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a b s t r a c t 

While control design objectives are formulated most commonly in terms of asymptotic behavior (as time 

goes to infinity) of signals in the closed-loop system, the recently developed notion of “prescribed-time”

stabilization considers closed-loop signal behavior over a fixed (prescribed) time interval and addresses 

the problem of regulating the state to the origin in the prescribed time irrespective of the initial state. 

While prior results on prescribed-time stabilization considered a chain of integrators with uncertainties 

matched with the control input (i.e., normal form), we consider here a general class of nonlinear strict- 

feedback-like systems with state-dependent uncertainties allowed throughout the system dynamics in- 

cluding uncertain parameters (without requirement of any known bounds on the uncertain parameters). 

Furthermore, we address the output-feedback problem and show that a dynamic observer and controller 

can be designed based on our dual dynamic high gain scaling based design methodology along with a 

novel temporal transformation and form of the scaling dynamics with temporal forcing terms to achieve 

both state estimation and regulation in the prescribed time. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Control design objectives for continuous-time nonlinear sys-

ems are formulated most commonly in terms of ensuring various

symptotic properties (as time goes to infinity) of signals in the

losed-loop system, e.g., asymptotic stabilization [5,6,18] wherein

he control objective is to ensure convergence of the system

tate (or output) to a desired value (e.g., the origin) as time t

oes to ∞ . In contrast, the notion of “finite-time” stabilization

1–4,19–22,27,28] addresses closed-loop signal behavior over

nite time intervals, e.g., controller design to achieve desired

onvergence properties in finite time. Various controller design

echniques have been developed in the literature for finite-time

tabilization [1–4,19–22,27,28] typically based on feedback using

ractional powers of the state variables. Finite-time partial-state-

eedback stabilization of high-order nonlinear systems [29] has

een addressed in [26] using fractional powers of state vari-

bles in the control design. While the finite-time stabilization
� Submitted, March 2019. Revised, July 2019. An earlier version [17] of this paper 
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roblem simply requires convergence in some finite time, but

llows the achieved finite time to be dependent on the system

ynamics and the initial state, the recently introduced notion of

prescribed-time” stabilization [23–25] addresses the more strin- 

ent requirement that the terminal time should be a parameter

hat can be prescribed by the control designer independent of

he initial condition. In other words, the control designer should

e able to arbitrarily pick a finite regulation time T and require

hat the system state should be made to converge to the origin

s t → T irrespective of the initial condition. This prescribed-time

tabilization notion can be viewed in the physical context of

ontrols applications such as missile guidance, autonomous vehicle

endezvous, etc., wherein the state convergence control objective

s inherently formulated over a fixed time horizon. 

The recent results on prescribed-time stabilization in

23–25] address a system structure comprised of a chain of 

ntegrators with uncertainties matched with the control input (i.e.,

ormal form) based on scaling the system state by a function of

ime that goes to infinity as t → T and designing a controller to

tabilize the system written in terms of the scaled state. In this

aper, we consider a general class of nonlinear strict-feedback-like

ystems with state-dependent nonlinear uncertainties allowed

hroughout the system dynamics and address furthermore the

utput-feedback problem. Specifically, we consider a class of
rved. 
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systems of the following form 

1 : 

˙ x i = φi (x, u, t) + φ(i,i +1) (x 1 ) x i +1 i = 1 , . . . , n − 1 

˙ x n = φn (x, u, t) + μ0 (x 1 ) u 

y = x 1 (1)

where x = [ x 1 , . . . , x n ] 
T ∈ R 

n is the state, u ∈ R is the input,

and y ∈ R is the output 2 . φ(i,i +1) , i = 1 , . . . , n − 1 , and μ0 , are

known scalar real-valued continuous functions of their arguments.

φi , i = 1 , . . . , n, are time-varying scalar real-valued uncertain func-

tions. The system (1) is in a generalized strict-feedback form.

Strict-feedback system structures have been studied heavily in the

literature [5,6,18] and several mechanical and electromechanical

systems can be written in strict-feedback forms (e.g., dynamics of

various motors [7] ). 

We show that a dynamic output-feedback prescribed-time

stabilizing controller can be designed for the class of systems

(1) based on our dual dynamic high gain scaling based observer-

controller design techniques [8,9,11,12,14,15] and introducing a

set of modifications to address the prescribed-time stabilization

problem instead of the asymptotic stabilization problem addressed

in the control designs in [8,9,11–15] . While [23–25] consider state

feedback of systems in normal form and utilize a scaling of the

state by a function of time, an approach based on state scaling

utilizing powers of a dynamic scaling parameter was developed in

[16] . In this paper, it is shown that the state-feedback approach

in [16] can be extended to the output-feedback case via a control

design approach based on (a) introducing a scaling for observer

errors and observer state estimates utilizing powers of a dynamic

scaling parameter; (b) introducing a time scale transformation

to map the prescribed time horizon to the infinite time horizon

of a transformed temporal variable; (c) designing the dynamic

scaling based observer-controller structure using this temporally

scaled system representation; (d) introducing specifically designed

time-dependent forcing terms into the dynamics of the scaling

parameter and into a gain term appearing in the control design.

The class of systems considered here includes state-dependent

uncertainties throughout the system dynamics and also allows

uncertain parameters (without requirement of any known bounds

on the uncertain parameters). 

The control objective, assumptions on the system (1) , and

the statement of the main result of the paper are provided in

Section 2 . The observer and controller designs are presented in

Section 3 . The proof of the main result is provided in Section 4 . The

application of the proposed control design to an example third-

order system is presented in Section 5 . Concluding remarks are

summarized in Section 6 . 

2. Control objective, assumptions, and statement of main 

theorem 

With T > 0 being a given constant, the control objective is to de-

sign a dynamic output-feedback control law for u so that x ( t ) → 0

and u ( t ) → 0 as t → T . The assumptions imposed on the system

(1) are summarized below. 

Assumption A1 ( lower boundedness away from zero of “upper

diagonal” terms φ(i,i +1) and μ0 ) . A constant σ > 0 exists such

that 3 | φ(i,i +1) (x 1 ) | ≥ σ, 1 ≤ i ≤ n − 1 , and | μ0 ( x 1 )| ≥σ for all x 1 ∈
1 Throughout, a dot above a symbol denotes the derivative with respect to the 

time t as is the standard notation, e.g., ˙ x 1 = 

dx 1 
dt 

. 
2 R , R 

+ , and R 

k denote the set of real numbers, the set of non-negative real 

numbers, and the set of real k -dimensional column vectors, respectively. 
3 Given a vector a , the notation | a | denotes its Euclidean norm. If a is a scalar, | a | 

denotes its absolute value. 

x  

w
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 . Since φ(i,i +1) and μ0 are assumed to be continuous func-

ions, this assumption can, without loss of generality, be stated

s φ(i,i +1) (x 1 ) ≥ σ, 1 ≤ i ≤ n − 1 , and μ0 ( x 1 ) ≥σ with a constant

> 0. 

ssumption A2 ( Bounds on uncertain functions φi ) . The functions

i , i = 1 , . . . , n, can be bounded as 

 φi (x, u, t) | ≤ �(x 1 ) 
i ∑ 

j=1 

φ(i, j) (x 1 ) | x j | + θβi (x 1 ) | x 1 | (2)

or all x ∈ R 

n where �( x 1 ), φ(i, j) (x 1 ) , i = 1 , . . . , n, j = 1 , . . . , i, and

i (x 1 ) , i = 1 , . . . , n, are known continuous non-negative functions

nd θ is an unknown non-negative constant. 

ssumption A3 ( Bi-directional cascading dominance of “upper di-

gonal” terms φ(i,i +1) , i = 2 , . . . , n − 1 , ) . Positive constants ρ i , i =
 , . . . , n − 1 , and ρ

i 
, i = 3 , . . . , n − 1 exist such that ∀ x 1 ∈ R 

(i,i +1) (x 1 ) ≥ ρ i φ(i −1 ,i ) (x 1 ) , i = 3 , . . . , n − 1 (3)

