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the problem of regulating the state to the origin in the prescribed time irrespective of the initial state.
While prior results on prescribed-time stabilization considered a chain of integrators with uncertainties
matched with the control input (i.e., normal form), we consider here a general class of nonlinear strict-
feedback-like systems with state-dependent uncertainties allowed throughout the system dynamics in-
cluding uncertain parameters (without requirement of any known bounds on the uncertain parameters).
Furthermore, we address the output-feedback problem and show that a dynamic observer and controller
can be designed based on our dual dynamic high gain scaling based design methodology along with a
novel temporal transformation and form of the scaling dynamics with temporal forcing terms to achieve
both state estimation and regulation in the prescribed time.

Recommended by Prof. T Parisini

Keywords:

Prescribed-time stabilization
Uncertain nonlinear systems
Finite-time stabilization
High-gain control
Output-feedback

Adaptive control

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Control design objectives for continuous-time nonlinear sys-
tems are formulated most commonly in terms of ensuring various
asymptotic properties (as time goes to infinity) of signals in the
closed-loop system, e.g., asymptotic stabilization [5,6,18] wherein
the control objective is to ensure convergence of the system
state (or output) to a desired value (e.g., the origin) as time ¢
goes to oo. In contrast, the notion of “finite-time” stabilization
[1-4,19-22,27,28] addresses closed-loop signal behavior over
finite time intervals, e.g., controller design to achieve desired
convergence properties in finite time. Various controller design
techniques have been developed in the literature for finite-time
stabilization [1-4,19-22,27,28] typically based on feedback using
fractional powers of the state variables. Finite-time partial-state-
feedback stabilization of high-order nonlinear systems [29] has
been addressed in [26] using fractional powers of state vari-
ables in the control design. While the finite-time stabilization
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problem simply requires convergence in some finite time, but
allows the achieved finite time to be dependent on the system
dynamics and the initial state, the recently introduced notion of
“prescribed-time” stabilization [23-25] addresses the more strin-
gent requirement that the terminal time should be a parameter
that can be prescribed by the control designer independent of
the initial condition. In other words, the control designer should
be able to arbitrarily pick a finite regulation time T and require
that the system state should be made to converge to the origin
as t— T irrespective of the initial condition. This prescribed-time
stabilization notion can be viewed in the physical context of
controls applications such as missile guidance, autonomous vehicle
rendezvous, etc., wherein the state convergence control objective
is inherently formulated over a fixed time horizon.

The recent results on prescribed-time stabilization in
[23-25] address a system structure comprised of a chain of
integrators with uncertainties matched with the control input (i.e.,
normal form) based on scaling the system state by a function of
time that goes to infinity as t— T and designing a controller to
stabilize the system written in terms of the scaled state. In this
paper, we consider a general class of nonlinear strict-feedback-like
systems with state-dependent nonlinear uncertainties allowed
throughout the system dynamics and address furthermore the
output-feedback problem. Specifically, we consider a class of
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systems of the following form':

X = ¢, U t) + Pipy X)X i=1,...,n—1

Xn = Gn(X, U, ) + (o (x1)U
y=x (1)

where x=[xq,....xn]T € R" is the state, ue R is the input,
and y e R is the output?. Giiry.i=1,...,n—=1, and po, are
known scalar real-valued continuous functions of their arguments.
¢;,i=1,...,n, are time-varying scalar real-valued uncertain func-
tions. The system (1) is in a generalized strict-feedback form.
Strict-feedback system structures have been studied heavily in the
literature [5,6,18] and several mechanical and electromechanical
systems can be written in strict-feedback forms (e.g., dynamics of
various motors [7]).

We show that a dynamic output-feedback prescribed-time
stabilizing controller can be designed for the class of systems
(1) based on our dual dynamic high gain scaling based observer-
controller design techniques [8,9,11,12,14,15] and introducing a
set of modifications to address the prescribed-time stabilization
problem instead of the asymptotic stabilization problem addressed
in the control designs in [8,9,11-15]. While [23-25] consider state
feedback of systems in normal form and utilize a scaling of the
state by a function of time, an approach based on state scaling
utilizing powers of a dynamic scaling parameter was developed in
[16]. In this paper, it is shown that the state-feedback approach
in [16] can be extended to the output-feedback case via a control
design approach based on (a) introducing a scaling for observer
errors and observer state estimates utilizing powers of a dynamic
scaling parameter; (b) introducing a time scale transformation
to map the prescribed time horizon to the infinite time horizon
of a transformed temporal variable; (c) designing the dynamic
scaling based observer-controller structure using this temporally
scaled system representation; (d) introducing specifically designed
time-dependent forcing terms into the dynamics of the scaling
parameter and into a gain term appearing in the control design.
The class of systems considered here includes state-dependent
uncertainties throughout the system dynamics and also allows
uncertain parameters (without requirement of any known bounds
on the uncertain parameters).

The control objective, assumptions on the system (1), and
the statement of the main result of the paper are provided in
Section 2. The observer and controller designs are presented in
Section 3. The proof of the main result is provided in Section 4. The
application of the proposed control design to an example third-
order system is presented in Section 5. Concluding remarks are
summarized in Section 6.

2. Control objective, assumptions, and statement of main
theorem

With T> 0 being a given constant, the control objective is to de-
sign a dynamic output-feedback control law for u so that x(t)— 0
and u(t)— 0 as t— T. The assumptions imposed on the system
(1) are summarized below.

Assumption A1 (lower boundedness away from zero of “upper
diagonal” terms ¢ ;.1y and pg). A constant o >0 exists such
that3 |$Giry*)| =0, 1<i<n-1, and |ug(x;)|=o for all x; €

1 Throughout, a dot above a symbol denotes the derivative with respect to the
time t as is the standard notation, e.g., X; = ddi[‘.

