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a b s t r a c t

This paper develops boundary feedback control laws to reduce stop-and-go oscillations in congested
traffic. The macroscopic traffic dynamics are governed by Aw–Rascle–Zhang (ARZ) model, consisting of
second-order nonlinear partial differential equations (PDEs). A criterion to distinguish free and congested
regimes for the ARZ traffic model leads to the study of hetero-directional hyperbolic PDE model of
congested traffic regime. To stabilize the oscillations of traffic density and speed in a freeway segment, a
boundary input through ramp metering is considered. We discuss the stabilization problem for freeway
segments respectively, upstreamanddownstreamof the ramp. For themore challengingupstreamcontrol
problem, our full-state feedback control law employs a backstepping transformation. Both collocated and
anti-collocated boundary observers are designed. The exponential stability in L2 sense and finite time
convergence to equilibrium are achieved and validated with simulation. In the absence of relaxation
time and boundary parameters’ knowledge, we propose adaptive output feedback control design. Control
is applied at outlet and the measurement is taken from inlet of the freeway segment. We use the
backstepping method to obtain an observer canonical form in which unknown parameters multiply
with measured output. A parametric model based on this form is derived and gradient-based parameter
estimators are designed. An explicit state observer involving the delayed values of the input and the
output is introduced for state estimation. Using the parameter and state estimates,wedevelop an adaptive
output feedback control law which achieves convergence to the steady regulation in the L2 sense.

© 2018 Published by Elsevier Ltd.

1. Introduction

The stop-and-go traffic is a common phenomenon in congested
freeway, causing increase consumptions of fuel and unsafe driving
conditions. The oscillations appear with no apparent road change
and are caused by delay of a driver’s response. It is of great
importance if we can reduce this kind of traffic congestion. The
traffic instabilities, also known as ‘‘jamiton’’, Belletti, Huo, Litrico,
and Bayen (2015), Fan, Herty, and Seibold (0000), Flynn, Kasimov,
Nave, Rosales, and Seibold (2009) and Seibold, Flynn, Kasimov, and
Rosales (2012) are well represented by Aw–Rascle–Zhang (ARZ)
model (Aw& Rascle, 2000; Zhang, 2002), which consists of second-
order, nonlinear hyperbolic PDEs of traffic density and velocity.

The traffic congestion on freeway has been investigated inten-
sively with different levels of traffic model. Macroscopic model-
ing of traffic dynamics with PDE has been proposed, including
first-order model by Ligthill and Whitham and Richards (LWR)
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(Lighthill &Whitham, 1955; Richards, 1956), second-order Payne–
Whitham (PW) model (Payne, 1971; Whitham, 2011) and second-
order ARZ model. The first-order LWR model fails to model
stop-and-go traffic, which does not obey the density–velocity
relation in equilibrium. To improve the LWR model, PW model
developed a velocity equation to allow deviations from the
density–velocity equilibrium. The PWmodel, consisting of themo-
mentum equation and conservation law, is nonlinear second-order
PDEs. It is shown in Cassidy and Windover (1995) and Daganzo
(1995) that disturbances in PW model travel faster than traffic
velocity. As a result, vehicle on freeway is influenced from both
behind and front, indicating that traffic flow is isotropic. How-
ever, Zhang (2002) pointed out that traffic flow is anisotropic since
drivers mostly respond to the traffic in front of them. To deal with
this, Aw and Rascle (2000) and Zhang (2002) separately proposed
a new velocity equation to deal with the problem. Combining
these two models together by proper definition and choice of
coefficients, the ARZ model is used in this paper.

To stabilize the oscillations of stop-and-go traffic, we propose
boundary control strategies. Boundary control through ramp me-
tering and varying speed limits are widely and effectively used
nowadays in freeway traffic management. In developing boundary
feedback control through rampmetering and varying speed limits,
many recent efforts (Belletti et al., 2015; Karafyllis, Bekiaris-Liberis,
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& Papageorgiou, 2017; Zhang & Prieur, 2017) focus on ARZ model,
due to its simplicity and realism. In Belletti et al. (2015), spectral
analysis is applied to the linearized ARZ model and a parameter
comparable to Froude number is proposed to classify different
regimes in traffic flow. The boundary control and measurement
are designed based on the spectral analysis. Zhang and Prieur
(2017) investigate the local stability of a positive hyperbolic system
with application to the ARZ model and Karafyllis et al. (2017)
provide a boundary control law that achieves global stabilization.
The control strategy developed in Belletti et al. (2015) and Zhang
and Prieur (2017) both needed coordination of ramp metering
and varying speed limits. The previously cited results Zhang &
Prieur (2017) and Karafyllis et al. (2017) considered the homoge-
neous ARZ model, neglecting the relaxation term which reflects
adaptation of driver’s behavior to traffic conditions (Fan, Herty, &
Seibold, 2013). In this paper, the relaxation term is kept in the ARZ
model and therefore the inhomogeneous ARZ model is considered
which preservesmore potential to yield a realistic prediction.More
importantly, only the inhomogeneous ARZ model considering the
delay of driver’s response is able to describe the instabilities of uni-
form states in stop-and-go traffic problem. At the same time, only
ramp metering control is implemented which is more applicable
in practice. Furthermore, the adaptive control problem is solved.
The stabilization of ARZ model is achieved without knowing some
boundary parameters and relaxation time.

The key idea of our control design is applying backstepping
method to ARZ model which is a hyperbolic PDE system. Theoret-
ical results on boundary control design for PDEs using backstep-
ping method have been developed for 2 × 2 coupled hyperbolic
systems in Anfinsen and Aamo (2018), Coron, Vazquez, Krstic, and
Bastin (2013), Deutscher (2017a, b), Vazquez, Krstic, and Coron
(2011), and Yu, Vazquez, and Krstic (2017), and general hetero-
directional hyperbolic systems in Anfinsen, Diagne, Aamo, and
Krstic (2016), Auriol and Meglio (2016), Deutscher (2017c), Hasan,
Aamo, and Krstic (2016), Hu, Meglio, Vazquez, and Krstic (2016),
Meglio, Argomedo, Hu, and Krstic (2016), Meglio, Vazquez, and
Krstic (2013), and Su, Wang, and Krstic (2017). We adopt and
enhance the existing methodology to fit the ARZ model. This is
an essential step for boundary control of freeway traffic in its PDE
formulation.We develop full-state feedback boundary control law,
boundary observer based on Vazquez et al. (2011) and further
enhanced the adaptive control design based on Yu et al. (2017).
We address the problem of unknown parameter coupling with
boundary measurement which is absent in the previous literature.

The main contribution of this paper: this is the first result
on boundary feedback control of inhomogeneous ARZ model to
authors knowledge. We address the traffic dynamics with ARZ
PDE model from control perspectives, explore the general frame-
work for stabilization problem of stop-and-go traffic and develop
boundary feedback control design including both nonadaptive and
adaptive designs. Motivated by the ARZ PDE model, our work
yields some theoretical advance relative to previous results on
adaptive control design for hyperbolic systems. Most importantly,
this result paves the way for addressing the traffic problem with
PDE boundary control, as one of its most important application.

The outline is as follows: Section 2 presents linearized ARZ
model and free/congested regime. Section 3 proposes a general
freeway traffic control model through ramp-metering. Sections 4
and5provide boundary control design for downstreamof the ramp
metering traffic and full-state feedback control law and observers
for upstream of the ramp metering traffic. Section 6 gives adap-
tive output feedback design for the upstream of ramp metering
problem. Both the nonadaptive control design and adaptive design
are validated with simulation in Section 7. Section 8 summarizes
results and discusses future work of this paper.

2. Problem statement

We consider the Aw–Rascle–Zhang model with a relaxation
term and linearize it around steady states.