(i,i +1) (x 1 ) ≤ ρ
i 
φ(i −1 ,i ) (x 1 ) , i = 3 , . . . , n − 1 . (4)

emark 1. The structure of the assumptions above are analogous

o the assumptions introduced for the dual dynamic high gain

ased output-feedback control design in [8] . Assumption A1 en-

ures observability, controllability, and uniform relative degree (of

 1 with respect to u ). Assumption A2 imposes bounds on uncer-

ain terms in the system dynamics and essentially requires un-

ertain terms to be bounded linearly in unmeasured state vari-

bles with a triangular state dependence structure in the known

ounds. Assumption A3 imposes constraints on the relative “sizes”

in a nonlinear function sense) of the upper diagonal terms φ(i,i +1) 

nd is vital in achieving solvability of a pair of coupled Lyapunov

nequalities ( Section 3.7 ). The functions φ(i,i +1) are referred to as

upper diagonal” terms since if the dynamics (1) were to be writ-

en in the form ˙ x = A (x 1 ) x + B (x 1 ) u + φ(x ) with φ = [ φ1 , . . . , φn ] 
T ,

he functions φ(i,i +1) would appear on the upper diagonal of the

atrix A ( x 1 ). 

The main result of this paper is summarized as Theorem 1 be-

ow. The proof of Theorem 1 will be provided in Section 4 based

n the control design developed in Section 3 . 

heorem 1. Given any prescribed time T > 0, a dynamic output-

eedback controller of the form 

 = f (ψ, y ) ; ˙ ψ = g(ψ, y ) (5)

an be designed (where ψ is the state of the dynamic controller) for

ystem (1) under Assumptions A1–A3 such that starting from any ini-

ial condition for x , the property lim t→ T | x (t) | = lim t→ T | u (t) | = 0 is

atisfied. 

. Control design 

.1. Observer design 

A reduced-order observer with states ˆ x = [ ̂ x 2 , . . . , ̂  x n ] 
T is de-

igned as 

˙ ˆ x i = φ(i,i +1) (x 1 )[ ̂  x i +1 + r i f i +1 (x 1 )] − r i −1 g i (x 1 )[ ̂  x 2 + r f 2 (x 1 )] 

− (i − 1) ̇ r r i −2 f i (x 1 ) , 2 ≤ i ≤ n − 1 

˙ ˆ 
 n = μ0 (x 1 ) u − r n −1 g n (x 1 )[ ̂  x 2 + r f 2 (x 1 )] − (n − 1) ̇ r r n −2 f n (x 1 ) (6)

here 

• g ( x ) are functions that will be designed in Section 3.7 
i 1 

Robust adaptive prescribed-time stabilization via output feedback 
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• f i ( x 1 ) are functions defined as 

f i (x 1 ) = 

∫ x 1 

0 

g i (π ) 

φ(1 , 2) (π ) 
dπ, 2 ≤ i ≤ n (7) 

• r is a dynamic high-gain scaling parameter whose dynamics

will be designed in Section 3.8 . The dynamics chosen for r will

ensure that r ( t ) ≥ 1 for all time t ≥ 0. 

.2. Observer errors and scaled observer errors 

The observer errors are defined as 

 i = 

ˆ x i + r i −1 f i (x 1 ) − x i , 2 ≤ i ≤ n (8) 

nd the scaled observer errors are defined as 

i = 

e i 
r i −1 

, i = 2 ≤ i ≤ n ; ε = [ ε2 , . . . , εn ] 
T . (9) 

he dynamics of ε can be written as 

˙ = rA o ε − ˙ r 

r 
D o ε + � (10) 

here 

• A o is a (n − 1) × (n − 1) matrix with ( i , j ) th entry 

A o (i, 1) 
(x 1 ) = −g i +1 (x 1 ) i = 1 , . . . , n − 1 

A o i,i +1 
(x 1 ) = φ(i +1 ,i +2) (x 1 ) i = 1 , . . . , n − 2 (11) 

• D o is a (n − 1) × (n − 1) matrix defined as 4 D o =
diag (1 , 2 , . . . , n − 1) 

• � is given by 

� = [ �2 , . . . , �n ] 
T ;�i = −φi (x, u, t) 

r i −1 
+ g i (x 1 ) 

φ1 (x 1 ) 

φ(1 , 2) 

. (12) 

.3. Dynamics of scaled observer estimate signals 

Define η2 , . . . , ηn as 

2 = 

ˆ x 2 + r f 2 (x 1 ) + ζ (x 1 , ˆ θ ) 

r 
; ηi = 

ˆ x i + r i −1 f i (x 1 ) 

r i −1 
, i = 3 , . . . , n 

(13) 

here the function ζ is defined to be of the form 

(x 1 , ˆ θ ) = 

ˆ θx 1 ζ1 (x 1 ) (14) 

ith 

ˆ θ being a dynamic adaptation parameter (whose dynamics

ill be designed in Section 3.8 ) and ζ 1 being a function that will

e designed in Section 3.8 . The dynamics designed for ˆ θ will en-

ure that ˆ θ (t) ≥ 1 for all t ≥ 0. The dynamics of ηi are given by 5 

˙ 2 = r φ(2 , 3) η3 − r g 2 ε2 + 

ˆ θ [ ζ ′ 
1 (x 1 ) x 1 + ζ1 (x 1 )] 

r 

× [(rη2 − ζ − rε2 ) φ(1 , 2) + φ1 ] 

+ g 2 
φ1 

φ(1 , 2) 

+ 

1 

r 
˙ ˆ θx 1 ζ1 (x 1 ) −

˙ r 

r 
η2 

˙ ηi = r φ(i,i +1) ηi +1 − r g i ε2 + g i 
φ1 

φ(1 , 2) 

− ˙ r 

r 
(i − 1) ηi , i = 3 , . . . , n − 1

˙ n = −rg n ε2 + g n 
φ1 

φ(1 , 2) 

− ˙ r 

r 
(n − 1) ηn + 

1 

r n −1 
μ0 u (15) 

here ζ ′ 
1 (x 1 ) denotes the partial derivative of ζ 1 with respect to

ts argument evaluated at x 1 . 
4 The notation diag (T 1 , . . . , T m ) denotes an m × m diagonal matrix with diagonal 

lements T 1 , . . . , T m . I m denotes the m × m identity matrix. 
5 For notational convenience, we drop the arguments of functions whenever no 

onfusion will result. 

t  

e

a
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.4. Design of control input u and dynamics of scaled states 

Defining η = [ η2 , . . . , ηn ] 
T , the control input u is designed as 

 = − r n 

μ0 (x 1 ) 
K c η (16) 

ith K c = [ k 2 , . . . , k n ] where k i , i = 2 , . . . , n, are functions of x 1 that

ill be designed in Section 3.7 . The dynamics of η under the con-

rol law (16) are 

˙ = rA c η − ˙ r 

r 
D c η + � − rGε2 + H[ η2 − ε2 ] + � (17) 

here A c is the (n − 1) × (n − 1) matrix with ( i , j ) th element 

A c (i,i +1) 
(x 1 ) = φ(i +1 ,i +2) (x 1 ) , i = 1 , . . . , n − 2 

 c (n −1 , j) 
(x 1 ) = −k j+1 (x 1 ) , j = 1 , . . . , n − 1 (18) 

ith zeros elsewhere, and 

 c = diag (1 , 2 , . . . , n − 1) (19) 

 = [ g 2 , . . . , g n ] 
T ; � = 

φ1 

φ(1 , 2) 

G (20) 

 = [ ̂  θ [ ζ ′ 
1 (x 1 ) x 1 + ζ1 ] φ(1 , 2) , 0 , . . . , 0] T (21) 

= 

[ 

(φ1 − ζφ(1 , 2) ) ̂  θ [ ζ ′ 
1 (x 1 ) x 1 + ζ1 ] + 

˙ ˆ θx 1 ζ1 (x 1 ) 

r 
, 0 , . . . , 0 

] T 

. 