2 R, R*, and R¥ denote the set of real numbers, the set of non-negative real
numbers, and the set of real k-dimensional column vectors, respectively.

3 Given a vector a, the notation |a| denotes its Euclidean norm. If a is a scalar, |a|
denotes its absolute value.

R. Since ¢iq) and g are assumed to be continuous func-
tions, this assumption can, without loss of generality, be stated
as ¢iy1y(x1) =0, 1<i<n-1, and pe(x;)>o0 with a constant
o >0.

Assumption A2 (Bounds on uncertain functions ¢;). The functions

¢;,i=1,...,n, can be bounded as
i
|gi(x, u, )] < T'(xq) Z¢(i,j) (%) |x;] + 60 Bi(x1) %1 (2)
j=1

for all x e R" where I'(xq), ¢ j)(x1).i=1,....,n,j=1,...,i, and
Bi(x1),i=1,...,n, are known continuous non-negative functions
and 6 is an unknown non-negative constant.

Assumption A3 (Bi-directional cascading dominance of “upper di-
agonal” terms ¢iiq).i=2,...,n—1,). Positive constants p;,i=
3,...,n—1,and p,,i=3,...,n -1 exist such that Vx1eR

Dy *1) = 01y (x1), i=3,...,n—1 (3)

sy (x1) < Bi¢(i—1vi) (x1), i=3,...,n—1. (4)

Remark 1. The structure of the assumptions above are analogous
to the assumptions introduced for the dual dynamic high gain
based output-feedback control design in [8]. Assumption Al en-
sures observability, controllability, and uniform relative degree (of
X1 with respect to u). Assumption A2 imposes bounds on uncer-
tain terms in the system dynamics and essentially requires un-
certain terms to be bounded linearly in unmeasured state vari-
ables with a triangular state dependence structure in the known
bounds. Assumption A3 imposes constraints on the relative “sizes”
(in a nonlinear function sense) of the upper diagonal terms ¢; ;. 1)
and is vital in achieving solvability of a pair of coupled Lyapunov
inequalities (Section 3.7). The functions ¢;;, 1y are referred to as
“upper diagonal” terms since if the dynamics (1) were to be writ-
ten in the form x = A(x1)x + B(x;)u + ¢ (x) with ¢ = [¢1, ..., ¢n]T,
the functions ¢; ;1) would appear on the upper diagonal of the
matrix A(xq).

The main result of this paper is summarized as Theorem 1 be-
low. The proof of Theorem 1 will be provided in Section 4 based
on the control design developed in Section 3.

Theorem 1. Given any prescribed time T>0, a dynamic output-
feedback controller of the form

u=f.y): ¥ =g,y (5)

can be designed (where V is the state of the dynamic controller) for
system (1) under Assumptions A1-A3 such that starting from any ini-
tial condition for x, the property lim;_ 1 |x(t)| = lim,_, 1 [u(t)| =0 is
satisfied.

3. Control design
3.1. Observer design

A reduced-order observer with states £ =[R,,...,%|T is de-

signed as
Xi = G XD[Rir + 1 fior ()] = P g ()[R + 1 (1))
— (=12 fi(x1),2 <i<n-1
R = o (X)) — T 1gy (x1) [ + o (x1)] = (n = 1" 2 f (x1) (6)
where

« gi(xq) are functions that will be designed in Section 3.7
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* fi(x1) are functions defined as

&i(mw)
0 Paz(r)
« r is a dynamic high-gain scaling parameter whose dynamics

will be designed in Section 3.8. The dynamics chosen for r will
ensure that r(t)>1 for all time t>0.

fikx) = dr,2<i<n (7)

3.2. Observer errors and scaled observer errors

The observer errors are defined as
e =X+r1fi(x)) —x,2<i<n (8)
and the scaled observer errors are defined as
e.
T’ Fi-1’
The dynamics of € can be written as

€ = i=2<i<n ; e=le,..., el (9)

. T -
€ =T1Aj€ — ;Doe + (10)
where

« Agisa (n—1) x (n—1) matrix with (i, j)™ entry

Ao(i_l)(xl) =—gix) i=1...,n-1
Aoi.i+1 (X1) =¢(,'+1.i+2)(X]) i= 1, ..., n -2 (]1)

«D, is a (n—-1)x(n—-1) matrix defined as* D,=
diag(1,2,....,n-1)

» @ is given by

— i(x,u,t X
= [, Byl By = - HELD | gy D) (g5
r 1.2
3.3. Dynamics of scaled observer estimate signals

Define 75, ..., nn as
_ Rt rhn) +L.0) i) g
- r > t ri-1 ’ [

(13)
where the function ¢ is defined to be of the form
£(%1,0) = 6161 (x1) (14)

with being a dynamic adaptation parameter (whose dynamics
will be designed in Section 3.8) and ¢ being a function that will
be designed in Section 3.8. The dynamics designed for 0 will en-
sure that d(t) > 1 for all t> 0. The dynamics of n; are given by’

O1¢] (x1)x1 + &1 (x1)]

M= r¢(2,3)’73 —Tg€ +

-
x [(ry — ¢ —r€2)P2) + D1
1; P
+8& q;(bl] + ?9?(1@'1 (x1) — =12
Ni =TPir1)Nis1 — I8i€2 +g1¢¢ - *(1 Dn;, i=3,...,n-1
= —TIgn€y + 1 —(n 1) b u (15)
N = —Tgn€2 gnd)1 - = 77n+rn71M0

where ¢{(x;) denotes the partial derivative of ¢ with respect to
its argument evaluated at x;.

4 The notation diag(Ty, ..., Tn) denotes an m x m diagonal matrix with diagonal
elements T, ..., Tn. Im denotes the m x m identity matrix.

