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Prescribed-Time Observers for Linear Systems in Observer
Canonical Form

John Holloway and Miroslav Krstic , Fellow, IEEE

Abstract—For linear systems in the observer canonical form,
we introduce a state observer with time-varying gains that tend to
infinity as time approaches a prescribed convergence time. The
observer is shown to exhibit fixed-time stability with an arbitrary
convergence time, which is prescribed by the user irrespective of
initial conditions. The output estimation error injection terms are
also shown to remain uniformly bounded and converge to zero at
the prescribed time.

Index Terms—Linear systems, linear system observers, pre-
scribed time, stability of linear systems.

I. INTRODUCTION

Tactical missile guidance applications typically require a small miss
distance to nullify a target, and within a short time-to-go that can usually
be estimated using on-board or off-board sensors [1]. In these kinds
of applications, wherein initial conditions are uncertain, but excellent
state estimates are needed within a known finite time to meet the control
objectives, observers that allow for easy prescription of the convergence
time irrespective of initial conditions offer a clear advantage over those
that do not.

Existing approaches to finite-time state estimation achieve conver-
gence of estimation errors to zero within some finite time, which typ-
ically depends on initial conditions, and that time is often unknown
[2]–[19]. When the convergence time is bounded for all initial con-
ditions, the approach is said to achieve fixed-time stabilization [20].
Depending on the approach employed, and how the observer parame-
ters are coupled with the convergence time, fixed-time convergence in
a prescribed time, whereby the user can prescribe the convergence time
a priori and irrespective of initial conditions, is in some cases possible,
but in general is not guaranteed, and is typically difficult to implement
in practice. Here, we explore an alternative approach to prescribing the
observer convergence time, and it is easier to implement in practice.

Recently, Song et al., [21] solved the problem of robust prescribed-
time stabilization of nonlinear systems in normal form using an al-
ternative approach to finite-time control that employs feedback with
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time-varying gains that tend to infinity as time approaches the pre-
scribed convergence time. In this note, we explore this alternative ap-
proach to finite-time stabilization further in the context of prescribed-
time estimation, which employs time-varying observer gains that tend
to infinity as time approaches the prescribed convergence time.

A. Problem Statement

In this note, we study systems whose solutions are only required
to exist on a finite-time interval, t ∈ [t0 , t0 + tf ), where t0 ≥ 0 is the
initial time, and tf > t0 is the final or terminal time by which to meet
the estimation and control objectives. In particular, we restrict our
analysis to linear single-input single-output systems in the observer
canonical form as

ẋ1 (t) = x2 (t) − an−1y(t) (1)

...

ẋr−1 (t) = xr (t) − aρ+1y(t) (2)

ẋr (t) = xr+1 (t) − aρy(t) + bρu(t) (3)

...

ẋn−1 (t) = xn (t) − a1y(t) + b1u(t) (4)

ẋn (t) = −a0y(t) + b0u(t) (5)

y(t) = x1 (t) (6)

which is written more compactly as

ẋ(t) = Ax(t) − ay(t) +
[

0(r−1)×1

b

]
u(t)

y(t) = eT
1 x(t)

where e1 := [1, 0, . . . , 0]T ∈ Rn is the first of the n-dimensional unit
vectors, and

A :=

⎡
⎢⎣

0 In−1
...
0 . . . 0

⎤
⎥⎦ , a :=

⎡
⎢⎣

an−1
...

a0

⎤
⎥⎦ , b :=

⎡
⎢⎣

bρ

...
b0

⎤
⎥⎦ .

Here, x(t) ∈ Rn is the state, u(t) ∈ R1 is a known and bounded
control input, y(t) ∈ R1 is the measured output, n > ρ ≥ 0, r = n − ρ
is the relative degree of the system, and the constant coefficients ai s
and bi s are known. Our goal is to obtain perfect estimation of the
state within a finite time 0 < T ≤ tf , in a manner in which T is fixed
(independent of initial conditions) and easily prescribed a priori. We
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accomplish this with a dynamic state observer of the form

˙̂x(t) = Ax̂(t) − ay(t) +
[

0(r−1)×1

b

]
u(t)

+

⎡
⎢⎣

g1 (t − t0 , T )
...

gn (t − t0 , T )

⎤
⎥⎦ (y(t) − x̂1 (t)) (7)

where the time-varying observer gains {gi (t − t0 , T )}n
i=1 are functions

of the prescribed convergence time T and must be designed. Defining
the observer estimation error as x̃i (t) := xi (t) − x̂i (t), i = 1, . . . , n
yields the error dynamics