(22) 

.5. Temporal scale transformation 

Let a (.) be a twice continuously differentiable monotonically in-

reasing function over [0, T ) that satisfies the following conditions

see Remark 2 below for examples of such functions): 

• a (0) = 0 , a (T ) = ∞ 

• da 
dt 

is bounded below by a positive constant over [0, T ), i.e., da 
dt 

≥
a 0 for t ∈ [0, T ) with a 0 being some positive constant 

• Denoting the transformation τ = a (t) and writing da 
dt 

as a func-

tion of τ as α(τ ) = 

da 
dt 

, α( τ ) grows at most polynomially as

τ → ∞ , i.e., a polynomial α(τ ) exists such that α(τ ) ≤ α(τ ) for

all τ ∈ [0, ∞ ). Also, dα
dτ

grows at most polynomially as τ → ∞ . 

With τ defined as the transformation τ = a (t) , we see that

hen t goes from 0 to T , τ goes from 0 to ∞ . Now, 

τ = a ′ (t) dt (23) 

here a ′ ( t ) denotes da 
dt 

. The transformation above is a time scale

ransformation wherein the interval [0, T ) in terms of the time

ariable t corresponds to the interval [0, ∞ ) in terms of the time

ariable τ . To denote a signal x ( t ) as a function of transformed time

ariable τ , we use the notation x̆ (τ ) , i.e., x (t) = x̆ (τ ) since both

 ( t ) and x̆ (τ ) refer to the value of the same signal at the same

hysical time point represented as t in the original time axis and τ
n the transformed time axis. The conditions on the function a : [0,

 ) → [0, ∞ ) introduced above imply that this function is invertible.

enoting the inverse function by a −1 , we have, by definition, 

 (t) = x (a −1 (τ )) = x̆ (τ ) = x̆ (a (t)) . (24) 

emark 2. There are many (in fact, infinite number of) functions

hat satisfy the conditions defined for the function a above. For

xample, we can pick a to be one of the following: 

 (t) = 

a 0 t 

1 − t 
(25) 
T 

Robust adaptive prescribed-time stabilization via output feedback 
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6 The notations max (a 1 , . . . , a n ) and min (a 1 , . . . , a n ) indicate the largest and 

smallest values, respectively, among the numbers a 1 , . . . , a n . 
a (t) = 

a 0 t √ 

1 − ( t 
T 
) 2 

. (26)

For a ( t ) given in (25) , we have: 

a ′ (t) = 

a 0 

(1 − t 
T 
) 2 

; α(τ ) = a 0 

(
τ

a 0 T 
+ 1 

)
2 (27)

For a ( t ) given in (26) , we have: 

a ′ (t) = 

a 0 

(1 − ( t 
T 
) 2 ) 

3 
2 

. ; α(τ ) = a 0 

(
τ

a 0 T 
+ 1 

)
3 
2 (28)

Remark 3. To illustrate the motivation for the time scale transfor-

mation defined above in the context of prescribed-time stabiliza-

tion, consider the simple scalar system ˙ x = u . Designing a control

law as u = −kx with k > 0 being a constant would yield exponen-

tial convergence of x ( t ) to 0 as t → ∞ . However, with any constant

k , the convergence of x ( t ) to 0 is only asymptotic and x ( t ) does not

go to 0 at any finite time t . Instead, defining u = −kγ (t) x anal-

ogous to the definition of ζ above where γ ( t ) is a function of

time, we get ˙ x = −kγ (t) x . Now, defining the time scale transfor-

mation τ = a (t) with a ′ (t) = α(τ ) as defined above, we have dx 
dτ

=
− kγ (a −1 (τ )) x 

α(τ ) 
. Hence, defining, for example, γ (t) = α(a (t)) , we ob-

tain 

dx 
dτ

= −kx, which implies that the signal x goes to 0 asymptot-

ically as τ → ∞ or equivalently as t → T , i.e., x ( t ) converges to 0 at

the prescribed time T under the action of the controller given by

u (t) = −kα(a (t )) x (t ) . 

As discussed in Remark 3 above, the temporal scale transforma-

tion defined above yields dt = 

dτ
α(τ ) 

. Hence, from (10) and (17) , we

have: 

α(τ ) 
dε

dτ
= rA o ε − α(τ ) 

r 

dr 

dτ
D o ε + � (29)

α(τ ) 
dη

dτ
= rA c η − α(τ ) 

r 

dr 

dτ
D c η + � − rGε2 + H[ η2 − ε2 ] + �. 

(30)

3.6. Lyapunov Functions 

Define 

 o = r εT P o ε ; V c = 

1 

2 

x 2 1 + r ηT P c η ; V = cV o + V c (31)

where P o and P c are symmetric positive definite matrices to be de-

fined later and c is a positive constant to be picked later. From (29),

(30) , and (31) , 

dV 

dτ
= 

1 

α(τ ) 

{
cr 2 εT [ P o A o + A 

T 
o P o ] ε + 2 rcεT P o � + 

x 1 [ φ1 + (rη2 − ζ − r ε2 ) φ(1 , 2) ] + r 2 ηT [ P c A c + A 

T 
c P c ] η

+ 2 rηT P c (� − rGε2 + H[ η2 − ε2 ] + �) 

}

− dr 

dτ

{ 

cεT [ P o ̃  D o + 

˜ D o P o ] ε + ηT [ P c ̃  D c + 

˜ D c P c ] η
} 

(32)

where ˜ D o = D o − 1 
2 I and 

˜ D c = D c − 1 
2 I with I denoting an identity

matrix of dimension (n − 1) × (n − 1) . 

3.7. Coupled Lyapunov Inequalities 

Assumption A3 is the cascading dominance condition introduced

in [8] wherein the condition in (3) is the “controller-context”

cascading dominance condition and the condition in (4) is the
Please cite this article as: P. Krishnamurthy, F. Khorrami and M. Krstic, 
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observer-context” cascading dominance condition. These cascad-

ng dominance conditions were shown in [8,10] to be closely re-

ated to solvability of pairs of coupled Lyapunov inequalities that

ppear in the high gain based control design. Specifically, under

ssumption A1 and the condition (3) in Assumption A3 , it is pos-

ible to find (in fact, explicitly construct as in [8,10] ) a symmet-

ic positive definite matrix P c = P T c > 0 and a function K c (x 1 ) =
 k 2 (x 1 ) , . . . , k n (x 1 )] (whose elements appear in the definition of

he matrix A c ) such that the following coupled Lyapunov inequal-

ties are satisfied (for all x 1 ∈ R ) with some positive constants νc ,

c , and νc : 

 c A c + A 

T 
c P c ≤ −νc φ(2 , 3) I ; νc I ≤ P c ̃  D c + 

˜ D c P c ≤ νc I. (33)

t is known that under Assumption A1 and condition (4) in

ssumption A3 , it is possible to find (in fact, explicitly con-

truct as in [8,10] ) a matrix P o = P T o > 0 and a function G (x 1 ) =
 g 2 (x 1 ) , . . . , g n (x 1 )] such that the following coupled Lyapunov in-

qualities are satisfied (for all x 1 ∈ R ) with some positive constants

o , ˜ νo , νo , and νo : 

 o A o + A 

T 
o P o ≤ −νo I − ˜ νo φ(2 , 3) C 

T C ; νo I ≤ P o ̃  D o + 

˜ D o P o ≤ νo I (34)

here C = [1 , 0 , . . . , 0] . Furthermore, from Theorem 2 in [10] ,

 2 , . . . , g n can be chosen to be linear constant-coefficient combina-

ions of φ(2 , 3) , . . . , φ(n −1 ,n ) . Hence, using Assumption A3 , a positive

onstant G exists such that 

 

n ∑ 

i =2 

g 2 i 

) 

1 
2 

≤ G φ(2 , 3) . (35)

