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and Miroslav Krstic, Fellow, IEEE

Abstract—In this paper, we present a new prescribed-time
distributed control method for consensus and containment of
networked multiple systems. Different from both regular finite-
time control (where the finite settling time is not uniform in
initial conditions) and the fixed-time control (where the settling
time cannot be preassigned arbitrarily), the proposed one is built
upon a novel scaling function, resulting in prespecifiable con-
vergence time (the settling time can be preassigned as needed
within any physically allowable range). Furthermore, the devel-
oped control scheme not only ensures that all the agents reach
the average consensus in prescribed finite time under undirected
connected topology, but also ensures that all the agents reach a
prescribed-time consensus with the root’s state being the group
decision value under the directed topology containing a spanning
tree with the root as the leader. In addition, we extend the result
to prescribed-time containment control involving multiple lead-
ers under directed communication topology. Numerical examples
are provided to verify the effectiveness and the superiority of the
proposed control.

Index Terms—Containment, directed topology, networked
multiple systems, prescribed-time consensus.

I. INTRODUCTION

AS FINITE time convergence is of special interest to
many important applications that involve multiagent
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systems (MASs) [1], the past few years have witnessed sus-
tained growing interest in finite time control of MAS, leading
to fruitful results on finite time consensus and/or containment
of MAS in [2]–[19]. It is noted that, however, most existing
finite time control methods cannot guarantee the convergence
within preset finite time in that the actual converging time
period is not uniform nor prespecifiable. This is because the
finite time T∗ is determined by T∗ ≤ [(V(t0)1−α)/(γ (1 −
α))] [20], with γ > 0 and 0 < α < 1 being design parame-
ters, and V(t0) being the Lyapunov function of system initial
states, from which it is seen that the finite time T∗ depends
on both the initial conditions and the other design parameters,
thus cannot be preset explicitly. In other words, for a given
T∗, it is nontrivial to determine the corresponding value for
the crucial parameters α and γ etc. The fixed-time consensus
has also been investigated in the existing literatures such as
in [21]–[23]. It should be emphasized that, although uniform
in initial conditions, the settling time in fixed-time control can-
not be preassigned arbitrarily (within any physically possible
range) because the upper bound of the settling time is sub-
ject to certain restrictions. Moreover, the existing finite time
control methods do not always lead to smooth control action.
For instance, in [2]–[7], signum function is used to achieve
finite time consensus of MAS under certain topology con-
ditions, which makes the control action discontinuous. The
methods suggested in [8]–[18] involve the fractional power
state feedback, rendering control action nonsmooth.

The above analysis indicates that the problem of global and
smooth distributed consensus and containment control for net-
worked multiple systems featured with uniform prespecified
finite convergence time has not been adequately addressed.

In this paper, we develop a new prescribed-time distributed
control method for consensus and containment of MAS in
which not only the control action is C1 smooth everywhere but
also the finite convergence time can be explicitly prespecified.
For technical tractability and fair comparison, we focus on
MAS with single integrator under communication constraints
as considered by many other researchers (see [2]–[11]) and we
make use of regular (rather than signum function or fractional
power) feedback of the relative states of neighboring agents
to solve the commonly and extensively studied finite time
consensus and containment problem with a completely dif-
ferent approach. The contribution and novelty of the proposed
solution is threefold.

1) Different from the traditional finite-time control meth-
ods which are based on the signum function or fraction
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power state feedback and thus are discontinuous or non-
smooth, the proposed finite time control is based on
regular feedback of local system states, thus it generates
smooth (C1) control action everywhere.

2) In contrast to most existing finite-time control meth-
ods where the finite convergence time is determined
by system initial condition or a number of design
parameters, the proposed one renders the finite con-
vergence time fully independent of initial condition
and any other parameter, thus it can be uniformly
prespecified.

3) By direct use of regular feedback of local system states,
instead of fractional power state feedback, the con-
trol scheme is developed based on standard Lyapunov
stability theory without involving fractional Lyapunov
differential inequality, thus avoiding the technical diffi-
culty in control design and stability analysis arising from
fractional order dynamic systems.

Our method, gaining its inspiration from [24], is indepen-
dent of and differs from [24] in several aspects.

1) We target to networked multiple systems with limited
communication connection, whereas [24] is on finite-
time control of single system.

2) We do not use the state transformation method as in [24],
thus skillfully avoid using direct feedback of the state
from each agent (direct state feedback might cause the
state of each agent to converge to zero instead of reach-
ing consensus around a nonzero value). Here only the
relative states information of neighboring agents is uti-
lized and there is no need for global information of the
common origin.

3) Our control scheme allows the system to operate beyond
the time interval T , in contrast to [24] that only works
for t ∈ [t0, t0 + T).

This paper is also different from [25] because in [25] only one
leader is addressed with the aid of observer, while in this paper,
three cases are considered, including leaderless consensus,
leader–follower consensus with one leader and containment
with multiple leaders, without using the observer.

II. PRELIMINARIES

Throughout this paper, we use the following notations: Rn×m

represents the set of n×m real matrices; IN denotes the identity
matrix of dimension N; 1N (0N) represents a column vector
with each entry being 1 (0); and ⊗ denotes the Kronecker
product.