˙̃xi (t) = x̃i+1 (t) − gi (t − t0 , T )x̃1 (t), i = 1, . . . , n − 1 (8)

˙̃xn (t) = −gn (t − t0 , T )x̃1 (t). (9)

B. Design Approach

We show that by using a particular time-varying change of coordi-
nates of the observer error states, and selecting the time-varying ob-
server gains {gi (t − t0 , T )}n

i=1 in a particular way, we achieve a form
of fixed-time stability for (8) and (9) in a convergence time T > 0,
which we prescribe a priori and irrespective of initial conditions. To
motivate our approach, consider the change of coordinates

ζ̃i (t) := μ(t − t0 , T )x̃i (t), i = 1, . . . , n (10)

where for t ∈ [t0 , t0 + T ), μ(t − t0 , T ) : [t0 , t0 + T ) �→ R+ is a
monotonically increasing function (to be defined) having the property
that μ(t − t0 , T ) tends to infinity as t → t0 + T , where T is prescribed
by the user. Clearly, (10) also gives the inverse mapping from ζ̃i (t) to
x̃i (t) as

x̃i (t) = μ(t − t0 , T )−1 ζ̃i (t), i = 1, . . . , n. (11)

Since μ(t − t0 , T ) increases monotonically to infinity, then μ(t − t0 ,
T )−1 decreases monotonically to zero. So from (11), if the error states
ζ̃i (t) remain finite, then clearly x̃i (t) → 0 as t → t0 + T . Therefore, if
after transforming the x̃i (t) system into the ζ̃i (t) coordinates, we can
select the observer gains {gi (t − t0 , T )}n

i=1 in a way that stabilizes
the ζ̃i (t) system, then by the nature of the special relationship between
ζ̃i (t) and x̃i (t) in (11), we simultaneously enforce the condition that
x̃i (t) → 0 as t → t0 + T .

Note that in general, the change of coordinates (10) may result in
a transformed version of (8) and (9), which is much more compli-
cated than the original one, and finding its inverse may not be trivial.
However, it offers the advantage of providing a means of achieving
fixed-time convergence in the prescribed time T . Using this approach,
the convergence is global (with respect to initial conditions), uniform
(with respect to t0 ), and the convergence time T is fixed (independent
of initial conditions). In application, we calculate the state estimate on-
line using (7) and the time-varying observer gains {gi (t − t0 , T )}n

i=1 .
The latter will be shown to have a special structure and are easy to
calculate.

In this framework, as the basis for our design, we define the function
μ1 (t − t0 , T ) : [t0 , t0 + T ) �→ R+ as

μ1 (t − t0 , T ) :=
T

T + t0 − t
(12)

which starts from 1 at t = t0 and increases monotonically to infinity as
t → t0 + T . Using this function, we define the function μ(t − t0 , T ) :

[t0 , t0 + T ) �→ R+ as

μ(t − t0 , T ) := μ1 (t − t0 , T )n +m =
T n +m

(T + t0 − t)n +m (13)

which also starts from 1 at t = t0 and increases monotonically to
infinity as t → t0 + T , but can be tuned to do so more quickly than
μ1 (t − t0 , T ) through the positive integers n (the order of the system)
and m ≥ 1, a design parameter. For notational convenience, we also
define the function ν(t − t0 , T ) : [t0 , t0 + T ) �→ R+ as

ν(t − t0 , T ) := μ1 (t − t0 , T )−1 =
T + t0 − t

T
(14)

which starts from 1 at t = t0 and decreases monotonically to zero as
t → t0 + T .

Notation: To save space, we often drop the explicit (t − t0 ) and T
dependence of the functions (12)–(14) and write them simply as μ1 , μ,
and ν , respectively.

Using these functions, our analysis employs the following definition
of fixed-time stability.

Definition 1 (FT-GUAS): The system ẋ = f (x, t) (of arbitrary di-
mension of x) is said to be fixed-time, globally uniformly asymptoti-
cally stable in time T (FT-GUAS) over the interval IT := [t0 , t0 + T )
if there exists a class K L function β such that for all t ∈ IT

|x(t)| ≤ β(|x(t0 )|, μ1 (t − t0 , T ) − 1)

where the function μ1 (t − t0 , T ) is defined in (12).

II. MAIN RESULTS

Using the functions defined in (12)–(14), it is possible to transform
the error system (8), (9) in a way that retains the attractive property of
(11), but also results in a transformed system that is easy to stabilize
asymptotically. This then provides for fixed-time stabilization of (8) and
(9) in the sense of Definition 1. Our transformation result is captured in
the following lemma, whose proof is provided in the following section.