.8. Designs of Function ζ 1 , Dynamics of r , and Dynamics of ˆ θ

The dynamics of r are designed to be of the form 

6 

dr 

dτ
= λ(R (x 1 , ˆ θ, 

˙ ˆ θ ) + α(τ ) − r)[�(r, x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ )] with 

r(0) ≥ max { 1 , α(0) } (36)

here ˜ α(τ ) denotes dα
dτ

and λ, R , and � are non-negative func-

ions. λ : R → R 

+ is picked to be any non-negative continuous

unction such that λ(s ) = 1 for s > 0 and λ(s ) = 0 for s < −εr 

ith εr being some positive constant. Hence, from the dynam-

cs above, it is seen that if r ≤ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) at some time

nstant, then we have dr 
dτ

= �(r, x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ ) at that time in-

tant. As in [8] , this property of the dynamics of r can be viewed

s ensuring that the derivative of r is “large enough” (i.e., dr 
dτ

=
(r, x 1 , ˆ θ, 

˙ ˆ θ ) + ˜ α(τ ) ) until r itself becomes “large enough” (i.e.,

 ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) ). From the form of the dynamics above, it is

een that dr 
dτ

≥ 0 for all τ ≥ 0. It will be seen in Lemma 1 that the

orm of the dynamics of r given above implies that r ≥α( τ ) for all

in the maximal interval of existence of solutions. 

The dynamic adaptation parameter ˆ θ is defined to be comprised

f two components, i.e., 

ˆ = 

ˆ θ1 + 

ˆ θ2 (37)

nd the dynamics of ˆ θ1 and 

ˆ θ2 are designed to be of the form 

d ̂  θ1 

dτ
= ˜ α(τ ) with 

ˆ θ1 (0) ≥ max { 1 , α(0) } (38)

d ̂  θ2 

dτ
= 

c θ
α(τ ) 

q β (x 1 ) with 

ˆ θ2 (0) ≥ 0 (39)
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here c θ is any positive constant and q β ( x 1 ) is a non-negative

unction. The motivation for defining ˆ θ as comprised of two com-

onents, ˆ θ1 and 

ˆ θ2 , can be seen in the proofs of Lemmas 2 and

 in Section 4 and Appendix B . From (38) and (39) , we see that
ˆ 
1 ≥ α(τ ) for all τ ∈ [0, ∞ ) and 

ˆ θ2 ≥ 0 for all τ ∈ [0, ∞ ). Hence, we

lso have ˆ θ ≥ α(τ ) for all τ ∈ [0, ∞ ). 

It is shown in Appendix A that positive constants c and δ and

unctions ζ 1 , R , �, and q β can be constructed such that the fol-

owing inequality (40) holds when either one of the following con-

itions hold: r ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) or ˙ r ≥ �(r, x 1 , ˆ θ, 

˙ ˆ θ ) + ˜ α(τ ) : 

dV 

dτ
≤ − δ

α(τ ) 

{
x 2 1 

ˆ θζ1 φ(1 , 2) + νo cr 2 | ε| 2 + νc φ(2 , 3) r 
2 | η| 2 

}

+(θ ∗ − ˆ θ ) 
1 

α(τ ) 
q β (x 1 ) . (40) 

. Proof of Theorem 1 

In this section, we complete the proof of Theorem 1 by showing

hat the dynamic control law designed in Section 3 above achieves

rescribed-time stabilization in the sense of Theorem 1 given in

ection 2 . For this purpose, we first summarize several properties

f the closed-loop system formed by (1) and the dynamic output-

eedback controller designed in Section 3 as the Lemmas below.

he proofs of the Lemmas are provided in the Appendix B . 

emma 1. The signal r satisfies 7 the inequality r̆ (τ ) ≥ α(τ ) for all τ
n the maximal interval of existence of solutions. 

emma 2. At all time instants τ in the maximal interval of existence

f solutions, the inequality dV 
dτ

≤ −κV + (θ ∗ − ˆ θ ) χ(x 1 , τ ) is satisfied

ith χ(x 1 , τ ) = 

1 
α(τ ) 

q β (x 1 ) and with a constant κ > 0 . 

emma 3. V is uniformly bounded over the maximal interval of exis-

ence of solutions. 

emma 4. The signals ˆ θ (a −1 (τ )) , 
˙ ˆ θ (a −1 (τ )) , and r(a −1 (τ )) grow

t most polynomially in τ as τ → ∞ and solutions to the closed-loop

ynamical system formed by the system (1) and the designed dynamic

ontroller exist over the time interval τ ∈ [0, ∞ ) . 

emma 5. A finite positive constant τ 0 exists such that for all time

nstants τ ∈ [ τ 0 , ∞ ), the inequality dV 
dτ

≤ −κV is satisfied with a con-

tant κ > 0 . 

emma 6. The signals V , x 1 , 
√ 

r | ε| , and 
√ 

r | η| go to 0 exponentially

s τ → ∞ . 

emma 7. The signals ε, η, and u go to zero exponentially as τ → ∞ .

roof of Theorem 1. Since x 2 = rη2 − ζ − rε2 and x i = r i −1 (ηi −
i ) , i = 3 , . . . , n, we see from Lemmas 4, 6 , and 7 that x 2 , . . . , x n 
ll go to 0 exponentially as τ → ∞ . Hence, x and u go to 0 expo-

entially as τ → ∞ . Finally, since τ → ∞ corresponds to t → T , the

bove properties hold as t → T . Therefore, x and u go to 0 as t → T ,

.e., prescribed-time stabilization is attained. 

Also, from the definition of functions f i in (7) , Assumption A1 ,

nd the fact that functions g i can be chosen to be linear

onstant-coefficient combinations of φ(2 , 3) , . . . , φ(n −1 ,n ) as noted in

ection 3.7 , it is seen that lim x 1 → 0 
f i (x 1 ) 

x 1 
= 

g i (0) 

φ(1 , 2) (0) 
. Therefore, since

 1 goes to 0 exponentially as t → T while r grows at most polyno-

ially, it is seen that r i −1 f i (x 1 ) goes to 0 as t → T for i = 2 , . . . , n .

lso, from the definition of the function ζ in (14) and noting that
ˆ grows at most polynomially, it follows that ζ (x 1 , ˆ θ ) goes to 0 as
7 Note that, as defined in (24) , the notation r̆ (τ ) indicates the value of the signal 

 at the time instant τ as measured in the transformed time axis, i.e., r(t) = ̆r (τ ) . 

b

R  

i  
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 → T . Hence, from the definition of η2 , . . . , ηn in (13) , it is seen that

he observer state signals ˆ x 2 , . . . , ̂  x n also go to 0 as t → T . Hence, x ,

 , and ˆ x = [ ̂ x 2 , . . . , ̂  x n ] 
T all go to 0 as t approaches the prescribed

ime T . �

Implementation of dynamics of r: From the design of the dy-

amics of r in (36) , it was seen in Lemma 1 that r goes to ∞ as

→ ∞ , which from (36) and (63) implies that ˙ r can also go to ∞
s τ → ∞ . This can cause numerical difficulties in implementation.

hile some of the inherent numerical difficulties in implementa-

ion of prescribed-time stabilization can be addressed using the

echniques discussed in Remark 5 , it would be highly desirable to

omehow avoid having a controller state variable whose derivative

oes to ∞ (since derivative going to ∞ corresponds in numerical

ntegration to requiring progressively smaller step sizes). This can

ndeed be achieved using a temporal scaling wherein instead of

mplementing the dynamics of r directly, one implements the dy-

amics in terms of a variable ˜ r defined as ˜ r = rz where z : R → R
s a function of τ . Then, noting that ˙ r = α(τ ) dr 

dτ
and using (36) , we

ave 

˙ ˜ 
 = α(τ ) λ

(
R (x 1 , ˆ θ, 

˙ ˆ θ ) + α(τ ) − ˜ r 

z 

)
×

[ 
�

(
˜ r 

z 
, x 1 , ˆ θ, 

˙ ˆ θ
)

+ ˜ α(τ ) 
] 

z + ̃

 r 
˙ z 

z 
(41) 

ith initial value ˜ r (0) picked such that ˜ r (0) ≥ max { 1 , α(0) } z(0) .