A directed graph G is a pair (ι, ε) [26]–[28], with ι =
{ι1, . . . , ιN} being the set of nodes and ε ⊆ ι × ι the set
of edges. J = {1, . . . , N} denotes the set of node indexes.
The directed edge εij = (ιi, ιj) denotes that node ιj can obtain
information from ιi, and Ni = {ιj ∈ ι|(ιj, ιi) ∈ ε} is the set
of in-neighbors of node ιi. The weighted adjacency matrix is
A = [aij] ∈ RN×N , where εji ∈ ε ⇔ aij > 0, otherwise,
aij = 0. In addition, aii = 0 for all i ∈ J. The in-degree matrix
is B = diag(B1, . . . ,BN) ∈ RN×N , with Bi = ∑

j∈Ni
aij being

the weighted in-degree of node ιi. The Laplacian matrix is
defined as L = [lij] = B − A.

III. PROBLEM STATEMENT AND MOTIVATIONS

In the context of finite time control for MAS, the following
single integrator model has been commonly utilized [2]–[11]:

ẋi = ui, i = 1, . . . , N (1)

where xi ∈ Rm and ui ∈ Rm are the system state and control
input, respectively.

We say a control protocol ui (i ∈ J) solves a finite-time
consensus problem, if it solves a consensus problem, and for
any given initial states, there exist a finite time T∗ and a real
number/vector x∗ such that for all i ∈ J, xi → x∗ as t → T∗
and xi = x∗ when t ≥ T∗. If x∗ = ∑N

i=1 xi(t0)/N, it solves the
finite-time average-consensus problem [29].

The standard first-order finite-time consensus protocol
investigated by several researchers (e.g., [2]–[11]) can be
unified as follows:

ui = k
∑

j∈Ni

aijsign
(
xj − xi

)|xj − xi|αij (2)

where 0 ≤ αij < 1 and k > 0 is the control gain. Clearly,
protocol (2) covers several different cases: when αij = 1, it
reduces to the typical asymptotical consensus protocol studied
in [29]; when αij = 0, it reduces to the finite-time proto-
col established in [2]–[6], which is discontinuous due to the
using of the signum function; when 0 < αij < 1, it corre-
sponds to the finite-time consensus control scheme employed
in [8]–[11], which is continuous but nonsmooth with respect
to state variables. It is worth mentioning that with 0 < αij < 1,
the finite time T∗, within which the consensus is achieved, is
determined by T∗ = [(V(t0)1−α)/(γ (1 − α))], where γ > 0
is some constant related to the control gain k and the fraction
index αij as well as the second smallest eigenvalue λ2(L) of
the Laplacian matrix L (which depends on the communication
topology structure), and α is related to αij. We see at least
three issues associated with the finite time T∗.

1) T∗ depends not only on the control parameters k and αij,
as well as the topology structure but also on the initial
condition V(t0).

2) One can enlarge k or reduce αij (producing a larger γ

or a smaller α) to obtain a smaller T∗, however, the
control magnitude becomes larger with a smaller fraction
index αij.

3) If a specific T∗ is imposed, one has to literally find the
corresponding design parameters γ and α (i.e., k and
αij) based on V(t0) from T∗ = [(V(t0)1−α)/(γ (1−α))],
which cannot be explicitly predetermined due to the fact
that αij is implicitly involved in the function and the
initial condition might not be known a priori.

In this paper, we provide a solution to circumvent all the
aforementioned shortcomings.

IV. CONTROLLER DESIGN AND STABILITY ANALYSIS

Before moving on, we first introduce a time-varying scaling
function as

μ(t) =
{

Th

(T+t0−t)h , t ∈ [t0, t1)

1, t ∈ [t1,∞)
(3)
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where h > 2 is any user-chosen real number, and T ≥ Ts > 0
with Ts being the time period needed for signal process-
ing/computing and information transmission/communication.
Note that μ−q (q > 0) is monotonically decreasing on [t0, t1),
and μ(t0)−q = 1 and limt→t−1

μ(t)−q = 0. In addition

μ̇(t) =
{

h
T μ1+ 1

h , t ∈ [t0, t1)
0, t ∈ [t1,∞)

(4)

here we use the right-hand derivative of μ(t) at t = t1 as μ̇(t1).
Definition 1 [30]: Consider the system defined by

ẋ(t) = f (t, x(t)), t ∈ R+, x(0) = x0 (5)

where x ∈ Rm is the state vector, f : R+ × Rm → Rm is a
nonlinear vector field locally bounded uniformly in time. The
origin of system (5) is said to be globally uniformly finite-
time stable if it is globally uniformly asymptotically stable and
there exists a locally bounded function T : Rm → R+

⋃{0},
such that x(t, x0) = 0 for all t ≥ T(x0), where x(t, x0) is an
arbitrary solution of the Cauchy problem (5). The function T
is called the settling-time function.

Definition 2: The origin of system (5) is said to be globally
prescribed-time stable if it is globally uniformly finite-time
stable and the settling-time T is a user-assignable finite con-
stant, i.e., ∀0 < Tp ≤ Tmax < ∞ (Tp denotes the physically
possible time range), T can be prescribed such that Tp ≤ T ≤
Tmax, ∀x0 ∈ m.

Lemma 1: Consider system (5). Let V(x(t), t) : U×R+ → R
be a continuously differentiable function and U ⊂ Rm be a
domain containing the origin. If there exists a real constant
b > 0 such that

V(0, t) = 0 and V(x(t), t) > 0 in U − {0} (6)

V̇ = −bV − 2
μ̇

μ
V in U (7)

on [t0,∞), where V̇ = (∂V/∂x)(x)f (t, x), then the origin of
system (5) is prescribed-time stable with the prescribed time
T given in (3). If U = Rm, then the origin of system (5) is
globally prescribed-time stable with the prescribed time T . In
addition, for t ∈ [t0, t1), it holds that

V(t) ≤ μ−2 exp−b(t−t0) V(t0) (8)

and, for t ∈ [t1,∞), it holds that

V(t) ≡ 0. (9)

The proof of Lemma 1 is given in the Appendix.
The local neighborhood error is introduced as follows:

ei =
∑

j∈Ni

aij
(
xi − xj

)
, i = 1, . . . , N. (10)

Denote by E = [eT
1 , . . . , eT

N]T ∈ RmN and X = [xT
1 , . . . , xT

N]T ∈
RmN such that E = (L ⊗ Im)X.