2.1. Aw–Rascle–Zhang model

The Aw–Rascle model is

∂tρ + ∂x(ρv) =0, (1)

∂tv + (v − ρp′(ρ))∂xv =
V (ρ) − v

τ
. (2)

The state variable ρ(x, t) is the traffic density and v(x, t) is the
traffic speed, V (ρ) is the equilibrium traffic speed profile and τ is
the relaxation time related to driving behavior. The variable p(ρ) is
defined as the traffic pressure, an increasing function of density

p(ρ) = ργ , (3)

and γ ∈ R+.
The Zhang model is given by

∂tρ + ∂x(ρv) =0, (4)
∂tv +

(
v + ρV ′(ρ)

)
∂xv =0. (5)

Combining these two models together, we have the Aw–Rascle–
Zhang model in (ρ, v) given in (1), (2), and the conditions p′(ρ) =

−V ′(ρ) and p(0) = 0 need to be satisfied so that the Aw–Rascle
model and the Zhang model are consistent. Thus it holds that

p(ρ) = vf − V (ρ), (6)

where vf is the free flow velocity. Since V (ρm) = 0 and ρm is the
maximum density, p(ρ) = ργ is rescaled as

p(ρ) = vf

(
ρ

ρm

)γ
. (7)

The equilibrium velocity–density relationship V (ρ) is given in the
form of Greenshield’s model (Greenshields, Bibbins, Channing, &
Miller, 1935),

V (ρ) = vf − p(ρ) = vf

(
1 −

(
ρ

ρm

)γ)
. (8)

2.2. Linearized ARZ model

The traffic density is the number of vehicles per unit length. The
traffic flux is defined as the number of vehicles per unit timewhich
cross a given point on the road,which is amore reasonable physical
variable to control by ramp metering. Therefore, we rewrite the
ARZ model in traffic flux and velocity (q, v),

qt + vqx =
q(γ p − v)

v
vx +

q(vf − p − v)
τv

, (9)

vt − (γ p − v)vx =
vf − p − v

τ
, (10)

where the traffic flow flux q is defined as

q = ρv. (11)

The traffic pressure p(ρ) and flux q are related by

p =
vf

ρ
γ
m

( q
v

)γ
. (12)

There is no explicit solution to the nonlinear hyperbolic (q, v)-
system in (9), (10). To better understand the dynamics of the ARZ
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traffic model, we linearize the model around steady states (q⋆, v⋆).
The small deviations from the nominal profile are defined as

q̃(x, t) =q(x, t) − q⋆, (13)
ṽ(x, t) =v(x, t) − v⋆, (14)

where x ∈ [0, L], t ∈ [0,∞).
We consider the traffic dynamics of a segment of freeway and L

is the length of freeway segment. For inlet boundary at x = 0, we
consider a constant traffic flux q⋆ entering the domain which can
be realized by implementing a mainline flux metering at the inlet,

q(0, t) = q⋆. (15)

For outlet, we assume to implement a mainline density metering
so that the following condition holds,

ρ(L, t) = ρ⋆. (16)

Applying this assumption to the outlet boundary x = L of con-
sidered freeway section and we obtain a boundary condition for
(q, v)-system in (9), (10),

v(L, t) =
1
ρ⋆

q(L, t). (17)

The linearized ARZmodel is describedwith the following (q̃, ṽ)-
system,

q̃t + v⋆q̃x −
q⋆(γ p⋆ − v⋆)

v⋆
ṽx = −

q⋆

τ

(
1
v⋆

−
1
γ p⋆

)
ṽ

−
γ p⋆

τv⋆
q̃, (18)

ṽt − (γ p⋆ − v⋆)ṽx =
γ p⋆ − v⋆

τv⋆
ṽ −

γ p⋆

τq⋆
q̃, (19)

with the linearized boundary conditions

q̃(0, t) =0, (20)

ṽ(L, t) =
1
ρ⋆

q̃(L, t). (21)

where p⋆ = p(q⋆, v⋆), according to (12).

2.3. Free/congested regime analysis

According to the relation between p⋆ and v⋆ in (6), the following
holds

v⋆ − γ p⋆ = v⋆ − γ (vf − v⋆) = (1 + γ )v⋆ − γ vf . (22)

For free-flow regime, γ p⋆ < v⋆ implies v⋆ > γ

γ+1vf . For congested
regime, γ p⋆ > v⋆ implies v⋆ < γ

γ+1vf . Therefore, v
⋆
=

γ

γ+1vf is the
critical velocity to distinguish the free regime and the congested
regime of traffic flow.

• Free-flow regime : ρ⋆⟨
ρm

(1+γ )1/γ
⇔ v⋆⟩

γ

γ+1vf .
In the free-flow regime, both the disturbances of traffic flux
and velocity travel downstream, at respective speeds v⋆ and
v⋆−γ p⋆. The linearizedARZmodel in free-regime is a homo-
directional hyperbolic PDEs.

• Congested regime : ρ⋆ >
ρm

(1+γ )1/γ
⇔ v⋆ <

γ

γ+1vf .
In the congested regime, the disturbances of the traffic flow
flux are carried downstream by the vehicles that generated
them. The disturbances of the traffic speed travel upstream
at a speed of γ p⋆ − v⋆. Therefore, we are dealing with
a hetero-directional coupled hyperbolic system, given that
v⋆ − γ p⋆ < 0 and v⋆ > 0 in the congested regime. The
disturbances force vehicles into deceleration–acceleration

cycles, leading to the traffic oscillations, known as the stop-
and-go traffic. This kind of instability in traffic causes unsafe
driving conditions, extra fuel consumptions and eventually
evolves into a bumper-to-bumper jam.

• Bumper-to-bumper traffic jam : ρ⋆ = ρm ⇔ v⋆ = 0
The traffic becomes bumper-to-bumper jammed when the
traffic density reaches its maximum and traffic speed equals
0.

In this paper, we focus on control design for the congested
regime

ρm > ρ⋆ >
ρm

(1 + γ )1/γ
⇔ 0 < v⋆ <

γ

1 + γ
vf . (23)

We choose the steady states (ρ⋆, v⋆) satisfying above inequalities
but not too close to bounds so that small disturbances will not
exceed them.

3. Boundary control model

Before we apply boundary control to the linearized ARZ model
in (q̃, ṽ), we represent the system in Riemann coordinates and then
map it to a decoupled first-order 2× 2 hyperbolic system in (w̄, v̄).
We propose two different control strategies for the hyperbolic
(w̄, v̄)-system through ramp metering control.

3.1. Mapping to a first-order 2 × 2 hyperbolic system

We define new variables (w, v̄) in Riemann coordinates,

w =q̃ − q⋆
(

1
v⋆

−
1
γ p⋆

)
ṽ, (24)

v̄ =
q⋆

γ p⋆
ṽ, (25)

We obtain

wt (x, t) + v⋆wx(x, t) = −
1
τ
w, (26)

v̄t (x, t) − (γ p⋆ − v⋆)v̄x(x, t) = −
1
τ
w, (27)

w(0, t) = −
γ p⋆ − v⋆

v⋆
v̄(0, t), (28)

v̄(L, t) =w(L, t). (29)

In order to decouple (26) and (29), we introduce a scaled state as
follows:

w̄(x, t) = exp
( x
τv⋆

)
w(x, t). (30)

The (w, v̄)-system is then transformed to a first-order 2× 2 hyper-
bolic system

w̄t (x, t) = − v⋆w̄x(x, t), (31)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (32)
w̄(0, t) = − k0v̄(0, t), (33)
v̄(L, t) =κw̄(L, t). (34)

where

c(x) = −
1
τ
exp

(
−

x
τv⋆

)
, (35)

k0 =
γ p⋆ − v⋆

v⋆
, (36)

κ = exp
(

−L
τv⋆

)
. (37)
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Fig. 1. A freeway segment controlled by ramp-metering.

The spatially varying coefficient c(x) is a strictly increasing function
and is bounded by

−
1
τ

≤ c(x) ≤ −
κ

τ
. (38)

The following relations for boundary values are obtained from
(24)–(25),

q̃(0, t) =w̄(0, t) + k0v̄(0, t), (39)
q̃(L, t) =κw̄(L, t) + k0v̄(L, t), (40)

The applicable boundary control inputs could be traffic flow flux at
either the inlet or at the outlet of a freeway section.We summarize
the transformation from the linearized Aw–Rascle–Zhangmodel in
(q̃, ṽ)-system to (w̄, v̄)-system,

w̄(x, t) = exp
( x
τv⋆

) (
q̃(x, t) − ρ1ṽ(x, t)

)
, (41)

v̄(x, t) =ρ2ṽ(ξ, t). (42)

And the inverse transformation is given by

q̃(x, t) = exp
(
−

x
τv⋆

)
w̄(x, t) + k0v̄(x, t), (43)

ṽ(x, t) =
1
ρ2
v̄(ξ, t). (44)

where the constant, positive coefficients are defined as follows:

ρ1 = q⋆
(

1
v⋆

−
1
γ p⋆

)
, ρ2 =

q⋆

γ p⋆
. (45)

Therefore, we can study the stability of (q̃, ṽ)-system through
(w̄, v̄)-system due to their equivalence. The control laws we ob-
tain later for the (w̄, v̄)-system guarantee the equivalent stability
properties of the (q̃, ṽ)-system.

3.2. UORM/DORM ramp metering control

Considering a ramp metering is installed at freeway on-ramp
to reduce the oscillations in the congested traffic, we propose two
different control designs based on the domain we aim to control
with the ramp metering. (See Fig. 1.)

If we consider controlling the traffic downstream of the ramp
metering (DORM) in the domain D , the ramp metering is located
at the inlet of the domain D and Uin(t) is the control law to be
designed. The DORM controller Uin(t) is applied with q̃(0, t).

In the case that we control the traffic upstream of the ramp
metering (UORM) in the domainU , the controllerUout(t) is located
at the outlet of domain U . The UORM controller Uout(t) is applied
with q̃(L, t).