his scaling-based approach to implement the dynamics of r is

ummarized in the Lemma below (the proof of the Lemma is pro-

ided in the Appendix B ). 

emma 8. A function z ( τ ) can be picked such that the signal ˜ r = rz is

uch that ˜ r and ˙ ˜ r are uniformly bounded over the time interval τ ∈ [0,

 ) and furthermore ˜ r converges to 0 as τ → ∞ . 

emark 4. The designed controller is of dynamic order (n + 2)

ith the controller state comprising of the observer state variables

ˆ  2 , . . . , ̂  x n , the dynamic scaling variable r (or equivalently ˜ r as dis-

ussed above), and the dynamic adaptation state variables ˆ θ1 and
ˆ 
2 . The overall controller is given by the observer dynamics (6) , the

efinition of scaled states η2 , . . . , ηn in (13) , the control law for u in

16) , the choice of ζ and ζ 1 in (14) and (61) , the dynamics of the

daptation parameters ˆ θ1 and 

ˆ θ2 in (38) and (39) , and the dynam-

cs of scaling parameter r in (36) or the equivalent implementation

n terms of ˜ r . 

emark 5. The facts that (by definition) the function α( τ ) goes to

 as t → T and that (by construction) ˆ θ and r also go to ∞ as t → T

esult in unbounded gains as t → T . The characteristic that gains go

o ∞ as t approaches the desired prescribed time T is shared with

revious results on prescribed-time stabilization as well [23–25] ,

here it is noted that indeed any approach for regulation in fi-

ite time (including optimal control with a terminal constraint and

liding mode control based approaches with time-varying gains)

ill share this characteristic. By the analysis above, we see that

he unbounded gains do not result in an unbounded control in-

ut u (which indeed converges to 0). However, to alleviate any nu-

erical difficulties in implementation that could be caused by un-

ounded gains as t → T , a few approaches can be utilized as noted

n [24] including adding a dead zone on the state x , a saturation on

he control gains, and setting the terminal time in the controller

mplementation to be a larger value T than the desired finite time

 . All of these approaches sacrifice asymptotic convergence of x to

 as t → T (i.e., x goes not to 0, but to a small neighborhood of 0

s t → T ), but facilitate practical implementation by preventing un-

ounded gains [24] . 

emark 6. While the prescribed time T can be any positive value,

t is to be noted that the control effort required depends on the
Robust adaptive prescribed-time stabilization via output feedback 

f Control, https://doi.org/10.1016/j.ejcon.2019.09.005 

https://doi.org/10.1016/j.ejcon.2019.09.005


6 P. Krishnamurthy, F. Khorrami and M. Krstic / European Journal of Control xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EJCON [m5G; October 2, 2019;7:1 ] 

Fig. 1. Simulations for the closed-loop system (system (42) in closed loop with the prescribed-time stabilizing output-feedback controller). 
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value of T . In particular, making T small (close to zero) will, as

could be expected, result in requiring large control effort (required

magnitudes of the control input will go to ∞ as T → 0, i.e., im-

pulsive inputs). While the prescribed time T appears at multiple

points in the control design, the increase in effective control gains

with reducing T can be seen from (16) and the fact that the dy-

namics of r ensures that r is bigger than α( τ ) for all time τ . It

can be seen that α( τ ) itself goes to ∞ as t → T , as seen from

the conditions on the functions a and α and the discussion in

Remark 2 . Hence, making T smaller results in applying larger con-

trol gains earlier (i.e., at smaller t ), thereby resulting effectively in

larger control inputs. This is physically reasonable since requiring

the system state to move to zero from an arbitrary non-zero value

within a fixed infinitesimal time window will undoubtedly require

large control effort. At the other limit, making T larger can be seen

to result in smaller control effort and in the limit as T → ∞ , the

prescribed-time stabilization reduces to asymptotic stabilization. 

5. An illustrative example 

Consider the third-order system 

˙ x 1 = (1 + x 2 1 ) x 2 + θa cos (x 2 x 3 ) x 1 

˙ x 2 = (1 + x 4 1 ) x 3 + θb x 
5 
1 sin (x 3 ) + [1 + cos (tu )] e x 1 x 2 

˙ x 3 = u + θc e 
x 1 x 3 1 + sin (x 2 t) x 

5 
1 x 3 

y = x 1 (42)

where θ a , θb , and θ c are uncertain parameters (with no

known magnitude bounds). Only the output y is assumed to
Please cite this article as: P. Krishnamurthy, F. Khorrami and M. Krstic, 

for uncertain nonlinear strict-feedback-like systems, European Journal o
e measured. Here, φ(1 , 2) (x 1 ) = 1 + x 2 1 , φ(2 , 3) (x 1 ) = 1 + x 4 1 , and

0 (x 1 ) = 1 . This system satisfies Assumption A1 with σ = 1 .

ssumption A2 is satisfied with �(x 1 ) = 2 max (| x 1 | , e x 1 ) ,
(1 , 1) = φ(2 , 1) = φ(3 , 1) = φ(3 , 2) = 0 , φ(2 , 2) = 1 , φ(3 , 3) = 

x 4 
1 

2 ,

1 = c β, β2 = c βx 4 
1 
, β3 = c βe x 1 x 2 

1 
, and θ = max { c βθa , c βθb , c βθc }

ith c β being any positive constant. Note that the form of

he terms θ a cos ( x 2 x 3 ) x 1 , θb x 
5 
1 

sin (x 3 ) + [1 + cos (tu )] e x 1 x 2 , and

c e 
x 1 x 3 

1 
+ sin (x 2 t) x 

5 
1 
x 3 in the dynamics are not required to be

nown as long as bounds as in Assumption A2 are known.

ssumption A3 is trivially satisfied since n = 3 . Using the con-

tructive procedure in [8,10] , a symmetric positive-definite matrix

 c and functions k 2 and k 3 can be found to satisfy coupled

yapunov inequalities (33) as P c = ˜ a c 
[

3 1 

1 1 

]
, k 2 = 5 φ(2 , 3) , and

 3 = 4 φ(2 , 3) , and with νc = 1 . 675 ̃  a c , νc = ˜ a c , and νc = 5 ̃  a c with ˜ a c 
eing any positive constant. Also, using the constructive procedure

n [8,10] , a symmetric positive-definite matrix P o and functions

 2 and g 3 can be found to satisfy coupled Lyapunov inequalities

34) as P o = ˜ a o 
[

30 −5 

−5 2 . 5 

]
, g 2 = 12 φ(2 , 3) , and g 3 = 20 φ(2 , 3) , and

ith νo = 6 . 675 ̃  a o , ˜ νo = 32 . 070 ̃  a o , νo = 3 . 698 ̃  a o , and νo = 33 . 802 ̃  a o
ith ˜ a o being any positive constant. With this choice of g 2 and g 3 ,

he inequality (35) is satisfied with G = 23 . 324 . As in Section 3 ,

he functions f 2 and f 3 are defined as f 2 (x 1 ) = 12 
∫ x 1 

0 

(1+ x 4 
1 
) 

1+ x 2 
1 

dπ

nd f 3 (x 1 ) = 20 
∫ x 1 

0 

(1+ x 4 
1 
) 

1+ x 2 
1 

dπ . The required integral can be eval-

ated in closed form as 
∫ x 1 

0 

(1+ x 4 
1 
) 

1+ x 2 dπ = 

x 3 
1 

3 − x 1 + 2 tan 

−1 (x 1 ) . A
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8 Given a symmetric positive-definite matrix P , λmax ( P ) and λmin ( P ) denote its 

maximum and minimum eigenvalues, respectively. 
educed-order observer is designed as 

˙ ˆ 
 2 = (1 + x 4 1 )[ ̂  x 3 + r 2 f 3 (x 1 )] − rg 2 (x 1 )[ ̂  x 2 + r f 2 (x 1 )] − ˙ r f 2 (x 1 ) 

(43) 

˙ ˆ 
 3 = u − r 2 g 3 (x 1 )[ ̂  x 2 + r f 2 (x 1 )] − 2 ̇

 r r f 3 (x 1 ) . (44) 

hen, as in Section 3 , defining η2 = 

ˆ x 2 + r f 2 (x 1 )+ ζ (x 1 , ̂
 θ ) 

r and η3 =
ˆ x 3 + r 2 f 3 (x 1 ) 

r 2 
, the control input is designed as u = −r 3 [ k 2 η2 + k 3 η3 ] .

he function α can be picked for instance as in (27) with any

 0 > 0. The functions R and � can be computed following the pro-

edure in Appendix A and using sharper bounds taking the specific

ystem structure into account and noting that several terms in the

pper bounds vanish since φ(1,1) , etc., are zero for this system. The

ynamics of r are then given by (36) . The dynamic adaptation pa-

ameter ˆ θ is defined as the combination 

ˆ θ1 + 

ˆ θ2 as in (37) and the

ynamics of ˆ θ1 and 

ˆ θ2 are defined as in (38) and (39) . 

