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Summary

By using the adaptive control approach, we solve the error feedback regula-
tor problem for the one-dimensional wave equation with a general harmonic
disturbance anticollocated with control and with two types of disturbed mea-
surements, ie, one collocated with control and the other anti-collocated with
control. Different from the classical error feedback regulator design, which is
based on the internal mode principle, we give the adaptive servomechanism
design for the system by making use of the measured tracking error (and its time
derivative) and the estimation mechanism for the parameters of the disturbance
and of the unknown reference. Constructing auxiliary systems and observer and
applying the backstepping method for infinite-dimensional system play impor-
tant roles in the design. The control objective, which is to regulate the tracking
error to zero and to keep the states bounded, is achieved.

KEYWORDS

adaptive control, error feedback regulator problem, wave equation

1 INTRODUCTION

1.1 Reference review
One of the important problems in control theory is output regulation problem, or alternatively, the servomechanism. This
problem addresses designing of a feedback controller to achieve asymptotic tracking of unknown reference signals and
asymptotic rejection of undesired disturbances in an uncertain system while maintaining closed-loop stability. Unknown
reference signals can alternatively be thought of as measurement disturbances or “noise.” The reference and disturbances
are usually generated by an exosystem. Generally, there exist two versions of this problem considered. One is the state
feedback regulator problem where the controller is designed with full information of the state of the plant and exosystem.
The other is the more realistic error feedback regulator problem (EFRP) where only the components of the tracking error
are available for measurement. In this paper, we only focus on the error feedback regulator realization.

In the finite-dimensional system (linear or nonlinear) setting, there are many classical results, which include internal
model principle to address this problem (see other works1-6 and references therein).

Some attempts have been made to extend these classical results to infinite-dimensional systems. In the works of
Pohjolainen7 and Kobayashi,8 a PI controller was introduced for stable distributed systems with constant disturbance and
reference signal. Later, in the works of Byrnes et al9 and Schumacher,10 the regulation problem for infinite-dimensional
systems with bounded control and observation operator was investigated. Then, the key results in the work of
Byrnes et al,9 which were extended to the regular infinite-dimensional systems with unbounded control and observation
operator were reported in the work of Rebarber and Weiss11 and Natarajan et al.12 A finite-dimensional output feedback
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regulator for infinite-dimensional systems was developed in the work of Deutscher.13 Different from the research works
just proposed in which the exosystems considered are finite-dimensional, some efforts have been made to focus on the
output regulation problem for infinite-dimensional plants driven by infinite-dimensional exosystems. We refer readers to
other works.14-16

Most of the aforementioned research works about the EFRP focus on the extension of internal model principle the-
ory to infinite-dimensional systems driven by finite-dimensional or infinite-dimensional exosystems. However, there are
few results on adaptive servomechanism design for infinite-dimensional systems. Earlier effort on applying adaptive ser-
vomechanism to infinite-dimensional systems can be found in the work of Logemann and Ilchmann.17 In the work of
Kobayashi and Oya,18 an adaptive servomechanism control was designed for a class of distributed parameter system where
the input and output operators are collocated and the disturbance is collocated with control. A recent progress has been
made in the work of Guo and Guo19 where an adaptive servomechanism was constructed for one-dimensional (1D) wave
equation where the internal stability is needed.

Those generalizations build a theoretical framework, which covers a large class of real systems. However, many real
control systems are not included in those abstract frameworks, such as the boundary control partial differential equation
(PDE) system, which is anticollocated, or is unstable or even antistable itself. In this situation, the passivity principle
cannot be applied. A number of contributions to applying backstepping method for infinite-dimensional system20 to
the stabilization or adaptive stabilization of these PDE systems (please see other works21-31 and the references therein).
Recently, the backstepping-based solution to the output regulation problem for linear 2 × 2 hyperbolic systems was pre-
sented in the work of Deutscher.32 Adaptive rejection of harmonic disturbance anticollocated with control and the output
regulation to zero for 1D wave equation were obtained in the work of Guo et al.33

1.2 Problem formulation and motivation
Let us recall that the EFRP in the finite dimension case. Consider

⎧⎪⎨⎪⎩
ẋ = Ax + Bu + Pw,

ẇ = Sw,

e = Cx − Qw,

(1)

where x ∈ Rn is the state, u ∈ Rm is control input, e ∈ Rm is the tracking error, and w models both the reference signal
to track and the disturbance to reject. The problem is to find a control law{

�̇� = F𝜉 + Ge,
u = H𝜉,

such that

1. the origin is an asymptotically stable equilibrium of the closed loop,when the exosystem is disconnected,
ie, when w(t) ≡ 0; (2)

2. the error e(t) converges to zero, for any initial values x(0), 𝜉(0), and w0.