5 For notational convenience, we drop the arguments of functions whenever no
confusion will result.

3.4. Design of control input u and dynamics of scaled states
Defining 1 = [n,, ..., na]", the control input u is designed as
rn

u=-———K 16

Ho(X1) i (18)
with K. = [ky, ..., kn] where k;,i=2,..., n, are functions of x; that
will be designed in Section 3.7. The dynamics of n under the con-
trol law (16) are

ﬁ:rACn—;Dcn—i—@—rGez +H[ny — 6]+ E 17)
where A¢ is the (n — 1) x (n — 1) matrix with (i, j) element
Aciinny K1) = P(is1isy (X1) , T= Ln=2
Ay @) = —kja(x1) , j=1,...,n—-1 (18)
with zeros elsewhere, and
D, =diag(1,2,...,n—-1) (19)
G=lgo...el : ®=-2"¢ (20)
b2
= [6[¢{ x)x1 + G112, 0, ..., O (21)
~ X T
Tzz[(¢1—§¢0209KHX0M-%Q]+9MCNXO . 0}
- ,0,..., .
(22)

3.5. Temporal scale transformation

Let a(.) be a twice continuously differentiable monotonically in-
creasing function over [0, T) that satisfies the following conditions
(see Remark 2 below for examples of such functions):

. a(O) 0, a(T) =
. dt is bounded below by a positive constant over [0, T), i.e., % >
ag for te[0, T) with ag being some positive constant

+ Denoting the transformation t = a(t) and ertmg

tion of T as a(r) = ‘;‘;, o(t) grows at most polynomlally as

T — o0, i.e., a polynomial & (t) exists such that o(t) < o(7) for
all T €[0, o). Also, g—‘;‘ grows at most polynomially as T — oc.

as a func-

With t defined as the transformation 7 =a(t), we see that
when t goes from 0 to T, T goes from 0 to co. Now,

dt =d (t)dt (23)

where a’(t) denotes ?T?' The transformation above is a time scale

transformation wherein the interval [0, T) in terms of the time
variable t corresponds to the interval [0, oo) in terms of the time
variable 7. To denote a signal x(t) as a function of transformed time
variable t, we use the notation X(t), i.e., x(t) = X(t) since both
x(t) and X(t) refer to the value of the same signal at the same
physical time point represented as t in the original time axis and t
in the transformed time axis. The conditions on the function a: [0,
T)— [0, oo) introduced above imply that this function is invertible.
Denoting the inverse function by a~1, we have, by definition,

x(t) =x(a (1)) = X(r) = X(a(t)). (24)

Remark 2. There are many (in fact, infinite number of) functions
that satisfy the conditions defined for the function a above. For
example, we can pick a to be one of the following:

(t) _ (10['

(25)

b
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apt
alt) = ——. (26)
V-7

For a(t) given in (25), we have:

/ _ do . _ L 2

0= a(t)_a0<aoT+1> 27)
For a(t) given in (26), we have:

/ _ o . — T 3
a(t)_i(l_(%)z)%. - a(T) a0<a0T+1) (28)

Remark 3. To illustrate the motivation for the time scale transfor-
mation defined above in the context of prescribed-time stabiliza-
tion, consider the simple scalar system x = u. Designing a control
law as u = —kx with k> 0 being a constant would yield exponen-
tial convergence of x(t) to 0 as t— co. However, with any constant
k, the convergence of x(t) to 0 is only asymptotic and x(t) does not
go to O at any finite time t. Instead, defining u = —ky (t)x anal-
ogous to the definition of ¢ above where y(t) is a function of
time, we get x = —ky (t)x. Now, defining the time scale transfor-
mation T = a(t) with @’ (t) = «(7) as defined above, we have %

dr =
—W. Hence, defining, for example, y (t) = @ (a(t)), we ob-

tain g—; = —kx, which implies that the signal x goes to 0 asymptot-
ically as T — oo or equivalently as t— T, i.e., x(t) converges to 0 at
the prescribed time T under the action of the controller given by
u(t) = —ka(a(t))x(t).

As discussed in Remark 3 above, the temporal scale transforma-

tion defined above yields dt = adé). Hence, from (10) and (17), we
have:
de a(t) dr —
a(r)E =TAc€ — fEDOG +& (29)
d o(t) dr -
(X(‘L’)£ =TAcn — ¥EDC17 + & —rGey +H[ny — €3] + E.
(30)
3.6. Lyapunov Functions
Define
_ T . 1, T . _
Vo=re'Pe ; Ve=zxi+mPn ; V=,+W (31)

2

where P, and P. are symmetric positive definite matrices to be de-
fined later and c is a positive constant to be picked later. From (29),
(30), and (31),

av 1
dt  a(r)

x1lp1 + (rmy — £ —1€2)P(1 2] + * ' [PAc + ALPIn

{crzeT[Pvo +A'P)le + 2rce™P,® +

+2r P(® —1rGey + H[ny — €3] + E)}

dr TIpfA L1 TipfR L 1
- { c€T[P,Bo + DoPye + nT[P.D. + DCPC]n} (32)
where D, = Do — 1 and D¢ = Dc — 11 with I denoting an identity
matrix of dimension (n —1) x (n—1).

