
One can show the stability of the original system by consecutively
applying inverse transformations and applying the boundedness
of the forward and inverse kernels. We summarize our result in
Theorem 2.

Theorem 2. The closed-loop system (1)–(4) with the control law
U(t) given by (39) is exponentially stable in the L2-sense.

3.4. Kernel PDEs and well-posedness

The kernels q(x, y) and p(x, y) obey the following PDEs:

λqx(x, y) + λqy(x, y) = f (x, y) −

∫ y

x
q(x, z)f (z, y)dz

λq(x, 1) =

∫ 1

x
q(x, y)g1(y)dy − g1(x)

λpx(x, y) + λpy(x, y) = f (x, y) +

∫ y

x
p(x, z)f (z, y)dz

λp(x, 1) = −g1(x).

These PDEs can be readily solved by applying the Laplace trans-
formation. The kernels ρ(x, y), l(x, y), k(x, y) satisfy the following
system of PDEs

ρx(x, y) − λρy(x, y) = −H(x, y) +

∫ x

0
k(x, z)H(z, y)dz

+ λl(x, 0)G(y) − h(x)p(x, y) (43)

ky(x, y) + kx(x, y) =

∫ x

y
k(x, z)f22(z, y)dz − f22(x, y) (44)

lx(x, y) − λly(x, y) = −H(x, y) + k(x, y)h(y) + λl(x, 0)G(y)

+

∫ x

0
k(x, z)H(z, y)dz

−

∫ x

y
k(x, z)h(z)p(z, y)dz (45)
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Fig. 2. Characteristic curves for k(x, y).

λ [ρ(x, 1) − c2l(x, 0)] = −g2(x) +

∫ x

0
k(x, y)g2(y)dy (46)

k(x, 0) − c1λl(x, 0) = −g3(x) +

∫ x

0
k(x, y)g3(y)dy (47)

λl(x, x) + l(x, x) = ρ(x, x) + λρ(x, x) − h(x), (48)
ρ(0, y) = 0 (49)

For the details of the derivation of the kennels, see Appendix.
The following lemma establishes well-posedness of the PDEs
(43)–(49).

Lemma 3. The kernel PDEs (43)–(49) have a unique solution in
C1(D1) × C1(D) × C1(D), where D1 = {(x, y)|0 ≤ x ≤ y ≤ 1} and
D = {(x, y)|0 ≤ y ≤ x ≤ 1}. Moreover,

|ρ(x, y)| ≤ MeM(x−y), |k(x, y)| ≤ MeM(x−y),

|l(x, y)| ≤ MeM(x−y),

where M = max{c1c̄ + c1h̄ + c1ḡ + 2f̄ , c̄ + h̄ + λḡ, ḡ + f̄ },
and c̄ = maxx∈[0,1]{h(x)}, h̄ = maxx∈[0,1]×y∈[0,1]{H(x, y)}, f̄ =

maxx∈[0,1]×y∈[0,1]{f22(x, y)}, ḡ = maxx∈[0,1]{G(x), g3(x)}.

Proof. We use the method of characteristics for k(x, y), ρ(x, y)
and l(x, y). This will admit integral equation forms, to which we
apply the method of successive approximations.

To solve ρ(x, y), we first use (49) as the characteristic initial
condition when λx + y ≤ 1, and (46) as the characteristic initial
condition when λx + y > 1. To solve k(x, y), we use (47) as
the characteristic initial condition. To solve l(x, y), we use (48)
as the initial condition for the characteristics. Then, one can
manipulate the resulting integral equations into an iterative form,
and directly apply the method of successive approximations.

Precisely, ρ(x, y) is a piecewise function which can be rewrit-
ten as: for λx + y ≤ 1 (see Fig. 2)

ρ(x, y) =

∫ x

0

∫ s

0
k(s, z)H(z,−λs + y + λx)dzds

−

∫ x

0
[H(s, λx − λs + y) + h(s)p(s, λx − λs + y)] ds

+λ

∫ x

0
l(s, 0)G(−λs + y + λx)ds

(50)

Fig. 3. Characteristic curves for ρ(x, y), l(x, y).

and for λx + y > 1 (see Fig. 3),

ρ(x, y) =
1
λ
g2

(
y + λx − 1

λ

)
+ c2l

(
y + λx − 1

λ
, 0

)
+

∫ x

y−1+λx
λ

∫ s

0
k(s, z)H(z,−λs + y + λx)dzds

−

∫ x

y−1+λx
λ

[H(s, λx − λs + y) + h(s)p(s, λx − λs + y)] ds

+λ

∫ x

y−1+λx
λ

l(s, 0)G(−λs + y + λx)ds

+
1
λ

∫ y+λx−1
λ

0
k
(
y + λx − 1

λ
, y

)
g2(y)dy.

(51)

Note that along the characteristic λx + y = 1, the two solu-
tions coincide. This, coupled with the PDE (43), guarantees a C1

solution.
Similarly, we can solve k(x, y) in the integral form as

k(x, y) = K0(x, y) + K [k, l](x, y) (52)

where

K0(x, y) = −

∫ x

x−y
f22(s, y)ds − g3(x − y),

K [k, l](x, y) = λc1l(x − y, 0) +

∫ x−y

0
k(x − y, z)g3(z)dz

+

∫ x

x−y

∫ s

s+y−x
k(s, z)f22(z, s + y − x)dzds.