Here, we take the exogenous system in (1) to be a harmonic oscillator

ẇ = Sw, w(0) = w0 ∈ R
n,

where S ∈ Rn×n whose spectrum only contains simple eigenvalues on the imaginary axis, ie, i𝜔j. Then,

w(t) =
∑
𝑗∈

ei𝜔𝑗 t⟨w0, 𝜙𝑗⟩𝜙𝑗,

where 𝜙𝑗, 𝑗 ∈  is an orthonomal basis Cn.
Thus, the real vectors Pw and Qw contain components, which have the form a𝑗 cos𝜔𝑗 t + b𝑗 sin𝜔𝑗 t with the amplitudes

a𝑗 , b𝑗 , 𝑗 ∈  determined by the initial condition w0. If we assume the a𝑗 , b𝑗 , 𝑗 ∈  are unknown, then the EFRP of
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system (1) has the following statement, which is almost equivalent to (2), ie, the problem is to find a control law such that:

1. the origin is an asymptotically stable equilibrium when the resulting closed loop is disconnected from the
disturbance and reference, ie, a𝑗 = b𝑗 = 0, 𝑗 ∈  ; (3)

2. the error e(t) converges to zero, for any initial values x(0) and unknown constants a𝑗 , b𝑗 , 𝑗 ∈  ,

which inspires us to solve this problem by making use of the adaptive control design method rather than the internal
model principle.

In this paper, we consider the error feedback regulation problem for the following wave equation:

⎧⎪⎪⎨⎪⎪⎩
𝑦tt(x, t) = 𝑦xx(x, t), 0 < x < 1, t > 0
𝑦x(0, t) = d(t), t ≥ 0,
𝑦x(1, t) = u(t), t ≥ 0

e(t) = 𝑦out − r(t) → 0,
𝑦(x, 0) = 𝑦0(x), 𝑦t(x, 0) = 𝑦1(x), 0 ≤ x ≤ 1,

(4)

where u(t) is control input; yout is output to be regulated (in this paper, we consider yout = y(1, t) and yout = y(0, t)); and
e(t) = yout − r(t) is tracking error, which can be measured. y0 and y1 are initial conditions; d(t) represents the general
harmonic disturbance, which has the following form:

d(t) =
m∑
𝑗=1

[c𝑗 cos𝜔𝑗 t + d𝑗 sin𝜔𝑗 t].

r(t) is the tracking reference signal in the form

r(t) =
n∑

𝑗=1
[a𝑗 cos𝜛𝑗 t + b𝑗 sin𝜛𝑗 t].

Though our approach applies to this general class of disturbances and tracking reference signal, for simplicity of writing,
we take m = 1 and n = 1, ie,

d(t) = c cos𝜔t + d sin𝜔t,

and
r(t) = a cos𝜛t + b sin𝜛t.

In this paper, we consider two types of tracking error in this paper. One is

e(t) = 𝑦(1, t) − r(t),

which is collocated with the control, whereas the other is

e(t) = 𝑦(0, t) − r(t),

which is anticollocated with the control. In practice, the reference input to be tracked and the disturbance to be rejected
usually are not exactly known signals. The frequencies 𝜔,𝜛 ≠ 0, and n𝜋 + 𝜋

2
are assumed to be known (for design

purposes), but a, b, c, and d (which determine the amplitudes and the phases) are not known.
Obviously, vector (cos𝜛t, sin𝜛t, cos𝜔t, sin𝜔t) is one solution of the following equation with initial value

(w10,w20,w30,w40) = (1, 0, 1, 0):
ẇ(t) = Fw(t), w(0) = w0, (5)

where
w(t) = (w1(t),w2(t),w3(t),w4(t))⊤,

w0 = (w10,w20,w30,w40)⊤,

and

F =
⎛⎜⎜⎜⎝

0 −𝜛 0 0
𝜛 0 0 0
0 0 0 −𝜔
0 0 𝜔 0

⎞⎟⎟⎟⎠ .
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The objective of this paper to find the adaptive control law for system (4) such that

1. the resulting closed loop disconnected with disturbance and reference (that is, a = b = c = d = 0) will be
exponentially stable; and

2. the tracking error e(t) → 0, t → ∞, for any initial value y0, y1 in state space and unknown constants a, b, c, and d ∈ R.