3.7. Coupled Lyapunov Inequalities

Assumption A3 is the cascading dominance condition introduced
in [8] wherein the condition in (3) is the “controller-context”
cascading dominance condition and the condition in (4) is the

“observer-context” cascading dominance condition. These cascad-
ing dominance conditions were shown in [8,10] to be closely re-
lated to solvability of pairs of coupled Lyapunov inequalities that
appear in the high gain based control design. Specifically, under
Assumption Al and the condition (3) in Assumption A3, it is pos-
sible to find (in fact, explicitly construct as in [8,10]) a symmet-
ric positive definite matrix P- =Pl > 0 and a function Kc(x;) =
[ka(%1), ..., kn(x1)] (whose elements appear in the definition of
the matrix Ac) such that the following coupled Lyapunov inequal-
ities are satisfied (for all x; € R) with some positive constants v,
Ve, and Ve:

PAc+AlP. < —vepaz)l ; vl <PDc+DcP. < Vel (33)

It is known that under Assumption Al and condition (4) in
Assumption A3, it is possible to find (in fact, explicitly con-
struct as in [8,10]) a matrix P,=P! >0 and a function G(x;) =
[g82(x1), ..., gn(x1)] such that the following coupled Lyapunov in-
equalities are satisfied (for all x; € R) with some positive constants
Vo, Vo, Vo, and Vy:

PAo +AlP, < —vol — Do (23)CTC 5 v I < PoDo + DoPy < Vol (34)

where C=1[1,0,...,0]. Furthermore, from Theorem 2 in [10],
g7, ...,8n can be chosen to be linear constant-coefficient combina-
tions of @3 3), ..., Pn_1.n). Hence, using Assumption A3, a positive

constant G exists such that
1

(Z gf) = C¢(2,3)~ (35)
i=2

3.8. Designs of Function ¢, Dynamics of r, and Dynamics ofé

The dynamics of r are designed to be of the form®

% = AR(x1.0.0) +a(r) —N[Qr.x1.0.0) +@(r)]  with
r(0) > max{1, «(0)} (36)
where & (t) denotes ‘;—‘;‘ and A, R, and 2 are non-negative func-

tions. A : R — R* is picked to be any non-negative continuous
function such that A(s) =1 for s>0 and A(s) =0 for s < —¢,
with €, being some positive constant. Hence, from the dynam-
ics above, it is seen that if rgR(xl,é, é)-i—a(t) at some time

instant, then we have g—; =Q(r,x,0,0) +@(r) at that time in-

stant. As in [8], this property of the dynamics of r can be viewed
dr _

as ensuring that the derivative of r is “large enough” (ie, =

Q(r, X1, 0, é) +3@(t)) until r itself becomes “large enough” (i.e.,
r > R(Xq, 9,0) + «(t)). From the form of the dynamics above, it is
seen that & > 0 for all 7 >0. It will be seen in Lemma 1 that the
form of the dynamics of r given above implies that r>«(t) for all
T in the maximal interval of existence of solutions.

The dynamic adaptation parameter 0 is defined to be comprised
of two components, i.e.,

é = é] + éz (37)

and the dynamics of él and éz are designed to be of the form

o, A

P & (t) with 6;(0) > max{1, «(0)} (38)

déz Co . A

— = —— th 0 0 39
a7 a(T)Qﬂ(Xl) with 6,(0) > (39)
6 The notations max(aj.,..., ap) and min(ay,..., a) indicate the largest and

smallest values, respectively, among the numbers ay, ..., an.
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where ¢g is any positive constant and qg(x;) is a non-negative

function. The motivation for defining 0 as comprised of two com-
ponents, 91 and éz, can be seen in the proofs of Lemmas 2 and
3 in Section 4 and Appendix B. From (38) and (39), we see that
0 > a(r) for all 7 €[0, o) and 0, > 0 for all T €[0, oo). Hence, we
also have 6 > () for all T €[0, o).

It is shown in Appendix A that positive constants ¢ and § and
functions ¢4, R, ©, and qg can be constructed such that the fol-
lowing inequality (40) holds when either one of the following con-

ditions hold: r > R(x;, 0, 9)+a(r) or > Q(r.x1.0.0) + @(r):

"4
37 < - oe?r) {X19§1¢(1 2) + Vo€ + Ve a5y 12 1| }
. a1
+(6 —G)W‘Jﬁ(?ﬁ) (40)

4. Proof of Theorem 1

In this section, we complete the proof of Theorem 1 by showing
that the dynamic control law designed in Section 3 above achieves
prescribed-time stabilization in the sense of Theorem 1 given in
Section 2. For this purpose, we first summarize several properties
of the closed-loop system formed by (1) and the dynamic output-
feedback controller designed in Section 3 as the Lemmas below.
The proofs of the Lemmas are provided in the Appendix B.

Lemma 1. The signal r satisfies’ the inequality ¥(t) > a(t) for all T
in the maximal interval of existence of solutions.

Lemma 2. At all time instants T in the maximal interval of existence
of solutions, the mequallty dr < —kV + (0% —0)x (x1,T) is satisfied
with x (x1,7) = Wqﬂ (x1) and with a constant k > 0.

Lemma 3. V is uniformly bounded over the maximal interval of exis-
tence of solutions.

Lemma 4. The signals §(a~1(t)), O(a~1(z)), and r(a~1(x)) grow
at most polynomially in T as T — oo and solutions to the closed-loop
dynamical system formed by the system (1) and the designed dynamic
controller exist over the time interval t €0, oo).

Lemma 5. A finite positive constant T exists such that for all time
instants T €[tg, oo), the inequality Z—‘r’ < —«V is satisfied with a con-
stant k > 0.

Lemma 6. The signals V, x1, /T|€|, and /r|n| go to 0 exponentially
as 7 — oo.

Lemma 7. The signals €, n, and u go to zero exponentially as T — oc.

Proof of Theorem 1. Since x, =1, — ¢ —re; and x; = ri=1(n; —
€),i=3,...,n, we see from Lemmas 4, 6, and 7 that x,,...,xy
all go to 0 exponentially as T — co. Hence, x and u go to 0 expo-
nentially as 7 — oo. Finally, since T — oo corresponds to t— T, the
above properties hold as t— T. Therefore, x and u go to 0 as t— T,
i.e., prescribed-time stabilization is attained.