Lemma 1: Consider the transformation x̃i (t) �→ ζ̃i (t) defined by

ζ̃i (t) = μ(t − t0 , T )x̃i (t), i = 1, . . . , n (15)

and the transformation ζ̃i (t) �→ z̃i (t) defined by

z̃i (t) =
n∑

j=1

p∗
i ,j (μ1 )ζ̃j (t), i = 1, . . . , n (16)

where the functions {p∗
i ,j (μ1 )} are defined by

p∗
i ,j (μ1 ) := p̄i ,j μ

i−j
1 , 1 ≤ j ≤ i ≤ n (17)

and the coefficients {p̄i ,j } are constants to be determined. By selecting
the {p̄i ,j } according to

p̄i , i = 1 (18)

p̄i ,j = 0, j > i (19)

for {p̄i ,j } with j ≥ i, the recursion relations

p̄i ,j−1 = −n + m + i − j

T
p̄i,j + p̄i+1 ,j , n − 1 ≥ i ≥ j ≥ 2

(20)

p̄n ,j−1 = −2n + m − j

T
p̄n ,j , j = n, n − 1, . . . , 2 (21)
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for {p̄i ,j } with j < i, and the observer gains {gi (t − t0 , T )}n−1
i=1 ac-

cording to

gi (t − t0 , T ) = li +
(

n + m + i − 1
T

p̄i,1 − p̄i+1 ,1

)
μi

1

−
i−1∑
j=1

gj (t − t0 , T )p̄i ,j μ
i−j
1 (22)

and gn (t − t0 , T ) according to

gn (t − t0 , T ) = ln +
2n + m − 1

T
p̄n ,1μ

n
1

−
n−1∑
j=1

gj (t − t0 , T )p̄n ,j μ
n−j
1 (23)

where the {li}n
i=1 are constants to be selected, the observer error system

(8), (9) is transformed into

˙̃zi (t) = z̃i+1 (t) − li z̃1 (t), i = 1, . . . , n − 1 (24)

˙̃zn (t) = −ln z̃1 (t). (25)

The observer gains {gi (t − t0 , T )}n
i=1 provided by (22) and (23)

are calculated recursively as follows. Observe from (22) and (23) that
if we proceed in the order i = 1, 2, .., n, then explicit expressions for
each gi (t − t0 , T ) are obtained in terms of {gj (t − t0 , T )}i−1

j=1 and the
constants {lj }i

j=1 , regardless of the values of the latter. Thus, after
determining the {p̄i ,j } according to (18)–(21), and selecting {li}n

i=1
as desired, we calculate the {gi (t − t0 , T )}n

i=1 using (22) and (23) by
proceeding in the order i = 1, 2, .., n.

The system (24), (25) is stabilized by selecting the constants {li}n
i=1

to make the polynomial sn + l1s
n−1 + · · · + ln and the companion

matrix Λ Hurwitz, where Λ is defined from (24) and (25) as

Λ :=

⎡
⎢⎣
−l1 In−1

...
−ln 0

⎤
⎥⎦ . (26)

Then by the nature of the transformations used in Lemma 1, we achieve
fixed-time stability of the system (8), (9) in the sense of Definition 1, as
stated in the following theorem. Its proof is provided in the following
section.

Theorem 1: For the dynamic system (1)–(6) defined over the inter-
val IT := [t0 , t0 + tf ), consider the observer (7) having error dynam-
ics (8), (9) and observer gains {gi (t − t0 , T )}n

i=1 given by (22) and
(23) where the {li}n

i=1 are constants to be selected. If the constants
{li}n

i=1 are selected such that the polynomial sn + l1s
n−1 + · · · + ln

and the companion matrix (26) are both Hurwitz, then the system (8),
(9) has a FT-GUAS equilibrium at the origin, with a prescribed con-
vergence time T , and there exist positive constants M̃ , δ̃ > 0 such that
for all t ∈ IT ,

|x̃(t)| ≤ ν(t − t0 , T )m +1M̃e−δ̃ (t−t0 ) |x̃(t0 )| (27)

where ν(t − t0 , T ) is defined in (14), and m ≥ 1 is an integer and
a design parameter. Furthermore, the output estimation error injec-
tion terms γi (t − t0 , T ) := gi (t − t0 , T )x̃1 (t) for i = 1, . . . , n remain
uniformly bounded over the interval IT , and also converge to zero as
t → t0 + T .