System (4) is a typical boundary control system with unbounded input and observation operator. In addition, the dis-
turbance and control, in fact, are anticollocated. It is obvious that system (4) without disturbance and control has a zero
eigenvalue, which eliminates the assumption in existing literature studies9,12,13,15,16 that the system operator is always sup-
posed to generate an exponential stable C0-semigroup. Hence, the EFRP for system (4) cannot be included in the abstract
frameworks of the aforementioned literature studies.

This paper is the first to be devoted to solving the adaptive EFRP for PDEs and its contribution may be viewed as an
extension of the work of Guo et al33 but has an essential difference with the work of the aforementioned authors.33 One
of the objective of the work of the aforementioned authors33 is to regulate the measured output to zero, which means that
the output can track the fully known harmonic reference signal. However, this paper is to regulate e(t) = y(0, t) − r(t)
or e(t) = y(1, t) − r(t) to zero. The measurement in this paper is the tracking error signal e(t). Since we assume that the
harmonic reference signal is unknown, so the outputs y(0, t) and y(1, t) are not known, which bring new difficulty that
has to be solved.

The key characteristic of our approach is to construct an auxiliary system in which the control becomes collocated with
the disturbance or the measured error becomes system's output, from which we can build the connection between the
measured error and the original system. It is a systematic approach, which can be applied to solve the EFRP for other type
of PDEs. More precisely, for the case where the output to be regulated is yout = y(1, t), the method is to use separation
of variables to convert the original system into a new system where the boundary output is the measured error and the
control becomes collocated with the disturbance; then, based on this new system, an adaptive regulator, which curtains
estimators of the parameters of the disturbances and tracking reference, is proposed. It is a finite-dimensional controller.
For the case yout = y(0, t), we have an infinite-dimensional controller, which is more complicated than the previous
collocated case. The regulator is found by two auxiliary systems and an adaptive observer.

The traditional output regulation approach is based on the internal model principle and focus on the characterization
of the solvability of the EFRP in terms of regulator equations. However, for infinite-dimensional system, the associated
regulator equations are usually abstract operator equations, which cannot always be explicitly solved when applying to
specific infinite system, eg, PDEs. Our adaptive regulator design is not based on the internal model principle and does
not involve the regulator equations, which presents several advantages such as the explicit gain solution and numerical
effectiveness. Thus, our adaptive regulator is more implementable for the error feedback regulator realization.

This paper is organized as follows. In the next section, Section 2, we give the collocated adaptive tracking controller
design. Section 3 is devoted to the design of the control system with the measured error anticollocated with the control.
We present some simulation results illustrating the theory result in Section 4. Conclusions are finally given in Section 5.

2 COLLOCATE ERROR FEEDBACK REGULATION, yout = y(1,t)

2.1 Adaptive tracking controller design and main result
This section is devoted to the design of the adaptive tracking controller design for system (4) with the case

e(t) = 𝑦(1, t) − [a cos𝜛t + b sin𝜛t].

Inspired by the idea of the motion planning for PDEs in the work of Krstic and Smyshlyaev,20 we construct an auxil-
iary system in which the control and the anticollocated disturbance become collocated and the measured error becomes
output. To this end, let

z(x, t) = 𝑦(x, t) − sec𝜛 cos𝜛x[a cos𝜛t + b sin𝜛t] − sin𝜔(x − 1)
𝜔 cos𝜔

[c cos𝜔t + d sin𝜔t], x ∈ [0, 1], t ≥ 0. (6)

Then, by (4), we obtain the following auxiliary system:⎧⎪⎨⎪⎩
ztt(x, t) = zxx(x, t),
zx(0, t) = 0,
zx(1, t) = u(t) +𝜛 tan𝜛[a cos𝜛t + b sin𝜛t] − sec𝜔[c cos𝜔t + d sin𝜔t],
z(x, 0) = z0(x), zt(x, 0) = z1(x),