Likewise, l(x, y) can be solved as: for λx + y ≤ 1,

l(x, y) =

∫ x

y+λx
1+λ

k(s,−λs + y + λx)c(−λs + y + λx)ds

+

∫ x

y+λx
1+λ

∫ x

0
k(s, z)H(z,−λs + y + λx)dzds

+

∫ x

y+λx
1+λ

[λl(s, 0)G(λx − λs + y) − H(s, λx − λs + y)] ds

+

∫ x

λx
1+λ

∫ s

λx+y−λs
k(s, z)h(z)p(z, λx + y − λs)dzds

+

∫ y+λx
1+λ

0

∫ s

0
k(s, z)H(z,−λs + y + λx)dzds
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+

∫ y+λx
1+λ

0
[λl(s, 0)G(λx − λs + y) − H(s, λx − λs + y)] ds

−

∫ y+λx
1+λ

0
h(s)p(s,−λs + y + λx)ds −

h( y+λx1+λ )

1 + λ
(53)

and for λx + y > 1,

l(x, y) =

∫ x

y+λx
1+λ

k(s,−λs + y + λx)c(−λs + y + λx)ds

+

∫ x

y+λx
1+λ

∫ x

0
k(s, z)H(z,−λs + y + λx)dzds

+

∫ x

y+λx
1+λ

[λl(s, 0)G(λx − λs + y) − H(s, λx − λs + y)] ds

+

∫ x

λx
1+λ

∫ s

λx+y−λs
k(s, z)h(z)p(z, λx + y − λs)dzds

∫ y+λx
1+λ

y−1+λx
λ

∫ s

0
k(s, z)H(z,−λs + y + λx)dzds

+

∫ y+λx
1+λ

y−1+λx
λ

[λl(s, 0)G(λx − λs + y) − H(s, λx − λs + y)] ds

+
1
λ
g2

(
y + λx − 1

λ

)
+ c2l

(
y + λx − 1

λ
, 0

)
+

1
λ

∫ y+λx−1
λ

0
k
(
y + λx − 1

λ
, x

)
g2(x)dx

−

∫ y+λx
1+λ

y−1+λx
λ

h(s)p(s,−λs + y + λx)ds −
h( y+λx1+λ )

1 + λ
. (54)

Since 0 < λ ≤ 1, when y = 0, λx ≤ 1, so l(x, 0) can be written in
the integral form as

l(x, 0) = L0(x) + L[k, l](x) (55)

where

L0[k, l](x) = −

∫ x

0
H(s,−λs + λx)ds

−

∫ λx
1+λ

0
h(s)p(s,−λs + λx)ds −

h( λx
1+λ )

1 + λ
,

L[k, l](x) =

∫ x

λx
1+λ

k(s,−λs + λx)c(−λs + λx)ds

+

∫ x

0

∫ s

0
k(s, z)H(z,−λs + λx)dzds

+

∫ x

0
λl(s, 0)G(−λs + λx)ds

+

∫ x

λx
1+λ

∫ s

λx−λs
k(s, z)h(z)p(z, λx − λs)dzds.

Since ρ(x, y) and l(x, y) are two continuous functions in x and
y depending on k(x, y), l(x, 0), we will only need to show that
k(x, y) and l(x, 0) exist. Let us solve k(x, y) and l(x, 0) by using the
method of successive approximations. Set

k0(x, y) = K0(x, y), l0(x, 0) = 0,
kn+1(x, y) = K0(x, y) + K [kn, ln](x, y),
ln+1(x, 0) = L[kn, ln](x)

for n = 0, 1, . . . and consider the differences

∆kn+1
= kn+1

− kn, ∆ln+1
= ln+1

− ln

with ∆k0 = K0,∆l0 = 0. It is easy to see that ∆kn,∆ln satisfy the
integral relationships

∆kn+1
= K [∆kn,∆ln](x, y), ∆ln+1

= L[∆kn,∆ln](x). (56)

Let us assume that

|∆kn| ≤ Mn (x − y)n

n!
, |∆ln| ≤ Mn x

n

n!
. (57)

Denoting

c̄ = max
x∈[0,1]

{h(x)},

h̄ = max
x∈[0,1]×y∈[0,1]

{H(x, y) + h(x)p(x, y)},

f̄ = max
x∈[0,1]×y∈[0,1]

{f22(x, y)},

ḡ = max
x∈[0,1]

{G(x)},

M = max{c1c̄ + c1h̄ + c1ḡ + 2f̄ , c̄ + h̄ + λḡ, ḡ + f̄ }.

then

|∆kn+1
| = K [∆kn,∆ln](x, y)

= λc1

∫ x−y

λ(x−y)
1+λ

∆kn(s,−λs + λ(x − y))c(−λs + λ(x − y))ds

+ λc1

∫ x−y

λ(x−y)
1+λ

∫ x−y

0
∆kn(s, z)H(z,−λs + λ(x − y))dzds

+ λc1

∫ x−y

λ(x−y)
1+λ

λ∆ln(s, 0)G(−λs + λ(x − y))ds

+

∫ x

x−y

∫ s

s+y−x
∆kn(s, z)f22(z, s + y − x)dzds

+ f̄
∫ x−y

0
∆kn(x − y, z)dz

≤ λc1

∫ x−y

λ(x−y)
1+λ

Mn (s + λs − λ(x − y))n

n!
c(−λs + λ(x − y))ds

+ λc1

∫ x−y

λ(x−y)
1+λ

∫ x−y

0
Mn (s − z)n

n!
H(z,−λs + λ(x − y))dzds

+ λc1

∫ x−y

λ(x−y)
1+λ

λMn s
n

n!
G(−λs + λ(x − y))ds

+

∫ x

x−y

∫ s

s+y−x
Mn (s − z)n

n!
f22(z, s + y − x)dzds

+ f̄
∫ x−y

0
Mn (x − y − z)n

n!
dz + f̄ Mn (x − y)n+1

(n + 1)!

≤
λ

1 + λ
c1c̄Mn (x − y)n+1

(n + 1)!
+ c1h̄Mn (x − y)n+2

(n + 2)!

+
λ2

1 + λ
c1ḡMn (x − y)n+1

(n + 1)!
+ f̄ Mn (x − y)n+1

(n + 1)!

≤ Mn+1 (x − y)n+1

(n + 1)!

and

|∆ln+1(x, 0)| = L[∆kn,∆ln](x)

=

∫ x

λx
1+λ

∆kn(s,−λs + λx)c(−λs + λx)ds

+

∫ x

0

∫ s

0
∆kn(s, z)H(z,−λs + λx)dzds

+

∫ x

0
λ∆ln(s, 0)G(−λs + λx)ds
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+

∫ x

λx
1+λ

∫ s

λx−λs
∆kn(s, z)h(z)p(z, λx − λs)dzds

≤

∫ x

λx
1+λ

Mn (s + λs − λx)n

n!
c(−λs + λx)ds

+h̄
∫ x

0

∫ s

0
Mn (s − z)n

n!
dzds + ḡ

∫ x

0
λMn s

n

n!
ds

+h̄
∫ x

λx
1+λ

∫ s

λx−λs
∆kn(s, z)dzds

≤ λMn+1 xn+1

(n + 1)!
.