Remark 1: The coefficients {p̄i ,j } for j < i defined by the re-
cursion relations (20), (21) are easily calculated offline using the
following algorithm. Beginning with (21), since p̄n ,n = 1 is known
from (18), we first obtain the set {p̄n ,j−1} by working backwards

for j = n, n − 1, . . . , 2. Next, we proceed to solve (20), begin-
ning with i = n − 1 and j = i = n − 1 for the set {p̄n−1 ,j−1} with
j = n − 1, n − 2, . . . , 2. Since p̄n−1 ,n−1 = 1 is known from (18), and
p̄n ,n−1 is known from the previous i = n step, we can again work back-
wards to obtain the remaining {p̄n−1 ,j−1}. We continue this process
for i = n − 2, . . . , 2 by working backwards from j = i, i − 1, ..., 2 to
obtain the remaining {p̄i ,j }.

In practice, we obtain the constants {p̄i ,j } for j < i defined by the
recursion relations (20), (21) as described in Remark 1. However, it is
possible to obtain explicit solutions for them as shown in the following
proposition. The proof is provided in the following section.

Proposition 1: For {p̄i ,j } with 1 ≤ j < i < n, the solution to (20)
is expressed as

p̄i ,j =
(−1)i−j (n + m + i − j − 1)!

T i−j (n + m − 1)!

+
i−j−1∑
l=0

(−1)i−j−( l+1) (n + m + i − j − 1)!
T i−j−( l+1) (n + m + l)!

p̄i+1 , i−l

and for {p̄n ,j } with 1 ≤ j ≤ n − 1, the solution to (21) is expressed as

p̄n ,j =
(−1)n−j (2n + m − j − 1)!

T n−j (n + m − 1)!
. (28)

Some remarks on the observer (7) and how it compares to existing
finite-time observers conclude this section.

A. Implementation

The observer (7) is conceptually easy to understand and implement.
Indeed, for system (1)–(6) of any given order n, its construction con-
sists of simply selecting the constants {li}n

i=1 to make the companion
matrix Λ Hurwitz, and then (independently) selecting the prescribed
convergence time T and the design parameter m ≥ 1. These are the
only “tuning parameters” of the observer, since we have explicit for-
mula for the {p̄i ,j } in (18)–(21), which are set by n, m, and T , and
the time-varying gains {gi (t − t0 , T )}n

i=1 in (22) and (23), which are
functions of the {p̄i ,j } and the function μ1 (t − t0 , T ), where the latter
is defined by (12) based on T and t − t0 .

Although the output estimation error injection terms {γi (t − t0 ,
T )}n

i=1 remain finite (see Theorem 1), in practice the observer (7) will
exhibit numerical precision limitations as time tends to t0 + T , because
the gains {gi (t − t0 , T )}n

i=1 go to infinity. This can be mitigated by
either: 1) extending the prescribed convergence time T to sometime
larger than tf , or by 2) “turning OFF” the injections {γi (t − t0 , T )}n

i=1
(zero them out) at some time tstop < t0 + T . Doing either will achieve
convergence of the estimation error to within some neighborhood of the
origin that could be tuned by the user if desired. For the latter option,
one can, in principle, determine such a tstop a priori as follows. First,
set each of the {gi (t − t0 , T )}n

i=1 in (22) and (23) to some maximum
value selected by the user, say gmax = 1010 . Next, solve each expression
for t − t0 . Finally, define tstop as the minimum of those times. Clearly,
for high-order systems, this method becomes difficult, and may not be
worth the trouble in practice. A simpler solution is to instead monitor
the magnitude of the {gi (t − t0 , T )}n

i=1 in real time during estimation
until any of them approach gmax, and then at that time, turn OFF the
injections. Once the injections are turned OFF, the estimation errors
will grow again. But if desired, the observer could be reset to begin
anew from that time, treating the current time tstop as a new t0 , and
the current estimation error x̃(tstop) as a new initial condition. Notice
that in this regard, the observer (7) exhibits a high-gain or brute-force
nature “asymptotically,” whereas the classical time-invariant high-gain
observer is of a brute-force nature all of the time.
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B. Existing Methods

In theory, higher-order sliding mode differentiators [3]–[7] and ob-
servers based on concepts of homogeneity [8]–[14] can achieve conver-
gence in finite time. However, with both of these approaches, simple,
constructive procedures for selecting observer parameters that guaran-
tee convergence in a fixed, prescribed time appear to be unavailable
for higher-order systems, and parameter tuning must usually be done
through trial-and-error in numerical simulation. Approaches that use
multiple observers [16]–[19] provide for prescription of the conver-
gence time, but by requiring either delays or a hybrid-systems frame-
work, their implementation is relatively complicated. The implicit Lya-
punov function approach [15] also provides for prescribed convergence
time, by iterating parameters over a grid until a set of LMI are satis-
fied, and this can be done offline for linear MIMO systems. However,
implementation of this method is also complicated, and ultimately still
requires trial-and-error to tune the parameters through numerical simu-
lation. The attractive features of (7) are the simplicity of its design, the
explicitness of its gains and parameterization, and most importantly, its
ability to easily prescribe the convergence time irrespective of initial
conditions.

