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a b s t r a c t

Dual-cable mining elevator has advantages in the transportation of heavy load to a large depth over the
single cable elevator. However challenges occur when lifting a cage via two parallel compliant cables,
such as tension oscillation inconformity between two cables and the cage roll, which are important
physical variables relating to the fatigue fracture ofmining cables. Mining elevator vibration dynamics are
modeled by two pairs of 2 × 2 heterodirectional coupled hyperbolic PDEs on a time-varying domain and
all four PDE bottom boundaries are coupled at one ODE. We design an output feedback boundary control
law via backstepping to exponentially stabilize the dynamic system including the tension oscillation
states, tension oscillation error states and the cage roll states. The control law is constructed with
the estimated states from the observer formed by available boundary measurements. The exponential
stability of the closed-loop system is proved via Lyapunov analysis. Effective suppression of tension
oscillations, reduction of inconformity between tension oscillations in two cables, and balancing the cage
roll under the proposed controller are verified via numerical simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Mining cable elevator: In mining exploitation, a cable elevator,
which is used to transport the cargo and miners between the
ground and the working platform underground, represents an in-
dispensable equipment. Cable plays a vital role in the deep mining
elevators because its advantages of low bending and torsional stiff-
ness, resisting relatively large axial loads, are helpful to the heavy
load and large depth transportation. However, the compliance
property or stretch and contract abilities of cables, tend to cause
mechanical vibrations, which lead to premature fatigue fracture
due to tension oscillations. Therefore, the importance of suppress-
ing the tension oscillations cannot be overestimated, considering
the safety of personnel and profitability.

Single-cable mining cable elevator: A common arrangement in
elevator systems, referred to a single-drum system (Wang, Koga,
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Pi, & Krstic, 2018), comprises a driving winding drum, a steel wire
cable, a head sheave, and a cage. The important feature of this
systems is that the cable is of a time-varying length. The vibration
dynamic model is a wave PDE–ODE coupled system on a time-
varying domain. Suppressing the axial vibrations distributed in the
cable and attenuating a disturbance at the cage through the control
force applied at the head sheave in such a single cable elevator have
been achieved in Wang, Koga et al. (2018) andWang, Tang, Pi, and
Krstic (2018) respectively.

Dual-cable mining cable elevator: For the operation at a greater
depth, such as over 2000 m, and carrying a heavier load, the single
cable elevator is not suitable. Because a very thick cable is required
to bear the heavy load and such a cable, at high bending, causes
problems in the winding on the winder drum. A dual-cable mining
elevator (Wang, Pi, Hu, & Gong, 2017) shown in Fig. 1 is proposed
to solve this problem, where the requirement of a very thick cable
can be removed because two cables tow the cage. However, the
imbalance problem such as cage roll frequently appears in the
dual-cable elevator, which is shown in Fig. 1 where taut cables
are used as flexible guide rails (Wang, Pi et al., 2017) because
traditional steel rails are with high cost of manufacture and in-
stallment in deep mines. Cage roll would increase the error of
oscillation tensions between two cables, and enlarge the oscillation
amplitude of the tension in cables, which accelerates premature
fatigue and requires inspections and costly repairs. One feasible
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and possible arrangement to balance the cage roll and suppress
the tension oscillations in cables of the dual-cable mining elevator
is applying additional control forces through actuators at floating
head sheaves shown in Fig. 1. However, designing control forces
applied at top boundaries of the cables to balance a cage coupled
with the bottom boundaries through two time-varying length
compliant cables and suppress the tension oscillations in cables is
a challenging task, which has heretofore remained unsolved.

Control of heterodirectional coupled hyperbolic PDE systems:
Mathematically, the vibration dynamic model of a dual-cable min-
ing elevator can be abstractly described by two pairs of 2 × 2
heterodirectional coupled hyperbolic PDEs on a time-varying do-
main and all four PDE bottom boundaries are coupled at one ODE,
which is reversibly converted from the system consisting of two
wave PDEs coupled with one ODE on a time-varying domain using
the Riemann coordinates. We set out to exponentially stabilize
such a strongly coupled and time-varying distributed parameter
system in the sense of H1 norm via the output control design at
one boundary.

Some theoretical results on controlling coupled hyperbolic
PDEs systems have emerged over the last decade. Backstepping
boundary stabilization and state estimation of a 2 × 2 linear
hyperbolic system were considered in Vazquez, Krstic, and Coron
(2011). A full-state control law was proposed to exponentially
stabilize 2 × 2 hyperbolic linear systems in Coron, Vazquez, Krstic,
and Bastin (2013). Stabilization of 2 × 2 first-order hyperbolic
linear PDEs with uncertain parameters was solved via adaptive
control in Anfinsen and Aamo (2017a, 2018) and Yu, Vazquez, and
Krstic (2017) using identifier or swapping design. Backstepping
design of output feedback regulators that achieve regulation in
finite time for boundary controlled linear 2 × 2 hyperbolic sys-
tems was presented in Deutscher (2017b). Moreover, stabilization
of n + 1 coupled first-order hyperbolic linear PDEs was consid-
ered in Di Meglio, Vazquez, and Krstic (2013). A control problem
of a first-order hyperbolic linear PDE general system where the
number of PDEs in either direction is arbitrary was solved in Hu,
Di Meglio, Vazquez, and Krstic (2016). Some results about control
of linear hyperbolic coupled PDEs cascaded with ODEs were also
presented. Output feedback control law of a 2× 2 linear hyperbolic
system cascaded with an ODE acting as disturbance dynamics was
developed in Aamo (2013) and Anfinsen and Aamo (2015). An
observer design for a class of hyperbolic PDE–ODE cascade systems
with a boundarymeasurementwas presented in Hasan, Aamo, and
Krstic (2016). Controller and observer design for a n × m linear
hyperbolic systemcascadedwith anODEwas proposed inAnfinsen
and Aamo (2017b). The output regulation problem for general
linear heterodirectional hyperbolic systems with spatially-varying
coefficients, where disturbances described by a cascaded ODE at
both boundaries, distributed in-domain or at the output to be con-
trolled,was solved inDeutscher (2017c). The research on control of
the coupled linear hyperbolic PDE systems coupled with an ODE at
the non-controlled boundary is limited. In a very recent result, the
state-feedback boundary control design of a 2× 2 linear hyperbolic
PDE–ODE coupled system with non-local terms was solved in Su,
Wang, and Krstic (2018). The state-feedback stabilization of a gen-
eral linear hyperbolic PDE–ODE coupled system was considered
in Di Meglio, Bribiesca, Hu, and Krstic (2018), where an ODE was
stabilized through compensating linear coupled hyperbolic PDEs
on a fixed domain in the actuating path. An observer-based out-
put feedback controller with anti-collocated measurements was
proposed to stabilize general linear heterodirectional hyperbolic
PDE–ODE systems with spatially varying coefficients in Deutscher,
Gehring, and Kern (2018).

Main contribution:

(1) We suppress the tension oscillations of two cables and
the cage roll in an ascending/descending mining elevator,
where the two cables with in-domain viscous damping are
coupled at the moving cage. It is developed from our pre-
vious work (Wang, Koga et al., 2018; Wang, Tang et al.,
2018) where the vibration suppression of a single-cable
ascending mining elevator neglecting the cable in-domain
viscous damping is considered. The challenges arise when
the in-domain viscous damping is included and both as-
cending/descending motions are taken into account, be-
cause the internal coupling (Roman, Bresch-Pietri, Prieur, &
Sename, 2016) is introduced and the sign of the derivative
of the time-varying domain affects Lyapunov stability anal-
ysis. Suppression of tension oscillations also makes the task
harder than vibration suppression (Wang, Koga et al., 2018;
Wang, Tang et al., 2018) because, in addition to the expo-
nential stability result in the sense of ∥ux(·, t)∥2

+∥ut (·, t)∥2,
the exponential stability estimate ∥uxx(·, t)∥2

+ ∥uxt (·, t)∥2

should be produced.
(2) Suppression of tension oscillations in the dual-cable mining

elevator can be mathematically described as exponential
stabilization of two pairs of 2 × 2 heterodirectional hy-
perbolic systems with source terms on a time-varying do-
main, and all hyperbolic PDEs coupled with an ODE in the
boundary anti-collocatedwith the control input. The related
theoretical results in Anfinsen and Aamo (2017b), Anfinsen,
Diagne, Aamo, and Krstic (2017) and Deutscher (2017a)
only solve the problem of general coupled heterodirectional
hyperbolic PDEs cascaded with ODEs on fixed domains.

(3) Different from the very recent results in Deutscher et al.
(2018) andDiMeglio et al. (2018)which stabilize the general
heterodirectional hyperbolic PDE–ODE coupled system on
a fixed domain in L2 sense, we stabilize a 2 × 2 heterodi-
rectional hyperbolic PDE–ODE coupled system on a time-
varying domain in H1 sense.

(4) In the field of control applications, this is the first control
design to suppress roll and axial vibrations of a moving
object anti-collocated with the control input through two
parallel compliant cables of time-varying length,whose ten-
sion oscillations are suppressed to zero simultaneously.

Organization: The rest of the paper is organized as follows. The
dynamics of a dual-cable mining elevator with material damping
of the steel cables is presented in Section 2. A state observer is
designed and proved exponentially convergent to the plant in Sec-
tion 3. An observer-based output feedback controller is designed
via backstepping in Section 4. The exponential stability of the
closed-loop systemand the exponential convergence of the control
inputs are proved in Section 5. The simulation results are provided
in Section 6. The conclusion and future work are presented in
Section 7.

Notation: Throughout this paper, the cable number (1,2) in the
dual-cable mining elevator are denoted as the subscripts: i = 1, 2
or j = 2, 1, j ̸= i. The partial derivatives and total derivatives are
denoted as: fx(x, t) =

∂ f
∂x (x, t), ft (x, t) =

∂ f
∂t (x, t), γ

′(x) =
dγ (x)
dx ,

Ẋ(t) =
dX(t)
dt .

2. Problem formulation

2.1. Dynamics of dual-cable mining elevators

The actual displacement z∗

i (x, t), i = 1, 2 of each point in
the cables can be considered as the sum of the translation l(t)
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in the equal rigid-body model and the additional axial vibrations
u(x, t), v(x, t) of the compliant ones, i.e., z∗

1 (x, t) = l(t) + u(x, t),
z∗

2 (x, t) = l(t) + v(x, t). u(x, t), v(x, t) are referred to a moving
coordinate system associated with the axial motion l(t) where
the origin is located at the cage. Using Hamilton’s principle and
through the derivation and simplification similar in Wang, Koga
et al. (2018), vibration dynamics u(x, t), v(x, t) can be built as

Ẋ(t) = AX(t) + B[ux(0, t), vx(0, t)]T , (1)

utt (x, t) = quxx(x, t) − cut (x, t), (2)

vtt (x, t) = qvxx(x, t) − cvt (x, t), (3)

C3X(t) + C4X(t)l1 = ut (0, t), (4)

C3X(t) − C4X(t)l1 = vt (0, t), (5)

ux(l(t), t) = U1(t), vx(l(t), t) = U2(t), (6)

x ∈ [0, l(t)], t ∈ [0,∞), where (2)–(3) are telegraph equa-
tions (Gugat, 2014). Matrices A and B = [B̄1, B̄2] are

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

0 0
−cd
M

0

0 0 0
−ca
Jc

⎞⎟⎟⎟⎟⎟⎟⎠ , B = EA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0
−1
M

−1
M

−1
Jc

1
Jc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

M denotes the mass of the load. C3 = [0, 0, 1, 0] and C4 =

[0, 0, 0, 1]. l(t) describes the time-varying length of the cables. Jc
is the moment of inertia of the cage. q =

E×Aa
ρ

where E, Aa and ρ
are Young’s modulus, the cross-sectional area and linear density of
the cables respectively. cd and ca denote the damping coefficients
of cage axial and roll motion respectively. c =

c̄
ρ

where c̄ is
the material damping coefficient of the steel cables. l1 is the cage
dimension shown in Fig. 1.