Also, from the definition of functions f; in (7), Assumption Al,
and the fact that functions g; can be chosen to be linear
constant-coefficient combinations of ¢, 3y, ..., ¢_1.n) as noted in
f;(X1) g (0)

BEZARION
X1 goes to O exponentially as t— T wh11e r grows at most polyno—
mially, it is seen that ri=1f;(x;) goes to 0 as t—T for i = 2,.
Also, from the definition of the function ¢ in (14) and noting that
 grows at most polynomially, it follows that Z (x;,8) goes to 0 as

Section 3.7, it is seen that limy, _,o =5 Therefore, since

7 Note that, as defined in (24), the notation 7(7) indicates the value of the signal
r at the time instant T as measured in the transformed time axis, i.e., r(t) = F(7).

t— T. Hence, from the definition of 15, ..., 1, in (13), it is seen that
the observer state signals X5, ..., Xy also go to 0 as t— T. Hence, x,
u, and £ = [%,,...,%,]" all go to 0 as t approaches the prescribed
time T. O

Implementation of dynamics of r: From the design of the dy-
namics of r in (36), it was seen in Lemma 1 that r goes to oo as
T — oo, which from (36) and (63) implies that i can also go to oo
as T — oo. This can cause numerical difficulties in implementation.
While some of the inherent numerical difficulties in implementa-
tion of prescribed-time stabilization can be addressed using the
techniques discussed in Remark 5, it would be highly desirable to
somehow avoid having a controller state variable whose derivative
goes to oo (since derivative going to oo corresponds in numerical
integration to requiring progressively smaller step sizes). This can
indeed be achieved using a temporal scaling wherein instead of
implementing the dynamics of r directly, one implements the dy-
namics in terms of a variable 7 defined as ¥ =rz where z: R - R
is a function of 7. Then, noting that 7 = (X(T)g—; and using (36), we
have

Fo a(r)k(R(xl,é, ) +a(t) - 2)
x [Q(;,xl,é,é> +&(r)]z+ Fg (41)

with initial value 7(0) picked such that 7(0) > max{1, «(0)}z(0).
This scaling-based approach to implement the dynamics of r is
summarized in the Lemma below (the proof of the Lemma is pro-
vided in the Appendix B).

Lemma 8. A function z(t) can be picked such that the signal ¥ = rz is
such that ¥ and 7 are uniformly bounded over the time interval t <0,
oo) and furthermore T converges to 0 as T — oo.

Remark 4. The designed controller is of dynamic order (n+2)
with the controller state comprising of the observer state variables
X5, ..., Xy, the dynamic scaling variable r (or equivalently 7 as dis-
cussed above), and the dynamic adaptation state variables él and
9}. The overall controller is given by the observer dynamics (6), the
definition of scaled states 7, ..., n, in (13), the control law for u in
(16), the choice of ¢ and ¢; in (14) and (61), the dynamics of the
adaptation parameters 6; and 6, in (38) and (39), and the dynam-
ics of scaling parameter r in (36) or the equivalent implementation
in terms of 7.

Remark 5. The facts that (by definition) the function «(7) goes to
oo as t— T and that (by construction) € and r also go to co as t— T
result in unbounded gains as t— T. The characteristic that gains go
to oo as t approaches the desired prescribed time T is shared with
previous results on prescribed-time stabilization as well [23-25],
where it is noted that indeed any approach for regulation in fi-
nite time (including optimal control with a terminal constraint and
sliding mode control based approaches with time-varying gains)
will share this characteristic. By the analysis above, we see that
the unbounded gains do not result in an unbounded control in-
put u (which indeed converges to 0). However, to alleviate any nu-
merical difficulties in implementation that could be caused by un-
bounded gains as t— T, a few approaches can be utilized as noted
in [24] including adding a dead zone on the state x, a saturation on
the control gains, and setting the terminal time in the controller
implementation to be a larger value T than the desired finite time
T. All of these approaches sacrifice asymptotic convergence of x to
0 as t—T (i.e.,, x goes not to 0, but to a small neighborhood of 0
as t— T), but facilitate practical implementation by preventing un-
bounded gains [24].

Remark 6. While the prescribed time T can be any positive value,
it is to be noted that the control effort required depends on the
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Fig. 1. Simulations for the closed-loop system (system (42) in closed loop with the prescribed-time stabilizing output-feedback controller).

value of T. In particular, making T small (close to zero) will, as
could be expected, result in requiring large control effort (required
magnitudes of the control input will go to c© as T— 0, i.e., im-
pulsive inputs). While the prescribed time T appears at multiple
points in the control design, the increase in effective control gains
with reducing T can be seen from (16) and the fact that the dy-
namics of r ensures that r is bigger than «(t) for all time 7. It
can be seen that «(t) itself goes to oo as t— T, as seen from
the conditions on the functions a and « and the discussion in
Remark 2. Hence, making T smaller results in applying larger con-
trol gains earlier (i.e., at smaller t), thereby resulting effectively in
larger control inputs. This is physically reasonable since requiring
the system state to move to zero from an arbitrary non-zero value
within a fixed infinitesimal time window will undoubtedly require
large control effort. At the other limit, making T larger can be seen
to result in smaller control effort and in the limit as T— oo, the
prescribed-time stabilization reduces to asymptotic stabilization.