III. PROOFS OF MAIN RESULTS

A. Proof of Lemma 1

We begin this section with a proof of Lemma 1.
Proof: From (16), (17), and (19), we obtain

˙̃zi =
i − 1

T
p̄i,1μ

i
1 ζ̃1 +

i∑
j=2

i − j

T
p̄i,j μ

i−j+1
1 ζ̃j +

i∑
j=1

p̄i ,j μ
i−j
1

˙̃
ζj .

(29)

We rewrite the ˙̃
ζj terms as follows. By differentiating (15) and sub-

stituting in (8) and (9), the transformed error dynamics are shown to
be

˙̃
ζi = −gi ζ̃1 +

μ̇

μ
ζ̃i + ζ̃i+1 , i = 1, . . . , n − 1 (30)

˙̃
ζn = −gn ζ̃1 +

μ̇

μ
ζ̃n . (31)

We next substitute in (30) and (31) for ˙̃
ζj in (29), which will yield a dif-

ferent expression for i = 1, 2, . . . , n − 1 than for i = n. After lengthy
(but straightforward) calculations, we obtain for i = 1, 2, . . . , n − 1

˙̃zi = −
(
gi +

i−1∑
j=1

gj p̄i,j μ
i−j
1 + p̄i+1 ,1μ

i
1 − n + m + i − 1

T
p̄i,1μ

i
1

)
z̃1

+ z̃i+1 +
i∑

j=2

(
n + m + i − j

T
p̄i,j + p̄i ,j−1 − p̄i+1 ,j

)
μi−j+1

1 ζ̃j .

Then by selecting the {p̄i ,j } for j < i according to (20), and the gains
{gi (t − t0 , T )}n−1

i=1 according to (22), we obtain (24). Similarly, for
i = n, we obtain

˙̃zn = −
(

gn +
n−1∑
j=1

gj p̄n ,j μ
n−j
1 − 2n + m − 1

T
p̄n ,1μ

n
1

)
z̃1

+
n∑

j=2

(
2n + m − j

T
p̄n ,j + p̄n ,j−1

)
μn−j+1

1 ζ̃j

and by selecting the {p̄n ,j } for j < n according to (21), and the gains
{gi (t − t0 , T )}n

i=1 according to (22) and (23), we obtain (25). �

B. Three Useful Lemmas

As shown in Lemma 1 and its proof, the change of coordinates
of the observer error system (8), (9) consists of two parts: 1) trans-
formation (15) to scale the error dynamics in a way that facilitates
fixed-time stabilization through the approach outlined in Section I-B,
and 2) transformation (16) to rewrite the scaled error dynamics into
a form that is easily stabilized asymptotically. This two-step change
of coordinates is easily expressed as a single transformation, and the
resulting transformation is invertible. These results are captured in the
following lemmas, whose short proofs are in the Appendix.

Lemma 2: The transformation x̃i (t) �→ z̃i (t) is expressed as

z̃(t) = μm +1
1 P (μ1 )x̃(t) (32)

where P (μ1 ) is a lower triangular matrix having elements {pi,j (μ1 )}
given by

pi,j (μ1 ) = p̄i ,j μ
n + i−j−1
1 , 1 ≤ j ≤ i ≤ n (33)

where the constant coefficients {p̄i ,j } are defined by (18)–(21).
Lemma 3: The transformation z̃i (t) �→ x̃i (t) is expressed as

x̃(t) = νm +1Q(ν)z̃(t) (34)

where Q(ν) is a lower triangular matrix having elements {qi,j (ν)}
given by

qi,j (ν) = q̄i ,j ν
n + j−i−1 , 1 ≤ j ≤ i ≤ n (35)

where the constant coefficients {q̄i ,j } can be explicitly obtained from
the constant coefficients{p̄i ,j } defined by (18)–(21). Furthermore, q̄ :=
supν∈(0 ,1] |Q(ν)| is finite.

The proof of Theorem 1 leverages Lemmas 1, 2, 3, and the following
lemma, whose proof is a straightforward application of induction and
is therefore omitted.