(7)
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where

z0(x) = 𝑦0(x) − a sec𝜛 cos𝜛x − c sin𝜔(x − 1)
𝜔 cos𝜔

,

z1(x) = 𝑦1(x) − b𝜛 sec𝜛 cos𝜛x − d sec𝜔 sin𝜔(x − 1).
(8)

Moreover,
z(1, t) = 𝑦(1, t) − [a cos𝜛t + b sin𝜛t] = e(t). (9)

Here, and in the rest of this paper, we omit the (obvious) domains for t and x.
The problem becomes how to design controller by using measurement output z(1, t) and its time derivative zt(1, t) to

make (7) stable. We present the adaptive parameters estimator for system (7) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̂a(t) = r1𝜛 tan𝜛zt(1, t) cos𝜛t,
̇̂b(t) = r1𝜛 tan𝜛zt(1, t) sin𝜛t,
̇̂c(t) = −r2 sec𝜔zt(1, t) cos𝜔t,
̇̂d(t) = −r2 sec𝜔zt(1, t) cos𝜔t,
â(0) = â0, b̂(0) = b̂0, ĉ(0) = ĉ0, d̂(0) = d̂0,

(10)

and adaptive feedback law

u(t) = −k1z(1, t) − k2zt(1, t) −𝜛 tan𝜛[â(t) cos𝜛t + b̂(t) sin𝜛t] + sec𝜔[ ĉ(t) cos𝜔t + d̂(t) sin𝜔t], (11)

where k1, k2, rj, j = 1, 2, are positive design parameters. The closed loop of (7) corresponding to (10) and (11) yields

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ztt(x, t) = zxx(x, t),
zx(0, t) = 0,
zx(1, t) = −k1z(1, t) − k2zt(1, t) +𝜛 tan𝜛[ã(t) cos𝜛t + b̃(t) sin𝜛t]

+ sec𝜔[ c̃(t) cos𝜔t + d̃(t) sin𝜔t],
̇̃a(t) = −r1𝜛 tan𝜛zt(1, t) cos𝜛t,
̇̃b(t) = −r1𝜛 tan𝜛zt(1, t) sin𝜛t,
̇̃c(t) = −r2 sec𝜔zt(1, t) cos𝜔t,
̇̃d(t) = −r2 sec𝜔zt(1, t) sin𝜔t,

ã(0) = ã0, b̃(0) = b̃0, c̃(0) = c̃0, d̃(0) = d̃0.

(12)

where ã(t) = a − â(t), b̃(t) = b − b̂(t), c̃(t) = ĉ(t) − c, and d̃(t) = d̂(t) − d are parameter errors. As explained in the work of
Krstic et al,23 the recommended parameters k1 and k2 are chosen so that sup{𝜆 ∶ 𝜆 ∈ 𝜎(A0)} is small as desired, where the
operator A0 ∶ D(A0) → H1(0, 1) × L2(0, 1) is defined by A0(𝜙, 𝜓) = (𝜓, 𝜙′′) with D(A0) = {(𝜙, 𝜓) ∈ H2(0, 1) × H1(0, 1) ∶
𝜙′(0) = 0, 𝜙′(1) = −k1𝜙(1) − k2𝜓(1)}. Define the energy function for system (12) as follows:

Ez(t) =
1
2 ∫

1

0

[
z2

t (x, t) + z2
x(x, t)

]
dx + k1

2
[z(1, t)]2 + 1

2r1
ã2(t) + 1

2r1
b̃2(t) + 1

2r2
c̃2(t) + 1

2r2
d̃2(t). (13)

A simple computation of the derivative of Ez(t) with respect to t along the solution to (12) shows that

Ėz(t) = −k2[zt(1, t)]2 ≤ 0, (14)

from which we obtain the feedback law (11) and the update law (10) of â(t), b̂(t), ĉ(t), and d̂(t).
Let V = H3(0, 1) ∩ D(A) with A being defined in L2(0, 1) by{

A𝜙 = −𝜙′′, ∀𝜙 ∈ D(A),
D(A) =

{
𝜙 ∈ H2(0, 1)|𝜙′(0) = 0, 𝜙(1) = 0

}
.