The PDE states u(x, t), v(x, t) in (2)–(3) describe the axial vibra-
tion displacements of the distributed points in cable 1 and cable 2
respectively.ux(x, t) and vx(x, t) denote thedistributed strain in the
cables and the tension oscillations are represented as EAux(x, t) and
EAvx(x, t) where the constant EA = E × Aa. EAux(0, t) and EAvx(0, t)
denoting forces acting on the cage drive the ODE dynamics (1),
where the ODE state X(t) = [y(t), θ (t), ẏ(t), θ̇ (t)]T describes the
cage dynamics. y(t), ẏ(t) are the axial vibration displacement and
velocity of the centroid of the cage, and θ (t), θ̇ (t) are the cage
roll angle and roll rate around the axis which is vertical to the
door and through the centroid of the cage. (4)–(5) describe the
velocity relationship between the cage and the bottom boundaries
of the two cables. (6) comes from EAux(l(t), t) = U1v(t) and
EAvx(l(t), t) = U2v(t) with the definition of U1v(t) = EAU1(t) and
U2v(t) = EAU2(t), using which the two actual control forces at the
two floating sheaves U1v(t), U2v(t) can be obtained by U1(t), U2(t)
to be designed in this paper.

Remark 1. Axial motion dynamics l(t) is regulated by a separate
controller Ua(t) at the drum. We ignore the effect of the vibration
dynamics on the motion dynamics because the vibration displace-
ments u(x, t), v(x, t) are much smaller than the hoisting motion
l(t) between 2000 m under ground and the surface platform. We
can then consider that l(t) state in an independent ODE (motion
dynamics) driven by Ua(t) is the known hosting trajectory, and
focus on the control design Ui(t) at the floating head sheave for the
PDE vibration dynamics (1)–(6), where l(t) acts as a known time-
varying domain.

Remark 2. We conduct the control design based on a more gen-
eral model where the damping coefficients ca, cd, c in the model
(1)–(6) are arbitrary. In other words, these damping coefficients
can be damped (> 0), undamped (= 0), or even anti-damped
(< 0).

Assumption 1. l(t) ∈ C2(0,∞). l(t) is bounded: 0 < l(t) ≤ L,
∀t ≥ 0, where L denotes the total length of the cable.

Assumption 2. Velocity l̇(t) of themoving boundary is bounded by

|̇l(t)| ≤ v̄max <
√
q, (8)

where v̄max is the maximum velocity of the mining cable elevator.

Note: In the mining cable elevator, the value of
√
q = r/ρ =

7.5 × 103 is much larger than the value of the maximum hoisting
velocity v̄max = 16.25 m/s, thus v̄max <

√
q. Moreover, according

to the conclusion in Gugat (2007a, b), the fact that the derivative
of the moving boundary l̇(t) is smaller than the wave speed

√
q

allows to prove a well-posedness result for the initial boundary
value problem (1)–(6). Since thewave speed in the cables is usually
much larger than the speed of the cage the assumption usually
holds in the applications.

In addition to suppression of oscillations of tension in each ca-
ble, that of tension oscillation error between two cables is required
via controller design as well. Therefore, the error between tension
oscillations in two cables should be built to design the controller.
Define a new system-(e, s) as

e(x, t) = v(x, t) − u(x, t), (9)

s(x, t) = v(x, t) + u(x, t), (10)

where EAex(x, t) = EAvx(x, t)− EAux(x, t) is the error of oscillations
of tension between two cables and EAsx(x, t) is the total oscillations
of tension in two cables.

The control objectives are

• Physically, suppress the oscillations of tension in each cable
as soon as possible. Theoretically, the closed-loop system-
(u, v) is exponentially stable in the sense of terms including
∥uxx(·, t)∥+∥vxx(·, t)∥, where the exponential decay rate can
be chosen.

• Physically, reduce the error of oscillations of tension be-
tween two cables as fast as possible. Theoretically, the
system-(e, s) is exponentially stable in the sense of terms in-
cluding ∥exx(·, t)∥+∥sxx(·, t)∥, where the exponential decay
rate can be chosen.

• Physically, suppress the axial vibration displacement y(t)
and roll angle θ (t) of the cage as fast as possible. Theoret-
ically, |X(t)| is exponentially convergent to zero when t →

∞, where the exponential decay rate can be chosen.

Note that ∥u(·, t)∥ is a compact notation for
√∫ l(t)

0 u(x, t)2dx.

2.2. Reformulation of the system in Riemann variables

In order to reduce the time derivative order of the plant to
facility control design, we introduce the following Riemann coor-
dinates,

z1(x, t) = st (x, t) −
√
qsx(x, t), (11)

w1(x, t) = st (x, t) +
√
qsx(x, t), (12)

z2(x, t) = et (x, t) −
√
qex(x, t), (13)

w2(x, t) = et (x, t) +
√
qex(x, t). (14)
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Fig. 1. Diagram and the prototype of a dual-cable mining elevator with flexible guide rails.

Considering (9)–(10), the system (1)–(6) is rewritten as

Ẋ(t) = ĀX(t) +

2∑
i=1

Bi
√
q
wi(0, t), (15)

zit (x, t) = −
√
qzix(x, t) −

c
2
(zi(x, t) + wi(x, t)), (16)

wit (x, t) =
√
qwix(x, t) −

c
2
(zi(x, t) + wi(x, t)), (17)

zi(0, t) = DiX(t) − wi(0, t), (18)

wi(l(t), t) = zi(l(t), t) + 2
√
qUei(t), (19)

x ∈ [0, l(t)], t ∈ [0,∞), where i = 1, 2, Ā = A −
2B1√

q C3 +
2B2√

q C4l1,
D1 = 4C3 , D2 = −4l1C4, B1 = (B̄1 + B̄2)/2, B2 = (B̄2 − B̄1)/2, and

Ue1(t) = U2(t) + U1(t), (20)

Ue2(t) = U2(t) − U1(t). (21)

We have now two pairs of time-varying domain heterodirectional
transport PDEs wi(x, t), zi(x, t), i = 1, 2. (16)–(19) with source
terms result from in-domain damping.wi(x, t), zi(x, t) are coupled
with an ODE (15) at the non-collocated boundary. The first trans-
port PDE wi with actuation on one boundary (19), and driving the
ODE (15) through its second boundary. The second transport PDE
zi is backward and driven by the state of the ODE X(t) and the
boundary states wi(0, t) in (18). The diagram describing this plant
dynamics is shown in Fig. 2.

Remark 3. Different from Roman, Bresch-Pietri, Cerpa, Prieur, and
Sename (2016) andRoman, Bresch-Pietri, Prieur et al. (2016)which
achieve the robust result to a small positive in-domain damping
coefficient in wave PDEs with in-domain viscus damping terms,
in our case the in-domain damping coefficient c can be arbitrary
constants.

3. Observer design

In order to estimate the distributed states zi(x, t),wi(x, t) which
usually cannot be measured in practice but required in the con-
troller, we design an observer to recover the distributed states
zi(x, t), wi(x, t) only using the available boundary measurements.

Fig. 2. Diagram of the plant dynamics (15)–(19).

3.1. Observer structure

The available measurements in the mining cable elevator are

• Axial vibration acceleration ÿ(t) and roll angular acceler-
ation θ̈ (t) in the cage where accelerometers are placed.
Note that measuring acceleration is the prevalent method
in control of vibrating mechanical systems because accel-
erations are easier to measure with accelerometers than
displacements or velocities (Basturk & Krstic, 2014).

• Force EAux(l(t), t), EAvx(l(t), t) and velocity ut (l(t), t),
vt (l(t), t) feedback signals of the serve actuators at two
floating sheaves.

The observer is built as a copy of the plant (15)–(19) with some
error injections,

˙̂X(t) = ĀX̂(t) +

2∑
f=1

Bf
√
q
ŵf (0, t)

+ L̄
(
(y(t) + θ (t)) − (C1 + C2)X̂(t)

)
, (22)
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ẑit (x, t) = −
√
qẑix(x, t) −

c
2
(ẑi(x, t) + ŵi(x, t))

+ Γ̄i(x, t)(zi(l(t), t) − ẑi(l(t), t)), (23)

ŵit (x, t) =
√
qŵix(x, t) −

c
2
(ẑi(x, t) + ŵi(x, t))

+ Γi(x, t)(zi(l(t), t) − ẑi(l(t), t)), (24)

ẑ1(0, t) = D1X(t) − ŵ1(0, t) = 4ẏ(t) − ŵ1(0, t), (25)

ẑ2(0, t) = D2X(t) − ŵ2(0, t) = −4l1θ̇ (t) − ŵ2(0, t), (26)

ŵi(l(t), t) = zi(l(t), t) + 2
√
qUei(t), (27)

where zi(l(t), t) can be obtained by using sx(l(t), t), st (l(t), t),
ex(l(t), t), et (l(t), t) which are computed by the measurements
ux(l(t), t), vx(l(t), t), ut (l(t), t), vt (l(t), t). Because the acceleration
sensor is more convenient to place at the cage, y(t), θ (t), ẏ(t), θ̇ (t)
are calculated by integrating the measured accelerations ÿ(t), θ̈ (t)
with known initial conditions y(0), θ (0), ẏ(0), θ̇ (0). The ODE mea-
surements y(t), θ (t) and the matrix Ā in (22) form an observable
matrix pair (Ā, C1 + C2) where C1 = [1, 0, 0, 0], C2 = [0, 1, 0, 0].
The ODE measurements y(t), θ (t), ẏ(t), θ̇ (t) are used to construct
a boundary condition at x = 0 and a Hurwitz state matrix in
the ODE subsystem in the observer error system shown following,
whichwill be helpful in searching backstepping transformations to
an exponentially stable target error system to obtain the observer
gains Γ̄i(x, t),Γi(x, t) in (23)–(24).