Lemma 4: The time-varying observer gains {gi (t − t0 , T )}n
i=1

given by (22) and (23) are ith-order polynomials in μ1 , which we
denote as

gi (t − t0 , T ) = hi (μ1 ) :=
i∑

k=0

h̄i ,k μk
1 , i = 1, 2, . . . , n (36)

where the coefficients {h̄i ,k } for i = 1, 2, . . . , n and k = 0, 1, . . . , i
are constants.

C. Proof of Theorem 1

We now have everything we need to prove Theorem 1.
Proof: In the proof of Lemma 1, we showed that substituting (22)

and (23) into (8) and (9) yield (24) and (25), which can be written as

˙̃z(t) = Λz̃(t)

where Λ was defined in (26). By selecting the constants {li}n
i=1 to

make the polynomial sn + l1s
n−1 + · · · + ln and companion matrix

Λ Hurwitz, there exist positive constants Mz , δz > 0 such that for all
t ∈ [t0 , t0 + T )

|z̃(t)| ≤ Mz e−δz (t−t0 ) |z̃(t0 )|. (37)

From (34) and the last statement in Lemma 3, we obtain the estimate

|x̃(t)| ≤ |νm +1 ||Q(ν)||z̃(t)|
≤ νm +1 q̄|z̃(t)| (38)
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and from (32), we obtain the estimate

|z̃(t0 )| ≤ |μ1 (0, T )m +1 ||P (μ1 (0, T ))||x̃(t0 )|
= |P (1)||x̃(t0 )|. (39)

Substituting (39) into (37), and then the result into (38) then gives

|x̃(t)| ≤ νm +1 q̄|P (1)|Mz e−δz (t−t0 ) |x̃(t0 )|.
Thus, we have obtained (27) with M̃ := q̄|P (1)|Mz and δ̃ := δz .

We now consider our claim regarding the output estimation error in-
jection terms {γi (t − t0 , T )}n

i=1 . For i = 1, 2, . . . , n − 1, multiplying
gi (t − t0 , T ) by x̃1 (t) and then using (15) and (13) to replace x̃1 (t)
gives

γi (t − t0 , T ) = gi (t − t0 , T )x̃1 (t)

= gi (t − t0 , T )
1

μn +m
1

ζ̃1 (t)

= νm gi (t − t0 , T )νn z̃1 (t) (40)

since ν = μ−1
1 and z̃1 (t) = ζ̃1 (t) by (16)–(19). Now combine gi (t −

t0 , T ) with νn to define a new polynomial using (36) from Lemma 4,
such that for i = 1, 2, . . . , n − 1

ηi (ν) := gi (t − t0 , T )νn

=
i∑

k=0

h̄i ,k μk
1 νn

=
i∑

k=0

h̄i ,k νn−k . (41)

Then, (40) becomes

γi (t − t0 , T ) = νm ηi (ν)z̃1 (t), i = 1, 2, . . . , n − 1.

The transformed error z̃1 (t) is asymptotically stabilized by our choice
of the constants {li}n

i=1 . Additionally, from (41), it is clear that for i =
1, 2, . . . , n − 1, every ηi (ν) is a polynomial in the argument ν ∈ (0, 1]
for t ∈ [t0 , t0 + T ), thus is bounded and goes to zero as t → t0 + T .
Therefore, with m ≥ 1, γi (t − t0 , T ) is uniformly bounded and goes
to zero as t → t0 + T for i = 1, 2, . . . , n − 1. The claim for i = n is
proven the same way. �

D. Proof of Proposition 1

The proof of Proposition 1 concludes this section.
Proof: Both (20) and (21) are linear difference equations that can

be viewed as discrete-time dynamic systems stepping backward in
time, with j playing the role of time. For i = n, (21) is autonomous,
whereas for each i = n − 1, n − 2, . . . , 2, each equation defined by
(20) is forced by {p̄i+1 ,j }, for j = i, i − 1, . . . , 2. Constrained by the
latter, we must solve (21) first. Define

xn (j) := p̄n ,j , an (j) := −2n + m − j

T
.

Then, (21) with initial condition (18) is written as

xn (j − 1) = an (j)xn (j), xn (n) = 1. (42)

The solution to (42) is

xn (n − k) = Γ(n − k, n)xn (n) (43)

where

Γ(i − k, i − l) :=

{∏k−1
s= l a(i − s), 0 ≤ l < k,

1, k = l
(44)

for integers i, k, l. Now consider (44) with l = 0 for step k, where
0 < k ≤ n − 1 as

Γ(n − k, n) =
k−1∏
s=0

an (n − s)

=
k−1∏
s=0

(
−n + m + s

T

)
(45)

=
(−1

T

)k

(n + m + k − 1)(n + m + k − 2)...