3.2.1. DORM control
Wedefine a rampmetering boundary control inputUin(t) at the

inlet of D ,

Uin(t) =qr (t) = q̃(0, t), (46)
q̃(L, t) =ρ⋆ṽ(L, t). (47)

Note that theDORMcontrollerUin(t) is appliedwith the traffic flow
flux variation at the inlet of domain D . The other boundary condi-
tion does not change. We need to implement a density metering at
mainline outlet so that a constant density is enforced.

Substituting (46) into (39), we obtain the controlled boundary.
The DORM control model is given by (w̄, v̄)-system in (31), (32)
with controlled boundary at the inlet in (50),

w̄t (x, t) = − v⋆w̄x(x, t), (48)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (49)
w̄(0, t) = − k0v̄(0, t) + Uin(t), (50)
v̄(L, t) =κw̄(L, t). (51)

3.2.2. UORM control
We consider a constant traffic flux entering the domain U and

the control input Uout(t) is implemented with the ramp metering
at the outlet of the domain. For inlet, we need to implement a flux
metering atmainline so that a constant flux is enforced. The UORM
control input Uout(t) and q̃(0, t) are defined as

Uout(t) =qr (t), (52)
q̃(0, t) =0. (53)

The total traffic flow flux variation at the outlet of domain U
includes the traffic flow flux variation from the mainline and from
the ramp.

q̃(L+, t) = q̃(L−, t) + qr (t). (54)

The mainline flow flux variation q̃(L−, t) in the domain is given by
(40). The flow flux variation q̃(L+, t) of the downstream of domain
U is given by (21). Substituting (40) and (21) into (54), we obtain
the UORM control model with controlled boundary at the outlet in
(58).

w̄t (x, t) = − v⋆w̄x(x, t), (55)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (56)
w̄(0, t) = − k0v̄(0, t), (57)
v̄(L, t) =κw̄(L, t) + Uout(t), (58)

3.3. Spectrum analysis of control models with zero input

In order to explore the traffic dynamics in the open loop-system,
we consider the zero input for DORM or UORM control design

qr (t) =0, (59)
Uin(t) =0, Uout(t) = 0. (60)

According to boundary conditions in (50), (51) or (57), (58), we
have the following zero input system that holds for both control
models

w̄t (x, t) = − v⋆w̄x(x, t), (61)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (62)
w̄(0, t) = − k0v̄(0, t), (63)
v̄(L, t) =κw̄(L, t), (64)

where x ∈ [0, L] and t > 0. The diagram is shown in Fig. 2.
The above zero-input system is equivalent to the open-loop

(q̃, ṽ)-system in (18)–(21).
In order to analyze the spectrum of the system with zero input

in (61)–(64), we transform the first-order 2 × 2 hyperbolic system
to a second-order wave equation.

ytt (x, t) =v⋆(γ p⋆ − v⋆)yxx(x, t) − (2v⋆ − γ p⋆)yxt (x, t)

−
1
τ
yt (x, t) +

γ p⋆ − v⋆

τ
yx(x, t), (65)

yt (0, t) =0, (66)
yx(L, t) =0. (67)
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Fig. 2. Diagram of control model with zero input.

The new variable y(x, t) satisfies the following relations,

w(x, t) =yt (x, t) − (γ p⋆ − v⋆)yx(x, t),
v̄(x, t) =yt (x, t) + v⋆yx(x, t). (68)

The term yxt is a structural damping, of which effect is fully ad-
dressed in D’Abbicco and Reissig (2014). The term yt is also a
damping term and the longer reaction time τ will cause theweaker
damping effect of yt in the domain.

The wave equation is written in the vector form,

∂

∂t

(
y
yt

)
= A

(
y
yt

)
, (69)

where the operator matrix A is(
yt

−
1
τ
yt − (2v⋆ − γ p⋆)yxt +

γ p⋆ − v⋆

τ
yx + v⋆(γ p⋆ − v⋆)yxx

)
.

The eigenvalues of A are obtained by solving the following equa-
tions,

λy =yt , (70)

λ2y = − (2v⋆ − γ p⋆)λyx −
λ

τ

+
γ p⋆ − v⋆

τ
yx + v⋆(γ p⋆ − v⋆)yxx. (71)

We take Fourier transform with respect to the spatial variable x ∈

[0, L]. We map y(x, t) → ŷ(n, t), n ∈ Z,

y(x) =

∞∑
n=1

ŷn exp
(
inx
L

)
. (72)

The nth Fourier coefficient is defined as

ŷn =

∫ L

0
y(x) exp

(
−inx
L

)
dx, (73)

the transformation yields

ŷx =
inx
L

ŷ, ŷxx =
−n2

L2
ŷ. (74)

Substituting ŷx and ŷxx into (71), the kth pair of eigenvalues satisfies
the following quadratic equation:

0 =λ2 +

(
2v⋆ − γ p⋆

L
ni +

1
τ

)
λ

+
v⋆(γ p⋆ − v⋆)

L2
n2

−
γ p⋆ − v⋆

τL
ni. (75)

The nth pair of eigenvalues is obtained by solving the quadratic
equation,

λ1,2 =
−

1
τ

−
(2v⋆−γ p⋆)

L ni ± ( 1
τ

+
γ p⋆

L ni)
2

. (76)

Thus there are two sets of eigenvalues in the left half plane,

λ1 =
γ p⋆ − v⋆

L
ni, λ2 = −

1
τ

−
v⋆

L
ni. (77)

Fig. 3. Time response of DORM control model.

The eigenvalue λ1 only contains the imaginary part. The longer
the relaxation time τ , the smaller the negative real part in the
eigenvalue λ2. As τ → ∞ and n → ∞,

λ1 → Im(+∞), λ2 → Im(−∞). (78)

According to the above spectral analysis, two sets of eigenvalues
locate along the imaginary axis. The system is marginal stable and
there are persistent oscillations in the domain of the zero input
system in (61)–(64). Therefore, it is meaningful to propose control
design for the system.

4. DORM control design

The DORM control problem is given by

w̄t (x, t) = − v⋆w̄x(x, t), (79)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (80)
w̄(0, t) = − k0v̄(0, t) + Uin(t), (81)
v̄(L, t) =κw̄(L, t), (82)

where x ∈ D ≜ [0, L] and t > 0. The diagram of DORM control
model is shown in Fig. 3.

If we choose the DORM controller as

Uin(t) = k0v̄(0, t), (83)

we get w̄(0, t) = 0. The explicit solution to the above (w̄, v̄)-
system with the DORM control law (83) is

w̄(x, t) =

⎧⎪⎨⎪⎩
w̄(x − v⋆t, 0), t <

x
v⋆
,

w̄

(
0, t −

x
v⋆

)
, t ≥

x
v⋆
,

(84)

and for t ≥
x
v⋆
,

w̄(x, t) ≡ 0. (85)

Solving for v̄(x, t), we have

v̄(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̄(x + (γ p⋆ − v⋆)t, 0)

+

∫ t

0
c(x + (γ p⋆ − v⋆)(t − s))w̄(0, s)ds,

t <
L − x

γ p⋆ − v⋆
,

κw̄

(
L, t −

L − x
γ p⋆ − v⋆

)
+

1
γ p⋆ − v⋆

∫ L

x
c(s)w̄

(
0, t +

x − s
γ p⋆ − v⋆

)
ds,

t ≥
L − x

γ p⋆ − v⋆
.

(86)

Thus for t ≥ tf , it holds that

v̄(x, t) ≡ 0. (87)
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where

tf =
L
v⋆

+
L

γ p⋆ − v⋆
. (88)

Substituting k0 in (36) and v̄ in (42), we get

Uin(t) = ρ1ṽ(0, t). (89)

The DORM boundary controller Uin(t) is obtained by the measure-
ment of ṽ(0, t). To show the exponential stability of the system in
the L2 sense, we construct the following Lyapunov functions

V1(t) =
1

2v⋆

∫ L

0
e−xw̄2(x, t)dx, (90)

V2(t) =
1

2(γ p⋆ − v⋆)

∫ L

0
exv̄2(x, t)dx, (91)

and differentiate the Lyapunov functions in time. We obtain
the following inequalities using Cauchy–Schwarz Inequality and
Young’s Inequality,

V̇1 ≤ − e−L(w̄2(L) + ∥w̄∥
2), (92)

V̇2 ≤eLv̄2(L) − v̄2(0) − ∥v̄∥2

+
1

γ p⋆ − v⋆

∫ L

0
exv̄(x)c(x)w̄(x)dx. (93)

According to the boundedness of c(x) in (38), we have

|c(x)| ≤ C0 =
1
τ

(94)

Then it holds that

V̇2 ≤eLκ2w̄2(L) +
1

2d1(γ p⋆ − v⋆)
∥w̄∥

2

−

(
1 −

d1C2
0 e

2L

2(γ p⋆ − v⋆)

)
∥v̄∥2, (95)

where d1 is a positive constant and we choose d1 <
2τ2(γ p⋆−v⋆)

e2L
.