(15)

It is seen that A is unbounded self-adjoint positive definite in L2(0, 1) with compact resolvent. A simple computation
shows that the eigenpairs {(𝜆n, 𝜙n)}∞n=1 of A are

⎧⎪⎨⎪⎩
𝜆n = −𝜔2

n, 𝜔n = i
(

n + 1
2

)
𝜋,

𝜙n(x) = 2 cos𝜔nx = 2 cos
(

n + 1
2

)
𝜋x.

(16)
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Since {𝜙n(x)}∞n=1, defined by (16), forms an orthogonal basis for L2(0, 1), we can then follow the steps as those in the
work of Guo and Guo30 to construct a Galerkin scheme to prove the existence and uniqueness for the classical solution to
auxiliary system (12).

Theorem 1. Suppose that (z0, z1, ã0, b̃0, c̃0, d̃0) ∈ V × V ×R4, and they satisfy the following compatible condition:

−k1z0(1) − k2z1(1) +𝜛 tan𝜛ã0 + c̃0 sec𝜔 = 0 (17)

and

−k1z1(1) − k2z′′0 (1) +𝜛2 tan𝜛[−r1z1(1) + b̃0] + sec2𝜔[r2z1(1) + d̃0𝜔 cos𝜔] = 0. (18)

Then, system (12) admits a unique classical solution z. That is to say, for any time T > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z ∈ L∞ (
0,T;H3(0, 1)

)
, zt ∈ L∞ (

0,T;H2(0, 1)
)
,

ztt ∈ L∞ (
0,T;H1(0, 1)

)
,

ã ∈ C1[0,T], b̃ ∈ C1[0,T], c̃ ∈ C1[0,T], d̃ ∈ C1[0,T]
ztt(x, t) = zxx(x, t) in L∞ (

0,T;L2(0, 1)
)
,

zx(0, t) = 0,
zx(1, t) = −k1z(1, t) − k2zt(1, t) +𝜛 tan𝜛[ã(t) cos𝜛t + b̃(t) sin𝜛t]

+ sec𝜔[ c̃(t) cos𝜔t + d̃(t) sin𝜔t],
̇̃a(t) = −r1𝜛 tan𝜛zt(1, t) cos𝜛t,
̇̃b(t) = −r1𝜛 tan𝜛zt(1, t) sin𝜛t,
̇̃c(t = −r2 sec𝜔zt(1, t) cos𝜔t,
̇̃d(t) = −r2 sec𝜔zt(1, t) sin𝜔t,

ã(0) = ã0, b̃(0) = b̃0, c̃(0) = c̃0, d̃(0) = d̃0,

z(x, 0) = z0(x), zt(x, 0) = z1(x).

By the Sobolev embedding theorem, it follows that z ∈ C([0, 1] × [0,T]).

Remark 1. In Theorem 1, condition (17) is the natural compatible condition for the classical solution of (12), and
condition (18) is for the existence of the smoother solution that we shall need in the proof of Theorem 2.

Remark 2. Let us remark why the Galerkin method is necessary for the proof of Theorem (1). Actually, we consider
(12) and (5) together in the energy state space  =  ×R4⟨

(u1, v1, e, 𝑓 , g, h, 𝑝1, q1, 𝑝2, q2), (u2, v2, ê, 𝑓 , ĝ, ĥ, 𝑝1, q̂1, 𝑝2, q̂2)
⟩


= ∫
1

0
u′

1(x)u
′
2(x)dx + ∫

1

0
v1(x)v2(x)dx + k1u1(1)u2(1)

+
(

êe
r1
+ 𝑓𝑓

r1
+ gĝ

r2
+ hĥ

r2
+ 𝑝1𝑝2 + 𝑝2𝑝2 + 𝑝3𝑝3 + 𝑝4𝑝4

)
,

∀ (u1, v1, e, 𝑓 , g, h, 𝑝1, q1, 𝑝2, q2), (u2, v2, ê, 𝑓 , ĝ, ĥ, 𝑝1, q̂1, 𝑝2, q̂2) ∈ .