5. An illustrative example

Consider the third-order system
X1 = (14 x3)x; 4 04 cos(xa%3) 1
X = (14 xH)x3 4+ 0,x3 sin(x3) + [1 + cos(tu)]e¥1x;
X3 = U+ 0:.5%3 4 sin(xat)x3x3
y=x (42)

where 64, 6, and 6. are uncertain parameters (with no
known magnitude bounds). Only the output y is assumed to

be measured. Here, @) (X1) =1+x3, ¢o3)(x;)=1+x], and
Uo(x1) = 1. This system satisfies Assumption Al with o =1.
Assumption A2 is satisfied with TI'(x7) =2max(|x;]|,e*1),

4

a1y =ben=0cn=0c2=0.  don=1.  da3=3
Bi=cp. B :cﬂx‘l‘, B3 :cﬁe"lx%, and 6 = max{cgbq, cg0y, cg6c}
with cg being any positive constant. Note that the form of
the terms 64c0s(x2X3)X1, Gbxﬁsin(x3)+[l+cos(tu)]e"1x2, and
Gce"lx%+sin(x2t)x?x3 in the dynamics are not required to be
known as long as bounds as in Assumption A2 are known.
Assumption A3 is trivially satisfied since n = 3. Using the con-
structive procedure in [8,10], a symmetric positive-definite matrix
P. and functions k, and ks can be found to satisfy coupled

Lyapunov inequalities (33) as PC:dC[? ;] ky =5¢(3). and

ks = 4¢(2,3), and with ve = 1.675d,, v, = dc, and V¢ = 5d. with d.
being any positive constant. Also, using the constructive procedure
in [8,10], a symmetric positive-definite matrix P, and functions

g, and g3 can be found to satisfy coupled Lyapunov inequalities
(34) as Py = do[f; 2’2] 8 =12¢(y3). and g3 =20¢3). and
with v, = 6.675d,, ¥, = 32.070d,, v, = 3.698d,, and V, = 33.802d,
with d, being any positive constant. With this choice of g; and g3,
the inequality (35) is satisfied with G = 23.324. As in Section 3,

the functions f, and f; are defined as f5(xq) =12[6‘1 (::ﬁ)dn
1

4

and f3(x;) =20 [ (}3%

)dr. The required integral can be eval-

. 14x%
uated in closed form as fgl (HX})
1

it -1
dr =3 —x; +2tan™ " (x1). A
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reduced-order observer is designed as

X = (1 +xD[& + 2 ()] = r& (xR + 1L (x1)] = F (%)

(43)
R =u—rg ()% + (%) - 2 f3(x1). (44)
Then, as in Section 3, defining 7, = w and n3 =

w, the control input is designed as u = —r3[kyn; + k3n3].
The function o can be picked for instance as in (27) with any
ap > 0. The functions R and €2 can be computed following the pro-
cedure in Appendix A and using sharper bounds taking the specific
system structure into account and noting that several terms in the
upper bounds vanish since ¢), etc., are zero for this system. The
dynamics of r are then given by (36). The dynamic adaptation pa-
rameter 6 is defined as the combination él + éz as in (37) and the
dynamics of é1 and éz are defined as in (38) and (39).

The performance of the prescribed-time stabilizing output-
feedback controller is illustrated in Fig. 1. The terminal time is
specified as T = 0.2 s. To avoid numerical issues, the effective ter-
minal time T in implementation is defined as T = 0.205 s. Also,
ap =0 =0.05 do=1, { =0.1, and cg =cy =1073. The initial
condition for the system state vector [xq, X5, X3]T is specified as [1,
1, 1]7. Since the initial conditions for x, and x5 are not known, the
initial conditions for X, and X3 are picked simply as the values that
make the initial values of the estimates for x, and x3 zero, i.e., such
that %, +1f,(x;) and %3 +r2f3(x;) are zero at time t = 0. Hence,
the initial condition for [%,, #3]7 is [-10.85, —18.08]T. 6;, 6,, and r
are initialized to be 0.05, 0, and 1, respectively. The values of the
uncertain parameters 64, 85, and 6. are picked for simulations as
0q = 0, = 6 = 1. The closed-loop trajectories and the control input
signal are shown in Fig. 1.

6. Conclusion

A dynamic output-feedback prescribed-time stabilizing con-
troller was developed for a general class of uncertain nonlinear
strict-feedback-like systems. It was shown that given any desired
convergence time, the proposed control design enables regulation
of the state to the origin in the prescribed time irrespective of
the initial state. The control design was based on our dual dy-
namic observer-controller design methodology and it was shown
that while the underlying control design methodology was pre-
viously developed in the context of asymptotic stabilization, the
design techniques can be applied to the prescribed-time setting
by designing a novel temporal scale transformation, designing the
scaling parameter dynamics using the transformed time axis, and
incorporating temporal forcing terms in the scaling parameter dy-
namics. It was shown that the control input and observer state
variables also converge to the origin in the prescribed time. Hence,
the proposed control design provides both prescribed-time state
estimation and prescribed-time state regulation for the considered
class of uncertain nonlinear systems. A topic of on-going work
is to determine if the types of modifications proposed here to
the dual dynamic observer-controller design procedure to obtain
prescribed-time results instead of asymptotic results can be ap-
plied to the various other classes of nonlinear systems to which
the original dual dynamic observer-controller design procedures
are applicable (e.g., feedforward systems, non-triangular systems,
systems with time delays and uncertain appended dynamics).

Appendix A. Construction of positive constants ¢ and § and
functions {1, R, and Q

Using (33) and (34), (32

a1
dt ~ a(r)

) reduces to

{— crvol€]? —cr? Do 2365 — 12 Ve 3) I |* +2rce P, @

+x1[¢1 + (rm2 — ¢ —r€2) P + 2 P(D — 1Ge;

- d dr
+H[772—62]+D)} Ciz —v,l€|? Ehhﬂz (45)

Using Assumption A2, it is seen that the functions ®;,i=
2,...,n defined in (12) satisfy the inequality

F(Xl)[¢(1 &) x| + G2y x1)IE|]

+F(X1)|gi(x1)x]|%

|®i] <

/31(?41) Bi(x1)
+o[ 22 mn+mmnm%uMMJ
F(X]) Z¢(1])(Xl)r] In; —€;l. (46)

Hence, using (14) and (35) and the property that r>1,

— r
@) < ZEOR gz e 111+ T G 1Al + lel)
+F(X1)|X1|£(1 Sl 1)G<15(23)(X1)
|B11x1] Bi1(x1) =
[ + %1 |¢ 1’2)(x1)G¢(2,3)(X1)] (47)
where @1 =[dp1). a1y Pl ¢ =102 a2

(b(nvz)]T, B=182,...,0nl, |lI| denotes the Frobenius norm of
a matrix, and A denotes the (n—1) x (n—1) matrix with (i,
j)th element ®(i+1,j+1) at locations on and below the diagonal

and zeros everywhere else. Note that |¢|= /30, d)?i 1)(xl),
|2l = /X0y ®F 5 (x1). and | Bl = /3L, B (x1).