By induction (57) is proved. It is easy to verify that F [k, l](x, y) and
G[k, l](x, y) are continuous operators (see Di Meglio et al., 2013),
therefore, the series

k(x, y) =

∞∑
n=0

∆kn(x, y), l(x, 0) =

∞∑
n=0

∆ln(x, 0)

uniformly converges to the solution of (52), (55) with n → ∞.
Also, we show that

|k(x, y)| ≤ MeM(x−y), |l(x, 0)| ≤ MeMx. (58)

Similar to the proof of k(x, y), by using (51), (53), (54) and (58),
we have

|ρ(x, y)| ≤ MeM(x−y),

|l(x, y)| ≤ MeM(x−y).

The proof of the uniqueness of this solution is very similar
with (Su et al., 2018), so we omit the details. ■

In order to solve for m(x, y), n(x, y), σ (x, y), we rewrite trans-
formation (11) as

ξ (x, t) −

∫ x

0
k(x, y)ξ (y, t)dy

= β(x, t) +

∫ x

0
l(x, y)α(y, t)dy +

∫ 1

x
ρ(x, y)α(y, t)dy. (59)

From Lemma 3, k(x, y) is continuous, and therefore exists a
unique continuous inverse kernel m(x, y) defined on D such that
(e.g. Vazquez, 2006)

ξ (x, t) = β(x, t) +

∫ x

0
l(x, y)α(y, t)dy +

∫ 1

x
ρ(x, y)α(y, t)dy

+

∫ x

0
m(x, y)

(
β(y, t) +

∫ y

0
l(y, z)α(z, t)dz

+

∫ 1

y
ρ(y, z)α(z, t)dz

)
dy

which yields the following inverse transformation

ξ (x, t) = β(x, t) +

∫ x

0
m(x, y)β(y, t)dy

+

∫ x

0
n(x, y)α(y, t)dy +

∫ 1

x
σ (x, y)α(y, t)dy (60)

where

n(x, y) = l(x, y) +

∫ x

y
m(x, z)l(z, y)dz +

∫ y

0
m(x, z)ρ(z, y)dz

σ (x, y) = ρ(x, y) +

∫ x

0
m(x, z)ρ(z, y)dz.

Together with Lemma 3, the well-posedness ofm(x, y), n(x, y) and
σ (x, y) is established.

We derive kernel θ (x, y) next. By taking the time and space
derivative of z(x, t), we obtain the following PDE for θ :

θx(x, y) + θy(x, y) = 0, (61)

θ (x, 0) =

∫ x

0
θ (x, y)λG(λy)dy − λG(λx) (62)

By repeating the similar computations for θ (x, y), we can also
show that kernel ζ (x, y) satisfy

ζx(x, y) + ζy(x, y) = 0, (63)

ζ (x, 0) = −λG(λx) (64)

The well-posedness of θ (x, y), ζ (x, y) are also given in Krstic and
Smyshlyaev (2008).

4. Output feedback controller for (1)–(4)

We suppose the only available measurement of our system
is the signal η(1, t). We propose the following output injection
observer for system (1)–(4):

η̂t (x, t) = −λη̂x(x, t) + g1(x)η(1, t)

+

∫ 1

x
f (x, y)η̂(y, t)dy + r(x)[η(1, t) − η̂(1, t)] (65)

ξ̂t (x, t) = ξ̂x(x, t) +

∫ 1

0
f21(x, y)η̂(y, t)dy

+

∫ x

0
f22(x, y)ξ̂ (y, t)dy + s(x)[η(1, t) − η̂(1, t)]

+ g2(x)η(1, t) + h(x)η̂(x, t) + g3(x)ξ̂ (0, t) (66)

η̂(0, t) = c1ξ̂ (0, t) + c2η(1, t) +

∫ 1

0
d(y)η̂(y, t)dy (67)

ξ̂ (1, t) = U(t). (68)

One can establish that the observer error(
η̃(x, t), ξ̃ (x, t)

)
=

(
η(x, t) − η̂(x, t), ξ (x, t) − ξ̂ (x, t)

)
will satisfy the following PDE system:

η̃t (x, t) = r(x)η̃(1, t) − λη̃x(x, t) +

∫ 1

x
f (x, y)η̃(y, t)dy (69)

ξ̃t (x, t) = ξ̃x(x, t) +

∫ 1

0
f21(x, y)η̃(y, t)dy

+ g3(x)ξ̃ (0, t) +

∫ x

0
f22(x, y)ξ̃ (y, t)dy

+ h(x)η̃(x, t) + s(x)η̃(1, t) (70)

η̃(0, t) = c1ξ̃ (0, t) +

∫ 1

0
d(y)η̃(y, t)dy (71)

ξ̃ (1, t) = 0. (72)

The observer gains r(x), s(x) should be chosen in a manner such
that the error system (69)–(72) exhibits exponential stability
properties. We will solve the stabilization problem for (69)–(72)
by using a two-step integral transformation approach. Much like
with the control design, we seek invertible transformations from
system (69)–(72) to the exponentially stable target system

α̃t (x, t) = −λα̃x(x, t), (73)
β̃t (x, t) = β̃x(x, t), (74)
α̃(0, t) = c1β̃(0, t), (75)
β̃(1, t) = 0. (76)
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We begin by defining the following transformation

β̃(x, t) = ξ̃ (x, t) −

∫ x

0
k̄(x, y)ξ̃ (y, t)dy

−

∫ x

0
l̄(x, y)η̃(y, t)dy −

∫ 1

x
ρ̄(x, y)η̃(y, t)dy (77)

which admits the following intermediate target system:

η̃t (x, t) = r(x)η̃(1, t) − λη̃x(x, t) +

∫ 1

x
f (x, y)η̃(y, t)dy (78)