Consider the following Lyapunov function

V = d2V1 + V2, (96)

where d2 = max
(
e2Lκ2, e2L

2d1(γ p⋆−v⋆)

)
, it holds that

V̇ ≤ −d0V , (97)

where d0 = min
(

d2
eL

−
1

2d1(γ p⋆−v⋆)
, 1 −

d1C2
0 e

2L

2(γ p⋆−v⋆)

)
. The exponen-

tial stability of the system (79)–(82) with the DORM boundary
controller (83) is shown above. From the explicit solution of the
system, it holds for t ≥ tf ,

w̄(x, t) ≡ 0, v̄(x, t) ≡ 0. (98)

We summarize above result in the following Theorem.

Theorem 1. Consider system (79)–(82)with inital conditions w̄0, v̄0
∈ L2[0, L] and the control law (83). The equilibrium w̄ ≡ v̄ ≡ 0 is
exponentially stable in the L2 sense and the equilibrium is reached in
finite time t = tf given in (88).

5. UORM control designs

For UORM control design, we have

w̄t (x, t) = − v⋆w̄x(x, t), (99)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (100)
w̄(0, t) = − k0v̄(0, t), (101)
v̄(L, t) =κw̄(L, t) + Uout(t), (102)

Fig. 4. Time response of UORM control model.

where x ∈ U ≜ [0, L] and t > 0. The diagram of the UORM control
model is shown in Fig. 4.

5.1. UORM full-state feedback control design

Using the following backstepping transformation,we transform
the system of UORM control design (99)–(102) into the target
system,

α(x, t) =w̄(x, t), (103)

β(x, t) =v̄(x, t) −

∫ x

0
M(x − ξ )v̄(ξ, t)dξ

−

∫ x

0
K (x, ξ )w̄(ξ, t)dξ . (104)

For boundary conditions, we have w̄(0, t) = α(0, t) and v̄(0, t) =

β(0, t). The target system is given by

αt (x, t) = − v⋆αx(x, t), (105)
βt (x, t) =(γ p⋆ − v⋆)βx(x, t), (106)
α(0, t) = − k0β(0, t), (107)
β(L, t) =0. (108)

To obtain the target system, we take time derivative and spatial
derivative on (104). The following kernel equations and boundary
condition need to be satisfied,

(γ p⋆ − v⋆)Kx − v⋆Kξ =c(ξ )K (x − ξ, 0), (109)

K (x, x) = −
c(x)
γ p⋆

, (110)

where K (x, ξ ) evolves in the triangular domain Z = {(x, ξ ) : 0 ≤

ξ ≤ x ≤ L} and M(x) is defined as

M(x) = −K (x, 0). (111)

The well-posedness of the kernel equations (109)–(111) and the
boundedness of kernel variables are obtained following the same
steps of the proof in the Appendix of Vazquez et al. (2011). There-
fore, invertibility of the backstepping transformation in (103),
(104) is established andwe can study the target system for stability
of the plant.

The UORM full-state feedback controller is chosen as

Uout(t) = − κw̄(L, t) +

∫ L

0
M(L − ξ )v̄(ξ, t)dξ

+

∫ L

0
K (L, ξ )w̄(ξ, t)dξ, (112)

so that β(L, t) = 0 is satisfied. One can easily find the explicit
solution to the target system (105)–(108) and obtain that

α(x, t) ≡ β(x, t) ≡ 0, (113)

after tf = tα + tβ =
L
v⋆

+
L

γ p⋆−v⋆ . Thus α and β go to zeros in finite
time t = tf . It is straightforward to prove that the α, β system is L2
exponentially stable. Due to the invertibility of the transformation,
(w̄, v̄)-system is also L2 exponentially stable.
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Theorem2. Consider system (99)–(102)with inital conditions w̄0, v̄0
∈ L2[0, L] and the control law (112) where the kernels K (x, ξ ) and
M(x) are obtained by solving (109)–(111). The equilibrium w̄ ≡ v̄ ≡

0 is exponentially stable in the L2 sense and the equilibrium is reached
in finite time t = tf given in (88).

Transforming w̄ and v̄ in (112) to q̃ and ṽ using the inverse
transformation in (43)–(44), we get the control law in (q̃, ṽ) as

Uout(t) = − q̃(L, t) + ρ1ṽ(L, t) + ρ1

∫ L

0
M(L − ξ )ṽ(ξ, t)dξ

− κ

∫ L

0
K (L, ξ ) exp

(
ξ

τv⋆

)
ṽ(ξ, t)dξ

+ k0

∫ L

0
K (L, ξ ) exp

(
ξ

τv⋆

)
q̃(ξ, t)dξ . (114)

Due to the invertibility of transformation (41)–(44) between (w̄, v̄)
and (q̃, ṽ), the (q̃, ṽ)-system is exponentially stable and converges
to zero in the finite time. Therefore, the (q, v) system is exponen-
tially stable and converges to (q⋆, v⋆) in the finite time tf .

To obtain Uout(t), we need to take measurement of ṽ and q̃
in the domain U , which might be realized by traffic camera and
fleetGPSdata. However,wepropose the boundary observer design,
considering the difficulties and costs to implement sensors along
the freeway. We introduce two boundary observers; one is located
at the same boundary with the full-state feedback controller and
the other one is anti-collocated with the controller.

5.2. UORM anti-collocated boundary observer design

We define the following anti-collocated boundary measure-
ment

Ya(t) = v̄(0, t). (115)

According to (42), we obtain v̄(0, t) = ρ2ṽ(0, t), by the measure-
ment of ṽ(0, t). Then we design an observer by constructing the
following system,

ŵt (x, t) = − v⋆ŵx(x, t), (116)
v̂t (x, t) =(γ p⋆ − v⋆)v̂x(x, t) + c(x)ŵ(x, t), (117)
ŵ(0, t) = − k0Ya(t), (118)
v̂(L, t) =κŵ(L, t) + Uout(t), (119)

where ŵ and v̂ are the estimates of state variables w̄ and v̄. The
error system is obtained by subtracting the above estimates from
(99)–(102),

w̌t (x, t) = − v⋆w̌x(x, t), (120)
v̌t (x, t) =(γ p⋆ − v⋆) + c(x)w̌(x, t), (121)
w̌(0, t) =0, (122)
v̌(L, t) =κw̌(L, t), (123)

where w̌ = w̄ − ŵ and v̌ = v̄ − v̂. The error system is same as
(79)–(82) with (89). According to Theorem 1, the error system is
exponentially stable in the L2 sense and converges to zeros in finite
time tf .

Theorem 3. Consider system (120)–(123) with initial conditions
w̌0, v̌0 ∈ L2[0, L]. The equilibrium w̌ ≡ v̌ ≡ 0 is exponentially
stable in the L2 sense, which implies that ∥w̄(·, t) − ŵ(·, t)∥ → 0
and ∥v̄(·, t) − v̂(·, t)∥ → 0. The convergence to 0 is reached in finite
time t = tf .

5.3. UORM collocated boundary observer design

We define a collocated boundary measurement

Yc(t) = w̄(L, t). (124)

We obtain w̄(L, t) =
(
q̃(L, t) − ρ1ṽ(L, t)

)
/κ, by the measurement

of q̃(L, t) and ṽ(L, t). Then we design a collocated boundary ob-
server to estimate w̄(x, t) and v̄(x, t) by constructing the system

ŵt (x, t) = − v⋆ŵx(x, t) + r(x)(w̄(L, t) − ŵ(L, t)), (125)

v̂t (x, t) =(γ p⋆ − v⋆)v̂x(x, t) + c(x)ŵ(x, t)

+ s(x)(w̄(L, t) − ŵ(L, t)), (126)

ŵ(0, t) = − k0v̂(0, t), (127)

v̂(L, t) =κYc(t) + Uout(t), (128)

where ŵ and v̂ are the estimates of the state variables w̄ and v̄. The
terms r(x) and s(x) are output injection gains to be designed. The
error system is obtained by subtracting the estimates from (99)–
(102),

w̌t (x, t) = − v⋆w̌x(x, t) − r(x)w̌(L, t), (129)

v̌t (x, t) =(γ p⋆ − v⋆)v̌x(x, t) + c(x)w̌(x, t)

− s(x)w̌(L, t), (130)

w̌(0, t) = − k0v̌(0, t), (131)

v̌(L, t) =0, (132)

where w̌ = w̄ − ŵ and v̌ = v̄ − v̂. We need to find the output
injection gains r(x) and s(x) that guarantee the error system decays
to zero. Using backstepping transformation,we transform the error
system (129)–(132) into the following system

λ̌t (x, t) = − v⋆λ̌x(x, t), (133)

ν̌t (x, t) =(γ p⋆ − v⋆)ν̌x(x, t), (134)

λ̌(0, t) = − k0ν̌(0, t), (135)

ν̌(L, t) =0. (136)

The backstepping transformation is

λ̌(x, t) =w̌(x, t) −

∫ L

x
Ǩ (L + x − ξ )w̌(ξ, t)dξ, (137)

ν̌(x, t) =v̌(x, t) −

∫ L

x
M̌(v⋆x + (γ p⋆ − v⋆)ξ )w̌(ξ, t)dξ, (138)

where the kernel Ľ is given by

M̌(x) = −
1
γ p⋆

c
(

x
γ p⋆

)
. (139)

For boundary condition (135) to hold, the kernels Ǩ and M̌ satisfy
the relation

Ǩ (L − ξ ) = M̌((γ p⋆ − v⋆)ξ ). (140)

the kernel Ǩ is then obtained

Ǩ (x) = −
1
γ p⋆

c
(
γ p⋆ − v⋆

γ p⋆
(L − x)

)
, (141)

and

|Ǩ (x)| ≤
1

γ p⋆τ
, (142)
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according to the boundedness of c(x) in (94). The output injection
gains r(x) and s(x) are

r(x) =v⋆Ǩ (x) = −
v⋆

γ p⋆
c
(
γ p⋆ − v⋆

γ p⋆
(L − x)

)
, (143)

s(x) = − v⋆M̌(v⋆x + (γ p⋆ − v⋆)L)

=
v⋆

γ p⋆
c
(
v⋆

γ p⋆
x −

γ p⋆ − v⋆

γ p⋆
L
)
. (144)

The backstepping transformation is invertible. Therefore, we study
the stability of the error system through the target system (133)–
(136). It is straightforward to prove the exponential stability of
error system in the L2 sense and finite-time convergence.