3.2. Observer error dynamics and backstepping

Defining the error system-(z̃i, w̃i, X̃) obtained from

(z̃i(x, t), w̃i(x, t), X̃(t)) = (zi(x, t), wi(x, t), X(t))

− (ẑi(x, t), ŵi(x, t), X̂(t)), (28)

we have the error dynamics between the plant and the observer as

˙̃X(t) = ÂX̃(t) +

2∑
i=1

Bi
√
q
w̃i(0, t), (29)

z̃it (x, t) = −
√
qz̃ix(x, t) −

c
2
(z̃i(x, t) + w̃i(x, t))

− Γ̄i(x, t)z̃i(l(t), t), (30)

w̃it (x, t) =
√
qw̃ix(x, t) −

c
2
(z̃i(x, t) + w̃i(x, t))

− Γi(x, t)z̃i(l(t), t), (31)

z̃i(0, t) = −w̃i(0, t), w̃i(l(t), t) = 0, (32)

where the state matrix Â = Ā − L̄(C1 + C2) in (29) is Hur-
witz by choosing L̄. We would like to design the observer gains
Γ̄1(x, t), Γ̄2(x, t), Γ1(x, t), Γ2(x, t), to make sure the error dynamics
(29)–(32) is exponentially stable.

According to Anfinsen and Aamo (2017b) and Bin and DiMeglio
(2017), using the backstepping transformation

z̃i(x, t) = α̃i(x, t) −

∫ l(t)

x
φ̄i(x, y)α̃i(y, t)dy, (33)

w̃i(x, t) = β̃i(x, t) −

∫ l(t)

x
ψ̄i(x, y)α̃i(y, t)dy, (34)

wewould like to convert the error dynamics (29)–(32) to the target
error system as

˙̃X(t) = ÂX̃(t) +

2∑
f=1

Bf
√
q

(
β̃f (0, t)

+

∫ l(t)

0
ψ̄f (0, y)α̃f (y, t)dy

)
, (35)

α̃it (x, t) = −
√
qα̃ix(x, t) +

∫ l(t)

x
M̄i(x, y)β̃i(y, t)dy

+
c
2
α̃i(x, t) −

c
2
β̃i(x, t), (36)

β̃it (x, t) =
√
qβ̃ix(x, t) −

c
2
β̃i(x, t)

+

∫ l(t)

x
N̄i(x, y)β̃i(y, t)dy, (37)

α̃i(0, t) = −β̃i(0, t) +

∫ l(t)

0
(ψ̄i(0, y) + φ̄i(0, y))α̃i(y, t)dy, (38)

β̃i(l(t), t) = 0. (39)

The target system (35)–(39) is a PDE-ODE cascaded system where
the PDE (36)–(39) has a same structure as the target system
(17)–(20) in Bin and Di Meglio (2017) and the PDE states flow into
the ODE (35) with a Hurwitz state matrix Â.

Note that heterodirectional coupled hyperbolic PDEs (30)–(31)
which include unstable sources, especially the coupled terms
z̃i(x, t), z̃i(l(t), t) in (31), are intentionally converted to the target
system where the coupled terms only exist in (36) while (37) only
includes itself states. This motivation is also used to construct the
target system of (22)–(27), which will be shown in Section 4.

The kernels φ̄i(x, y), ψ̄i(x, y) in the transformation (33)–(34),
M̄i(x, y), N̄i(x, y) in (36)–(37), and the observer gains Γ̄i(x, t),Γi(x, t)
would be determined following.

3.3. Calculation of the kernels and observer gains

Substituting the transformations (33)–(34) into (30), and insert-
ing (36), through a lengthy calculation, we have

z̃it (x, t) +
√
qz̃ix(x, t) + Γ̄i(x, t)z̃i(l(t), t)

+
c
2
(z̃i(x, t) + w̃i(x, t))

=
(√

qφ̄i(x, x) + c
)
α̃i(x, t) +

∫ l(t)

x

(
φ̄i(x, y)

c
2

−
√
qφ̄ix(x, y) −

√
qφ̄iy(x, y) −

c
2
ψ̄i(x, y)

− φ̄i(x, y)
)
α̃i(y, t)dy −

∫ l(t)

x

(∫ y

x
φ̄i(x, z)M̄i(z, y)dz

− M̄i(x, y) + φ̄i(x, y)
c
2

)
β̃i(y, t)dy +

(
Γ̄i(x, t)

− l̇(t)φ̄i(x, l(t)) +
√
qφ̄i(x, l(t))

)
α̃i(l(t), t). (40)

Substituting the transformation (33)–(34) into (31), and inserting
(36)–(37), through a lengthy calculation, we have

w̃it (x, t) −
√
qw̃ix(x, t) + Γi(x, t)z̃i(l(t), t)

+
c
2
(w̃i(x, t) + z̃i(x, t))

=

( c
2

− 2
√
qψ̄i(x, x)

)
α̃i(x, t) +

∫ l(t)

x

(
−cψ̄i(x, y)

−
√
qψ̄iy(x, y) +

√
qψ̄ix(x, y) −

c
2
φ̄i(x, y)

)
α̃i(y, t)dy

+

∫ l(t)

x

(
c
2
ψ̄i(x, y) + N̄i(x, y)
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−

∫ y

x
ψ̄i(x, z)M̄i(z, y)dz

)
β̃i(y, t)dy +

(
Γi(x, t)

− l̇(t)ψ̄i(x, l(t)) +
√
qψ̄i(x, l(t))

)
α̃i(l(t), t). (41)

To make sure the right hand sides of the equal signs in (40)–(41)
are equal to zero, the kernels φ̄i(x, y), ψ̄i(x, y) should satisfy( c
2

− 1
)
φ̄i(x, y) −

√
qφ̄ix(x, y) −

√
qφ̄iy(x, y) −

c
2
ψ̄i(x, y) = 0,

(42)

− cψ̄i(x, y) −
√
qψ̄iy(x, y) +

√
qψ̄ix(x, y) −

c
2
φ̄i(x, y) = 0, (43)

φ̄i(x, x) = −
c

√
q
, (44)

ψ̄i(x, x) =
c

4
√
q
. (45)

M̄i(x, y), N̄i(x, y) in (36) and (37) satisfy

M̄i(x, y) =
c
2
φ̄i(x, y) +

∫ y

x
φ̄i(x, z)M̄i(z, y)dz, (46)

N̄i(x, y) = −
c
2
ψ̄i(x, y) +

∫ y

x
ψ̄i(x, z)M̄i(z, y)dz. (47)

The observer gains Γi(x, t), Γ̄i(x, t) are thus obtained as

Γi(x, t) = l̇(t)ψ̄i(x, l(t)) −
√
qψ̄i(x, l(t)), (48)

Γ̄i(x, t) = l̇(t)φ̄i(x, l(t)) −
√
qφ̄i(x, l(t)). (49)

Lemma 1. The kernel equations (42)–(45) have a unique continuous
solution (ψ̄i(x, y), φ̄i(x, y)) in Do = {(x, y)|0 ≤ x ≤ y ≤ l(t)}.

The proof of Lemma 1 is shown in the Appendix.

3.4. Exponentially convergence of the observer error

After obtaining the observer gains Γ̄i(x, t),Γi(x, t), we prove the
exponential stability of the observer error dynamics (29)–(32)with
the designed Γ̄i(x, t), Γi(x, t) in the following lemma, the proof of
which is shown in the Appendix.

Lemma 2. If initial values (z̃i(x, t0), w̃i(x, t0)) ∈ L2(0, L0), the
observer error system (29)–(32) is uniformly exponentially stable in
the sense of the norm( 2∑

i=1

(
∥z̃i(·, t)∥2

+ ∥w̃i(·, t)∥2)
+

⏐⏐⏐X̃(t)⏐⏐⏐2) 1
2

, (50)

where L2(0, L0) is the usual Hilbert space with L0 = l(t0) being the
initial length of the cable at the initial time t0.

Using Lemma 2 and (28), it is straightforward to prove the
following theorem.

Theorem 1. If initial values (zi(x, t0), wi(x, t0))∈ L2(0, L0) and
(ẑi(x, t0), ŵi(x, t0)) ∈ L2(0, L0), the observer (22)–(27) can track the
system (15)–(19) with uniformly exponentially convergent errors in
the sense of

2∑
i=1

(
∥zi(·, t) − ẑi(·, t)∥2

+ ∥wi(·, t) − ŵi(·, t)∥2)
+

⏐⏐⏐X(t) − X̂(t)
⏐⏐⏐2. (51)

Theorem 1 shows the proposed observer can recover the dis-
tributed states of the plant (15)–(19) only using the available
boundary measurements. Moreover, the following lemma holds as
well, the proof of which is shown in the Appendix.

Lemma 3. For any initial data (z̃i(x, t0), w̃i(x, t0)) ∈ H1(0, L0), the
observer error system (29)–(32) is uniformly exponentially stable in
the sense of

2∑
i=1

(
∥z̃ix(·, t)∥2

+ ∥w̃ix(·, t)∥2) 1
2 , (52)

where H1(0, L0) = {u|u(·, t) ∈ L2(0, L0), ux(·, t) ∈ L2(0, L0)}.

4. Output feedback controller design

In Section 3, we have built the observer which can exponen-
tially track the distributed states of the system (15)–(19). In this
section, we design output feedback control laws U1(t), U2(t) by
using the states recovered from the observer via the backstepping
method (Krstic, 2009; Krstic & Smyshlyaev, 2008).

4.1. Backstepping transformation and target system

The design of the observer-based output feedback controller is
based on the observer (22)–(27). Using the backstepping transfor-
mation

αi(x, t) ≡ ẑi(x, t), (53)

βi(x, t) = ŵi(x, t) −

∫ x

0
ψi(x, y)ẑi(y, t)dy

−

∫ x

0
φi(x, y)ŵi(y, t)dy − γi(x)X̂(t), (54)

we would like to convert the observer system-(ẑi, ŵi, X̂(t))
(22)–(27) to the following target system-(αi, βi, X̂(t)):

˙̂X(t) =

(
Ā +

2∑
i=1

Biκi

)
X̂(t) +

2∑
i=1

Bi
√
q
βi(0, t)

+ L̄(C1 + C2)X̃(t), (55)

αit (x, t) = −
√
qαix(x, t) − cβi(x, t) − cαi(x, t)

+ c
∫ x

0
ψi

I (x, y)αi(y, t)dy + c
∫ x

0
φi

I (x, y)βi(y, t)dy

+ cγiI (x)X̂(t) + Γ̄i(x, t)z̃i(l(t), t), (56)

βit (x, t) =
√
qβix(x, t) − λi(x)βj(0, t) −

c
2
βi(x, t)

− N (x, t)z̃i(l(t), t) − N1(x)X̃(t), (57)

αi(0, t) = D̄iX̂(t) − βi(0, t) + DiX̃(t), (58)

βi(l(t), t) = 0, (59)

where

Ni(x, t) =

∫ x

0
(φi(x, y)Γi(y, t) + ψi(x, y)Γ̄i(y, t))dy

+ Γi(x, t), (60)

N1i(x) = γi(x)L̄(C1 + C2) +
√
qψi(x, 0)Di. (61)

Á = Ā+
∑2

i=1Biκi is Hurwitz by choosing the rowvectors κi because
(Ā, B1 + B2) is controllable. D̄1 = D1 − γ1(0) and D̄2 = D2 − γ2(0).
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λi(x) is to be determined later. ψ I
i (x, y), φ

I
i (x, y), γ

I
i (x) are kernels

in the inverse transformations as

ẑi(x, t) ≡ αi(x, t), (62)

ŵi(x, t) = βi(x, t) −

∫ x

0
ψ I

i (x, y)αi(y, t)dy

−

∫ x

0
φI
i (x, y)βi(y, t)dy − γ I

i (x)X̂(t). (63)

In the following section, the kernels ψi(x, y), φi(x, y), γi(x) would
be determined by mapping the observer system-(ẑi, ŵi, X̂(t))
(22)–(27) and the target system-(αi, βi, X̂(t)) (55)–(59) via the
transformations (53)–(54). The proof of the existence of kernels
ψ I

i (x, y), φ
I
i (x, y), γ

I
i (x) please refer to Section 2.4 in Wang, Krstic,

and Pi (2018) for detail.