Therefore (with some conservative overbounding for algebraic
simplicity), the term 2rce’ P,® can be upper bounded as®

2rce™P,® < 1+ 92);045(1,2))‘% +3rc}tmax(Po)F”A||(|77|2 + |E|2)

232 2 - 4 7
Chmax R oy 51 1 16,1612
Soda.2)

1
AlelP A (P |BI?

+
Sod.2)
[T2¢2 |, +0%B7]
+8 )‘rznax(Po) 1$G ¢(23)+4r Vol€|?

(12)
(48)

where {g>0 is any constant. Using Assumptions A1-A3 and the
property r> 1, the other uncertain terms appearing in (32) can also
be upper bounded as (with some conservative overbounding for
algebraic simplicity)

x1p1 < XiT (%) P 1) (X1) + 0 Brx] (49)
v 1,84,
x11(n2 — €2)$a2) < jcr2<l5(2.3)|77|2 + ;X% ¢( 2)
D23
1 ,%2

+ Cr 7(1)(2 3)62 + —= c (50)

o l¢><23)

¢(2 3)

(1 2)

8 —2
2rn’P.® =— 220 (PG

[F2¢(1 1)+62/81 ]X1+ 2¢(2 3)|77|

(51)

8 Given a symmetric positive-definite matrix P, Ame(P) and Api(P) denote its
maximum and minimum eigenvalues, respectively.
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In the equations above, note that # denotes %. We have % =
T 1 dd
-2r’n"P.Ge; < *¢(2 3T )"max(PC)G €+r? *ff’(z 32 (52) @@ de*

2 PH(1 — €) < 3rAmax(P)0ba 21 ¢1x1 + il 102 + €1?]

(53)
- 2 A
2rn"PE < (1+60%) 50 X5 + 7)"rznax(PC)|n|2|:92§12
Sod.2)
~ B2 -
+ ((F¢(1,1) +18110¢¢.2)* + 71)@1’?(1 + §1)292]-
(54)
Picking ¢ > 0 such that
_ 32 (PG
37oV¢ ’ (55)
the inequality (52) reduces to
% 3 .
-2’ n"P.Ge, < r2§6¢(2.3)|77|2 + ZCV0¢(2,3)r2€§- (56)

Using the inequalities in (45) and (48)-(56) yields

1
(){ —X18Pa2) + 01 (X1)Pa.2)X5 +0* G2 (1) P 2%

Q..‘Q.
<

w

3
- ZVOCT2|€|2 - §V6¢(2,3)r2|77|2
+TW1(X1»é,9)¢(1.2)[|U|2+ |€|2]}

—cv —|e| (57)

,cdt L2

where 6* =1+6 + 62 and

b)) (x1)

D2 (x1)

¢(21 1)( 1) —=2
DCIRRGE

1 ¢aax1)
Vo G2,3)(X1)

23 (x1)
2¢j B () (58)

q1(x1) =280+ I'(x1)

C
+ 81)7)‘12110)(([)0)1—12()(1)
0

1 ¢a2) (1)
Ve P2.3)(X1)

+ A;HX(PC)G

Bi(x1)
oa, 2)(X1)
, B? (Xl)G D@23 (1)
¢(3]<2) (X1)

G2(01) = 250 + LD [SC 2 (Pbas (x1) + Amax(m]

(59)

A2 (Py)
5092 5, (1)
)\mux (PO) e 2

I A
201 &)l (X1)||+{¢(12)( »

wy(x1.0.0) = T2 1 () + 1621 ) 12 () 12

+3c A2 (P) [02;1 1)

x (& (1)1 + &1 <x1>>29‘2} + 3hmax (PO (x1)x1 + &1 (x1)]
R S
§0¢(21<2) (X1 )

+ ((F(xnmn(x]) +1¢1 ()01 2 (1)) +

Cz)‘rznax(Pﬂ)llg(Xl)lz (60)

Note that the functions q;(x1), g2(x1), and wq (x1, f, é) involve only
known functions and quantities.

Design the function ¢ such that

%{1()(1)=max{£,q1(x1)+q2(x1)} (61)

with ¢ being any positive constant.
Pick the functions R and 2 as

R(x:.8.0)
— max {1’ 4w (x1,0, é)¢(1‘2)(x1), 2wi (%1, 0, é)¢(],2)(X1)]
V2.3 (X1) VoC
(62)
s 6.0
Q(r,x1,0,0) = w1 (1,0, 6)ba.z) (1) max{i,l}. (63)
Qo Y, V.
Pick the function g4 as
4p(X1) = @2 (x1) P12 (X1)X3. (64)
If r > R(xy,0,0) + a(r), then we note from (62) that
dv 1 3 54 1 1
T = a(r){ - ZX%9§1¢(1,2) - ZVoCT2|6|2 - 8Vc¢(2,3)rz|’7|2}
+(0 = 0)x (x4, 7). (65)

If g—;zQ(r,xl,é,é)-i-&(r), then using (61) and (63), we
have

dv 1 3 4 3 3
iz = Ol(‘l.’){ - ZX%9§1¢(1,2) - Zvocr2|6|2 - 8Vc¢(243)rz|’7|2}
+(O =) x(x1. 7). (66)

Therefore, it is seen that (40) is satisfied with § = % when ei-
ther one of the following conditions hold: r > R(x1, 8.0)+a(t) or
F>Q(rx;.0.0)+a(r).