Theorem 4. Consider system (129)–(132) with inital conditions
w̌0, v̌0 ∈ L2[0, L]. The equilibrium w̌ ≡ v̌ ≡ 0 is exponentially
stable in the L2 sense. It holds that ∥w̄(·, t) − ŵ(·, t)∥ → 0 and
∥v̄(·, t)− v̂(·, t)∥ → 0 and the convergence to equilibrium is reached
in finite time t = tf .

We design an anti-collocated boundary observer and a collo-
cated boundary observer. Both of them achieve the exponential
stability of estimation errors in the L2 sense and finite-time conver-
gence to 0. In comparison, the collocated boundary observer needs
two spatially varying output injection gains, but could be easier
to install in practice since it is located at the same boundary with
UORM controller Uout(t).

5.4. UORM output feedback control design

Combining the state feedback controller and the boundary ob-
servers, we have the output feedback controller

Uout(t) = − κŵ(L, t) +

∫ L

0
M(L − ξ )v̂(ξ, t)dξ

+

∫ L

0
K (L, ξ )ŵ(ξ, t)dξ, (145)

where ŵ and v̂ can be obtained from the anti-collocated boundary
observer in (116)–(119) withmeasurement Ya(t) = v̄(0, t) or from
the collocated boundary observer in (129)–(132) with measure-
ment Yc(t) = w̄(L, t) and observer gains given in (143), (144). The
following theorem summarizes the results from Theorems 2–4.

Theorem5. Consider system (99)–(102)with inital conditions ŵ0, v̂0
∈ L2[0, L] and with output feed control law (145), where the kernels
K (x, ξ ), M(x) are obtained by solving (109)–(111). The equilibrium
w̄ ≡ v̄ ≡ ŵ ≡ v̂ ≡ 0 is exponentially stable in the L2 sense.

6. Adaptive UORM control design

The previous feedback control designs are based on the knowl-
edge of parameters in the system. However, the relaxation time τ
is hard to measure in practice and is affected by many factors. In
addition, coefficient γ in the pressure–density relation reflects the
aggressiveness of drivers’ behavior and relates to road situation.
Due to the change of road at inlet or outlet with on-ramp, values of
γ are different for in-domain and boundaries. We consider γ to be
unknown at boundaries but a known coefficientwithin the domain
U . According to (36), k0 is considered as an unknown constant
parameter at boundary. The adaptive control law that is proposed
in this section can also be used as an alternative non-adaptive
output feedback control design if parameters are given.

Consider the following hyperbolic systemwith adaptive control
input U(t),

w̄t (x, t) = − v⋆w̄x(x, t), (146)
v̄t (x, t) =(γ p⋆ − v⋆)v̄x(x, t) + c(x)w̄(x, t), (147)
w̄(0, t) = − k0v̄(0, t), (148)
v̄(L, t) =κw̄(L, t) + U(t), (149)

with the measurement Y (t) at the inlet and by (25),

Y (t) =ṽ(0, t), (150)
v̄(0, t) =ρ2Y (t), (151)

where x ∈ U ≜ [0, L] and t > 0. The coefficients k0, ρ2 and
κ = exp

(
−L
τv⋆

)
are unknown constant boundary parameters and

c(x) = −
1
τ
exp

(
−

x
τv⋆

)
is unknown spatially-varying parameter,

since τ is unknown. The steady states p⋆, q⋆ and v⋆ are known.

6.1. Scaling the states

First we scale w̄with unknown constant κ and v̄with unknown
constant k2 for the convenience of the parameter estimation,

ω(x, t) =
κ

ρ2
w̄(x, t), (152)

ṽ(x, t) =
1
ρ2
v̄(x, t), (153)

and the system is mapped into

ωt (x, t) = − v⋆ωx(x, t), (154)
ṽt (x, t) =(γ p⋆ − v⋆)ṽx(x, t) + c̄(x)ω(x, t), (155)
ω(0, t) = − κk0ṽ(0, t), (156)

ṽ(L, t) =ω(L, t) +
1
ρ2

U(t), (157)

where the unknown parameters are defined as

c̄(x) =
c(x)
κ
, r0 = −κk0, r1 =

1
ρ2
, (158)

with measurement ṽ(0, t) = Y (t). The scaling of w̄ and v̄ reduces
the number of couplings between unknown coefficients and state
variables.

6.2. Observer canonical form

In order to decouple the (ω, v̄)-system in domain, we use the
following backstepping transformation.

α(x, t) =ω(x, t) −

∫ x

0
M̄(x − ξ )ω(ξ, t)dξ, (159)

β(x, t) =ṽ(x, t) −

∫ x

0
K̄ (v⋆x + (γ p⋆ − v⋆)ξ )ω(ξ, t)dξ . (160)

We transform the (ω, v̄)-system into an observer canonical form,

αt (x, t) = − v⋆αx(x, t) + θ1(x)Y (t), (161)
βt (x, t) =(γ p⋆ − v⋆)βx(x, t) + θ2(x)Y (t) (162)
α(0, t) =r0β(0, t), (163)
β(L, t) =α(L, t) + r1U(t), (164)

where θ1(x) = −v⋆r0M̄(x) and θ2(x) = −v⋆r0K̄ (v⋆x). The measure-
ment is

α(0, t) =r0Y (t), (165)
β(0, t) =Y (t). (166)
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To obtain the target system, we take the time and spatial deriva-
tives on both sides of (159), (160). The kernels are

M̄(x) = −
1
γ p⋆

c̄
(
L −

γ p⋆ − v⋆

γ p⋆
x
)
, K̄ (x) = −

1
γ p⋆

c̄
(

x
γ p⋆

)
, (167)

and new spatial parameters are

θ1(x) =
r0v⋆

γ p⋆
c̄
(
L −

γ p⋆ − v⋆

γ p⋆
x
)
, θ2(x) =

r0v⋆

γ p⋆
c̄
(
v⋆

γ p⋆
x
)
. (168)

Remark 6. For ∀x ∈ [0, L], the following holds forΘ ≜ γ p⋆−v⋆

γ p⋆τ ,

|θ1(x)| ≤ Θ, |θ2(x)| ≤ Θ. (169)

6.3. Parametric model and parameter estimation

We can easily find the input/output relation for the observer
canonical form by solving the system (161)–(164) directly,

α(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(x − v⋆t, 0) +

∫ t

0
θ1(x − v⋆(t − s))Y (s)ds,

t <
x
v⋆
,

α

(
0, t −

x
v⋆

)
+

1
v⋆

∫ x

0
θ1(s)Y

(
t −

x − s
v⋆

)
ds,

t ≥
x
v⋆
.

(170)

Substituting intoα(0, t) = r0Y (t) and thereforewe find, for t ≥
x
v⋆
:

α(x, t) = r0Y
(
t −

x
v⋆

)
+

1
v⋆

∫ x

0
θ1(s)Y

(
t −

x − s
v⋆

)
ds. (171)

Thus we can obtain α(L, t) by the knowledge of Y (t) from t −
L
v⋆

to t ,

α(L, t) = r0Y
(
t −

L
v⋆

)
+

1
v⋆

∫ L

0
θ1(s)Y

(
t −

L − s
v⋆

)
ds. (172)

Given β(L, t) = α(L, t) + r1U(t), we solve for β(x, t),

β(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(x + (γ p⋆ − v⋆)t, 0)

+

∫ t

0
θ2(x + (γ p⋆ − v⋆)(t − s))Y (s)ds,

t <
L − x

γ p⋆ − v⋆
,

β

(
L, t −

L − x
γ p⋆ − v⋆

)
+

1
γ p⋆ − v⋆

∫ L

x
θ2(s)Y

(
t −

s − x
γ p⋆ − v⋆

)
ds,

t ≥
L − x

γ p⋆ − v⋆
.