With the above preparation, we are now in a position to
present the finite-time consensus control scheme

ui = −
(

k + c
μ̇

μ

)

ei, i ∈ J (11)

where k > 0 and c > 0 are design parameters, which can be
represented in the following compact form:

U = −
(

k + c
μ̇

μ

)

E (12)

where U = [uT
1 , . . . , uT

N]T ∈ RmN .
We investigate the prescribed-time consensus control under

two cases: 1) undirected connected topology and 2) directed
topology having a spanning tree with the root as the leader.

A. Networked MAS Under Undirected Topology

In this section, we establish the result in which the
prescribed-time average consensus is achieved under the
proposed control scheme (11) [or (12)], with the communi-
cation topology among the N agents satisfying the following
assumption.

Assumption 1: The communication topology G is undi-
rected and connected.

Let x∗ = (1/N)
∑N

i=1 xi(t), and δi(t) = xi(t) − x∗ (i =
1, . . . , N), which denotes the disagreement between the state
of the ith agent and the average state. Denote by δ =
[δT

1 , . . . , δT
N]T ∈ RmN , and then

δ = X − (1N ⊗ Im) · 1

N
· (

1T
N ⊗ Im

)
X. (13)

The following lemma is useful for deriving system stability.
Lemma 2 [26]: If the undirected graph G is connected and

1T
NX = 0, then XTLX ≥ λ2(L)XTX, where λ2(L) > 0 denotes

the second smallest eigenvalue of the Laplacian matrix L.
Now we are ready to state the following result.
Theorem 1: Under Assumption 1, system (1) with the

control law (11) [or (12)], where c ≥ 1/λ2(L), is glob-
ally prescribed-time stable with the settling time T , and the
prescribed-time average consensus is achieved in that

‖δ(t)‖ ≤ μ(t)−1 exp−kλ2(L)(t−t0)‖δ(t0)‖ (14)

for all t ∈ [t0, t1). Further, the consensus is kept and U remains
zero over [t1,∞), and the control input signal remains C1

smooth and uniformly bounded over the whole time interval
[t0,∞).

Proof: We first prove that the average consensus is achieved
within the prespecified finite time T and then prove that the
consensus will be kept over [t1,∞) and the control input U
remains zero for t ∈ [t1,∞). Namely, we need to consider the
following two cases.

Case 1: The average consensus is achieved within T and U
is C1 smooth and uniformly bounded on [t0, t1).

Choosing the Lyapunov function candidate as

V = 1

2
δTδ. (15)

By employing (12), (13), and L1N = 0N , we obtain that

(
1T

N ⊗ Im
)
Ẋ = (

1T
N ⊗ Im

)
[

−
(

k + c
μ̇

μ

)

(L ⊗ Im)X

]

= −
(

k + c
μ̇

μ

)
[(

1T
NL

) ⊗ Im
]
X = 0m (16)
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which yields

δ̇ = Ẋ − (1N ⊗ Im) · 1

N
· (

1T
N ⊗ Im

)
Ẋ = Ẋ (17)

and also we have

(L ⊗ Im)δ = (L ⊗ Im)X − (L ⊗ Im)(1N ⊗ Im) · 1

N

(
1T

N ⊗ Im
)
X

= (L ⊗ Im)X − [(L1N) ⊗ Im] · 1

N

(
1T

N ⊗ Im
)
X

= (L ⊗ Im)X. (18)

Taking the derivative of V from (17) and (18) gives

V̇ = δT δ̇ = δT Ẋ = δT
[

−
(

k + c
μ̇

μ

)

(L ⊗ Im)X

]

= −kδT(L ⊗ Im)δ − c
μ̇

μ
δT(L ⊗ Im)δ

= −k
m∑

l=1

(
δl

)T
Lδl − c

μ̇

μ

m∑

l=1

(
δl

)T
Lδl (19)

where δl = [δ1l, . . . , δNl]T ∈ RN (l = 1, . . . , m). Note that

(
1T

N ⊗ Im
)
δ = (

1T
N ⊗ Im

)
[

X − (1N ⊗ Im) · 1

N

(
1T

N ⊗ Im
)
X

]

= (
1T

N ⊗ Im
)
X − 1

N

[(
1T

N · 1N · 1T
N

) ⊗ Im
]
X

= (
1T

N ⊗ Im
)
X − (

1T
N ⊗ Im

)
X = 0m (20)

from which we easily obtain that

1T
Nδl = 0, l = 1, . . . , m. (21)

According to Lemma 2, we derive from (21) and (19) that

V̇ ≤ −k
m∑

l=1

λ2(L)
(
δl

)T
δl − c

μ̇

μ

m∑

l=1

λ2(L)
(
δl

)T
δl

= −kλ2(L)δTδ − c
μ̇

μ
λ2(L)δTδ. (22)

Note that c ≥ 1/λ2(L), it then follows from (22) that:

V̇ ≤ −kλ2(L)δTδ − μ̇

μ
δTδ = −2kλ2(L)V − 2

μ̇

μ
V. (23)

According to Lemma 1, we have from (23) that

V(t) ≤ μ(t)−2 exp−2kλ2(L)(t−t0) V(t0) (24)

on [t0, t1). Thus,

‖δ(t)‖2 ≤ μ(t)−2 exp−2kλ2(L)(t−t0) ‖δ(t0)‖2 (25)

on [t0, t1), which yields (14), and further

‖δ(t)‖ → 0 as t → t−1 (26)

by noting that μ−2 → 0 as t → t−1 . From (26) we see that the
average consensus is achieved within the prespecified finite
time T .