× (n + m + 1)(n + m). (46)

Multiplying the numerator and denominator of (46) by (n + m − 1)!
results in

Γ(n − k, n) =
(−1)k (n + m + k − 1)!

T k (n + m − 1)!
, 0 < k ≤ n − 1. (47)

Then the solution to (42) is provided by (43) and (47), and the initial
condition xn (n) = 1, which gives

xn (n − k) =
(−1)k (n + m + k − 1)!

T k (n + m − 1)!
, 0 < k ≤ n − 1. (48)

Define j := n − k, so that k = n − j. Then, since xn (j) = p̄n ,j , (48)
is rewritten as

xn (j) = p̄n ,j =
(−1)n−j (2n + m − j − 1)!

T n−j (n + m − 1)!
, 1 ≤ j ≤ n − 1.

Now for the systems defined by (20) for i = n − 1, n − 2, . . . , 2,
define

xi (j) := p̄i ,j , ai (j) := −n + m + i − j

T
, ui (j) := p̄i+1 ,j .

Then, (20) can be expressed as

xi (j − 1) = ai (j)xi (j) + ui (j), xi (i) = 1 (49)

whose solution is

xi (i − k) = Γ(i − k, i)xi (i) +
k−1∑
l=0

Γ(i − k, i − (l + 1))ui (i − l).

(50)

As for i = n, the transition from the initial condition is

Γ(i − k, i) =
k−1∏
s=0

ai (i − s)

=
(−1)k (n + m + k − 1)!

T k (n + m − 1)!
(51)

by using (45)–(47). Then, for the inputs

Γ(i − k, i − (l + 1)) =
k−1∏

s= l+1

ai (i − s)

=
k−1∏

s= l+1

(
−n + m + s

T

)

=
(−1)k−( l+1) (n + m + k − 1)!

T k−( l+1) (n + m + l)!
. (52)
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Fig. 1. Time histories of states and state estimates for Example 1, for
three sets of initial conditions.

Then, rewriting (50) with (51) and (52) gives

xi (i − k) =
(−1)k (n + m + k − 1)!

T k (n + m − 1)!
xi (i)

+
k−1∑
l=0

(−1)k−( l+1) (n + m + k − 1)!
T k−( l+1) (n + m + l)!

ui (i − l). (53)

Define j := i − k, so that k = i − j. Then, (53) is rewritten as

xi (j) =
(−1)i−j (n + m + i − j − 1)!

T i−j (n + m − 1)!

+
i−j−1∑
l=0

(−1)i−j−( l+1) (n + m + i − j − 1)!
T i−j−( l+1) (n + m + l)!

ui (i − l)

(54)

after using xi (i) = 1. Then, since xi (j) = p̄i ,j and ui (i − l) =
p̄i+1 , i−l , (54) becomes

p̄i ,j =
(−1)i−j (n + m + i − j − 1)!

T i−j (n + m − 1)!

+
i−j−1∑
l=0

(−1)i−j−( l+1) (n + m + i − j − 1)!
T i−j−( l+1) (n + m + l)!

p̄i+1 , i−l .

�

IV. NUMERICAL SIMULATIONS

We illustrate the performance of the observer (7) through the fol-
lowing example.

Example 1: Consider the double integrator with single output as

ẋ1 (t) = x2 (t)

ẋ2 (t) = u(t)

y(t) = x1 (t).

Fig. 2. Time histories of state estimation errors for the simulations
shown in Fig. 1.

Fig. 3. Time histories of output estimation error injection terms for the
simulations shown in Fig. 1.

The observer (7) becomes

˙̂x1 (t) = x̂2 (t) + g1 (t − t0 , T ) (y(t) − x̂1 (t))

˙̂x2 (t) = u(t) + g2 (t − t0 , T ) (y(t) − x̂1 (t))

which has the error dynamics

˙̃x1 (t) = x̃2 (t) − g1 (t − t0 , T )x̃1 (t)

˙̃x2 (t) = −g2 (t − t0 , T )x̃1 (t).

Using (18)–(21) and the algorithm provided in Remark 1, we find
the constants {p̄i ,j } to be p̄1 ,1 = p̄2 ,2 = 1, p̄1 ,2 = 0, and p̄2 ,1 =
−m +2

T
. Then, from (22) and (23), g1 (t − t0 , T ) and g2 (t − t0 , T ) are
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Fig. 4. Time histories of states and state estimates for Example 1, for
three values of the observer parameter m.