Hence, (12) and (5) can be written as a nonlinear autonomous evolution equation in the state space  =  ×R4

d
dt
(·, t) = A(·, t),(·, 0) = 0(·) ∈ , (19)

where ⎧⎪⎨⎪⎩
(x, t) =

(
z(x, t), zt(x, t), ã(t), b̃(t), c̃(t), d̃(t), 𝜉1(t), 𝜂1(t), 𝜉2(t), 𝜂2(t)

)
,

0(x) =
(

z0(x), z1(x), ã0, b̃0, c̃0, d̃0, 𝜉10, 𝜂10, 𝜉20, 𝜂20

)
,
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and ⎧⎪⎪⎨⎪⎪⎩

A(u, v, ã, b̃, c̃, d̃, 𝜉1, 𝜂1, 𝜉2, 𝜂2) =
(

v,u′′,−r1𝜛 tan𝜛v(1)𝜉1,−r1𝜛 tan𝜛v(1)𝜂1,

−r2 sec𝜔v(1)𝜉2,−r2 sec𝜔v(1)𝜂2,−𝜛𝜂1, 𝜛𝜉1,−𝜔𝜂2, 𝜔𝜉2
)
,

D(A) =
{
(u, v, ã, b̃, c̃, d̃, 𝜉1, 𝜂1, 𝜉2, 𝜂2) ∈ H2(0, 1) × H1(0, 1) ×R8| u′(0) = 0,

u′(1) = −k1u(1) − k2v (1) +𝜛 tan𝜛[ ã𝜉1 + b̃𝜂1] + sec𝜔[ c̃𝜉2 + d̃𝜂2]
}
.

Equation (19) is a nonlinear autonomous evolution system. However, same as in the work of Guo and Guo,30 it seems
hard to use nonlinear semigroup to prove its well-posedness due to the lack of dissipativity of A or any other kind of
A + 𝜇I for constant 𝜇 ∈ R. Hence, we invoke the Galerkin method to establish the existence and uniqueness for the
solution of Equation (12).
Next, we establish the convergence of auxiliary system (12). To do this, we need the weak solution of (12).

Definition 1. For any initial data (z0, z1, ã0, b̃0, c̃0, d̃0) ∈  = H1(0, 1)×L2(0, 1)×R4 , the weak solution (z, zt, ã, b̃, c̃, d̃)
of Equation (12) is defined as the limit of any convergent subsequence of (zn, zn

t , ãn, b̃n, c̃n, d̃n) in the space L∞(0,∞;),
where (zn, zn

t , ãn, b̃n, c̃n, d̃n) is the classical solution (ensured by Theorem 1) with the initial condition ( for all x ∈ (0, 1))(
zn(x, 0), zn

t (x, 0), ãn(0), b̃n(0), c̃ n(0), d̃n(0)
)
=

(
zn

0 (x), zn
1 (x), ãn

0 , b̃n
0 , c̃ n

0 , d̃n
0

)
∈ V × V × R

4,

which satisfies

lim
n→∞

‖‖‖‖(zn
0 (x), zn

1 (x), ãn
0 , b̃n

0 , c̃n
0 , d̃n

0

)
− (z0, z1, ã0, b̃0, c̃0, d̃0)

‖‖‖‖ = 0.

By (13) and (14), the aforementioned weak solution is well defined, since it does not depend on the choice of initial
sequence (zn(x, 0), zn

t (x, 0), ãn(0), b̃n(0), c̃ n(0), d̃n(0)). Consequently, (z, zt, ã, b̃, c̃, d̃) ∈ C(0,∞;). Moreover, by (14), this
solution depends continuously on its initial value.

Theorem 2. Suppose that

𝜔,𝜛 ≠ 0, n𝜋 + 𝜋

2
, n ∈ Z. (20)

Then, for any initial value (z0, z1, ã0, b̃0, c̃0, d̃0) ∈  , the (weak) solution of system (12) is asymptotically stable in the sense
that

lim
t→∞

[
1
2 ∫

1

0

[
z2

t (x, t) + z2
x(x, t)

]
dx + k1z2(1, t)

]
= 0

and

lim
t→∞

â(t) = a, lim
t→∞

b̂(t) = b, lim
t→∞

ĉ(t) = c, lim
t→∞

d̂(t) = d.