Appendix B

Proof of Lemma 1. From (36), we note that g—; > @(t) at any

time instant at which r > R(xq, 0, é) +a(t) is not satisfied. Since

R(x1,0,0) > 0, this implies that any time instant at which r> (1)
is not satisfied, we definitely have % >a(r). If the claim in
Lemma 1 is not satisfied, there should exist some time instants
T at which r(t) <«(r). Taking the infimum 7, of all such time
instants, we note that since 7#(0) > «(0) from (36), we should have
Tmin >0 and such that 7(tp;,) = ¢ (Ty;) and with some T in an
infinitesimal open interval after t,;, such that r(t)<a(t). How-
ever, F(Tyin) = o (Tpin) implies d—r > & (1) = &¢. Hence, we should
have 7(t) > «(7) in an infinitesimal open mterval after 7, thus
leading to a contradiction implying that the claim of Lemma 1 is
satisfied. O

Proof of Lemma 2. Consider two cases: (a) r < R(xq, 0, 5) +a(r);
(b) r> R(x1,§,é) +o(1). From the design of A, we see that
under Case (a), A(R(xl,é,é) +a(t)—r)=1 and therefore % >
Q(r, x1, 9, é) + @(t). Hence, from the construction in Appendix A,
it is seen that (40) holds under both the cases (a) and (b). Since
one of these cases should definitely hold at all times, we see that

(40) holds for all times in the maximal in}erval of existence of so-
lutions. From Lemma 1 and the property 6 > «(t), which followed
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from the design of the dynamics of él and 672 in (38) and (39), we
see that

dv
a7 = —3{7@51(}5(1,2) + vocrlel? + Vc¢(2,3)7’|77|2}

+(0" =0 x (1. 0). (67)
From the definition of V from (31), this implies that
& e v+ @ - Oxx D) (68)

wherex:min{Z(Sga Svea } O

Svo
’ A'17'1(])((130) ’ )“mﬂX(PC)
Proof of Lemma 3. Define V=V + %(9} —6*)2. Noting from

(39) that we have éz = cg X (x1, T) where x(xy, T) is as defined in
Lemma 2, and noting that &; > 0 for all 7 and that x(x1, 7)>0 for
all x; and 7, it is seen from Lemma 2 that V < —«V < 0. Hence, V
and therefore V are uniformly bounded over the maximal interval
of existence of solutions. O

Proof of Lemma 4. By the design of the dynamics of «§1 in
(38) and the conditions imposed on the function «(t), we see
that é1 (a'(7)) and é1 (a~'(1)) are polynomially upper bounded
in t. From Lemma 3 and the definition of V in (31), it is seen
that the signal x; is uniformly bounded over the maximal inter-
val of existence of solutions. Hence, from the dynamics of 6, in

(39), it follows that By(a~1(z)) and G,(a~1(1)) are also polyno-
mially upper bounded in t. Noting that 9 and 6 appear polyno-

mially in the definition of wy, it follows that R(xq, 0, é) grows at
most polynomially in 7. From the dynamics of r in (36), it is seen

that at each time t, we either have r < R(x1,é, é) +o(t)+ € or
= 0. Note that @(t) and @(t) are polynomially upper bounded
in T due to the conditions imposed on «(7) in Section 3.5. Hence,
R(x1, 0, é) +a(t) + € and therefore r(a~1(t)) grow at most poly-
nomially as a function of time 7. Noting from Lemma 3 that V (and
therefore x;, +/r€, and /rn) remains bounded over the maximal
interval of existence of solutions, it follows that solutions to the
closed-loop dynamical system exist over the time interval t €[O0,
oc0). O

Proof of Lemma 5. By the dynamics of , and 6, in (38) and (39),
it is seen that 6 is monotonically increasing with 7 and goes to
oo as T — oo. Hence, a finite positive constant 7y exists such that
§ > 6* for all T > 7. Hence, using Lemma 2, it follows that for all
T > T, the inequality g—‘r’ < —kV is satisfied. O

Proof of Lemma 6. From Lemma 5, V goes to 0 exponentially as
T — oo. From the definition of V from (31), it follows that x;, +/7|€|,
and /r|n| go to 0 exponentially as 7 —oco. O

Proof of Lemma 7. From Lemma 6, /r|€| and /r|n| go to O ex-
ponentially as T — oo while from Lemma 4, r grows at most poly-
nomially in t. Hence, we see that |€| and |n| go to 0 exponentially
as T — oo. From the form of u in (16), this implies that u goes to 0
exponentially as T — co. O

Proof of Lemma 8. Pick, for example, z(t) = e~*7 with k, > 0 be-
ing any constant. Hence, we have
F— a(OARM.0.0) + (1) — e

x [Q(eXTF,x1,0,0) + @ (T)]e™ " — ko (T)F. (69)

From Lemma 4, r grows at most polynomially in 7. Hence, it fol-
lows that 7 = rz is uniformly bounded over the time interval 7 €0,
o0) since z(t) = e T goes to 0 exponentially as T — . Further-

more, I asymptotically goes to 0 as T — oo. Since «(t), @(7), 0,0,

and r grow at most polynomially in T while x goes to 0 as T — oo,
it follows from the definition of €2 in (63) and the definition of w;

in (60) that Q(r, x1,é, 9) grows at most polynomially in t. Also,
since &(t) and r grow at most polynomially in T while z(t) goes to
0 exponentially as 7 — oo, it follows that «(t)7 = a(t)z(T)r goes
to 0 exponentially as T — oo. Also, from the fact that A(.) is, by
definition, constrained to be in the interval [0,1] and the fact that

(1), @(t), and Q(r, xq, é,é) grow at most polynomially in t, it is
seen that 7 is uniformly bounded over the time interval [0, c0). O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejcon.2019.09.005.
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