β̃t (x, t) = β̃x(x, t) (79)

η̃(0, t) = c1β̃(0, t) +

∫ 1

0
Ḡ(y)η̃(y, t)dy (80)

β̃(1, t) = 0 (81)

where Ḡ(y) = c1ρ̄(0, y) + d(y). The gain s(x) can then be deter-
mined to be

s(x) =

∫ x

0
k̄(x, y)s(y)dy +

∫ x

0
l̄(x, y)r(y)dy

− λρ(x, 1) +

∫ 1

x
ρ̄(x, y)r(y)dy (82)

where k̄(x, y), l̄(x, y), ρ̄(x, y) obey the following PDEs:

k̄x(x, y) + k̄y(x, y) =

∫ x

y
k̄(x, z)f22(z, y)dz − f22(x, y) (83)

l̄x(x, y) − λl̄y(x, y) =

∫ x

0
k̄(x, z)f21(z, y)dz + k̄(x, y)h(y)

+

∫ x

y
l̄(x, z)f (z, y)dz − f21(x, y)

+λl̄(x, 0)d(y) (84)

ρ̄x(x, y) − λρ̄y(x, y) =

∫ x

0

[
k̄(x, z)f21(z, y) + l̄(x, z)f (z, y)

]
dz

−

∫ y

x
ρ̄(x, z)f (z, y)dz − f21(x, y)

+λl̄(x, 0)d(y) (85)
ρ̄(x, x) + λρ̄(x, x) = h(x) + λl̄(x, x) + l̄(x, x) (86)

c1λl̄(x, 0) = g3(x) + k̄(x, 0)

−

∫ x

0
k̄(x, y)g3(y)dy (87)

k̄(1, y) = 0, l̄(1, y) = 0. (88)

We now define the second transformation as

α̃(x, t) = η̃(x, t) −

∫ 1

x
q̄(x, y)η̃(y, t)dy (89)

with the associated inverse transformation

η̃(x, t) = α̃(x, t) +

∫ 1

x
p̄(x, y)α̃(y, t)dy

mapping the intermediate target system (78)–(81) into the cas-
cade of two first-order hyperbolic PDEs:

α̃t (x, t) = −λα̃x(x, t), β̃t (x, t) = β̃x(x, t),
α̃(0, t) = c1β̃(0, t), β̃(1, t) = 0.

The gain r(x) is determined to be:

r(x) =

∫ 1

x
q̄(x, y)r(y)dy − λq̄(x, 1) (90)

with the kernel q̄(x, y) obeying the PDE

λq̄x(x, y) + λq̄y(x, y) = f (x, y) −

∫ y

x
q̄(x, z)f (z, y)dz (91)

q̄(0, y) = Ḡ(y). (92)

The well-posedness of kernels q̄(x, y) and p̄(x, y) is given in Krstic
and Smyshlyaev (2008).

The problem then reduces to showing that the PDE system
(83)–(88) is well-posed. Once a solution of k̄(x, y), l̄(x, y), ρ̄(x, y)
and q̄(x, y) is found, the observer gain r(x) can be obtained from
(90), and s(x) is obtained from (82) and r(x). Intuitively, one can
expect this cascaded structure of the gains r(x) and s(x) due to
the configuration of the model.

The following lemma establishes the well-posedness of the
PDE (83)–(88).

Lemma 4. The kernel PDE system (83)–(88) has a unique solution
in C1(D1) × C1(D) × C1(D), where D1 = {(x, y)|0 ≤ x ≤ y ≤ 1} ,
D = {(x, y)|0 ≤ y ≤ x ≤ 1}. The kernels m̄(x, y), n̄(x, y), σ̄ (x, y) of
inverse transformation

ξ̃ (x, t) = β̃(x, t) +

∫ x

0
m̄(x, y)β̃(y, t)dy +

∫ x

0
n̄(x, y)α̃(y, t)dy

+

∫ 1

x
σ̄ (x, y)α̃(y, t)dy (93)

likewise admits a unique C1(D1) × C1(D) × C1(D) function.

This lemma can be proved by the method of characteristics
and successive approximations approach. The proof directly fol-
lows from the proof of Lemma 3, and thus we omit the details
here.

The exponential stability (in the L2-sense) of the target system
(73)–(76) and invertibility of transformation (77) and (89) imply
the exponential stability of error system (69)–(72) (in L2-sense).
The result is formulated in the following theorem.

Theorem 5. Let ρ̄(x, y), k̄(x, y), l̄(x, y) be the solution to (83)–(88)
and let q̄(x, y) be the solution to (91)–(92). The observer gains r(x)
and s(x) are given by (90) and (82). Then the error system (69)–(72)
is exponentially stable in the L2-sense.

Due to the separation principle for linear systems, the expo-
nentially convergent observer is independent of the control input.
Thus, the observer can be combined with the backstepping con-
trol law derived earlier in the paper to solve the output-feedback
problem.

Theorem 6. Let ρ̄(x, y), k̄(x, y), l̄(x, y) be the solution to (83)–(88)
and q̄(x, y) be the solution to (91)–(92). The observer gains r(x) and
s(x) are given by (90) and (82). The system consisting of (1)–(3) with
the control law

U(t) = −
c2
c1
η̂(1 − λ, t) +

∫ 1

0
K (x, y)ξ̂ (y, t)dy

+

∫ 1

0
L (x, y)η̂(y, t)dy (94)

coupled with the observer system (65)–(68) is exponentially stable
in the L2-sense, where K (x, y) and L (x, y) are given by (40) and
(41) respectively.