The performance of the prescribed-time stabilizing output-

eedback controller is illustrated in Fig. 1 . The terminal time is

pecified as T = 0 . 2 s. To avoid numerical issues, the effective ter-

inal time T in implementation is defined as T = 0 . 205 s. Also,

 0 = ˜ a c = 0 . 05 , ˜ a o = 1 , ζ0 = 0 . 1 , and c β = c θ = 10 −3 . The initial

ondition for the system state vector [ x 1 , x 2 , x 3 ] 
T is specified as [1,

, 1] T . Since the initial conditions for x 2 and x 3 are not known, the

nitial conditions for ˆ x 2 and ˆ x 3 are picked simply as the values that

ake the initial values of the estimates for x 2 and x 3 zero, i.e., such

hat ˆ x 2 + r f 2 (x 1 ) and ˆ x 3 + r 2 f 3 (x 1 ) are zero at time t = 0 . Hence,

he initial condition for [ ̂ x 2 , ̂  x 3 ] 
T is [ −10 . 85 , −18 . 08] T . ˆ θ1 , 

ˆ θ2 , and r

re initialized to be 0.05, 0, and 1, respectively. The values of the

ncertain parameters θ a , θb , and θ c are picked for simulations as

a = θb = θc = 1 . The closed-loop trajectories and the control input

ignal are shown in Fig. 1 . 

. Conclusion 

A dynamic output-feedback prescribed-time stabilizing con-

roller was developed for a general class of uncertain nonlinear

trict-feedback-like systems. It was shown that given any desired

onvergence time, the proposed control design enables regulation

f the state to the origin in the prescribed time irrespective of

he initial state. The control design was based on our dual dy-

amic observer-controller design methodology and it was shown

hat while the underlying control design methodology was pre-

iously developed in the context of asymptotic stabilization, the

esign techniques can be applied to the prescribed-time setting

y designing a novel temporal scale transformation, designing the

caling parameter dynamics using the transformed time axis, and

ncorporating temporal forcing terms in the scaling parameter dy-

amics. It was shown that the control input and observer state

ariables also converge to the origin in the prescribed time. Hence,

he proposed control design provides both prescribed-time state

stimation and prescribed-time state regulation for the considered

lass of uncertain nonlinear systems. A topic of on-going work

s to determine if the types of modifications proposed here to

he dual dynamic observer-controller design procedure to obtain

rescribed-time results instead of asymptotic results can be ap-

lied to the various other classes of nonlinear systems to which

he original dual dynamic observer-controller design procedures

re applicable (e.g., feedforward systems, non-triangular systems,

ystems with time delays and uncertain appended dynamics). 

ppendix A. Construction of positive constants c and δ and 

unctions ζ1 , R , and �

Using (33) and (34) , (32) reduces to 

dV 

dτ
= 

1 

α(τ ) 

{
− cr 2 νo | ε| 2 −cr 2 ˜ νo φ(2 , 3) ε

2 
2 −r 2 νc φ(2 , 3) | η| 2 +2 rcεT P o �
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+ x 1 [ φ1 + (rη2 − ζ − rε2 ) φ(1 , 2) ] + 2 rηT P c (� − rGε2 

+ H[ η2 − ε2 ] + �) 

}
− c 

dr 

dτ
νo | ε| 2 − dr 

dτ
νc | η| 2 (45) 

Using Assumption A2 , it is seen that the functions �i , i =
 , . . . , n defined in (12) satisfy the inequality 

 �i | ≤ �(x 1 ) 

r i −1 
[ φ(i, 1) (x 1 ) | x 1 | + φ(i, 2) (x 1 ) | ζ | ] 

+ �(x 1 ) | g i (x 1 ) x 1 | φ(1 , 1) (x 1 ) 

φ(1 , 2) (x 1 ) 

+ θ
[ 
βi (x 1 ) 

r i −1 
| x 1 | + | g i (x 1 ) x 1 | β1 (x 1 ) 

φ(1 , 2) (x 1 ) 

] 

+ 

�(x 1 ) 

r i −1 

i ∑ 

j=2 

φ(i, j) (x 1 ) r 
j−1 | η j − ε j | . (46) 

ence, using (14) and (35) and the property that r ≥ 1, 

 �| ≤ �(x 1 ) | x 1 | 
r 

[ | ̃  φ1 | + | ̂  θζ1 (x 1 ) || ̃  φ2 | ] + �(x 1 ) || ̃  A (x 1 ) || (| η| + | ε| )

+ �(x 1 ) | x 1 | φ(1 , 1) (x 1 ) 

φ(1 , 2) (x 1 ) 
G φ(2 , 3) (x 1 ) 

+ θ
[ | β|| x 1 | 

r 
+ | x 1 | β1 (x 1 ) 

φ(1 , 2) (x 1 ) 
G φ(2 , 3) (x 1 ) 

] 
(47) 

here ˜ φ1 = [ φ(2 , 1) , φ(3 , 1) , . . . , φ(n, 1) ] 
T , ˜ φ2 = [ φ(2 , 2) , φ(3 , 2) , . . . ,

(n, 2) ] 
T , β = [ β2 , . . . , βn ] , ||.|| denotes the Frobenius norm of

 matrix, and 

˜ A denotes the (n − 1) × (n − 1) matrix with ( i ,

 ) th element φ(i +1 , j+1) at locations on and below the diagonal

nd zeros everywhere else. Note that | ̃  φ1 | = 

√ ∑ n 
i =2 φ

2 
(i, 1) 

(x 1 ) ,

 ̃

 φ2 | = 

√ ∑ n 
i =2 φ

2 
(i, 2) 

(x 1 ) , and | β| = 

√ ∑ n 
i =2 β

2 
i 
(x 1 ) . 

Therefore (with some conservative overbounding for algebraic

implicity), the term 2 rcεT P o � can be upper bounded as 8 

 rcεT P o � ≤ (1 + θ2 ) ζ0 φ(1 , 2) x 
2 
1 + 3 rcλmax (P o )�|| ̃  A || (| η| 2 + | ε| 2 ) 

+ 

c 2 λ2 
max (P o ) | ε| 2 
ζ0 φ(1 , 2) 

�2 [ | ̃  φ1 | + | ̂  θζ1 || ̃  φ2 | ] 2 

+ 

1 

ζ0 φ(1 , 2) 

c 2 | ε| 2 λ2 
max (P o ) | β| 2 

+ 8 

c 

ν0 

λ2 
max (P o ) x 

2 
1 

[�2 φ2 
(1 , 1) 

+θ2 β2 
1 ] 

φ2 
(1 , 2) 

G 

2 
φ2 

(2 , 3) + 

c 

4 

r 2 νo | ε| 2

(48) 

here ζ 0 > 0 is any constant. Using Assumptions A1 –A3 and the

roperty r ≥ 1, the other uncertain terms appearing in (32) can also

e upper bounded as (with some conservative overbounding for

lgebraic simplicity) 