4.2. Calculation of kernels

Substituting (53)–(54) into (57), we have

βit (x, t) −
√
qβix(x, t) + λi(x)βj(0, t) +

c
2
βi(x, t)

+ Ni(x, t)z̃i(l(t), t) + N1i(x)X̃(t)

=

(
−

c
2

+ 2
√
qψi(x, x)

)
ẑi(x, t)

+

∫ x

0

(
c
2
ψi(x, y) +

√
qφix(x, y) +

√
qφiy(x, y)

)
ŵi(y, t)dy

+

∫ x

0

(
c
2
φi(x, y) +

√
qψix(x, y) −

√
qψiy(x, y)

)
ẑi(y, t)dy

+

(
√
qγi′(x) − γi(x)(Ā +

c
2
)

− 2ψi(x, 0)Di +
1

√
q
γi(x)Bjγj(0)

)
X̂(t)

+

(
√
qφi(x, 0) − γi(x)Bi

1
√
q

+ ψi(x, 0)
)
ŵi(0, t)

+

(
λi(x) −

1
√
q
γi(x)Bj

)
ŵj(0, t). (64)

To guarantee the right hand side of the equal sign in (64) are equal
to zero, which ensures (57), and mapping the ODEs (22), (55), we
have the following kernel conditions:
c
2
ψi(x, y) +

√
qφix(x, y) +

√
qφiy(x, y) = 0, (65)

c
2
φi(x, y) +

√
qψix(x, y) −

√
qψiy(x, y) = 0, (66)

√
qφi(x, 0) −

1
√
q
γi(x)Bi + ψi(x, 0) = 0, (67)

ψi(x, x) =
c

4
√
q
, (68)

γi
′(x) −

1
√
q
γi(x)

(
Ā +

c
2

−
1

√
q
Bjγj(0)

)
−

2
√
q
ψi(x, 0)Di = 0,

(69)

γi(0) =
√
qκi, (70)

λi(x) −
1

√
q
γi(x)Bj = 0. (71)

The following lemma shows that there exists a unique continuous
solution (ψi(x, y), φi(x, y), γi(x, t)) of (65)–(70). The proof is shown
in the Appendix.

Lemma 4. The kernel equations (65)–(70) have a unique continuous
solution (ψi(x, y), φi(x, y), γi(x)) in D = {(x, y)|0 ≤ y ≤ x ≤ l(t)}.

λi(x) is then obtained through (71). Using the obtained kernels,
we then would derive the control law in the following section.

Note that (56) and (58) are obtained by substituting (62)–(63)
into (23), (25)–(26) straightforward.

4.3. Control law and realization

Considering the boundary condition (59) in the target system,
the boundary condition (27) in the observer, and the transforma-
tion (54), we derive the controller as:

Ue1(t) =
−1
2
√
q

(
z1(l(t), t) −

∫ l(t)

0
ψ1(l(t), y)ẑ1(y, t)dy

−

∫ l(t)

0
φ1(l(t), y)ŵ1(y, t)dy − γ1(l(t))X̂(t)

)
, (72)

Ue2(t) =
−1
2
√
q

(
z2(l(t), t) −

∫ l(t)

0
ψ2(l(t), y)ẑ2(y, t)dy

−

∫ l(t)

0
φ2(l(t), y)ŵ2(y, t)dy − γ2(l(t))X̂(t)

)
. (73)

The signals ẑi(x, t), ŵi(x, t), X̂(t) are obtained from the observer
(22)–(27) constructed by measurements ÿ(t), θ̈ (t) and ux(l(t), t),
vx(l(t), t), ut (l(t), t), vt (l(t), t) which are also used to calculate
zi(l(t), t). The gains (ψi(x, y), φi(x, y), γi(x)) are the solution of
(65)–(70).

Using (72)–(73), the two control inputs U1(t) and U2(t) of
(1)–(6) are derived as

U1(t) = Ue1(t) − Ue2(t), U2(t) = Ue1(t) + Ue2(t). (74)

Realization of the proposed controller:

• All signals required in the controller are available measure-
ments in the mining cable elevator.

• The highest time derivative signals used in the controller
are first-order derivatives ut (l(t), t), vt (l(t), t), ẏ(t), θ̇ (t).
Physically, they are velocities and are measurable or easily
deducible from acceleration measurements.

• The closed-loop system has the robustness with respect
to the time-delay in the feedback loop, because the gain
γ (Logemann, Rebarber, & Weiss, 1996) of the open-loop
transfer function can be proved as γ < 1 when s → ∞.
The proof is omitted here due to the space limit.

• If unknown disturbances are considered at the boundaries,
the disturbance estimation and attenuation techniques
(Wang, Tang, Pi, & Krstic, 2017; Wang, Tang et al., 2018) in
wave PDE modeled mining cable elevators can be incorpo-
rated into the design.

4.4. Stability of the system-(ẑi, ŵi)

The following lemma would show the exponential stability
of the system-(ẑi, ŵi) (22)–(27) under the control (72)–(73). The
proof is shown in the Appendix.

Lemma 5. If initial values (ẑi(x, t0), ŵi(x, t0)) ∈ L2(0, L0), the
system (ẑi(x, t), ŵi(x, t)) (22)–(27) under the control law (72)–(73)
is uniformly exponentially stable in the sense of the norm( 2∑

i=1

(
∥ẑi(·, t)∥2

+ ∥ŵi(·, t)∥2)
+

⏐⏐⏐X̂(t)⏐⏐⏐2)1/2

. (75)

Based on the exponential stability result of the system-
(ẑi, ŵi, X̂) in the sense of ∥ẑi(·, t)∥2

+∥ŵi(·, t)∥2
+|X̂(t)|2, we can ob-

tain the exponential stability estimate in the sense of ∥ẑix(·, t)∥2
+

∥ŵix(·, t)∥2 in the following lemma, the proof of which is shown in
the Appendix.
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Lemma 6. For any initial data (ẑi(x, t0), ŵi(x, t0)) ∈ H1(0, L0),
the system (22)–(27) under the control law (72)–(73) is uniformly
exponentially stable in the sense of

2∑
i=1

(
∥ẑix(·, t)∥2

+ ∥ŵix(·, t)∥2) 1
2 . (76)

5. Stability under output feedback

The following theorems are used to show the achievement
of the control objects proposed in Section 2 under the proposed
output feedback controller which is bounded and exponentially
convergent to zero.

Theorem 2. If initial values (ẑi(x, t0), ŵi(x, t0), zi(x, t0), wi(x, t0))
∈ H1(0, L0), the closed-loop system including the plant (15)–(19),
the controller (72)–(73) and the observer (22)–(27) has the following
properties:

(1) The closed-loop system is uniformly exponentially stable in the
sense of the norm:( 2∑

i=1

(
∥ẑi(·, t)∥2

+ ∥ŵi(·, t)∥2
+ ∥zi(·, t)∥2

+ ∥wi(·, t)∥2

+ ∥ẑix(·, t)∥2
+ ∥ŵix(·, t)∥2

+ ∥zix(·, t)∥2
+ ∥wix(·, t)∥2)

+

⏐⏐⏐X̂(t)⏐⏐⏐2 + |X(t)|2
)

1/2, (77)

with a decay rate σall which can be adjusted by the choices of the
control parameters κi, L̄.

(2) In the closed-loop system, there exist positive constants σUi andΥ0i
making Ue1(t), Ue2(t) bounded and exponentially convergent to zero
in the sense of

|Ue1(t)| ≤ Υ01e−σU1t , |Ue2(t)| ≤ Υ02e−σU2t . (78)

Proof of (1). Recalling the exponential stability result in the sense
of ∥ẑ1(·, t)∥2

+∥ŵ1(·, t)∥2
+∥ẑ2(·, t)∥2

+∥ŵ2(·, t)∥2 +|X̂(t)|2 proved
in Lemma 5 with the decay rate σ , and the exponential stability
result in the sense of ∥z̃1(·, t)∥2

+ ∥w̃1(·, t)∥2
+ ∥z̃2(·, t)∥2

+

∥w̃2(·, t)∥2
+ |X̃(t)|

2
proved in Lemma 2 with the decay rate σe,

we obtain the exponential stability result in the sense of ∥z1(·, t)∥2

+∥w1(·, t)∥2
+ ∥z2(·, t)∥2

+ ∥w2(·, t)∥2 +|X(t)|2 via (28) with the
decay rate σo = min{σ , σe}.

Similarly, recalling the exponential stability estimate in the
sense of ∥ẑ1x(·, t)∥2

+∥ŵ1x(·, t)∥2
+∥ẑ2x(·, t)∥2

+∥ŵ2x(·, t)∥2 proved
in Lemma 6 with the decay rate σf , and the exponential stability
estimate in the sense of ∥z̃1x(·, t)∥2

+ ∥w̃1x(·, t)∥2 +∥z̃2x(·, t)∥2

+∥w̃2x(·, t)∥2 proved in Lemma 3 with the decay rate σeHf , we
obtain the exponential stability estimate in the sense of ∥z1x(·, t)∥2

+∥w1x(·, t)∥2
+ ∥z2x(·, t)∥2 +∥w2x(·, t)∥2 with the decay rate σoH =

min{σf , σeHf }.
Considering (120), (95), (136), (109), we know

σall = min{σo, σoH} = min{σ , σe, σf , σeHf }

= min{σ , σe, σH , σeH} (79)

can be adjusted by control parameters κi and L̄. The proof of
Property (1) in Theorem 2 is completed.

Proof of (2). Applying Cauchy–Schwarz inequality into (72)–(73),
we have

|Ue1(t)|2 + |Ue2(t)|2

≤

2∑
i=1

(
1
q
zi(l(t), t)2 −

1
q
M10iL∥ẑi(·, t)∥2

−
1
q
M11iL∥ŵi(·, t)∥2

−
1
q
M12i

⏐⏐⏐X̂(t)⏐⏐⏐2), (80)

where M10i = max
{
ψi(l(t), y)2

}
, M11i = max

{
φi(l(t), y)2

}
, M12i =

max
{
γi(l(t))2

}
for 0 < y < l(t) < Lwith L being the total length of

the cables.
Using Cauchy–Schwarz inequality and (59), we have

|βi(0, t)|2 ≤ |βi(l(t), t)|2 +

⏐⏐⏐⏐∫ l(t)

0
βix(x, t)dx

⏐⏐⏐⏐2
≤ L∥βix(·, t)∥2. (81)

According to the exponential stability estimate in the sense of
∥βix(·, t)∥2 in the proof of Lemma 6, we have βi(0, t) is exponen-
tially convergent to zero. Recalling (54) at x = 0 and the expo-
nential convergence of X̂(t) proved in Lemma 5, we obtain that
ŵi(0, t) is exponentially convergent to zero. Recalling relationships
(25)–(26) and the exponential convergence of X(t) proved in Prop-
erty (1), we obtain the exponential convergence of ẑi(0, t).