Fig. 5. Time histories of state estimation errors for the simulations
shown in Fig. 4.

found to be

g1 (t − t0 , T ) = l1 + 2
m + 2

T
μ1

g2 (t − t0 , T ) = l2 + l1
m + 2

T
μ1 +

(m + 1)(m + 2)
T 2 μ2

1 .

Fig. 1 illustrates simulation of Example 1 with control input u(t) =
sin(10t) + cos(t) for three sets of initial conditions: (x1 (0), x2 (0)) =
(0, 1), (x1 (0), x2 (0)) = (0, 5), and (x1 (0), x2 (0)) = (0, 10). In all
cases, the observer was initialized to (x̂1 (0), x̂2 (0)) = (0, 0). The ini-
tial time is t0 = 0, and the terminal time is tf = 5. For observer pa-
rameters, we selected l1 = l2 = 1, m = 1, and T = 5. In Fig. 1, solid
lines denote the states, and dashed lines denote the estimates. Fig. 2
shows the corresponding estimation error states versus time. Figs. 1
and 2 show that the convergence of the estimation errors to zero is

Fig. 6. Time histories of output estimation error injection terms for the
simulations shown in Fig. 4.

achieved at the prescribed time T = 5, regardless of the initial condi-
tions, which illustrates the fixed-time property of the observer. Fig. 3
shows the corresponding output estimation error injection terms versus
time. As proven in Theorem 1, they remain uniformly bounded and
converge to zero as t → t0 + T .

Figs. 4–6 again illustrate simulation of Example 1 with control input
u(t) = sin(10t) + cos(t), but with initial conditions (x1 (0), x2 (0)) =
(20, 1), (x̂1 (0), x̂2 (0)) = (0, 0), observer parameters l1 = l2 = 1 and
T = 5, and the observer parameter m ≥ 1 is varied. In Fig. 4, solid lines
denote the states, and dashed lines denote the estimates. Figs. 5 and 6
show the corresponding estimation error states and output estimation
error injection terms. Figs. 4–6 show that varying the parameter m
tunes the transient responses of the estimation error states, but for all
m used, the estimation error states converge to zero at the prescribed
time T = 5.

V. CONCLUSION

The main benefit of the observer (7) is how easily it allows the user
to prescribe the convergence time irrespective of initial conditions.
In the presence of significant unmodeled dynamics or measurement
disturbances, convergence of the estimation error will degrade to a
nonzero neighborhood of the origin. For linear time-invariant systems
with piecewise-constant measurement disturbances, the hybrid-system
finite-time observer of Li and Sanfelice [19] may be more appropriate
than (7).

APPENDIX

Proof of Lemma 2: The transformation (16) can be written as

z̃ = P ∗(μ1 )ζ̃

where P ∗(μ1 ) has elements given by (17)–(21), which show that
P ∗(μ1 ) is unit lower triangular. Then, substituting in (15) for ζ̃ and
using μ = μn +m

1 gives

z̃ = P ∗(μ1 )μn +m
1 x̃. (55)

Now factoring out μm +1
1 to the left and defining the matrix P (μ1 ) :=

P ∗(μ1 )μn−1
1 gives (32) and (33). �
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Proof of Lemma 3: From (17)–(21), it is clear that the matrix
P ∗(μ1 ) is unit lower triangular. Then, its inverse exists and is also
unit lower triangular. Define Q∗ := (P ∗)−1 (μ1 ). Since P ∗(μ1 ) is in-
vertible, and since ν = μ−1

1 , we obtain from (55)

x̃ = νn +m Q∗z̃. (56)

Since Q∗ is the inverse of P ∗(μ1 ), the matrix Q∗ obeys

P ∗(μ1 )Q∗ = In (57)

where In is the n × n identity matrix. After obtaining the elements
of P ∗(μ1 ) from (17)–(21), we can determine the elements of Q∗ by
solving (57) using forward substitution. The result of this process yields
the matrix Q∗(ν) with elements {q∗i ,j (ν)} of the form

q∗i ,j (ν) = q̄i ,j ν
j−i

where the {q̄i ,j } are known functions of the known constants {p̄i ,j }.
Having determined the {q∗i ,j (ν)} in this way, we return to (56), which
now reads

x̃ = νn +m Q∗(ν)z̃. (58)

Now factoring out νm +1 to the left and defining the matrix Q(ν) :=
νn−1Q∗(ν) gives (34) and (35).

The finiteness of q̄ follows from the fact that |Q(ν)| is a continuous
function of a bounded argument ν ∈ (0, 1]. �
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