Note that L∞ := {x(t)|x : R+ → R, supt∈R+ |x(t)| < ∞}.
By recalling that 0 < μ−1, μ−(1−1/h), μ−1/h ≤ 1 and 0 <

exp−kλ2(L)(t−t0) ≤ 1, we then have

‖E‖ = ‖(L ⊗ Im)X‖ = ‖(L ⊗ Im)δ‖
≤ mμ(t)−1 exp−kλ2(L)(t−t0) ‖L‖‖δ(t0)‖
≤ m‖L‖‖δ(t0)‖ ∈ L∞ (27)

∥
∥
∥
∥
μ̇

μ
E

∥
∥
∥
∥ = h

T
μ

1
h ‖(L ⊗ Im)X‖ = h

T
μ

1
h ‖(L ⊗ Im)δ‖

≤ h

T
mμ

−
(

1− 1
h

)

exp−kλ2(L)(t−t0) ‖L‖‖δ(t0)‖

≤ h

T
m‖L‖‖δ(t0)‖ ∈ L∞ (28)

both of which yield

‖U‖ ≤ k‖E‖ + c
h

T

∥
∥
∥
∥
μ̇

μ
E

∥
∥
∥
∥

≤
(

kμ− 1
h + c

)
mμ

−
(

1− 1
h

)

exp−kλ2(L)(t−t0) ‖L‖‖δ(t0)‖

≤
(

k + c
h

T

)

m‖L‖‖δ(t0)‖ ∈ L∞ (29)

on [t0, t1). From (29), it is clear that the control input is
uniformly bounded on [t0, t1).

By examining U and dU/dt from (12) on [t0, t1), we get

U = −
(

k + c
h

T
μ

1
h

)

(L ⊗ Im)X (30)

dU/dt = −
(

k + c
h

T
μ

1
h

)

Ė − c
h

T

1

h
μ

1
h −1μ̇ E

=
(

k + c
h

T
μ

1
h

)

(L ⊗ Im)

(

k + c
h

T
μ

1
h

)

E

− c
h

T

1

T
μ

2
h E

=
(

k2 + 2kc
h

T
μ

1
h + c2 h2

T2
μ

2
h

)(
L2 ⊗ Im

)
X

− c
h

T

1

T
μ

2
h (L ⊗ Im)X (31)

from which we see that both U and dU/dt are continuous with
respect to X on [t0, t1). Since X is continuous with respect to
t according to (1), we then conclude that both U and dU/dt
are continuous with respect to t on [t0, t1), and therefore U is
C1 smooth with respect to t on [t0, t1).

Case 2: The consensus is kept and the control input U
remains zero over [t1,∞).

By choosing the same Lyapunov function as in (15), V =
(1/2)δTδ, on t ∈ [t1,∞), and following the same procedure
as in (17)–(23) with the control law (11) [or (12)], we readily
obtain:

V̇ ≤ −2kλ2(L)V ≤ 0, t ∈ [t1,∞). (32)

By noting that X is continuous at t = t1 from (1), we then
have V(t) is continuous at t = t1, and thus,

V(t1) = lim
t→t−1

1

2
δTδ = 0. (33)

Both (32) and (33) yield

0 ≤ V(t) ≤ V(t1) = 0, t ∈ [t0,∞). (34)

That is, V(t) ≡ 0 on [t1,∞). Thus δ(t) ≡ 0mN , and then
E ≡ 0mN on [t1,∞). From the definition of U in (12), we
deduce that U ≡ 0mN on [t1,∞). All of these imply that the
consensus is kept and the control input U remains zero over
[t1,∞) with the control law (12).
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From the proofs for t ∈ [t0, t1) and t ∈ [t1,∞), we see that
the average consensus is achieved within the prespecified finite
time T and is kept over [t1,∞), and further, the control input
U is at least C1 smooth and uniformly bounded on [t0, t1) and
remains zero over [t1,∞).

Now we show that the control input is uniformly bounded
and at least C1 smooth over the whole time interval [t0,∞).

In fact, from (29) and the fact that U remains zero over
[t1,∞), it is straightforward that U is uniformly bounded over
[t0,∞).

Also, from the above analysis in the two cases, it is clear
that U is C1 smooth with respect to t except at t = t1. So
we just need to verify that U and dU/dt exist and are con-
tinuous with respect to t at t = t1. First of all, it is clear
that limt→t−1

U = 0mN from the second inequality in (29) and
limt→t+1

U = 0mN = U(t1) from the proof in case 2, implying
that U exists and is continuous at t = t1. Now we examine
each term of dU/dt on the right hand of (31) to prove that
dU/dt exists and is continuous at t = t1. Upon using the fact
that μ−1 → 0, μ−(1−1/h) → 0, μ−(1−2/h) → 0 as t → t−1 ,
and ‖μδ‖ ∈ L∞ on [t0, t1) guaranteed by (14), it is clear that