(173)

We now find for t ≥
L−x

γ p⋆−v⋆ :

β(x, t) =β

(
L, t −

L − x
γ p⋆ − v⋆

)
+

1
γ p⋆ − v⋆

∫ L

x
θ2(s)Y

(
t −

s − x
γ p⋆ − v⋆

)
ds, (174)

thus for t ≥
L

γ p⋆−v⋆ , we have

β(0, t) =α

(
L, t −

L
γ p⋆ − v⋆

)
+ r1U

(
t −

L
γ p⋆ − v⋆

)
+

1
γ p⋆ − v⋆

∫ L

0
θ2(s)Y

(
t −

s
γ p⋆ − v⋆

)
ds. (175)

By substitutingα(L, t) in Y (t), we obtain the input/output paramet-
ric model,

Y (t) =r1U
(
t −

L
γ p⋆ − v⋆

)
+ r0Y

(
t −

L
v⋆

−
L

γ p⋆ − v⋆

)
+

∫ t− L
γ p⋆−v⋆

t− L
v⋆

−
L

γ p⋆−v⋆

θ1

(
v⋆(s − t) +

γ p⋆

γ p⋆ − v⋆
L
)
Y (s)ds

−

∫ t

t− L
γ p⋆−v⋆

θ2
(
(γ p⋆ − v⋆)(t − s)

)
Y (s)ds + ε(t), (176)

where ε(t) is defined as the error of the parametric model. The
value of ε(t) is arbitrary for t ∈ [0, L

v⋆
+

L
γ p⋆−v⋆ ], depending

on the initial values of α(x, 0), β(x, 0) and ε(t) = 0 for t ∈

[
L
v⋆

+
L

γ p⋆−v⋆ ,∞). We use this input/output parametric model to
estimate the unknown spatially-varying parameters θ1(x), θ2(x)
and unknown constant boundary parameter r0.

The following update laws are based on the gradient algorithm
with normalization and projection,

∂t θ̂1(x) = Proj
(
τ1(x, t), θ̂1(x, t)

)
, (177)

∂t θ̂2(x) = Proj
(
τ2(x, t), θ̂2(x, t)

)
, (178)

∂t r̂0 =
γ3

σ (t)
Y
(
t −

L
v⋆

−
L

γ p⋆ − v⋆

)
β̃(0, t), (179)

∂t r̂1 =
γ4

σ (t)
U
(
t −

L
γ p⋆ − v⋆

)
β̃(0, t), (180)

where γ1(x), γ2(x), γ3 and γ4 are positive adaptation gains and

τ1(x, t) =

γ1(x)Y
(
t −

L−x
v⋆

−
L

γ p⋆−v⋆

)
σ (t)v⋆

β̃(0, t), (181)

τ2(x, t) =

γ2(x)Y
(
t −

x
γ p⋆−v⋆

)
σ (t)(γ p⋆ − v⋆)

β̃(0, t). (182)

The normalization is given by

σ (t) =1 + Y 2
(
t −

L
v⋆

−
L

γ p⋆ − v⋆

)
+ U2

(
t −

L
γ p⋆ − v⋆

)
+

∫ t

t− L
v⋆

−
L

γ p⋆−v⋆

Y 2(s)ds. (183)

The adaptive estimation error β̃(0, t) of parameter estimates θ̂1(x),
θ̂2(x), r̂0 and r̂1 is obtained from the input/output parametricmodel
as follows,

β̃(0, t) =β(0, t) − β̂(0, t)

=Y (t) − r̂1U
(
t −

L
γ p⋆ − v⋆

)
− r̂0Y

(
t −

L
v⋆

−
L

γ p⋆ − v⋆

)
+

∫ t− L
γ p⋆−v⋆

t− L
v⋆

−
L

γ p⋆−v⋆

θ̂1

(
v⋆(s − t) +

γ p⋆

γ p⋆ − v⋆
L
)
Y (s)ds

−

∫ t

t− L
γ p⋆−v⋆

θ̂2
(
(γ p⋆ − v⋆)(t − s)

)
Y (s)ds − ε(t). (184)

The projection operator is given by

Proj(τi, θ̂i) =

{
τi, |θ̂i| < Θ or θ̂iτi ≤ 0,

0, |θ̂i| = Θ and θ̂iτi > 0.
(185)
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Denote the parameter estimation errors as

θ̃i(x, t) =θi(x) − θ̂i(x, t), i = 1, 2 (186)
r̃j(t) =rj − r̂j(t), j = 0, 1. (187)

Lemma 7. The update laws (177)–(179) guarantee that:

|θ̂1(x)| ≤ Θ, |θ̂2(x)| ≤ Θ, (188)
∥̃θ1∥, ∥̃θ2∥, r̃0, r̃1 ∈ L∞, (189)

∥∂t θ̂1∥, ∥∂t θ̂2∥, ∂t r̂0, ∂t r̂1,
β̃(0, t)
√
σ (t)

∈ L2 ∩ L∞. (190)

By constructing Lyapunov function for the adaptive estimation
errors θ̃i and r̃j, it is straightforward to prove the above lemma. The
detailed proof is omitted here. The projection in (185) guarantees
that θ1(x), θ2(x) are pointwise bounded not only L2 bounded, as
shown in (188).

6.4. Filter-based observer design

We introduce the adaptive state estimates based on the input
and output filters,

α̂(x, t) =r̂0φ1(x, t) +
1
v⋆

∫ x

0
θ̂1(ξ )φ1(x − ξ, t)dξ, (191)

β̂(x, t) =ψ̂(x, t) +
1

γ p⋆ − v⋆

∫ L

x
θ̂2(ξ )φ2(L + x − ξ, t)dξ . (192)

We represent the signal β̂(L, t), the output Y (t) with the following
transport PDEs. The filter for β̂(L, t) is

ψ̂t (x, t) =(γ p⋆ − v⋆)ψ̂x(x, t), (193)

ψ̂(L, t) =β̂(L, t), ψ̂(x, 0) = ψ̂0(x), (194)

where β̂(L, t) = r̂1U(t)+ α̂(L, t). The signal α̂(L, t) is obtained from
(172) with updated parameters θ̂1(x, t) and r̂1(t),

α̂(L, t) = r̂0Y
(
t −

L
v⋆

)
+

1
v⋆

∫ L

0
θ̂1(s)Y

(
t −

L − s
v⋆

)
ds. (195)

The filters for Y (t) are

∂tφ1(x, t) = − v⋆∂xφ1(x, t), (196)
φ1(0, t) =Y (t), φ1(x, 0) = φ10(x), (197)

and

∂tφ2(x, t) =(γ p⋆ − v⋆)∂xφ2(x, t), (198)
φ2(L, t) =Y (t), φ2(x, 0) = φ20(x), (199)

where x ∈ [0, L], and ψ̂0, φ10, φ20 are arbitrary initial conditions
verifying boundary conditions. The explicit solutions to the above
PDE filters for t > max

(
L
v⋆
, L
γ p⋆−v⋆

)
are given by

ψ̂(x, t) =r̂1U
(
t −

L − x
γ p⋆ − v⋆

)
+ α̂

(
L, t −

L − x
γ p⋆ − v⋆

)
, (200)

φ1(x, t) =Y
(
t −

x
v⋆

)
, (201)

φ2(x, t) =Y
(
t −

L − x
γ p⋆ − v⋆

)
. (202)

The adaptive estimates α̂(x, t) and β̂(x, t) verify that

α̂t = − v⋆α̂x + θ̂1(x)Y (t) + r̂0tφ1(x, t)

+
1
v⋆

∫ x

0
∂t θ̂1(ξ )φ1(x − ξ, t)dξ, (203)

β̂t =(γ p⋆ − v⋆)β̂x + θ̂2(x)Y (t)

+
1

γ p⋆ − v⋆

∫ L

x
∂t θ̂2(ξ )φ2(L + x − ξ, t)dξ, (204)

with boundary conditions

α̂(0, t) =r̂0φ1(0, t) = r̂0Y (t), (205)

β̂(L, t) =ψ̂(L, t) = r̂1U(t) + α̂(L, t). (206)

Denote the adaptive observer errors as

α̃ = α − α̂, β̃ = β − β̂, (207)

The error system is governed by

α̃t = − v⋆α̃x + θ̃1(x)Y (t) − r̂0tφ1(x, t)

−
1
v⋆

∫ x

0
∂t θ̂1(ξ )φ1(x − ξ, t)dξ, (208)

β̃t =(γ p⋆ − v⋆)β̃x + θ̃2(x)Y (t)

−
1

γ p⋆ − v⋆

∫ L

x
∂t θ̂2(ξ )φ2(L + x − ξ, t)dξ, (209)

with boundary conditions

α̃(0, t) =r̃0Y (t), (210)

β̃(L, t) =r̃1U(t) + α̃(L, t). (211)