Proof. The transformation

α̂(x, t) = η̂(x, t) −

∫ 1

x
q(x, y)η̂(y, t)dy (95)

and

ẑ(x, t) = w(x, t) −

∫ x

0
θ (x, y)w(y, t)dy

= c1ξ̂ (x, t) − c1

∫ x

0

[
k(x, y)ξ̂ (y, t) + l(x, y)η̂(y, t)

]
dy
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+c1

∫ x

0
l(x, y)

∫ 1

y
q(y, ẑ)η̂(z, t)dzdy

−c1

∫ 1

x
ρ(x, y)

[
η̂(y, t) −

∫ 1

y
q(y, ẑ)η̂(z, t)dz

]
dy

+c2η̂(1 − λx, t) − c2

∫ 1

1−λx
q(1 − λx, ẑ)η̂(z, t)dz

+

∫ 1

λx
G(z)

[
η̂(z − λx, t) −

∫ 1

ẑ−λy
q(z − λx, s)η̂(s, t)ds

]
dz

−

∫ x

0
θ (x, y)

[
c1ξ̂ (y, t) + c2η̂(1 − λy, t)

]
dy

+

∫ x

0
θ (x, y)

∫ y

0

[
k(y, ẑ)ξ̂ (z, t) + l(y, ẑ)η̂(z, t)

]
dzdy

−

∫ x

0
θ (x, y)

∫ y

0
l(y, ẑ)

∫ 1

z
q(z, s)η̂(s, t)dsdzdy

+

∫ x

0
θ (x, y)

∫ 1

y
ρ(y, ẑ)η̂(z, t)dzdy

−

∫ x

0
θ (x, y)

∫ 1

y
ρ(y, ẑ)

∫ 1

z
q(z, s)η̂(s, t)dsdzdy

+c2

∫ x

0
θ (x, y)

∫ 1

1−λy
q(1 − λy, ẑ)η̂(z, t)dzdy

+

∫ x

0
θ (x, y)

∫ 1

λy
G(z)

∫ 1

ẑ−λy
q(z − λy, s)η̂(s, t)dsdzdy

−

∫ x

0
θ (x, y)

∫ 1

λy
G(z)η̂(z − λy, t)dady (96)

maps (65)–(68) into

α̂t (x, t) = −λα̂x(x, t) +

[
r(x) +

∫ 1

x
q(x, y)r(y)dy

]
η̃(1, t)

ẑt (x, t) = ẑx(x, t) +

[
E2(x) −

∫ x

0
θ (x, y)E2(y)dy

]
η̃(1, t)

α̂(0, t) = ẑ(0, t), ẑ(1, t) = 0,

where

E1(x) = r(x) −

∫ x

0
k(x, y)s(y)dy

−

∫ x

0
l(x, y)

(
r(y) +

∫ 1

y
q(y, s)r(s)ds

)
dy

−

∫ 1

x
ρ(x, y)

(
r(y) +

∫ 1

y
q(y, s)r(s)ds

)
dy

and

E2(x) = c1E1(x)

+c2

(
r(1 − λx) +

∫ 1

1−λx
q(1 − λx, s)r(s)ds

)
−

∫ 1

λx
G(y)

(
r(y − λx) +

∫ 1

y−λx
q(y − λx, s)r(s)ds

)
dy.

From Theorem 5, we can note that the (η̃, ξ̃ ) system (69)–(72) is
exponentially stable. The (η̃, ξ̃ ) system acts as the input to the
exponentially stable (α̂, ẑ) system. Thus, the cascade intercon-
nection of these two exponentially stable systems (α̂, ẑ, η̃, ξ̃ ) will
likewise be exponentially stable in L2-sense. By applying the in-
vertible coordinate transformation (95)–(96), one can show expo-
nential stability of (η̂, ξ̂ , η̃, ξ̃ ). It directly follows that (η, ξ, η̂, ξ̂ )
is exponentially stable. ■

Fig. 4. String with anti-damping in the middle of domain.

5. Application to the point-damped string

In this section, we show that our result on our model can be
applied to solve the point-damped string problem. The damped
point can be any arbitrary interior point, which is an important
extension to the existing literature where the point-damper can
only apply to a specific subset of rational points in Guo and Jin
(2010) and Liu (1988) (see Fig. 4).

5.1. Stabilization of the point damped string

The string model with a point damper is governed by the
following PDE

utt (y, t) = uyy(y, t), (97)

u(l−, t) = u(l+, t), (98)
uy(l−, t) − uy(l+, t) = qut (l, t), (99)

u(2, t) = 0, (100)
uy(0, t) = U(t) (101)

where y ∈ [0, 2], l ∈ [0, 1], t > 0, u(y, t) is the displacement of
the string, U(t) is the control, q > 0, q ̸= l2 + (2− l)2 is a constant
number.

We introduce a new variable v(x, t) = [v1(x, t), v2(x, t)]T for
x ∈ [0, 1] and t ≥ 0, where

v1(x, t) = u(lx, t), v2(x, t) = u(2 − (2 − l)x, t), 0 ≤ x ≤ 1.

Then the system (97)–(101) is transformed into an equivalent
system:

vtt (x, t) =
1
ρ2
i
vxx(x, t), (102)

v1(1, t) = v2(1, t), (103)
ρ1v1x(1, t) + ρ2v2x(1, t) = qv1,t (1, t), (104)

v1,x(0, t) = U(t), (105)

v2(0, t) = 0 (106)

where x ∈ [0, 1], t > 0, ρ1 = l, ρ2 = 2 − l, and v1(x, t), v2(x, t)
propagate with different wave speeds. Moreover, the boundary
(104) makes the system (102)–(106) anti-stable.

We proceed to transform system (102)–(106) into a 4 × 4
system of first-order transport equations which convect in oppos-
ing directions, to which our method can be applied (with some
slight manipulations). To achieve this, we define the following
transformation:

ϕ̄i(x, t) = vi,x(x, t) + ρivi,t (x, t), i = 1, 2, (107)

ψ̄i(x, t) = vi,x(x, t) − ρivi,t (x, t), i = 1, 2 (108)

together with the inverse given by

vi,x =
ϕ̄i(x, t) + ψ̄i(x, t)

2
, vi,t =

ϕ̄i(x, t) − ψ̄i(x, t)
2ρi

. (109)
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Let W (t) = U(t) − ρ1v1,t (0, t), where W is treated as a pseudo-
control to be designed. Eqs. (102)–(106) are transformed into

ϕ̄i,t (x, t) =
1
ρi
ϕ̄i,x(x, t), i = 1, 2, (110)