‖(L ⊗ Im)E‖
= ‖(L ⊗ Im)(L ⊗ Im)δ‖ = μ−1‖

(
L2 ⊗ Im

)
μδ‖

≤ μ−1‖(L2 ⊗ Im)‖ × ‖μδ‖ → 0 (35)

‖μ 1
h (L ⊗ Im)E‖

≤ μ
−

(
1− 1

h

)

‖
(

L2 ⊗ Im

)
‖ × ‖μδ‖ → 0 (36)

‖μ 2
h (L ⊗ Im)E‖

≤ μ
−

(
1− 2

h

)

‖
(

L2 ⊗ Im

)
‖ × ‖μδ‖ → 0 (37)

‖μ 2
h E‖ ≤ μ

−
(

1− 2
h

)

‖(L ⊗ Im)‖ × ‖μδ‖ → 0 (38)

as t → t−1 . By inserting (35)-(38) into (31), we obtain
‖dU/dt‖ → 0 as t → t−1 . Then we have

lim
t→t−1

‖dU/dt‖ = 0 = lim
t→t+1

‖dU/dt‖ (39)

and therefore,

lim
t→t−1

dU/dt = 0mN = lim
t→t+1

dU/dt (40)

which means that dU/dt exists and is continuous at t = t1.
By noting that both U and dU/dt exist and are continuous at
t = t1, we then concluded from the definitions of the continu-
ousness and smoothness that U is C1 smooth with respect to
t at t = t1, and thus U is C1 smooth with respect to t over
[t0,∞).

Remark 1: It is worth noting that the gain (μ̇/μ) =
(h/T)μ(1/h) on [t0, t1) inside the control law (12) plays a
crucial role in achieving the prescribed-time convergence.
Although μ(1/h) grows to infinity when t approaches t1, the
control input U remains bounded, as indicated by (29). This
is because the term μ(1/h)E in the control input U is always
bounded even if μ(1/h) going to infinity. Even though, it may
happen in practice that the measurement of the neighborhood
error signal E could become noisy, which would result in a

product of μ(1/h) and E (with the former growing unbounded,
while the later E not decaying fully to zero), the simple and
effective way to address this issue is setting T in μ on [t0, t1)
to a larger value than the desired finite settling time, that is,

μ = T̄h

(
T̄ + t0 − t

)h
, t ∈ [t0, t1) (41)

where T̄ > T . By doing this, it can prevent the gain from
becoming infinite over the desired convergence time T but
with some sacrifice on the convergence accuracy. In fact,
with such defined μ in (41), by choosing the Lyapunov
function V = δTδ/2 and following the same procedure as
in the proof of (15)–(25), we can still arrive at (14), i.e.,
‖δ(t)‖ ≤ μ−1 exp−kλ2(L)(t−t0) ‖δ(t0)‖. In this case, although
μ−1 does not converge to zero, it converges to a small neigh-
borhood of zero as t → t−1 . Further, since V̇ ≤ −2kλ2(L)V on
[t1,∞), we see that V(t) decrease consistently and therefore
the average error δ decrease consistently as t increases.

Remark 2: It is interesting to note that, in contrast to most
existing finite time control methods, the proposed finite time
control scheme, as shown in (11), is built not only upon regu-
lar (rather than fractional power) state feedback but also upon
time-varying (rather than constant) gain. It is such structural
feature that renders the convergence time not only finite but
also user preassignable. Also, with the time-varying gain, the
proposed control avoids excessively large initial driving force
as encountered in many high and constant gain-based control
methods, because the initial value of the time-varying gain
here can be set as small as desired, rendering the initial con-
trol effort small. It should be mentioned that the nature of the
time-varying gain as involved in the control scheme, although
calling for gain updating according to the given simple ana-
lytical algorithm, does not cause any technical difficulty for
implementation because the computation involved in updating
the gain is even simpler than those involved in updating the
parameters in traditional adaptive control.

B. Networked MAS Under Directed Topology Having
Spanning Tree With the Root As Leader

We establish a prescribed-time consensus problem under the
topology that the graph G has a directed spanning tree with
the root node as the leader, in which the consensus is achieved
with the root’s state being the group decision value.

Assumption 2: The graph G has a directed spanning tree
with the root node ιi (i ∈ J) as the leader.

Without losing generality, we assume that the root vertex
i = 1. Note that the root ι1 has no neighbors, the Laplacian L

is then partitioned as

[
0 01×(N−1)

L2 L1

]

, where L2 ∈ R(N−1)×1

and L1 ∈ R(N−1)×(N−1). Under Assumption 2, it can be verified
that L1 is a nonsingular M-matrix (we call A = [aij] ∈ RN×N

a nonsingular M-matrix, if aij < 0, i �= j, and all eigenvalues
of A have positive real parts), and is diagonally dominant.
The following Lemma, borrowing from [31], gives a useful
property of L1.

Lemma 3 [31]: Under Assumption 2, there exists a positive
diagonal matrix P̃ = diag{p2, . . . , pN} such that

Q̃ = P̃L1 + LT
1 P̃ > 0 (42)
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in which p2, . . . , pN are determined by [p2, . . . , pN]T =
(LT

1 )−11N−1.
Let

zi(t) = xi(t) − x1, i = 2, . . . , N. (43)

Denote by X̃ = [xT
2 , . . . , xT

N]T ∈ Rm(N−1), Z̃ = [zT
2 , . . . , zT

N]T ∈
Rm(N−1), and Ẽ = [eT

2 , . . . , eT
N]T ∈ Rm(N−1) with ei (i =

2, . . . , N) being defined the same as in (10). By computation,
we readily derive that