6.5. Adaptive output feedback control design

To obtain the adaptive control law, we apply the backstepping
transformation to the adaptive state estimate β̂ . The transformed
state is given by

η(x) = β̂(x) −
1

γ p⋆ − v⋆

∫ x

0
K̂2(x − ξ )β̂(ξ )dξ ≜ F [β̂](x), (212)

where K̂2 is obtained by solving online the following Volterra
equation,

K̂2(x) = −θ̂2(x) +
1

γ p⋆ − v⋆

∫ x

0
K̂2(x − ξ )θ̂2(ξ )dξ . (213)

Note that K̂2(x) and θ̂2(x) are functions of time. The inverse trans-
formation is then given by

β̂(x) =η(x) −
1

γ p⋆ − v⋆

∫ x

0
θ̂2(x − ξ )η̂(ξ )dξ

≜η̂ −
1

γ p⋆ − v⋆
θ̂2 ∗ η̂. (214)

With a lengthy but straightforward calculation, we obtain that

ηt =(γ p⋆ − v⋆)ηx − K̂2(x)β̃(0) + η ∗ F [∂t θ̂2](x)

+
1

γ p⋆ − v⋆

(∫ L

x
∂t θ̂2(ξ )φ2(L + x − ξ, t)dξ

)
, (215)

η(L) =0, (216)

and the adaptive control law is derived from (216).
We summarize the transformation and inverse transformation

between the original system (w̄, v̄, ψ̂, φ1, φ2) and the final target
system (α̃, β̃, ζ̂ , η̂, φ1, φ2) as:

φ1 =φ1, φ2 = φ2, (217)

α̂ =Tα[φ1], η = (I − F )[ψ̂ + Tβ [φ2]], (218)

β̃ =(I − G )[v̄/k2] − (ψ̂ + Tβ [φ2]), (219)
α̃ =(I − G )[−κw̄] − Tα[φ1], (220)
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and we can obtain the original states from the inverse transforma-
tion as:

φ1 =φ1, φ2 = φ2, (221)

ψ̂ =η −
1
v⋆
θ̂2 ∗ η − Tβ [φ2], (222)

w̄ = −
1
κ
(I − G )−1

[α̃ + α̂], (223)

v̄ =k2(I − G )−1
[β̃ + ψ̂ + Tβ [φ2]]. (224)

Due to the invertibility of the above transformation, we can obtain
the stability of the original system (w̄, v̄, ψ̂, φ1, φ2) by studying the
system in the equivalent variables (α̃, β̃, α̂, η, φ1, φ2). The target
system (α̃, β̃, α̂, η, φ1, φ2) is governed by the following PDEs,

α̃t = − v⋆α̃x + θ̃1(x)Y (t) − r̂0tφ1(x, t)

−
1
v⋆

∫ x

0
∂t θ̂1(ξ )φ1(x − ξ, t)dξ, (225)

α̃(0, t) =r̃0Y (t), (226)

β̃t =(γ p⋆ − v⋆)β̃x + θ̃2(x)Y (t)

−
1

γ p⋆ − v⋆

∫ L

x
∂t θ̂2(ξ )φ2(L + x − ξ, t)dξ, (227)

β̃(L, t) =α̃(L, t) + r̃1U(t), (228)

α̂t = − v⋆α̂x + θ̂1(x)Y (t) + r̂0tφ1(x, t)

+
1
v⋆

∫ x

0
∂t θ̂1(ξ )φ1(x − ξ, t)dξ, (229)

α̂(0, t) =r̂0Y (t), (230)

ηt =(γ p⋆ − v⋆)ηx − K̂2(x)β̃(0) + η ∗ F [∂t θ̂2](x)

+
1

γ p⋆ − v⋆
F

[∫ L

x
∂t θ̂2(ξ )φ2(L + x − ξ, t)dξ

]
, (231)

η(L, t) =0, (232)

∂tφ2(x, t) =(γ p⋆ − v⋆)∂xφ2(x, t), (233)

φ2(L, t) =Y (t), (234)

∂tφ1(x, t) = − v⋆∂xφ1(x, t), (235)

φ1(0, t) =Y (t). (236)

Note that Y (t) = η(0) + β̃(0). According to backstepping transfor-
mation (212), we can obtain from (232) that

β̂(L, t) =

∫ L

0
K̂2(L − ξ )β̂(ξ, t)dξ . (237)

Substituting β̂(L, t) = r̂1U(t) + α̂(L, t), we have

U(t) =
1
r̂1

∫ L

0
K̂2(L − ξ )β̂(ξ, t)dξ −

1
r̂1
α̂(L, t). (238)

Using the adaptive estimates β̂(x, t) in (192) and α̂(L, t) in (195),
the adaptive controller is then obtained in an explicit integral form,
consisting delayed values of input and output,

U(t) =
1
r̂1

∫ t

t− L
γ p⋆−v⋆

K̂2
(
v⋆(t − ξ )

)
U(ξ )dξ

−
r̂0
r̂1

Ŷ
(
t −

L
v⋆

)
−

1
r̂1

∫ t

t− L
v⋆

m1(ξ )Y (ξ )dξ

+
r̂0
r̂1

∫ t− L
v⋆

t− L
v⋆

−
L

γ p⋆−v⋆

m2(ξ )Y (ξ )dξ

Fig. 5. Open-loop system.

+
1
r̂1

∫ t

t− L
γ p⋆−v⋆

m3(ξ )
∫ ξ

ξ− L
v⋆

m4(µ)Y (µ)dµdξ

+
1
r̂1

∫ t

t− L
γ p⋆−v⋆

m5(ξ )Y (ξ )dξ, (239)

where mi are denoted as

m1(ξ ) =θ̂1(L − v⋆(t − ξ )), (240)

m2(ξ ) =K̂2

((
γ p⋆ − v⋆

) (
t − ξ −

L
v⋆

))
, (241)

m3(ξ ) =K̂2
(
(γ p⋆ − v⋆)(t − ξ )

)
, (242)

m4(µ) =θ̂1
(
L − v⋆(ξ − µ)

)
, (243)

m5(ξ ) =

∫ L

(γ p⋆−v⋆)(t−ξ )
K̂2(µ)θ̂2((γ p⋆ − v⋆)(t − ξ ) + L − µ)dµ. (244)

The parameter estimates θ̂1(x, t), θ̂2(x, t), r̂0 and r̂1 are generated
from the update laws. We can obtain K̂2(x, t) by solving online
the Volterra equation in (213). The Lyapunov stability proof is
shown in Appendix, which is derived from modifications of the
proof in Yu et al. (2017). The key idea in proving the stability
of (α̃, β̃, α̂, η, φ1, φ2)-system is to take advantage of the cascade
structure of the system. Due to the invertibility between (q̃, ṽ)-
system and (w̄, v̄)-system, we arrive our main theorem for adap-
tive control design.

Theorem 8. Consider the plant (146)–(149) with the adaptive con-
trol law (239) and update laws (177)–(179). For any initial condi-
tions θ̂1(·, 0), θ̂2(·, 0), r0(0), r1(0) ∈ C 1

[0, L], w̄0, v̄0, φ10, φ20, ψ̂0
that verify boundary conditions, the solution (w̄, v̄, φ1, φ2, ψ̂, θ̂1, θ̂2,

r̂0, r̂1) is bounded for t ≥ 0 and for ∀x ∈ [0, L] it verifies that as
t → ∞,

∥w̄(x, t)∥ → 0, ∥v̄(x, t)∥ → 0, (245)
∥q̃(x, t)∥ → 0, ∥ṽ(x, t)∥ → 0. (246)

7. Simulation

We take γ = 1. The length of freeway section is chosen to be
L = 1 km. The free speed is vf = 40 m/s and themaximumdensity
is ρm = 150 vehicles/km. The steady states (ρ⋆, v⋆) are chosen as
(120 vehicles/km, 10 m/s) which is in the congested regime. The
relaxation time τ = 60 s. We use sinusoid initial conditions.

Fig. 5 shows that in the open-loop system the density and
velocity are slightly damped and keeps oscillating. In Fig. 6, the
closed-loop systemwith DORM control is stabilized and converges
to the steady states in the finite time about 2.5 min. The closed-
loop system with UORM full-state feedback control in Fig. 7 is
stabilized and converges to the reference and the finite conver-
gence time is tf = L/v⋆ + L/(γ p⋆ − v⋆) = 150 s = 2.5 min.
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Fig. 6. Closed-loop system with DORM control.

Fig. 7. Closed-loop system with UORM full-state feedback.

Fig. 8. Closed-loop system with UORM output feedback.

Fig. 9. Open-loop system without adaptive UORM output feedback.

The evolution of ramp metering control input is plotted with red
color at outlet x = 1000 m. We see the control input oscillates
around every half minute, which is reasonable in application. Fig. 8
shows that the closed-loop system with UORM output feedback
control (collocated observer) is stabilized and converges to the
steady states in about 5 min since it takes the collocated observer
2.5 min to estimate state variables and another 2.5 min for state
feedback control to converge to the steady states.