FIGURE 1 Block diagram of the closed-loop system (21)
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Now, we are in a position to go back to system (4). Thus, the closed loop of system (4) depicted in Figure 1 corresponding
to (9), (10), and (11) is governed by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑦tt(x, t) = 𝑦xx(x, t),
𝑦x(0, t) = c cos𝜔t + d sin𝜔t,
𝑦x(1, t) = −k1e(t) − k2ė(t) −𝜛 tan𝜛[â(t) cos𝜛t + b̂(t) sin𝜛t],

+ sec𝜔[̂c(t) cos𝜔t + d̂(t) sin𝜔t],
̇̂a(t) = r1𝜛 tan𝜛ė(t) cos𝜛t,
̇̂b(t) = r1𝜛 tan𝜛ė(t) sin𝜛t,
̇̂c(t) = −r2 sec𝜔ė(t) cos𝜔t,
̇̂d(t) = −r2 sec𝜔ė(t) cos𝜔t,

â(0) = â0, b̂(0) = b̂0, ĉ(0) = ĉ0, d̂(0) = d̂0,
e(t) = 𝑦(1, t) − [a cos𝜛t + b sin𝜛t].

(21)

Theorem 3. Suppose that 𝜔 ≠ 0,n𝜋 + 𝜋

2
, n ∈ Z. For any initial value (𝑦0, 𝑦1, â0, b̂0, ĉ0, d̂0) ∈  , there exists a unique

(weak) solution to (21) such that (𝑦(·, t), 𝑦t(·, t), â(t), b̂(t), ĉ(t), d̂(t)) ∈ C([0,∞);). Moreover, this closed-loop solution has
the following properties.

i. supt≥0

[∫ 1
0
[
𝑦2

t (x, t) + 𝑦2
x(x, t)

]
dx + k1𝑦

2(1, t) + â2(t) + b̂2(t) + ĉ2(t) + d̂2(t)
]
< ∞.

ii. limt→∞â(t) = a, limt→∞b̂(t) = b, limt→∞ĉ(t) = c, limt→∞d̂(t) = d.
iii. limt→∞e(t) = 𝑦(1, t) − [a cos𝜛t + b sin𝜛t] = 0.
iv. When a = b = c = d = 0,

∫
1

0

[
𝑦2

t (x, t) + 𝑦2
x(x, t)

]
dx + k1𝑦

2(1, t) ≤ Me−𝜇t,

for some constants M, 𝜇 > 0.

2.2 Proof of the main result
2.2.1 Proof of Theorem 2
By density argument, we may assume without loss of generality that the initial value (z0, z1, ã0, b̃0, c̃0, d̃0) belongs to V×V×
R4 and satisfies compatible conditions (17) and (18). Construct the Lyapunov functional V(t) for system (19) as follows:

V(t)(t) = 1
2 ∫

1

0

[
z2

t (x, t) + z2
x(x, t)

]
dx+ k2

2
z2(1, t) +

[
ã2(t) + b̃2(t)

2r1
+ c̃2(t) + d̃2(t)

2r2

]
+
[
𝜉2

1 (t) + 𝜂2
1(t)

]
+
[
𝜉2

2(t) + 𝜂2
2(t)

]
, (22)

where 𝜉1(t) = cos𝜛t, 𝜂1(t) = sin𝜛t, 𝜉2(t) = cos𝜔t, and 𝜂2(t) = sin𝜔t. A simple computation of the time derivative of
V(t) along the solution of system (19) shows

V̇(t)(t) = −k2[zt(1, t)]2 ≤ 0.

This concludes that V(t) ≤ V(0); hence,

sup
t≥0

[
1
2 ∫

1

0

[
z2

t (x, t) + z2
x(x, t)

]
dx + k1z2(1, t) + ||ã(t)|| + |b̃(t)| + ||̃c(t)|| + |d̃(t)|] < ∞. (23)

In particular, one has

zt(1, t) ∈ L2(0,∞). (24)
Similarly, define

Uz(t) =
1
2 ∫

1

0

[
z2

xx(x, t) + z2
tx(x, t)

]
dx + k2

2
z2

t (1, t).
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The time derivative of Uz(t) along the solution of (12) can be found as

U̇z(t) = − k2[ztt(1, t)]2 −
[

r1𝜛
2(tan𝜛)2 + r2

cos2𝜔

]
ztt(1, t)zt(1, t)

+ ztt(1, t)
[
𝜛2 tan𝜛[b̃(t) cos𝜛t − ã(t) sin𝜛t] + 𝜔

cos𝜔
[d̃(t) cos𝜔t − c̃(t) sin𝜔t]

]
.