Similarly, using Cauchy–Schwarz inequality and (39), recalling
the exponential stability estimate in the sense of ∥β̃ix(·, t)∥2 in the
proof of Lemma 3, we have β̃i(0, t) is exponentially convergent to
zero, followed by which we obtain the exponential convergence
of w̃i(0, t) via (34) at x = 0. Together with the exponential
convergence of ŵi(0, t) proved above, we have that wi(0, t) is
exponentially convergent to zero. Through (18), together with the
exponential convergence of X(t), we have zi(0, t) is exponentially
convergent to zero as well. Using Cauchy–Schwarz inequality, we
also have

|zi(l(t), t)|2 ≤ |zi(0, t)|2 +

⏐⏐⏐⏐∫ l(t)

0
zix(x, t)dx

⏐⏐⏐⏐2
≤ |zi(0, t)|2 + L∥zix(·, t)∥2. (82)

We then obtain that zi(l(t), t) is exponentially convergent to zero
when t → ∞ by recalling the exponential stability estimate in
the sense of ∥zix(·, t)∥2 proved in Property (1) and the exponential
convergence of zi(0, t) proved above. Together with the exponen-
tial stability in the sense of ∥ẑ1(·, t)∥2

+ ∥ŵ1(·, t)∥2
+ ∥ẑ2(·, t)∥2

+

∥ŵ2(·, t)∥2
+ |X̂(t)|

2
proved in Lemma 5, we obtain that control

inputs Ue1(t),Ue2(t) are bounded and exponentially convergent to
zero. The proof of Property (2) in Theorem 2 is completed.

According to Theorem 2, we can obtain the stability properties
of the systems (u, v) and (e, s) in the following theorem.

Theorem 3. If initial values (u(x, t0), v(x, t0)) ∈ H2(0, L0), (e(x, t0),
s(x, t0)) ∈ H2(0, L0), the original closed-loop system-(u, v) including
the plant (1)–(6) with the controllers (74) is uniformly exponentially
stable in the sense of

∥ut (·, t)∥ + ∥ux(·, t)∥ + ∥vt (·, t)∥ + ∥vx(·, t)∥ + ∥uxt (·, t)∥
+ ∥uxx(·, t)∥ + ∥vxt (·, t)∥ + ∥vxx(·, t)∥, (83)

where H2(0, L0) = {u|u(·, t) ∈ L2(0, L0), ux(·, t) ∈ L2(0, L0),
uxx(·, t) ∈ L2(0, L0)}. The system-(e, s) obtained from (9)–(10) is also
uniformly exponentially stable in the sense of

∥et (·, t)∥ + ∥ex(·, t)∥ + ∥st (·, t)∥ + ∥sx(·, t)∥ + ∥ext (·, t)∥
+ ∥exx(·, t)∥ + ∥sxt (·, t)∥ + ∥sxx(·, t)∥. (84)

The exponential decay rates can be adjusted by the control parame-
ters κi, L̄. Moreover, the controllers U1(t),U2(t) realized by hydraulic
actuators at the floating sheaves are bounded and exponentially con-
vergent to zero.
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Proof. Considering (11)–(14), applying Cauchy–Schwarz inequal-
ity, we obtain

∥et (·, t)∥2
≤

1
2
∥zi(·, t)∥2

+
1
2
∥wi(·, t)∥2, (85)

∥ex(·, t)∥2
≤

1
2q

∥wi(·, t)∥2
+

1
2q

∥zi(·, t)∥2, (86)

∥ext (·, t)∥2
≤

1
2
∥zix(·, t)∥2

+
1
2
∥wix(·, t)∥2, (87)

∥exx(·, t)∥2
≤

1
2q

∥wix(·, t)∥2
+

1
2q

∥zix(·, t)∥2 (88)

for i = 2, and ∥st (·, t)∥2, ∥sx(·, t)∥2, ∥sxt (·, t)∥2, ∥sxx(·, t)∥2 have the
same inequality relationships with (85)–(88) for i = 1. Therefore,
recalling the exponential stability with the decay rate σall in the
sense of ∥zi(·, t)∥2

+ ∥wi(·, t)∥2
+ ∥zix(·, t)∥2

+ ∥wix(·, t)∥2 proved
in Property (1) in Theorem 2, we obtain that the system-(e, s)
obtained from (9)–(10) is exponentially stable in the sense of (84)
with the decay rate at least σall.

According to the definition (9)–(10), it is then straightforward
to obtain that the system (1)–(6) is exponentially stable in the
sense of (83) with the decay rate at least σall which can be adjusted
by the control parameters κi, L̄.

Recalling (74) and Property (2) in Theorem 2, we obtain the
controller U1(t),U2(t) at the floating sheaves are bounded and
exponentially convergent to zero. The proof of Theorem 3 is com-
pleted.

According to the exponential convergence of X(t) proved in
Property (1) of Theorem 2 and the exponential stability estimate
in the sense of the norms including ∥uxx(·, t)∥ + ∥vxx(·, t)∥ and
∥exx(·, t)∥ + ∥sxx(·, t)∥ proved in Theorem 3, with the adjustable
exponential decay rates, we can state that the control objectives
proposed in Section 2 are achieved.

6. Simulation

The physical parameters of the mining cable elevator (1)–(6)
used in the simulation are shown in Table 1. The designed reference
of the hoisting velocity l̇(t) is plotted in Fig. 3. The control param-
eters chosen here are L̄ = [1, 1, 1, 1]T , κ1 = [0.0016, 0, 0.03, 0]T
and κ2 = [0,−0.0018, 0,−0.03]T .

We also apply the boundary damperwhich is classically utilized
in industries at the head sheaves to compare with the proposed
output feedback controller. The boundary dampers:

Ud1(t) = kd1u̇(l(t), t) = kd1(ut (l(t), t) + l̇(t)ux(l(t), t))

= kd1

(
1
4
(z1(l(t), t) + w1(l(t), t) − z2(l(t), t) − w2(l(t), t))

+
l̇(t)
4
√
q
((w1(l(t), t) − z1(l(t), t))

− (w2(l(t), t) − z2(l(t), t)))
)
, (89)

Ud2(t) = kd2v̇(l(t), t) = kd2(vt (l(t), t) + l̇(t)vx(l(t), t))

= kd2

(
1
4
(z1(l(t), t) + w1(l(t), t) + z2(l(t), t) + w2(l(t), t))

+
l̇(t)
4
√
q
((w1(l(t), t) − z1(l(t), t))

+ (w2(l(t), t) − z2(l(t), t)))
)
, (90)

where kd1, kd2 are tuned to attain the efficient control performance.
We have tested different values of kd1, kd2, and the best regulating
performance is achieved with kd1 = −0.33, kd2 = −0.31.

Table 1
Physical parameters of the dual-cable mining elevator.

Parameters (units) Values

Initial length L (m) 2000
Final length (m) 50
Cable effective steel area Aa (m2) 0.47 × 10−3

Cable effective Youngs modulus E (N/m2) 2.1 × 1010

Cable linear density ρ (kg/m) 8. 1
Total hoisted massM (kg) 15000
Moment of inertia of the cage Jc (kg·m2) 17 500
Gravitational acceleration g (m/s2) 9.8
Maximum hoisting velocities v̄max (m/s) 16.25
Total hoisting time tf (s) 150
Cable material damping coefficient c̄ (N·s/m) 0.6
Cage axial damping coefficient cd (N·s/m) 0.4
Cage roll damping coefficient ca (N·m·s/rad) 0.4
Cage dimension l1 (m) 2.5
Cage dimension lr (m) 3.53
Cage dimension ϕ (rad) 0.785

Cage dimensions referred to Fig. 1.

Fig. 3. The hoisting velocity l̇(t).

6.1. Calculation method

The simulation is performed for the physical model-(z1, w1, z2,
w2, X) (15)–(19) with the control law (72)–(73) and the observer
(22)–(27). The responses of tension oscillations EAux(x, t), EAvx
(x, t) in the cables can be calculated by those of z1, w1, z2, w2
through (11)–(14) and (9)–(10). The actual control forces EAU1(t),
EAU2(t) applied at the two floating head sheaves are obtained via
(74).

The simulation is performed by the finite-difference method
for the discretization in time and space after converting the time-
varying domain PDE to a fixed domain PDE via introducing ξ̌ =
x
l(t) (Wang, Pi et al., 2017), and the time step and space step are
chosen as 0.001 and 0.05 respectively. The solutions of the kernel
equations (42)–(45) and (65)–(70)which are coupled linear hyper-
bolic PDEs are also solved by the finite difference method.

6.2. Initial conditions

The initial conditions of the plant (1)–(6) are obtained from the
physical conditions of the dual-cable mining elevator with initial
unbalance. In detail, the initial profiles of the axial strain ux(x, 0),
vx(x, 0) are obtained by the force balance equations at the static
state, which are written as

ux(x, 0) =
ρxg + Me1g

EA
, vx(x, 0) =

ρxg + Me2g
EA

, (91)

where Me1 and Me2 are loads at the bottoms of the two cables.
Define the loads Me1, Me2 are 9250 kg and 5750 kg. The difference
between the loads supported by two cables might come from the
imprecision of manufacture and installation of the two cables,
or eccentricity of cage which always happens in loading, which
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results to the initial strain error of the two cables according to
(91). Note that this initial strain error of the plant is unknown in
the control system design. The initial vibration velocities of two
cables are defined as ut (x, 0) = 0, vt (x, 0) = 0, because the
initial vibration velocity of each point in the cable is zero. The initial
condition of X(t) is defined as X(0) = [y(0), θ (0), ẏ(0), θ̇ (0)]T =

[0, 0, 0, 0]T .
After obtaining the initial conditions of ut (x, 0), vt (x, 0), ux(x, 0),

vx(x, 0), according to (11)–(14) and (9)–(10), the initial conditions
(zi(x, 0), wi(x, 0)) of (15)–(19) tested in simulation can be obtained.
Similarly, the initial conditions ẑi(x, 0), ŵi(x, 0) of the observer
(22)–(27) are defined. Please note that Me1 = Me2 = M/2 is
used in (91) to obtain ux(x, 0), vx(x, 0) used to define the observer
initial conditions, because the initial error between loadsMe1,Me2
is unknown in the observer design. Thus parts of the observer
initial conditions are equal to those of the plant initial conditions
as ẑ1(x, 0) = z1(x, 0), ŵ1(x, 0) = w1(x, 0), and the others are
different from the plant initial conditions as ẑ2(x, 0) ̸= z2(x, 0),
ŵ2(x, 0) ̸= w2(x, 0).