Ẽ = (L1 ⊗ Im)
[
X̃ − (1N−1 ⊗ Im)x1

] = (L1 ⊗ Im)Z̃. (44)

Theorem 2: Under Assumption 2, the control law (11)
[or (12)], with c ≥ [(2λmax(P̃))/(λ1(Q̃))], solves a prescribed-
time consensus problem with the group decision value x1, and
the consensus is achieved within the prespecified finite time
T in that

‖Z̃(t)‖ ≤ μ(t)−1 exp
− kλ1(Q̃)

2λmax(P̃)
(t−t0)

×
√

λmax(P̃)

λmin(P̃)
‖
(

L−1
1 ⊗ Im

)
‖ · ‖Ẽ(t0)‖ (45)

for all t ∈ [t0, t1). Furthermore, the consensus is kept over
[t1,∞) in which U remains zero, and the control input U
remains C1 smooth and uniformly bounded over [t0,∞).

Proof: We only need to show two cases.
Case 1: The consensus is achieved within T and the control

input U is C1 smooth and uniformly bounded on [t0, t1).
Choosing the Lyapunov function candidate as

Ṽ = ẼT(
P̃ ⊗ Im

)
Ẽ. (46)

According to (12), we see that

˙̃X = −
(

k + c
μ̇

μ

)

Ẽ (47)

and x1 is time-invariant due to the fact that a11 = · · · = a1N =
0. Thus we have

˙̃E = (L1 ⊗ Im)
[ ˙̃X − (1N−1 ⊗ Im)ẋ1

]
= (L1 ⊗ Im)

˙̃X

= −
(

k + c
μ̇

μ

)

(L1 ⊗ Im)Ẽ. (48)

From Lemma 3 and (48), we derive the derivative of Ṽ as

˙̃V = 2ẼT(
P̃ ⊗ Im

) ˙̃E
= 2ẼT(

P̃ ⊗ Im
)
[

−
(

k + c
μ̇

μ

)

(L1 ⊗ Im)Ẽ

]

= −
(

k + c
μ̇

μ

)

ẼT[(
P̃L1 + LT

1 P̃
) ⊗ Im

]
Ẽ

= −
(

k + c
μ̇

μ

)

ẼT
(

Q̃ ⊗ Im

)
Ẽ

≤ −kλ1(Q̃)ẼT Ẽ − c
μ̇

μ
λ1(Q̃)ẼT Ẽ

≤ −k
λ1(Q̃)

λmax(P̃)
Ṽ − c

μ̇

μ

λ1(Q̃)

λmax(P̃)
Ṽ

≤ − kλ1(Q̃)

λmax(P̃)
Ṽ − 2

μ̇

μ
Ṽ (49)

where the fact that c ≥ [(2λmax(P̃))/(λ1(Q̃))] has been used.
It thus follows from Lemma 1 that:

Ṽ(t) ≤ μ−2 exp
− kλ1(Q̃)

λmax(P̃)
(t−t0) Ṽ(t0) (50)

which further implies that

‖Ẽ(t)‖2 ≤ μ−2 exp
− kλ1(Q̃)

λmax(P̃)
(t−t0) λmax(P̃)

λmin(P̃)
‖Ẽ(t0)‖2 (51)

and then that

‖Z̃(t)‖ = ‖(L1 ⊗ Im)−1Ẽ(t)‖ ≤ ‖(L1 ⊗ Im)−1‖ · ‖Ẽ(t)‖
≤ μ−2 exp

− kλ1(Q̃)

2λmax(P̃)
(t−t0)

×
√

λmax(P̃)

λmin(P̃)
‖(L1 ⊗ Im)−1‖‖Ẽ(t0)‖ (52)

which yields (45), and further

‖Z̃(t)‖ → 0 as t → t−1 . (53)

This means that X → (1N ⊗ Im)x1 as t → t−1 , that is, the
consensus with the group decision value x1 is achieved within
the prespecified finite time T .

In the following, we prove that the control input is uniformly
bounded on [t0, t1). Note that ‖E‖ = ‖Ẽ‖ due to the fact that
e1 = ∑

j∈N1
a1j(x1 − xj) = 0m. Thus we get from (51) that

‖μE(t)‖2 = μ2‖E(t)‖2 = μ2‖Ẽ(t)‖2

≤ exp
− kλ1(Q̃)

λmax(P̃)
(t−t0) λmax(P̃)

λmin(P̃)
‖Ẽ(t0)‖2

≤ λmax(P̃)

λmin(P̃)
‖Ẽ(t0)‖2 ∈ L∞ (54)

on [t0, t1), which further implies

‖E‖ ∈ L∞ and

∥
∥
∥
∥
μ̇

μ
E

∥
∥
∥
∥ = h

T
μ

−
(

1− 1
h

)

‖μE‖ ∈ L∞ (55)

on [t0, t1), and therefore,

‖U‖ ≤ k‖E‖ + c

∥
∥
∥
∥
μ̇

μ
E

∥
∥
∥
∥ ∈ L∞ (56)

on [t0, t1), which implies that U is uniformly bounded on
[t0, t1).

Similar to the proof in (30) and (31), we can derive that U
is C1 smooth on [t0, t1).

Case 2: The consensus is kept and the control input U
remains zero over [t1,∞).

By following the same line as in the proof of (32)–(34), we
establish that the consensus is kept over [t1,∞), in which U
remains zero.

Furthermore, by following the same line as in (35)–(40) we
readily get that the control input U is C1 smooth and uniformly
bounded over the whole time interval [t0,∞).
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V. EXTENSION TO THE CASE WITH MULTIPLE LEADERS

We extend the above obtained consensus results to the case
in which there exist multiple leaders in this section. In the
presence of multiple leaders, the prescribed-time containment
control problem arises.