In the adaptive simulation, we choose τ = 100 s. The open-
loop system is more oscillated than that of the non-adaptive case.
It takes longer time to stabilize with adaptive output feedback
control law. In Fig. 9, we can see that the open-loop system is
unstable. The adaptive output feedback result is shown in Fig. 10.

Fig. 10. Closed-loop system with adaptive UORM output feedback.

Fig. 11. Estimates of spatially-varying parameters.

Fig. 12. Estimates of constant parameters.

The estimation of parameters in the system is given in Figs. 11 and
12. The blue lines in Fig. 12 represent the true values of the constant
parameters. The parameter estimates do not necessarily converge
to the true values, due to the local property of gradient methods.

8. Conclusion

This paper addresses the boundary feedback control problem of
ARZ traffic model with relaxation term. To stabilize the oscillations
of congested traffic regime, two control designs are introduced
for the second-order coupled hyperbolic system. The key idea in
the DORM control design is to cancel the forward coupling in the
system. In the harder case, UORM control design uses backstep-
ping method to cancel the coupling at outlet and thus achieves
exponential stability and finite time convergence to the steady
states. In the absence of parameters knowledge, we solve adaptive
boundary control problem of linearized ARZ model using back-
stepping method, gradient-based update laws and a filter-based
approach. The main step is to develop upstream of ramp metering
control approach and transform the hetero-directional coupled
hyperbolic system to the observer canonical form that is suitable
for adaptive design. It is of interest to explore adaptive control
design for this problem without over-parameterization and more
research is needed to be done on the property of relaxation time
in the ARZ model. A useful extension is to consider the effect of
changing lanes and autonomous vehicles in traffic model.
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Appendix. Proof of Theorem 8

A.1. L2 boundedness

The boundedness of θ̂2 is given by Lemma 7. Using (213) and
Gronwall’s inequality, we establish a bound on K̂2,

|K̂2(x)| ≤ Θe
Θ

γ p⋆−v⋆ ≜ K2. (A.1)

To prove the L2 boundedness of system in (225)–(236), we con-
struct the following Lyapunov functions:

V1 =
1
2

∫ L

0
e−xα̃2(x)dx, V2 =

1
2

∫ L

0
exβ̃2(x)dx, (A.2)

V3 =
1
2

∫ L

0
e−xα̂2(x)dx, V4 =

1
2

∫ L

0
exη2(x)dx, (A.3)

V5 =
1
2

∫ L

0
exφ2

1 (x)dx V6 =
1
2

∫ L

0
exφ2

2 (x)dx. (A.4)

Then we get

V̇1 ≤ −
v⋆

2eL
α̃2(L) −

1
2

(
v⋆

eL
−

c1
v⋆

− c2

)
∥α̃∥

2

+
(
v⋆ r̃20 + ∥θ̃1∥

2) η̂(0)2 + l1∥φ1∥
2
+ l2, (A.5)

V̇2 ≤eL(γ p⋆ − v⋆)α̃2(L)

−
1
2

(
γ p⋆ − v⋆ −

eLc3
2(γ p⋆ − v⋆)

− eLc4

)
∥β̃∥

2

+
eL

2c4
∥θ̃2∥

2η̂(0)2 + l3∥φ2∥
2
+ l4 + l5, (A.6)

V̇3 ≤ −
v⋆

2eL
α̂2(L) −

1
2

(
v⋆

eL
−

c5
v⋆

− c6

)
∥α̂∥

2

+

(
v⋆ r̂20 +

1
2c6

∥θ̂1∥
2
)
η̂(0)2 + l6∥φ1∥

2
+ l7, (A.7)

V̇4 ≤ −
1
2

(
γ p⋆ − v⋆ −

eLc7
2(γ p⋆ − v⋆)

− eLc8 − c9

)
∥η∥2

−

(
γ p⋆ − v⋆

2
+

eLK 2
2

2c8

)
η2(0)+l8∥φ2∥

2
+l9∥η∥2

+l10, (A.8)

V̇5 ≤ −
γ p⋆ − v⋆

2
∥φ2∥

2
+ eL(γ p⋆ − v⋆)η̂(0)2 + l11, (A.9)

V̇6 ≤ −
v⋆

2eL
∥φ1∥

2
+ v⋆η̂(0)2 + l12, (A.10)

where li(t) are integrable, nonnegative function of time by apply-
ing Lemma 7. And li(t) are denoted as

l1 =∂t r̂20 +
1

2v⋆c1
∥∂t θ̂1∥

2, l2 =

(
v⋆ r̃20 +

1
2c2

∥θ̃1∥
2
)
β̃(0)2,

(A.11)

l3 =
eL∥∂t θ̂2∥2

4c2(γ p⋆ − v⋆)
, l4 =

(
eL∥θ̃2∥2

−
γ p⋆ − v⋆

2

)
β̃(0)2, (A.12)

l5 =eL(γ p⋆ − v⋆)r̃21U(t)2, l6 =
1

2v⋆c5
∥∂t θ̂1∥

2
+ r̂20 , (A.13)

l7 =

(
v⋆ r̂20 +

1
2c6

∥θ̂1∥
2
)
β̃(0)2, l8 =

eL(1 + K 2
2 )∥∂t θ̂2∥

2

4c7(γ p⋆ − v⋆)
, (A.14)

l9 =
2(1 + K 2

2 )
c9

∥∂t θ̂2∥
2, l10 =

eLK 2
2

2c8
β̃2(0), (A.15)

l11 =eL(γ p⋆ − v⋆)β̃(0)2, l12 = v⋆β̃(0)2, (A.16)

and ci are positive constants chosen as

c1 =
v⋆2

2eL
, c2 =

v⋆

4eL
, c3 =

(γ p⋆)2

eL
, (A.17)

c4 =
(γ p⋆ − v⋆)

4eL
, c5 =

v⋆2

2eL
, c6 =

v⋆

4eL
, (A.18)

c7 =
(γ p⋆)2

eL
, c8 =

(γ p⋆ − v⋆)
4eL

, c9 =
(γ p⋆ − v⋆)

8
. (A.19)

Consider the following Lyapunov function V = g1V1 + V2 + V3 +

g2V4 + V5 + V6, and g1 and g2 are positive constants defined as

g1 =2e2L
γ p⋆ − v⋆

v⋆
, (A.20)

g2 =
2(γ p⋆ − v⋆)

(γ p⋆ − v⋆)2+4e2LK 2
2

(
2e2L(γ p⋆ − v⋆)

v⋆

(
v⋆ r̃20 +∥θ̃1∥

2)
+

2e2L

γ p⋆ − v⋆
∥θ̃2∥

2
+

(
v⋆ +

2eL

v⋆

)
Θ2

+eLγ p⋆−eLv⋆+v⋆
)
,

(A.21)

we have

V̇ ≤ −g0V + lV + l, (A.22)

where g0 is a positive constant defined as

g0 = min
(
v⋆

4
,
γ p⋆ − v⋆

8

)
, (A.23)

and l is the linear combination of li and therefore is also inte-
grable, nonnegative function of time. Since 1

2eL
∥α̃∥

2
≤ V1 ≤

1
2∥α̃∥

2, 1
2∥β̃∥

2
≤ V2 ≤

eL
2 ∥β̃∥

2, 1
2eL

∥α̂∥
2

≤ V3 ≤
1
2∥α̂∥

2,
1
2∥η∥

2
≤ V4 ≤

eL
2 ∥η∥2, 1

2eL
∥φ1∥

2
≤ V5 ≤

1
2∥φ1∥

2 and 1
2∥φ2∥

2
≤

V6 ≤
eL
2 ∥φ2∥

2. Then V is bounded and integrable (Lemma D.3.
in Smyshlyaev and Krstic (2010)), and the following holds that

∥α̃∥, ∥β̃∥, ∥α̂∥, ∥η∥, ∥φ1∥, ∥φ2∥ ∈ L2 ∩ L∞. (A.24)

Then with the inverse transformation (222)–(224) from the final
target system (α̃, β̃, α̂, η̂, φ1, φ2) to (w̄, v̄, ψ̂, φ1, φ2)-system, we
have

∥w̄∥, ∥v̄∥ ∈ L2 ∩ L∞. (A.25)

Finally, from the inverse transformation (43)–(44) from (w̄, v̄)-
system to (q̃, ṽ)-system, we get

∥q̃∥, ∥ṽ∥ ∈ L2 ∩ L∞. (A.26)

A.2. Convergence

The above Lyapunov proof shows that V̇ is bounded from
above and V is positive and integrable. According to Lemma D.2.
in Smyshlyaev and Krstic (2010), we have

∥w̄(x, t)∥ → 0, ∥v̄(x, t)∥ → 0. (A.27)

The inverse transformation (43)–(44) from (w̄, v̄)-system to (q̃, ṽ)-
system gives that

∥q̃(x, t)∥ → 0, ∥ṽ(x, t)∥ → 0. □ (A.28)
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