6.3. Results

Tension oscillations in cables: The tension oscillation is an im-
portant physical variable to investigate the strength of the cable.
The suppression of tension oscillations is beneficial for easing the
fatigue damage and prolonging the service life of the hoisting
cables in the mining elevator. The responses of tension oscillations
at the midpoint of cable 1 and cable 2 are shown in Figs. 4 and 5
respectively, with the open-loop, the boundary damper, and the
proposed control law. The red dashed line, open loop response,
in Figs. 4 and 5 show that the large tension oscillations would be
caused obviously in the accelerated ascending process considering
the hoisting velocity curve l̇(t) in Fig. 2. To suppress the oscilla-
tions of tension, the proposed output feedback controller and the
boundary damper are applied at the head sheaves respectively and
the responses are shown in black and blue lines in Figs. 4 and 5.
It can be seen that tension oscillations are suppressed by both the
proposed control law and the boundary damper. Moreover, we can
observe that the responses with the proposed control law have
faster convergence and less overshoot than the responses with the
boundary damper.

Error of tension oscillations between cables: Error of tension
oscillations between cables is also an important physical index to
investigate the fatigue damage and prolonging the service life of
the cables in dual-cable mining elevators. Because the constant
mass of the cage are carried by two cables, the larger tension oscil-
lation error between cablesmeans the largermaximum loadwould
be supported by one of the cables, the service life of which would
be shorten due to the more serious fatigue damage. The errors
between cables under the open-loop, the boundary damper, and
the proposed control law are shown in Fig. 6. It shows that the ten-
sion oscillation error increases in 0–30 s which is the accelerated
ascending process in the open-loop case, while it is reduced and
convergent to zero under the proposed output feedback controller,
moreover, with a faster convergence than the boundary damper.

Axial and roll vibrations of the cage: Axial and roll vibrations of
the cage not onlywould bring uncomfortable feeling to passengers,
but also would increase the tension error between two cables
which would cause overburdened load for one of cables and result
to fatigue fracture. The responses of the axial and roll vibrations
of the cage are shown in Figs. 7–8 in the cases of without control,
with the boundary damper, andwith the proposedoutput feedback
controller. It can be observed that the large axial vibrations and roll
of the cage in open loop are suppressed to zero more efficiently

Fig. 4. Tension oscillations EA × ux(l(t)/2, t) at the midpoint of cable 1.

Fig. 5. Tension oscillations EA × vx(l(t)/2, t) at the midpoint of cable 2.

under the proposed output feedback controller than the traditional
boundary damper, with the faster convergence and less overshoot.

Observer errors and output feedback control forces: The states
used in the output feedback control forces (72)–(73) are the states
recovered from the observer (22)–(27). Fig. 9 shows the convergent
observer errors between ẑ2, ŵ2 and the plant states z2, w2 at
the midpoint of the domain [0, l(t)], which reflects the observer
(22)–(27) can reconstruct their actual distributed states in
(15)–(19), because the locations of the actuator and the sensors
are at the boundaries, the estimation of the states at the midpoint
x = l(t)/2 is the most challenging due to its accessibility. Note
that the initial conditions of the observer ẑ1(x, 0), ŵ1(x, 0) are the
same as those of the plant z1(x, 0), w1(x, 0), the observer errors of
z1, w1 are thus at a very small magnitude 10−14 and convergent
to zero as well. We only show the observer errors of z2, w2 here
due to the space limit. The control forces EAU1(t), EAU2(t) obtained
from (72)–(73) with (74) at the two head sheaves in the closed-
loop system are given in Fig. 10, which shows the control forces
EAU1(t), EAU2(t) are bounded and convergent to zero.

7. Conclusion and future work

In this paper, we proposed observer-based output feedback
control laws using the available boundary measurements applied
at the two floating head sheaves of the dual-cable mining elevator,
to suppress the tension oscillations in each cable, the error of
the tension oscillations between two cables and the axial and roll
vibrations of the cage. Mathematically, the boundary observer-
based output feedback control laws are designed to exponentially
stabilize a system consisting of two pairs of 2× 2 heterodirectional
coupled hyperbolic PDEs on a time-varying domain and all four
PDE bottom boundaries coupled at one ODE. TheH1 uniform expo-
nential stability of the closed-loop system including the proposed
output-feedback controller and the observer has been proved by
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Fig. 6. Errors EA × (ux(l(t)/2, t)−vx(l(t)/2, t)) of tension oscillations between cable
1 and cable 2.

Fig. 7. Axial vibration displacements y(t) of the cage.

Fig. 8. Cage roll angles θ (t).

Fig. 9. Observer errors z2(l(t)/2, t) − ẑ2(l(t)/2, t) and w2(l(t)/2, t) − ŵ2(l(t)/2, t)
between the plant (15)–(19) and the observer (22)–(27).

Lyapunov analysis. The simulation results illustrate the effective
performance of the proposed control law.

In future work, the effect of the vibration states u(x, t), v(x, t)
on the motion state l(t) will be considered in a more accurate
model which would be a nonlinear PDE with a state-depended

Fig. 10. The proposed observer-based output feedback control forces EAU1(t) =

EA(Ue2 +Ue1), EAU2(t) = EA(Ue2 −Ue1) and the boundary dampers (89)–(90) at two
head sheaves.

varying domain. The motion control force Ua(t) for l(t) and the
vibration/tension control force Ui(t) for u(x, t), v(x, t) will be de-
signed synchronously.

Appendix

Proof of Lemma 1. The kernel equations (42)–(45) have the same
form as the kernel equations (29)–(33) in Hu et al. (2016). In
detail, (42) and (43) are two coupled transport PDEswith boundary
conditions (44) and (45), which are the same form as the two
coupled transport PDEs (32), (33) with boundary conditions (29),
(30) in Hu et al. (2016) through setting m = n = 1 and replacing
the K , L as φ̄i, ψ̄i. The kernel equations of (29)–(33) have been
proved well-posed in Hu et al. (2016). Under the boundedness and
enough regularity assumptions (Assumptions 1 and 2) on the time-
varying domain l(t), Lemma 1 can then be proved.

Proof of Lemma 2. First, we establish the stability proof of the
target system-(α̃1, β̃1, α̃2, β̃2, X̃). (35)–(39) which is a PDE-ODE
cascaded system, where the states of the PDE subsystem (α̃i, β̃i)
(36)–(39) which has a same structure as the exponentially stable
target system (17)–(20) in Bin and Di Meglio (2017) flow into
the ODE (35) with a Hurwitz state matrix Â. Therefore, the tar-
get system would be exponentially stable. Through the following
Lyapunov analysis, we know the exponential decay rate can be
adjusted by the control parameters. The Lyapunov function Ve for
the system-(α̃1, β̃1, α̃2, β̃2, X̃) is defined as

Ve(t) =

2∑
i=1

Vei(t), (92)

where,

Vei(t) = X̃T (t)P2X̃(t) +
āi
2

∫ l(t)

0
eδ̄2ixβ̃i(x, t)2dx

+
b̄i
2

∫ l(t)

0
e−δ̄1ixα̃i(x, t)2dx, (93)

where the matrix P2 = PT
2 > 0 is the solution to the Lyapunov

equation P2Â + ÂTP2 = −Q2, for some Q2 = Q2
T > 0. The

positive parameters āi, b̄i, δ̄1i, δ̄2i are to be chosen later. Defining
Ωe(t) =

∑2
i=1(∥α̃i∥

2
+ ∥β̃i∥

2) + |X̃(t)|2, there exist two positive
constants θe1, θe2 holding θe1Ωe(t) ≤ Ve(t) ≤ θe2Ωe(t). Taking the
derivative of Ve(t) along (35)–(39), using Young’s inequality and
Cauchy–Schwarz inequality, through a lengthy but straightforward
calculation, recalling Assumption 2 and choosing

δ̄1i >
2

√
q
max

{√
q
2
, ξ0i +

c(1 + ξ0i)
2

}
,
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δ̄2i >
2

√
q

(
−

c
2āi

+ ξ0i +
b̄iξ0i
āi

+
cξ0ib̄i
2āi

)
,

āi > 4r0b̄i +
64|P2Bi|

2

q
√
qλmin(Q2)

,

where ξ0i is a sufficiently large positive constant, and large enough
positive b̄i and r0, we thus obtain

V̇e(t) ≤ −σeVe(t) −

√
q
4

2∑
i=1

āiβ̃i(0, t)2

−

2∑
i=1

(√
q − l̇(t)

) b̄i
2
e−δ̄1iLα̃i(l(t), t)2, (94)

where

σe =min
i=1,2

{
−
λmin(Q2)
2|P2|

,
√
qδ̄2i +

c
āi

− 2ξ0i −
2b̄iξ0i
āiδ̄1i

−
cξ0ib̄i
āi

,
√
qδ̄1i −

2ξ0i
δ̄1i

− c(1 + ξ0i)

−
2
r0

√
qF1ieδ̄1iL −

32L2|P2Bi|
2F2ieδ̄1iL

b̄iqλmin(Q2)

}
, (95)

with the definition

F1i = max
y∈[0,L]

{(ψ̄i(0, y) + φ̄i(0, y))2}, F2i = max
y∈[0,L]

{(ψ̄i(0, y))2}.

Note that the decay rate σe can be adjusted by the control param-
eter L̄which affects λmin(Q2), āi in (95).

Therefore, we obtain the exponential stability result of the
target system-(α̃i, β̃i, X̃) in the sense of Ωe(t) with the decay rate
σe. Due to the invertibility of the transformations (33)–(34), the
exponential stability with the decay rate at least σe of the system-
(z̃i, w̃i, X̃) in the sense of the norm (50) is proved.

Proof of Lemma 3. Differentiating (36) and (37) with respect to x,
differentiating (38) and (39) with respect to t , we have

α̃ixt (x, t) = −
√
qα̃ixx(x, t) +

c
2
α̃ix(x, t)

−
c
2
β̃ix(x, t) + η̄1i(x, t), (96)

β̃ixt (x, t) =
√
qβ̃ixx(x, t) −

c
2
β̃ix(x, t) + η̄2i(x, t), (97)

α̃ix(0, t) = β̃ix(0, t) −
c

√
q
β̃i(0, t) −

1
√
q
η̄3i(t)

−

(
(ψ̄i(0, 0) + φ̄i(0, 0)) −

c
2
√
q

)
α̃i(0, t)

−

∫ l(t)

0
(ψ̄iy(0, x) + φ̄iy(0, x))α̃i(x, t)dx

−
1

√
q
(l̇(t) −

√
q)(φ̄i(0, l(t)) + ψ̄i(0, l(t)))α̃i(l(t), t), (98)

β̃ix(l(t), t) = 0, (99)

where

η̄1i(x, t) =

∫ l(t)

x
M̄ix(x, y)β̃i(y, t)dy − M̄i(x, x)β̃i(x, t), (100)

η̄2i(x, t) =

∫ l(t)

x
N̄ix(x, y)β̃i(y, t)dy − N̄i(x, x)β̃i(x, t), (101)

η̄3i(t) = −

∫ l(t)

0
(M̄i(0, x) + N̄i(0, x))β̃i(x, t)dx

+

∫ l(t)

0

(
ψ̄i(0, x) + φ̄i(0, x)

) (∫ l(t)

x
M̄i(x, y)β̃i(y, t)dy

+
c
2
α̃i(x, t) −

c
2
β̃i(x, t)

)
dx. (102)

Note: taking the derivative of (39), we have l̇(t)β̃x(l(t), t) + β̃t
(l(t), t) = 0. Inserting (37), we obtain (l̇(t) +

√
q)β̃x(l(t), t) = 0,

which gives to (99).
Applying Cauchy–Schwarz inequality into (100)–(101), there

exist two positive constantsM8i,M9i such that

∥η̄1i(·, t)∥2
≤ M8i∥β̃i(·, t)∥2, (103)

∥η̄2i(·, t)∥2
≤ M9i∥β̃i(·, t)∥2. (104)

According to the exponential stability results proved in Theorem 1,
Lemma 5, we know the signals η̄3i(t) are exponentially convergent
to zero in the sense of

|η̄3i(t)|≤ λ03e−η̄0t = η̄3ma(t), (105)

for i = 1, 2, where the decay rate η̄0 > 0 and λ03 > 0 only depends
on initial values.