Suppose that there are M (M < N) leader agents and N −M
follower agents in the directed graph G, where a leader is an
agent that has no in-neighbor and a follower is an agent that
has at least one in-neighbor. Without loss of generality, we let
L = {1, 2, . . . , M} and F = {M + 1, M + 2, . . . , N} be the
leader set and the follower set, respectively. The Laplacian L
in such case is represented as

[
0M×M 0M×(N−M)

L2 L1

]

(57)

where L2 ∈ R(N−M)×M and L1 ∈ R(N−M)×(N−M).
Assumption 3: Suppose that for each follower, there exists

at least one leader that has a directed path to it.
Under Assumption 3, we establish one property of L1 in the

following lemma.
Lemma 4: There exists a positive diagonal matrix PF =

diag{pM+1, . . . , pN} ∈ R(N−M)×(N−M) such that

QF = PFL1 + LT
1 PF > 0 (58)

in which pM+1, . . . , pN are chosen as [pM+1, . . . , pN]T =
(LT

1 )−11N−M . In addition, each entry of −L1L2 is non-
negative, and each row of −L1L2 has a sum equal to one.

Proof: The second assertion is well known (see [19,
Lemma 4]). In the following, we show the first assertion.
According to [19], we know that L1 is a nonsingular M-matrix
under Assumption 3. From [32, Th. 4.25], we deduce that
L−1

1 exists and is non-negative. Therefore, it satisfies the same
condition as in [31, Lemma 4], and then the first assertion is
proved as in the proof of [31, Lemma 4].

Definition 3 [19]: We say the MAS (1) achieves contain-
ment in prespecified finite time T if for any initial states, there
exist non-negative constants βj (j ∈ L) satisfying

∑M
j=1 βj = 1

such that for all t ≥ T and i ∈ F , xi − ∑M
j=1 βjxj = 0m.

Let EL = [eT
1 , . . . , eT

M]T , EF = [eT
M+1, . . . , eT

N]T , xL =
[xT

1 , . . . , xT
M]T , and xF = [xT

M+1, . . . , xT
N]T . Then it holds

EF = (L1 ⊗ Im)xF + (L2 ⊗ Im)xL
= (L1 ⊗ Im)

[
xF −

((
−L−1

1 L2

)
⊗ Im

)
xL

]
. (59)

According to Lemma 4, the prescribed-time containment
objective is achieved if EF converges to zero in the
prespecified finite time T .

We present the containment result in the following theorem.
Theorem 3: Consider system (1) under Assumption 3.

The control scheme (11) [or (12)], with c ≥
[(2λmax(PF ))/(λ1(QF ))], solves the prescribed-time contain-
ment problem and the containment is achieved within the
prespecified finite time T in that

‖EF (t)‖ ≤ μ−1 exp
− kλ1(QF )

2λmax(PF )
(t−t0)

×
√

λmax(PF )

λmin(PF )
‖(L1 ⊗ Im)−1‖ · ‖EF (t0)‖ (60)

for all t ∈ [t0, t1). Furthermore, the containment will be
kept over [t1,∞) in which U remains zero, and the control
input signal remains C1 smooth and uniformly bounded over
[t0,∞).

Proof: We need to show two cases.
Case 1: The containment is achieved within T and the

control input U is C1 smooth and uniformly bounded on
[t0, t1).

Choosing the Lyapunov function candidate as

VF = ET
F (PF ⊗ Im)EF . (61)

According to (11), we have

ĖF = (L1 ⊗ Im)
[
ẋF −

((
−L−1

1 L2 ⊗ Im

)
ẋL

)]

= (L1 ⊗ Im)ẋF = −
(

k + c
μ̇

μ

)

(L1 ⊗ Im)EF (62)

in which we have used the fact that ẋL = 0. With c ≥
[(2λmax(PF ))/(λ1(QF ))], we derive from Lemma 4 and (62)
that

V̇F = 2ET
F (PF ⊗ Im)ĖF

= 2ET
F (PF ⊗ Im)

[

−
(

k + c
μ̇

μ

)

(L1 ⊗ Im)EF
]

= −
(

k + c
μ̇

μ

)

ET
F

[(
PFL1 + LT

1 PF
) ⊗ Im

]
EF

= −
(

k + c
μ̇

μ

)

ET
F (QF ⊗ Im)EF

≤ −kλ1(QF )ET
FEF − c

μ̇

μ
λ1(QF )ET

FEF

≤ −k
λ1(QF )

λmax(PF )
VF − c

μ̇

μ

λ1(QF )

λmax(PF )
VF

≤ − kλ1(QF )

λmax(PF )
VF − 2

μ̇

μ
VF . (63)

According to Lemma 1, we get from (63) that

VF (t) ≤ μ−2 exp
− kλ1(QF )

λmax(PF )
(t−t0) VF (t0). (64)

This implies

‖EF (t)‖2 ≤ μ−2 exp
− kλ1(QF )

λmax(PF )
(t−t0)

× λmax(PF )

λmin(PF )
‖EF (t0)‖2 (65)

and then

‖ZF (t)‖ = ‖(L1 ⊗ Im)−1EF (t)‖ ≤ ‖(L1 ⊗ Im)−1‖‖EF (t)‖
≤ μ−2 exp

− kλ1(QF )
2λmax(PF )

(t−t0)

×
√

λmax(PF )

λmin(PF )
‖(L1 ⊗ Im)−1‖‖EF (t0)‖ (66)

which yields (60). From (66) we get

‖ZF (t)‖ → 0 as t → t−1 (67)

that is, XF → (L−1
1 L2 ⊗ Im)XL as t → t−1 , meaning that the

containment is achieved within the prespecified finite time T .
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Fig. 1. Communication topology in Example 1.