ψ̄i,t (x, t) = −
1
ρi
ψ̄i,x(x, t), i = 1, 2, (111)

ϕ̄1(1, t) =
ρ2
2 − ρ2

1 − q
ρ2
1 + ρ2

2 − q
ψ̄1(1, t) −

2ρ1ρ2
ρ2
1 + ρ2

2 − q
ψ̄2(1, t) (112)

ϕ̄2(1, t) =
−2ρ1ρ2

ρ2
1 + ρ2

2 − q
ψ̄1(1, t) +

ρ2
1 − ρ2

2 − q
ρ2
1 + ρ2

2 − q
ψ̄2(1, t) (113)

ψ̄2(0, t) = ϕ̄2(0, t) (114)
ψ̄1(0, t) = W (t). (115)

By defining ϕi(x, t) = ϕ̄i(1 − x, t) and ψi(x, t) = ψ̄i(1 − x, t),
(110)–(115) can also be written as

ϕi,t (x, t) = −
1
ρi
ϕi,x(x, t), i = 1, 2,

ψi,t (x, t) =
1
ρi
ψi,x(x, t), i = 1, 2,

ϕ1(0, t) =
ρ2
2 − ρ2

1 − q
ρ2
1 + ρ2

2 − q
ψ1(0, t) −

2ρ1ρ2
ρ2
1 + ρ2

2 − q
ψ2(0, t)

ϕ2(0, t) = −
2ρ1ρ2

ρ2
1 + ρ2

2 − q
ψ1(0, t) +

ρ2
1 − ρ2

2 − q
ρ2
1 + ρ2

2 − q
ψ2(0, t)

ψ2(1, t) = ϕ2(1, t)
ψ1(1, t) = W (t).

We combine ϕ2(x, t) and ψ2(x, t) into one state using the follow-
ing definition

η(x, t) =

{
ϕ2(2x, t), x ∈ [0, 1

2 ],

ψ2(2 − 2x, t), x ∈ [
1
2 , 1].

Denoting γ (x, t) = ϕ1(x, t) and ξ (x, t) = ψ1(x, t), we arrive at the
system

γt (x, t) = −
1
ρ1
γx(x, t) (116)

ηt (x, t) = −
1

2ρ2
ηx(x, t) (117)

ξt (x, t) =
1
ρ1
ξx(x, t) (118)

γ (0, t) =
ρ2
2 − ρ2

1 − q
ρ2
1 + ρ2

2 − q
ξ (0, t) −

2ρ1ρ2
ρ2
1 + ρ2

2 − q
η(1, t) (119)

η(0, t) = −
2ρ1ρ2

ρ2
1 + ρ2

2 − q
ξ (0, t) +

ρ2
1 − ρ2

2 − q
ρ2
1 + ρ2

2 − q
η(1, t) (120)

ξ (1, t) = W (t). (121)

Thus, the joint string with point-damping model can be trans-
formed into a (2 + 1) × (2 + 1) system, to which our controller
can be directly applied.

One can immediately see that the (γ , η, ξ ) system can be
broken into a cascade, where (η, ξ ) act as an input to the first-
order hyperbolic PDE γ via the boundary condition γ (0, t). Thus,
if we can stabilize (η, ξ ), then the composite system (γ , η, ξ ) will
be stabilized as well, from the cascading structure. We restate
sub-system (η, ξ ) below

ηt (x, t) = −
1

2ρ2
ηx(x, t) (122)

ξt (x, t) =
1
ρ1
ξx(x, t) (123)

η(0, t) =
−2ρ1ρ2

ρ2
1 + ρ2

2 − q
ξ (0, t) +

ρ2
1 − ρ2

2 − q
ρ2
1 + ρ2

2 − q
η(1, t) (124)

ξ (1, t) = W (t) (125)

where x ∈ [0, 1], t > 0, and W (t) is the controller.
By applying the result from Section 3, the transformation

(γ , η, ξ ) → (γ , α, z) is determined to be:

α(x, t) = η(x, t),

z(x, t) =
−2ρ1ρ2

ρ2
1 + ρ2

2 − q
ξ (x, t) +

ρ2
1 − ρ2

2 − q
ρ2
1 + ρ2

2 − q
η

(
1 −

ρ1x
2ρ2

, t
)
.

We can also write u → (γ , α, z) to be

γ (x, t) = ux(l − lx, t) + lut (l − lx, t), (126)

α(x, t) =

⎧⎪⎨⎪⎩
ux(4x − 2lx + l, t)

+ρ2ut (4x − 2lx + l, t), x ∈ [0, 1
2 ],

ux(4 − 4x + 2lx − l, t)
−ρ2ut (4 − 4x + 2lx − l, t), x ∈ [

1
2 , 1],

(127)

and

z(x, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
2ρ1ρ2

ρ21+ρ22−q

(
ux(l − lx, t) − lut (l − lx, t)

)
+
ρ21−ρ22−q

ρ21+ρ22−q

(
ux(4 − l − lx, t)

+ρ2ut (4 − l − lx, t)
)
, x ∈ [

2−l
l , 1],

−
2ρ1ρ2

ρ21+ρ22−q
(ux(l − lx, t) − lut (l − lx, t))

+
ρ21−ρ22−q

ρ21+ρ22−q

(
ux(l + lx, t)

−ρ2ut (l + lx, t)
)
, x ∈ [0, 2−l

l ]

(128)

The pseudo-controller W (t) can be determined to be

W (t) = −
ρ2
1 + ρ2

2 − q
2ρ1ρ2

η

(
1 −

1
4 − 2l

, t
)

= −
ρ2
1 + ρ2

2 − q
2ρ1ρ2

v2x

(
2 − 2l
2 − l

, t
)
, (129)

which will admit the controller

U(t) = −
ρ2
1 + ρ2

2 − q
2ρ1ρ2

v2x(0, t) + v1t (0, t)

=
ρ2
1 + ρ2

2 − q
2ρ1ρ2

ux(2l, t) + ut (0, t), (130)

It has been previously noted that if the control law W (t) makes
the sub-system (η, ξ ) exponentially stable, then the same con-
trol law stabilizes (γ , η, ξ ) exponentially. The following corollary
directly follows from the application of Theorem 2.