Define a Lyapunov function

VieH (t) =
ǎi
2

∫ l(t)

0
eδ̌2ixβ̃ix(x, t)2dx + R4Ve(t)

+
b̌i
2

∫ l(t)

0
e−δ̌1ixα̃ix(x, t)2dx +

R5

2
η̄3ma(t)2 (106)

where the positive constants ǎi, b̌i, δ̌1i, δ̌2i, R4, R5 are to be chosen
later. Taking the derivative of (106) along (96)–(99), substituting
the results of V̇e(t) (94) in Theorem 1, using Young’s inequality and
Cauchy–Schwarz inequality and substituting (103)–(104), through
a lengthy calculation, we can obtain

V̇ieH (t) ≤ −
R4σe

2
Ve(t) −

(
1
2
√
qǎi − 3

√
qb̌i

)
β̃ix(0, t)2

−

((
1
2
√
qδ̌2i +

c
2

−
L
r10i

)
ǎi −

Lb̌ic
4r11i

)∫ l(t)

0
eδ̌2ixβ̃ix(x, t)2dx

−

(
1
2
√
qδ̌1i +

c
2

− cLr11i −
L
r12i

)
b̌i

∫ l(t)

0
e−δ̌1ixα̃ix(x, t)2dx

−
(
√
q − l̇(t))b̌ie−δ̌1iL

2
α̃ix(l(t), t)2

−

(
R4

2
σeθe1 − 6b̌i

√
q
(
2M7i +

c2

2q

)
LM7i − 3b̌i

√
qM̂7iL

)
∥α̃i(·, t)∥2

−

(
R4

2
σeθe1 −

M8ir12ib̌iL
4

−
M9iǎir10ieδ̌2iLL

4

)
∥β̃i(·, t)∥2

−

(
R5η̄0 −

3b̌i
√
q

)
η̄3ma(t)2

−

(
R4

4
√
qāi −

3b̌ic2
√
q

− 6b̌i
√
q
(
2M7i +

c2

2q

))
β̃i(0, t)2

−

(
R4(

√
q − l̇(t))

b̄ie−δ̄1iL

2
−

3b̌i(l̇(t) −
√
q)2M7i

√
q

)
α̃i(l(t), t)2, (107)

where (38) and (105) are used. r10i, r11i, r12i are positive constants
from using Young’s inequality, and M7i = max0≤x≤L{(ψ̄i(0, x)
+φ̄i(0, x))2}, M̂7i = max0≤x≤L{(ψ̄iy(0, x) + φ̄iy(0, x))2}.

Recalling Assumption 2 and choosing δ̌1i, δ̌2i, ǎi to satisfy

δ̌1i >
2

√
q

(
cLr11i +

L
r12i

−
c
2

)
, δ̌2i >

2
√
q

(
L
r10i

−
c
2

)
,

ǎi > 6b̌i,
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with large enough r11i, R4, R5 and arbitrary b̌i, r10i, r12i, we thus
arrive at V̇ieH (t) ≤ −σieHVieH (t) where σieH > 0.

Defining a Lyapunov function VeH (t) = V1eH (t)+V2eH (t), taking
the derivative of VeH (t), we have

V̇eH (t) ≤ −σeHVeH (t), (108)

where

σeH = min
i=1,2

{
√
qδ̌2i + c −

2L
r10i

−
Lb̌ic

2ǎir11i
,

√
qδ̌1i + c − 2cLr11i −

2L
r12i

, 2η̄0 −
6b̌i

√
qR5

,
σe

2

}
. (109)

Note that the decay rate σeH can be adjusted by the control param-
eter L̄which affects σe.

We thus obtain the exponential stability estimate in the sense
of ∥α̃1x(·, t)∥2

+ ∥β̃1x(·, t)∥2
+ ∥α̃2x(·, t)∥2

+ ∥β̃2x(·, t)∥2. Due to
the invertibility of the transformation (33)–(34), we can obtain
the exponential stability estimate in the sense of (52) with the
decay rate al least σeHf = min{σe, σeH}. The proof of Lemma 3 is
completed.

Proof of Lemma 4. The kernel equations have the same form
as the kernel equations (17)–(23) in Di Meglio et al. (2018). In
detail, (65)–(66) are two coupled linear hyperbolic PDEs which
correspond to (17)–(18) in Di Meglio et al. (2018) by setting m =

n = 1 and replacing theK , L asψi,φi. Boundary conditions (68),(67)
correspond to (19),(21) inDiMeglio et al. (2018). TheODE (69)with
the initial condition (70) correspond to (22) with (23) in Di Meglio
et al. (2018). Because the well-posedness of (17)–(23) in Di Meglio
et al. (2018) has been proved, under the boundedness and enough
regularity assumptions (Assumptions 1 and 2) on the time-varying
domain l(t), Lemma 4 can then be proved.

Proof of Lemma 5. We establish the stability proof of the target
system-(α1, β1, α2, β2, X̂) via Lyapunov analysis. The equivalent
stability property between the target system and the observer
system-(ẑ1, ŵ1, ẑ2, ŵ2, X̂) is ensured due to the invertibility of the
backstepping transformation (53)–(54).

Step.1 Consider now a Lyapunov function for the system-(α1, β1,

α2, β2, X̂):

Vi(t) = X̂T (t)P1X̂(t) +
ai
2

∫ l(t)

0
eδi2xβi(x, t)2dx

+
bi
2

∫ l(t)

0
e−δi1xαi(x, t)2dx, (110)

where the matrix P1 = PT
1 > 0 is the solution to the Lyapunov

equation P1Á + ÁTP1 = −Q1, for some Q1 = Q1
T > 0. The

positive parameters ai, bi, δi1, δi2 are to be chosen later. Defining
Ω1i(t) = ∥βi(·, t)∥2

+ ∥αi(·, t)∥2
+ |X̂(t)|2, we have θ11iΩ1i(t) ≤

Vi(t) ≤ θ12iΩ1i(t), where θ11i = min
{
λmin(P1),

ai
2 ,

bie−δi1L

2

}
> 0

and θ12i = max
{
λmax(P1),

aieδi2L

2 ,
bi
2

}
> 0.

Taking the derivative of Vi(t) along the (55)–(59), applying
Young’s inequality, and choosing the parameters bi, δi1, δi2 to sat-
isfy

0 < bi <
λmin(Q1)

2
√
q
⏐⏐D̄i
⏐⏐2 , δi2 > 4ξibi

ai
√
q

+
aiλi
r2i

√
q
,

δi1 >
1

√
q
max

{
√
q, 6ξi +

2ξ 2i bi
λmin(Q1)

+ 2c
}
,

with small enough positive constants r4i, r3i, we thus obtain

V̇i(t) ≤ −σiVi(t)

−

(√
q
2

ai −
3
√
q

2
bi −

4 |P1Bi|

qλmin(Q1)

)
βi(0, t)2

−

(√
q
2

bie−δi1 l(t) − l̇(t)
bi
2
e−δi1 l(t)

)
αi(l(t), t)2

+

(
r2ieδi2Lλ̄i

2
+

4
⏐⏐P1Bj

⏐⏐
qλmin(Q1)

)
βj(0, t)2

+

(
a2i e

δi2LL
r4i

Hi +
b2i L
2r3i

Gi

)
z̃i(l(t), t)2

+

(
3
√
qbi
2

|Di|
2
+

a2i e
δi2LL
r4i

Yi

) ⏐⏐⏐X̃(t)⏐⏐⏐2, (111)

where ξi are sufficiently large constants, and

σi =
1
θ12i

min
{
3
4
λmin(Q1) −

3
√
qbi
2

⏐⏐D̄i
⏐⏐2,(√

q
2
δi2 +

c
2

)
ai

− ξibi

(
1 +

1
δi1

)
−

a2i λ̄i
2r2i

−
r4i(Hi + Yi)

2
,

((√
q
2
δi1 − c

)
bi

−
2ξibi
δi1

− ξibi −
ξ 2i b

2
i

λmin(Q1)
−

r3iGi

2

)
e−δi1L

}
. (112)

ai, r2i would be chosen later. Hi, Yi,Gi, λ̄i are defined as

Hi = max {|Ni(x, t)|} , Yi = max {|N1i(x)|} , (113)

Gi = max
{
|Γ̄i(x, t)|

}
, λ̄i = max{|λi(x)|}, (114)

for x ∈ [0, L], t ∈ [0,∞).

Step.2 Recalling the exponential stability result in the sense of
∥z̃i(·, t)∥, ∥w̃i(·, t)∥, |X̃(t)| and ∥z̃ix(·, t)∥, ∥w̃ix(·, t)∥ proved in Lem-
mas 2 and 3, considering w̃i(l(t), t) = 0 in (32), using Cauchy–
Schwarz inequality, similarly to (81), we can arrive at that w̃i(0, t)
is exponentially convergent to zero. Recalling w̃i(0, t)+ z̃i(0, t) = 0
in (32) and using Cauchy–Schwarz inequality again, similarly to
(82), we have z̃i(l(t), t) is exponentially convergent. Then we have
that signals X̃(t) and z̃i(l(t), t) are exponentially convergent to zero
in the sense of

max
{⏐⏐z̃i(l(t), t)⏐⏐ , ⏐⏐⏐X̃(t)⏐⏐⏐} ≤ λ0e−ηt

= η̌m(t), (115)

for i = 1, 2, where the decay rate η > 0 and λ0 is a positive
constant which depends on initial conditions only.