 1 φ1 ≤ x 2 1 �(x 1 ) φ(1 , 1) (x 1 ) + θβ1 x 
2 
1 (49) 

 1 r(η2 − ε2 ) φ(1 , 2) ≤
νc 

4 

r 2 φ(2 , 3) | η| 2 + 

1 

νc 
x 2 1 

φ2 
(1 , 2) 

φ(2 , 3) 

+ cr 2 
˜ νo 

4 

φ(2 , 3) ε
2 
2 + 

1 

c ̃  νo 
x 2 1 

φ2 
(1 , 2) 

φ(2 , 3) 

(50) 

 rηT P c �≤ 8 

νc 
λ2 

max (P c ) G 

2 φ(2 , 3) 

φ2 
(1 , 2) 

[�2 φ2 
(1 , 1) +θ2 β2 

1 ] x 
2 
1 + 

νc 

4 

r 2 φ(2 , 3) | η| 2 

(51) 
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o  

(  

l  
−2 r 2 ηT P c Gε2 ≤ 8 

νc 
φ(2 , 3) r 

2 λ2 
max (P c ) G 

2 
ε2 

2 + r 2 
νc 

8 

φ(2 , 3) | η| 2 (52)

2 rηT P c H(η2 − ε2 ) ≤ 3 rλmax (P c ) ̂  θφ(1 , 2) | ζ ′ 
1 x 1 + ζ1 | [ | η| 2 + | ε| 2 ] 

(53)

2 rηT P c � ≤ (1 + θ2 ) ζ0 φ(1 , 2) x 
2 
1 + 

2 

ζ0 φ(1 , 2) 

λ2 
max (P c ) | η| 2 

[ 
˙ ˆ θ2 ζ 2 

1 

+ 

(
(�φ(1 , 1) + | ζ1 | ̂  θφ(1 , 2) ) 

2 + 

β2 
1 

2 

)
(ζ ′ 

1 x 1 + ζ1 ) 
2 ˆ θ2 

] 
. 

(54)

Picking c > 0 such that 

c ≥ 32 λ2 
max (P c ) G 

2 

3 ̃  νo νc 
, (55)

the inequality (52) reduces to 

−2 r 2 ηT P c Gε2 ≤ r 2 
νc 

8 

φ(2 , 3) | η| 2 + 

3 

4 

c ̃  νo φ(2 , 3) r 
2 ε2 

2 . (56)

Using the inequalities in (45) and (48)–(56) yields 

dV 

dτ
≤ 1 

α(τ ) 

{
− x 1 ζφ(1 , 2) + q 1 (x 1 ) φ(1 , 2) x 

2 
1 + θ ∗q 2 (x 1 ) φ(1 , 2) x 

2 
1 

− 3 

4 

νo cr 2 | ε| 2 − 3 

8 

νc φ(2 , 3) r 
2 | η| 2 

+ rw 1 (x 1 , ˆ θ, 
˙ ˆ θ ) φ(1 , 2) [ | η| 2 + | ε| 2 ] 

}

− c νo 

dr 

dτ
| ε| 2 − νc 

dr 

dτ
| η| 2 (57)

where θ ∗ = 1 + θ + θ2 and 

q 1 (x 1 ) = 2 ζ0 + �(x 1 ) 
φ(1 , 1) (x 1 ) 

φ(1 , 2) (x 1 ) 

+ 8 

c 

νo 
λ2 

max (P o )�
2 (x 1 ) 

φ2 
(1 , 1) 

(x 1 ) 

φ3 
(1 , 2) 

(x 1 ) 
G 

2 
φ2 

(2 , 3) (x 1 ) 

+ 

1 

νc 

φ(1 , 2) (x 1 ) 

φ(2 , 3) (x 1 ) 
+ 

1 

c ̃  νo 

φ(1 , 2) (x 1 ) 

φ(2 , 3) (x 1 ) 

+ 

8 

νc 
λ2 

max (P c ) G 

2 φ2 , 3 (x 1 ) 

φ3 
(1 , 2) 

(x 1 ) 
�2 (x 1 ) φ

2 
(1 , 1) (x 1 ) (58)

q 2 (x 1 ) = 2 ζ0 + 

β1 (x 1 ) 

φ(1 , 2) (x 1 ) 
+ 

[ 
8 c 

νo 
λ2 

max (P o ) φ(2 , 3) (x 1 ) + 

8 

νc 
λ2 

max (P c ) 
]

× β2 
1 (x 1 ) G 

2 
φ(2 , 3) (x 1 ) 

φ3 
(1 , 2) 

(x 1 ) 
(59)

w 1 (x 1 , ̂  θ, 
˙ ˆ θ ) = 

c 2 λ2 
max (P o ) 

ζ0 φ2 
(1 , 2) 

(x 1 ) 
�2 (x 1 )[ | ̃  φ1 (x 1 ) | + | ̂  θζ1 (x 1 ) || ̃  φ2 (x 1 ) | ] 2 

+ 3 c 
λmax (P o ) 

φ(1 , 2) (x 1 ) 
�(x 1 ) || ̃ A (x 1 ) || + 

2 

ζ0 φ2 
(1 , 2) 

(x 1 ) 
λ2 

max (P c ) 
[ 

˙ ˆ θ2 ζ 2 
1 (x 1 ) 

+ 

(
(�(x 1 ) φ(1 , 1) (x 1 ) + | ζ1 (x 1 ) | ̂  θφ(1 , 2) (x 1 )) 

2 + 

β2 
1 (x 1 ) 

2 

)
× (ζ ′ 

1 (x 1 ) x 1 + ζ1 (x 1 )) 
2 ˆ θ2 

] 
+ 3 λmax (P c ) ̂  θ | ζ ′ 

1 (x 1 ) x 1 + ζ1 (x 1 ) | 

+ 

1 

ζ0 φ2 
(1 , 2) 

(x 1 ) 
c 2 λ2 

max (P o ) | β(x 1 ) | 2 (60)

Note that the functions q 1 ( x 1 ), q 2 ( x 1 ), and w 1 (x 1 , ˆ θ, 
˙ ˆ θ ) involve only

known functions and quantities. 
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In the equations above, note that 
˙ ˆ θ denotes d ̂ θ

dt 
. We have d ̂ θ

dτ
=

1 
α(τ ) 

d ̂ θ
dt 

. 

Design the function ζ 1 such that 

1 

4 

ζ1 (x 1 ) = max 

{ 

ζ , q 1 (x 1 ) + q 2 (x 1 ) 
} 

(61)

ith ζ being any positive constant. 

Pick the functions R and � as 

R (x 1 , ˆ θ, 
˙ ˆ θ ) 

= max 

{ 

1 , 
4 w 1 (x 1 , ˆ θ, 

˙ ˆ θ ) φ(1 , 2) (x 1 ) 

νc φ(2 , 3) (x 1 ) 
, 

2 w 1 (x 1 , ˆ θ, 
˙ ˆ θ ) φ(1 , 2) (x 1 ) 

νo c 

} 

(62)

(r, x 1 , ˆ θ, 
˙ ˆ θ ) = 

rw 1 (x 1 , ˆ θ, 
˙ ˆ θ ) φ(1 , 2) (x 1 ) 

a 0 
max 

{ 

1 

c νo 

, 
1 

νc 

} 

. (63)

Pick the function q β as 

 β (x 1 ) = q 2 (x 1 ) φ(1 , 2) (x 1 ) x 
2 
1 . (64)

If r ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) , then we note from (62) that 

dV 

dτ
≤ 1 

α(τ ) 

{
− 3 

4 

x 2 1 
ˆ θζ1 φ(1 , 2) −

1 

4 

νo cr 2 | ε| 2 − 1 

8 

νc φ(2 , 3) r 
2 | η| 2 

}
+ (θ ∗ − ˆ θ ) χ(x 1 , τ ) . (65)

If dr 
dτ

≥ �(r, x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ ) , then using (61) and (63) , we

ave 

dV 

dτ
≤ 1 

α(τ ) 