Corollary 7. Suppose that q > 0 and q ̸= l2 + (2 − l)2. Then the
closed-loop system (97)–(101) with the control law U(t) given by
(130) is exponentially stable in H = H1(0, 2) × L2(0, 2).

Note that the due to the transformation (107)–(108), the sta-
bility in L2 in the spatial derivative will admit H1 stability in the
original wave coordinates.

5.2. Numerical simulation of the string with midway point-damping

In this section, we apply our theory to the point-damped
string modeled by (97)–(101) where the point-damper is located
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Fig. 5. u(x, t) of the open-loop system (97)–(101) with U = 0.

Fig. 6. u(x, t) of the closed-loop system (97)–(101) with the control law U given
by (131).

midway, a special case when l = 1. The controller, as per (130),
is found to be

U(t) =
2 − q
2

ux(2, t) + ut (0, t). (131)

The finite difference method is used for the PDEs (97)–(101)
to numerically compute the state in the open-loop case (U = 0)
and in the closed-loop case with the control law U given by (131).
The parameters are chosen to be q = 6 and u(x, 0) = x. Fig. 5
shows that the displacement u(x, t) for the open-loop system is
unstable. Fig. 6 shows that the displacement u(x, t) in the closed-
loop system converges to zero, exhibiting the effectiveness of
applying closed-loop control.

5.3. Comparison with Guo and Jin’s methodology

We present the differences between our methodology and
Guo and Jin’s methodology in Guo and Jin (2010) applied to the
same midway point-damped string (97)–(101). We have taken
the liberty of transforming Guo and Jin’s target system (in wave
variables) into a (2 + 1) × (2 + 1) first-order hyperbolic system
for a more direct comparison:

γt (x, t) = −γx(x, t) (132)

αt (x, t) = −
1
2
αx(x, t) (133)

zt (x, t) = zx(x, t) (134)

γ (0, t) =
c

2 + c
z(0, t) −

2
2 + c

α(1, t) (135)

Table 1
Comparison of controller U(t).
Variable Our controller Guo and Jin’s controller

ut (0, t) 1 2(q+c)
4+qc

ux(2, t) 2−q
2 −

q(q+c)
4+qc

Fig. 7. Flow diagram of our target system.

Fig. 8. Flow diagram of Guo and Jin’s target system (132)–(137).

α(0, t) = −
2

2 + c
z(0, t) +

c
2 + c

α(1, t) (136)

z(1, t) = −γ (1, t) (137)

with the corresponding transformation u → (γ , α, z)

γ (x, t) =
2 − c
q + 2

(ux(1 − x, t) + ut (1 − x, t))

−
q + c
q + 2

(ux(x + 1, t) + ut (x + 1, t)) ,

α(x, t) =

{
ux(2x + 1, t) + ut (2x + 1, t), x ∈ [0, 1

2 ]

ux(3 − 2x, t) − ux(3 − 2x, t), x ∈ [
1
2 , 1]

z(x, t) =
2 − c
q + 2

ux(1 − x, t) −
2q + c + 2

q + 2
ut (1 − x, t)

+
q + c
q + 2

(ux(x + 1, t) − ut (x + 1, t))

and controller

U(t) =
2(q + c)
4 + qc

(
q
2
ux(2, t) + ut (0, t)

)
(138)

where c > 0, c ̸= 2 is the designed parameter outlined in Guo
and Jin (2010).

Next, we give a comparison between ours and Guo and Jin’s
methodologies in Guo and Jin (2010) from three different aspects.

From Table 1, we see the control law derived in our paper
maintains the same structure with Guo and Jin’s control law, but
have different control gains. When q > 2, c > 2 or q < 2, c < 2,
Guo and Jin’s control law is more effective, and when q > 2, c < 2
or q > 2, c < 2, our control law is more effective.

From Figs. 7 and 8, it is easily seen that Guo and Jin’s target
system (132)–(137) still exhibits recirculation/feedback behavior,
while our target system is a simple cascaded system whose
exponential stability property can easily be shown. This is an
important distinction to make, as one can synthesize a composite
Lyapunov function from each subsystem property. In the case of
Guo and Jin’s target system, one must attempt to use a small-
gain type approach, due to the feedback structure of the system.
Often times, the stability of these feedback structured systems is
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not immediately clear. In contrast, in our result (as a cascade),
one can simply analyze the Lyapunov functions of each subsystem
independently, and compose them as a linear combination to
synthesize the composite Lyapunov function. Such an approach
for cascaded systems can be systematically applied, leading to
a far more obvious and less complex result for stability anal-
ysis. Moreover, as a cascade of first-order hyperbolic systems,
finite-time convergence can be achieved.

6. Concluding remarks

This paper deals with coupled first-order hyperbolic equations
with recirculation terms, which are motivated by the midway
point-damped string model. A new decoupling transformation
together with the well-studied backstepping transformation is
presented, allowing us to design a controller to make the closed-
loop system exponentially stable. The result is then applied to
both the midway and non-midway point damped string models,
and comparisons made to similar work found in Guo and Jin
(2010). This paper thus presents novel work on the coupled PDEs
with new coupling structures.

Appendix

First, we derive the kernel function of q(x, y). Taking the time
and space derivative of α(x, t) respectively,

αt (x, t) = −ληx(x, t) + g1(x)η(1, t) +

∫ 1

x
f (x, y)η(y, t)dy

+λq(x, 1)η(1, t) − λ

∫ 1

x
qy(x, y)η(y, t)dy

−λq(x, x)η(x, t) −

∫ 1

x
q(x, y)g1(y)dyη(1, t)

−

∫ 1

x
q(x, y)

∫ 1

y
f (y, z)η(z, t)dzdy

αx(x, t) = ηx(x, t) + q(x, x)η(x, t) −

∫ 1

x
qx(x, y)η(y, t)dy,

we have

0 = αt (x, t) + λαx(x, t)

= g1(x)η(1, t) +

∫ 1

x
f (x, y)η(y, t)dy

+λq(x, 1)η(1, t) − λ

∫ 1

x
qy(x, y)η(y, t)dy

−

∫ 1

x
q(x, y)g1(y)dyη(1, t) − λ

∫ 1

x
qx(x, y)η(y, t)dy

−

∫ 1

x

∫ y

x
q(x, z)f (z, y)dzη(y, t)dy.