(a)

(b)

Fig. 2. System response under proposed control (11). (a) δi. (b) ui.

The C1 smoothness and uniformly boundedness of U on
[t0, t1) can be shown by following the same line as in the
proof of (54)–(56).

Case 2: The containment is kept and the control input U
remains zero over [t1,∞).

The prescribed-time containment result and the C1 smooth-
ness and the uniformly boundedness of U over [t0,∞) can be
established by following the procedure as used at the end of
the proof in Theorem 1.

VI. NUMERICAL SIMULATION

To validate the effectiveness of the proposed prescribed-time
consensus and containment control schemes, two examples are
simulated in this section.

Example 1 (Consensus): In this example, we compare the
performance of the proposed prescribed-time consensus con-
trol (11) with the one (2) derived by [9]. The MAS with
four members under the communication topology as shown in
Fig. 1 is considered. For fair comparison, we need to exam-
ine the performance under the same initial control value for
both control schemes. This is ensured by setting the control
gains for the two control schemes as follows: k = 0.3 and
c = 1.8 for (11) and k = 3 for (2). We choose the other
design parameters as h = 3 and T = 2 s in (11) and αij = 0.6
in (2), respectively. Three set of initial states are tested:
1) X(t0) = [−1,−0.5, 0.5, 1]T ; 2) X(t0) = [−4,−3, 3, 4]T ;
and 3) X(t0) = [−5,−4, 4, 5]T , with t0 = 0.

(a)

(b)

Fig. 3. Performance comparison between the two control schemes under
three different initial conditions. (a) δ1 under proposed control (11). (b) δ1
under control (2) in [9].

(a)

(b)

Fig. 4. Comparison of the control inputs under the two control schemes with
three different initial states. (a) u1 under proposed control (11). (b) u1 under
control (2) in [9].

The results are shown in Figs. 2–4, where Fig. 2(a) shows
the error convergence and Fig. 2(b) is the control input sig-
nal produced by (11), from which we see that the average
errors of all the agents converge to zero within the prespecified
finite time T and the control input signals are smooth and
uniformly bounded. To compare the performance between the
prescribed-time control proposed herein and the one devel-
oped by [9], three different initial conditions are tested and the
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Fig. 5. Communication topology in Example 2.

Fig. 6. Trajectory of each agent from initial to final position.

(a)

(b)

Fig. 7. System response at x-axis. (a) ez. (b) uz.

results are shown in Figs. 3 and 4. It is seen that the finite time
within which the consensus is achieved under (11) does not
depend on the initial states X(t0) nor on other design param-
eters, and can be uniformly prespecified, whereas the finite
convergence time under the traditional finite-time control (2)
varies with different initial parameters. Also it is noted from
Fig. 5 that the magnitude of the control efforts from both con-
trol schemes are comparable, especially our control does not
demand excessively large control effort initially or eventually.

Example 2 (Containment): We conduct the simulation on
MAS consisting of ten agents with four leaders and six fol-
lowers to test the effectiveness of the proposed prescribed-time

containment control. The communication topology is shown
in Fig. 5, with the weight being 1. The initial states of the
six followers in x-axis, y-axis, and z-axis are set randomly
among [−5, 5]. We choose the design parameters as k = 1,
c = 3, h = 3, and T = 1 s. The containment control results
with the proposed control are shown in Figs. 6 and 7. It
confirms that, with the proposed prescribed-time containment
control method, the convergence time is independent of initial
conditions, thus can be uniformly prespecified.

VII. CONCLUSION

We presented in this paper a new approach for the finite time
control of MAS based on time-varying feedback gain. The
resultant control is able to achieve consensus within a finite
time that can be uniformly prespecified without the need for
initial condition and other design parameters. Furthermore, the
control is distributed and C1 smooth everywhere. Extending
this method to MAS with more general dynamics represents
an interesting topic for future research.

APPENDIX

PROOF OF LEMMA 1

Proof: We first examine the case of t ∈ [t0, t1) with t1 =
t0 + T . Multiplying μ2 on both hands of (7) yields

μ2V̇ ≤ −bμ2V − 2μμ̇V (68)

which further implies

d
(
μ2V

)

dt
= μ2V̇ + 2μμ̇V ≤ −b

(
μ2V

)
. (69)

Solving the differential inequality (69) gives

μ(t)2V(t) ≤ exp−b(t−t0) μ(t0)
2V(t0)

= exp−b(t−t0) V(t0) (70)

which then yields (8). Now we consider the case of t ∈ [t1,∞).
From (8) we get that V(t1) = limt→t−1

V(t) = 0, following

from the continuity of V(t) as well as limt→t−1
μ1(t)−2h = 0.

By noting that b > 0 and μ̇/μ ≥ 0, we then have from (7)
that V̇ ≤ 0 on [t1,∞), and thus 0 ≤ V(t) ≤ V(t1) = 0
on [t1,∞), which yields (9). On one hand, we see from (6)
and (7) that the origin of system (5) is globally asymptotically
stable. On the other hand, we have x(t) ≡ 0 after t = t0 +
T because V(x(t), t) ≡ 0 after t = t1 = t0 + T . Thus the
origin of system (5) is globally prescribed-time stable with
the prescribed-time T according to Definition 2.
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