{
− 3 

4 

x 2 1 
ˆ θζ1 φ(1 , 2) −

3 

4 

νo cr 2 | ε| 2 − 3 

8 

νc φ(2 , 3) r 
2 | η| 2 

}
+ (θ ∗ − ˆ θ ) χ(x 1 , τ ) . (66)

Therefore, it is seen that (40) is satisfied with δ = 

1 
8 when ei-

her one of the following conditions hold: r ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) or

˙  ≥ �(r, x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ ) . 

ppendix B 

roof of Lemma 1. From (36) , we note that dr 
dτ

≥ ˜ α(τ ) at any

ime instant at which r ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) is not satisfied. Since

 (x 1 , ˆ θ, 
˙ ˆ θ ) > 0 , this implies that any time instant at which r > α( τ )

s not satisfied, we definitely have dr 
dτ

≥ ˜ α(τ ) . If the claim in

emma 1 is not satisfied, there should exist some time instants

at which r ( τ ) < α( τ ). Taking the infimum τmin of all such time

nstants, we note that since r̆ (0) ≥ α(0) from (36) , we should have

min > 0 and such that r̆ (τmin ) = α(τmin ) and with some τ in an

nfinitesimal open interval after τmin such that r ( τ ) < α( τ ). How-

ver, r̆ (τmin ) = α(τmin ) implies dr 
dτ

≥ ˜ α(τ ) = 

dα
dτ

. Hence, we should

ave r̆ (τ ) ≥ α(τ ) in an infinitesimal open interval after τmin , thus

eading to a contradiction implying that the claim of Lemma 1 is

atisfied. �

roof of Lemma 2. Consider two cases: (a) r < R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) ;

b) r ≥ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) . From the design of λ, we see that

nder Case (a), λ(R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) − r) = 1 and therefore dr 

dτ
≥

(r, x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ ) . Hence, from the construction in Appendix A ,

t is seen that (40) holds under both the cases (a) and (b). Since

ne of these cases should definitely hold at all times, we see that

40) holds for all times in the maximal interval of existence of so-

utions. From Lemma 1 and the property ˆ θ ≥ α(τ ) , which followed
Robust adaptive prescribed-time stabilization via output feedback 
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[  
rom the design of the dynamics of ˆ θ1 and 

ˆ θ2 in (38) and (39) , we

ee that 

dV 

dτ
≤ −δ

{
x 2 1 ζ1 φ(1 , 2) + νo cr| ε| 2 + νc φ(2 , 3) r| η| 2 

}
+ (θ ∗ − ˆ θ ) χ(x 1 , τ ) . (67) 

rom the definition of V from (31) , this implies that 

dV 

dτ
≤ −κV + (θ ∗ − ˆ θ ) χ(x 1 , τ ) (68) 

here κ = min 

{
2 δζσ, δνo 

λmax (P o ) 
, δνc σ

λmax (P c ) 

}
. �

roof of Lemma 3. Define V = V + 

1 
c θ

( ̂  θ2 − θ ∗) 2 . Noting from

39) that we have 
˙ ˆ θ2 = c θχ(x 1 , τ ) where χ ( x 1 , τ ) is as defined in

emma 2 , and noting that ˆ θ1 ≥ 0 for all τ and that χ ( x 1 , τ ) ≥ 0 for

ll x 1 and τ , it is seen from Lemma 2 that ˙ V ≤ −κV ≤ 0 . Hence, V 

nd therefore V are uniformly bounded over the maximal interval

f existence of solutions. �

roof of Lemma 4. By the design of the dynamics of ˆ θ1 in

38) and the conditions imposed on the function α( τ ), we see

hat ˆ θ1 (a −1 (τ )) and 

˙ ˆ θ1 (a −1 (τ )) are polynomially upper bounded

n τ . From Lemma 3 and the definition of V in (31) , it is seen

hat the signal x 1 is uniformly bounded over the maximal inter-

al of existence of solutions. Hence, from the dynamics of ˆ θ2 in

39) , it follows that ˆ θ2 (a −1 (τ )) and 

˙ ˆ θ2 (a −1 (τ )) are also polyno-

ially upper bounded in τ . Noting that ˆ θ and 

˙ ˆ θ appear polyno-

ially in the definition of w 1 , it follows that R (x 1 , ˆ θ, 
˙ ˆ θ ) grows at

ost polynomially in τ . From the dynamics of r in (36) , it is seen

hat at each time τ , we either have r ≤ R (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) + εr or

˙  = 0 . Note that α( τ ) and ˜ α(τ ) are polynomially upper bounded

n τ due to the conditions imposed on α( τ ) in Section 3.5 . Hence,

 (x 1 , ˆ θ, 
˙ ˆ θ ) + α(τ ) + εr and therefore r(a −1 (τ )) grow at most poly-

omially as a function of time τ . Noting from Lemma 3 that V (and

herefore x 1 , 
√ 

r ε, and 

√ 

r η) remains bounded over the maximal

nterval of existence of solutions, it follows that solutions to the

losed-loop dynamical system exist over the time interval τ ∈ [0,

 ). �

roof of Lemma 5. By the dynamics of ˆ θ1 and 

ˆ θ2 in (38) and (39) ,

t is seen that ˆ θ is monotonically increasing with τ and goes to

 as τ → ∞ . Hence, a finite positive constant τ 0 exists such that
ˆ ≥ θ ∗ for all τ ≥ τ 0 . Hence, using Lemma 2 , it follows that for all

≥ τ 0 , the inequality dV 
dτ

≤ −κV is satisfied. �

roof of Lemma 6. From Lemma 5 , V goes to 0 exponentially as

→ ∞ . From the definition of V from (31) , it follows that x 1 , 
√ 

r | ε| ,
nd 

√ 

r | η| go to 0 exponentially as τ → ∞ . �

roof of Lemma 7. From Lemma 6 , 
√ 

r | ε| and 

√ 

r | η| go to 0 ex-

onentially as τ → ∞ while from Lemma 4 , r grows at most poly-

omially in τ . Hence, we see that | ε| and | η| go to 0 exponentially

s τ → ∞ . From the form of u in (16) , this implies that u goes to 0

xponentially as τ → ∞ . �

roof of Lemma 8. Pick, for example, z(τ ) = e −k z τ with k z > 0 be-

ng any constant. Hence, we have 

˙ ˜ 
 = α(τ ) λ(R (x 1 , ˆ θ, 

˙ ˆ θ ) + α(τ ) − e k z τ ˜ r ) 

× [�(e k z τ ˜ r , x 1 , ˆ θ, 
˙ ˆ θ ) + ˜ α(τ )] e −k z τ − k z α(τ ) ̃ r . (69) 

rom Lemma 4 , r grows at most polynomially in τ . Hence, it fol-

ows that ˜ r = rz is uniformly bounded over the time interval τ ∈ [0,

 ) since z(τ ) = e −k z τ goes to 0 exponentially as τ → ∞ . Further-

ore, ˜ r asymptotically goes to 0 as τ → ∞ . Since α( τ ), ˜ α(τ ) , ˆ θ, 
˙ ˆ θ,
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nd r grow at most polynomially in τ while x goes to 0 as τ → ∞ ,

t follows from the definition of � in (63) and the definition of w 1 

n (60) that �(r, x 1 , ˆ θ, 
˙ ˆ θ ) grows at most polynomially in τ . Also,

ince ˜ α(τ ) and r grow at most polynomially in τ while z ( τ ) goes to

 exponentially as τ → ∞ , it follows that α(τ ) ̃ r = α(τ ) z(τ ) r goes

o 0 exponentially as τ → ∞ . Also, from the fact that λ(.) is, by

efinition, constrained to be in the interval [0,1] and the fact that

( τ ), ˜ α(τ ) , and �(r, x 1 , ˆ θ, 
˙ ˆ θ ) grow at most polynomially in τ , it is

een that ˜ r is uniformly bounded over the time interval [0, ∞ ). �

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejcon.2019.09.005 . 
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