Now, we consider a Lyapunov function candidate for the whole
target system-(α1, β1, α2, β2, X̂)

V (t) =

2∑
i=1

Vi(t) + Rη̌m(t)2, (116)

where R > 0 to be determined later. DefiningΩa(t) = ∥β1(·, t)∥2
+

∥α1(·, t)∥2
+ ∥β2(·, t)∥2

+ ∥α2(·, t)∥2
+ |X̂(t)|2 + η̌m(t)2, we have

θa1Ωa(t) ≤ V (t) ≤ θa2Ωa(t) with two positive constants θa1, θa2.
Taking the derivative of (116) and considering (111), we get

V̇ (t) ≤ −

2∑
i=1

[(√
q − l̇(t)

) bi
2
e−δi1 l(t)αi(l(t), t)2

+

(√
q
2

ai −
3
√
q

2
bi −

8 |P1Bi|

qλmin(Q1)
−

r2jeδj2Lλ̄j
2

)
βi(0, t)2

+

(
R
2
η −

a2i e
δi2LL
r4i

Hi −
b2i L
2r3i

Gi

)
η̌m(t)2 + σiVi(t)

+

(
R
2
η −

3
√
qbi
2

|Di|
2
−

a2i e
δi2LL
r4i

Yi

)
η̌m(t)2

]
. (117)
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Note that (115) is used to replace z̃i(l(t), t)2 and |X̃(t)|2 in the last
two lines of (111) as η̌m(t)2 respectively. We can choose

ai > 3bi +
16 |P1Bi|

q
√
qλmin(Q1)

+
r2jeδj2Lλ̄j

2
, (118)

with somepositive r2j which is adjustable, and choose large enough
R to make sure the coefficients before η̌m(t)2 positive. Recalling
Assumption 2, i.e., l̇(t) <

√
q, the coefficients of the αi(l(t), t)2 in

(117) are positive in all ascending (l̇(t) < 0), descending (l̇(t) > 0)
and stop (l̇(t) = 0) cases. We thus arrive at

V̇ (t) ≤ −σV (t) −

2∑
i=1

s̄iβi(0, t)2, (119)

where s̄i > 0 and

σ =min
{
σ1, σ2,

1
R

2∑
i=1

(
Rη −

3
√
qbi
2

|Di|
2
−

a2i e
δi2LL
r4i

Yi

−
a2i e

δi2LL
r4i

Hi −
b2i L
2r3i

Gi

)}
> 0. (120)

Recalling σi (112), we know the decay rate σ can be adjusted by the
control parameters κi which affect σi andHi, Yi,Gi in (120) through
λmin(Q1), D̄i, γi, φi, ψi, and the control parameter L̄ which would
affect η in (120).

Therefore, we obtain the exponential stability result in the
sense of ∥αi(·, t)∥2

+∥βi(·, t)∥2
+|X̂(t)|2. Due to the invertibility of

the transformations (53)–(54), the exponential stability with the
decay rate at least σ of the system-(ẑi, ŵi, X̂) in the sense of the
norm (75) in Lemma 5 is proved.

Proof of Lemma 6. Differentiating (56) and (57) with respect to x,
differentiating (58) and (59) with respect to t , we have

αixt (x, t) = −
√
qαixx(x, t) − cβix(x, t)

− cαix(x, t) + ηi1(x, t), (121)

βixt (x, t) =
√
qβixx(x, t) − λ′

i(x)βj(0, t) −
c
2
βix(x, t)

+ ηi2(x, t), (122)

αix(0, t) = βix(0, t) +

2∑
f=1

Bf

q

(
D̄iβf (0, t) + Diβ̃f (0, t)

)
c

2
√
q
βi(0, t) +

1
√
q
λi(0)βj(0, t) +

1
√
q
ηi3(t), (123)

βix(l(t), t) =
λi(l(t))

l̇(t) +
√
q
βj(0, t) +

c
2(l̇(t) +

√
q)
βi(0, t)

+
Ni(l(t), t)
l̇(t) +

√
q
z̃i(l(t), t) +

N1i(l(t))
l̇(t) +

√
q
X̃(t), (124)

where

ηi1(x, t) = c
∫ x

0
ψix

I (x, y)αi(y, t)dy + cγ ′

i
I (x)X̂(t)

+ c
∫ x

0
φix

I (x, y)βi(y, t)dy + cψi
I (x, x)αi(x, t)

+ cφi
I (x, x)βi(x, t) + Γ̄ ′

i (x, t)z̃i(l(t), t), (125)

ηi2(x, t) = −N ′

1i(x)X̃(t) − N ′

i (x, t)z̃i(l(t), t), (126)

ηi3(t) =

⎡⎣D̄i

⎛⎝Ā +

2∑
i=f

Bf κf

⎞⎠− cγ I
i (0) + cD̄i

⎤⎦ X̂(t)

+

(
D̄iL̄(C1 + C2) + cDi + DiÂ + N1i(0)

)
X̃(t)

−
1

√
q
(Γ̄i(0, t) − Γi(0, t))z̃i(l(t), t)

+ Di

2∑
f=1

Bf
√
q

∫ l(t)

0
ψ̄f (y)α̃f (y, t)dy. (127)

Applying Cauchy–Schwarz inequality into (125)–(126), there exist
positive constants N1i,N2i,N3i,N4i,N5i,N6i such that

∥ηi1(·, t)∥2
≤ N1i∥αi(·, t)∥2

+ N2i

⏐⏐⏐X̂(t)⏐⏐⏐2
+ N3i∥βi(·, t)∥2

+ N4iz̃i(l(t), t)2, (128)

∥ηi2(·, t)∥2
≤ N5iz̃i(l(t), t)2 + N6i

⏐⏐⏐X̃(t)⏐⏐⏐2. (129)

According to (115), we know z̃i(l(t), t) is exponentially convergent
to zerowith the decay rate η. According to the exponential stability
results proved in Lemma 2, Lemma 5, we have the signals ηi3(t) are
exponentially convergent to zero in the sense of

|ηi3(t)|≤ λ03ie−η0it = ηima(t) (130)

where λ03i > 0 only depend on initial values and the decay rate
η0i > 0.

Define a Lyapunov function

VH (t) =

2∑
i=1

[
âi
2

∫ l(t)

0
eδ̂2ixβix(x, t)2dx

+
b̂i
2

∫ l(t)

0
e−δ̂1ixαix(x, t)2dx +

R3

2
ηima(t)2

]
+ R2η̌m(t)2 + R1V (t) + R0Ve(t), (131)

where positive constants âi, b̂i, δ̂1i, δ̂2i, R0, R1, R2, R3 would be de-
termined later. Taking the derivative of (131) along (121)–(124),
using Young’s and Cauchy–Schwarz inequalities, substituting the
results of V̇ (t) (119), V̇e(t) (94) and substituting (128)–(129), recall-
ing Assumption 2, through a lengthy calculation, we can obtain

V̇H (t) ≤ −
R1

2
σV (t) +

2∑
i=1

[
−

(√
qâi
2

− 4
√
qb̂i

)
βix(0, t)2

−

((
1
2
√
qδ̂2i +

c
2

−
1
r6i

−
1
r10i

)
âi

−
r7ib̂ic
4

)∫ l(t)

0
eδ̂2ixβix(x, t)2dx −

(
1
2
√
qδ̂1i + c

−
c
r7i

−
1
r8i

)
b̂i

∫ l(t)

0
e−δ̂1ixαix(x, t)2dx

−

(
R1σθa1

4
−

r8ib̂iN1i

4

)
∥αi(·, t)∥2

−

(
R1σθa1

4
−

r8ib̂iN3i

4

)
∥βi(·, t)∥2

−

(
R1σθa1

4

−
r8ib̂iN2i

4

)⏐⏐⏐X̂(t)⏐⏐⏐2 −

(
R3η0i −

4b̂i
√
q

)
ηima(t)2

−

(
R2η −

air6ieδ̂2iLN5i

4
−

r8ib̂iN4i

4

−
2(

√
q + v̄max)âiee

δ̂2iLH2
i

(
√
q − v̄max)2

)
η̌m(t)2 −

(
R1

4
s̄i

−
16r̂bBi

2

q
√
q

−
16
√
q
λ̂−

λmL
4

−
2(

√
q + v̄max)âλ

(
√
q − v̄max)2

−
(
√
q + v̄max)âieδ̂2iLc2

2(
√
q − v̄max)2

)
βi(0, t)2 −

(
R1σθa1

4
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−
air6ieδ̂2iLN6i

4
−

2(
√
q + v̄max)âieδ̂2iLY 2

i

(
√
q − v̄max)2

)⏐⏐⏐X̃(t)⏐⏐⏐2
−

(
R0

√
q
4

āi −
16r̂aBi

2

q
√
q

)
β̃i(0, t)2

]
− R0σeVe(t) (132)

where for i = 1, 2, λ̂ = max{ c2
4 b̂i, λi(0)2b̂i}, λm = max0≤x≤L

{air10ieδ2iLλ′

i(x)
2
}, r̂b = max{b̂iD̄2

i }, r̂a = max{b̂iD2
i }, and âλ =

max0≤l(t)≤L{âieδ̂2iLλi(l(t))2}. Note that (115) and (130) are used to
replace z̃i(l(t), t)2 and ηi3(t)2 with positive signs as η̌m(t)2 and
ηima(t)2 respectively. Hi, Yi are shown in (113). From using Young’s
inequality, r6i, r7i, r8i, r10i are arbitrary positive constants. Choose
positive constants âi, δ̂1i, δ̂2i satisfying

âi > 8b̂i, δ̂1i >
2

√
q

(
−c +

c
r7i

+
1
r8i

)
, (133)

δ̂2i >
r7ib̂ic
2âi

√
q

−
c

√
q

+
2

√
qr6i

+
2

√
qr10i

, (134)

with large enough R0, R1, R2, R3 and arbitrary b̂i, and thenwe arrive
at

V̇H (t) ≤ −σHVH (t), (135)

where

σH = min
i=1,2

{
1
2
σ , σe,

√
qδ̂2i + c −

2
r6i

−
2
r10i

−
r7ib̂ic
2âi

,

√
qδ̂1i + 2c −

2c
r7i

−
2
r8i
, R3η0i −

4b̂i
R3

√
q
, η −

air6ieδ̂2iLN5i

2R2

−
r8ib̂iN4i

2R2
−

4(
√
q + v̄max)âiee

δ̂2iLH2
i

(
√
q − v̄max)2R2

}
> 0. (136)

Note that σH can be adjusted by the control parameters κi which
affect σ and L̄which affects η, η0i, σe.

We thus obtain the exponential stability estimate in the sense
of ∥αix(·, t)∥2

+ ∥βix(·, t)∥2. Differentiating (62)–(63) with respect
to x, using Young’s and Cauchy–Schwarz inequalities, we have

∥ẑix∥2
≡ ∥αix(·, t)∥2,

∥ŵix∥
2

≤ 6
(
∥βix(·, t)∥2

+ K̄∞∥αi(·, t)∥2

+ L̄∞∥βi(·, t)∥2
+ ∥γi

I (·)
′
∥
2
⏐⏐⏐X̂(t)⏐⏐⏐2).

where K̄∞ = maxx∈[0,L],y∈[0,L]{L2ψ I
ix(x, y)

2
+ ψ I

i (x, x)
2
} and L̄∞ =

maxx∈[0,L],y∈[0,L]{L2φI
ix(x, y)

2
+ φI

i (x, x)
2
}.

Considering the exponential stability result in sense of
∥αi(·, t)∥2

+ ∥βi(·, t)∥2
+ |X̂(t)|2 proved in Lemma 5 and

∥αix(·, t)∥2
+ ∥βix(·, t)∥2 proved above, we can obtain the expo-

nential stability estimate of the system-(ẑi, ŵi) in the sense of (76)
with the decay rate at least σf = min{σ , σH}.
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