We find the kernel function of q(x, y) is dictated by the following
PDE:

λqx(x, y) + λqy(x, y) = f (x, y) −

∫ y

x
q(x, z)f (z, y)dz,

λq(x, 1) =

∫ 1

x
q(x, y)g1(y)dy − g1(x).

Similar computation shows that p(x, y) is governed by a similar
PDE:

λpx(x, y) + λpy(x, y) = f (x, y) +

∫ y

x
p(x, z)f (z, y)dz,

λp(x, 1) = −g1(x).

The well-posedness of the kernel PDEs governing q(x, y) and
p(x, y) is given in Krstic and Smyshlyaev (2008). Next, we solve
for the kernels of k(x, y), l(x, y) and ρ(x, y). By taking the time and
space derivative of β(x, t) respectively,

βt (x, t) = ξt (x, t) −

∫ x

0
k(x, y)ξt (y, t)dy

−

∫ x

0
l(x, y)αt (y, t)dy −

∫ 1

x
ρ(x, y)αt (y, t)dy

−

∫ 1

0
l(x, y)αt (y, t)dy

= ξx(x, t) +

∫ 1

0
H(x, y)α(y, t)dy + g2(x)α(1, t)

+

∫ x

0
f22(x, y)ξ (y, t)dy + h(x)α(x, t)

−

∫ x

0
k(x, y)h(y)α(y, t)dy

−

∫ x

0
k(x, y)g2(y)dyα(1, t)

− k(x, x)ξ (x, t)dy + k(x, 0)ξ (0, t)dy

+

∫ x

0
ky(x, y)ξ (y, t)dy

−

∫ x

0

∫ x

0
k(x, z)H(z, y)dzα(y, t)dy

−

∫ 1

x

∫ x

0
k(x, z)H(z, y)dzα(y, t)dy

−

∫ x

0

∫ x

y
k(x, z)f22(z, y)dzξ (y, t)dy

−

∫ x

0
k(x, y)g3(y)dyξ (0, t) + g3(x)ξ (0, t)

+ λl(x, x)α(x, t) − λl(x, 0)c1ξ (0, t)

− λl(x, 0)c2α(1, t) − λ

∫ x

0
ly(x, y)α(y, t)dy

− λl(x, 0)
∫ 1

0
G(y)α(y, t)dy

+ λρ(x, 1)α(1, t) − λρ(x, x)α(x, t)

− λ

∫ 1

x
ρy(x, y)α(y, t)dy

+

∫ 1

x
h(x)p(x, y)α(y, t)dy

+

∫ x

0

∫ x

y
k(x, z)h(z)p(z, y)dzα(y, t)dy

βx(x, t) = ξx(x, t) −

∫ x

0
kx(x, y)ξ (y, t)dy − k(x, x)ξ (x, t)

− l(x, x)α(x, t) −

∫ x

0
lx(x, y)α(y, t)dy

+ ρ(x, x)α(x, t) −

∫ 1

x
ρx(x, y)α(y, t)dy,

we have

0 = βt (x, t) − βx(x, t)

=

∫ 1

0
H(x, y)α(y, t)dy +

∫ x

0
f22(x, y)ξ (y, t)dy
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+ g2(x)α(1, t) −

∫ x

0
k(x, y)h(y)α(y, t)dy

+ h(x)α(x, t) −

∫ x

0
k(x, y)g2(y)dyα(1, t)

+ k(x, 0)ξ (0, t) +

∫ x

0
ky(x, y)ξ (y, t)dy

−

∫ x

0

∫ x

0
k(x, z)H(z, y)dzα(y, t)dy

−

∫ 1

x

∫ x

0
k(x, z)H(z, y)dzα(y, t)dy

−

∫ x

0

∫ x

y
k(x, z)f22(z, y)dzξ (y, t)dy

+ λl(x, x)α(x, t) − λl(x, 0)c1ξ (0, t)

− λl(x, 0)c2α(1, t) −

∫ x

0
k(x, y)g3(y)dyξ (0, t)

+ g3(x)ξ (0, t) − λl(x, 0)
∫ 1

0
G(y)α(y, t)dy

− λ

∫ x

0
ly(x, y)α(y, t)dy + λρ(x, 1)α(1, t)

− λρ(x, x)α(x, t) − λ

∫ 1

x
ρy(x, y)α(y, t)dy

+

∫ x

0
kx(x, y)ξ (y, t)dy + l(x, x)α(x, t)

+

∫ x

0
lx(x, y)α(y, t)dy +

∫ 1

x
ρx(x, y)α(y, t)dy

− ρ(x, x)α(x, t) +

∫ 1

x
h(x)p(x, y)α(y, t)dy

+

∫ x

0

∫ x

y
k(x, z)h(z)p(z, y)dzα(y, t)dy.

Therefore, the kernels ρ(x, y), l(x, y), k(x, y) must satisfy

ρx(x, y) − λρy(x, y) = −H(x, y) +

∫ x

0
k(x, z)H(z, y)dz

+ λl(x, 0)G(y) − h(x)p(x, y),

ky(x, y) + kx(x, y) =

∫ x

y
k(x, z)f22(z, y)dz − f22(x, y),

lx(x, y) − λly(x, y) = −H(x, y) + k(x, y)h(y) + λl(x, 0)G(y)

+

∫ x

0
k(x, z)H(z, y)dz

−

∫ x

y
k(x, z)h(z)p(z, y)dz,

λρ(x, 1) = −g2(x) +

∫ x

0
k(x, y)g2(y)dy

+ λl(x, 0)c2,

k(x, 0) = λl(x, 0)c1 +

∫ x

0
k(x, y)g3(y)dy

− g3(x),
λl(x, x) + l(x, x) = ρ(x, x) + λρ(x, x) − h(x),

ρ(0, y) = 0
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