(25)

Integrating over [0, t] by part on both sides of (25) gives

Uz(t) = Uz(0) − k2 ∫
t

0
[z̈(1, s)]2ds − 1

2

[
r1𝜛

2(tan𝜛)2 + r2

cos2𝜔

]
[ż(1, t)]2 + 1

2

[
r1𝜛

2(tan𝜛)2 + r2

cos2𝜔

]
z2

1(1)

+ ż(1, t)
[
𝜛2 tan𝜛[b̃(t) cos𝜛t − ã(t) sin𝜛t] + 𝜔

cos𝜔
[d̃(t) cos𝜔t − c̃(t) sin𝜔t]

]
− z1(1)

[
𝜛2 tan𝜛b̃0 +

𝜔

cos𝜔
d̃0

]
−𝜛2 tan𝜛

[
b̃2(t) − b̃2

0

2r1
+

ã2(t) − ã2
0

2r1

]
− 𝜔2

[
d̃2(t) − d̃2

0

2r2
+

c̃2(t) − c̃2
0

2r2

]
.

(26)

By using Young's inequality in (26), we have the estimation of Uz(t) to be

Uz(t) ≤ 1
2

z2
1(1)

[
(𝜛 tan𝜛)2r1 +

r2

cos2𝜔

]
+ 1

2
𝛿k2z2

t (1, t)

+ 1
2𝛿k2

[
𝜛2 tan𝜛[b̃(t) cos𝜛t − ã(t) sin𝜛t] + 𝜔

cos𝜔
[d̃(t) cos𝜔t − c̃(t) sin𝜔t]

]2

+
||||z1(1)

[
𝜛2 tan𝜛b̃0 +

𝜔

cos𝜔
d̃0

]|||| + |𝜛2 tan𝜛| [ b̃2(t) + b̃2
0

2r1
+

ã2(t) + ã2
0

2r1

]

+ 𝜔2

[
d̃2

0

2r2
+

c̃2
0

2r2

]
− 1

2

[
r1𝜛

2(tan𝜛)2 + r2

cos2𝜔

]
[ż(1, t)]2 + Uz(0),

(27)

where 𝛿 > 0 is a constant that is chosen so that 𝛿 satisfies
1
2
𝛿k2 <

1
2

[
r1𝜛

2(tan𝜛)2 + r2

cos2𝜔

]
. (28)

It is found from (23), (24), (27), and (28) that
sup
t≥0

Uz(t) < ∞,

which implies that the trajectory of system (19)

𝛾(0) =
{(

z, zt, ã(t), b̃(t), c̃(t), d̃(t), 𝜉1(t), 𝜂1(t), 𝜉2(t), 𝜂2(t)
) | t ≥ 0

}
is precompact in . In the light of Lasalle's invariance principle,34 any solution of system (19) tends to the maximal
invariant set of the following:

 =
{(

z, zt, ã(t), b̃(t), c̃(t), d̃(t), 𝜉1(t), 𝜂1(t), 𝜉2(t), 𝜂2(t)
)
∈ | V̇(t) = 0

}
.

Now, by V̇(t) = 0, it follows that zt(1, t) = 0, ã ≡ ã0, b̃ ≡ b̃0, c̃ ≡ c̃0, and d̃ ≡ d̃0. Thus, the solution reduces to

⎧⎪⎨⎪⎩
ztt(x, t) = zxx(x, t),
zx(0, t) = 0,
zx(1, t) = −k1z0(1) + ã0 cos𝜛t + b̃0 sin𝜛t + c̃0 cos𝜔t + d̃0 sin𝜔t,
zt(1, t) = 0.

(29)

The proof will be accomplished if we can show that (29) admits zero solution only. To this end, we first consider
the equation {

ztt(x, t) = zxx,
zx(0, t) = 0, zt(1, t) = 0. (30)

Introduce a Hilbert space  = H1(0, 1) × L2(0, 1) with the inner product

⟨(u1, v1), (u2, v2)⟩ = ∫
1

0

[
u′

1(x)u′
2(x) + v1(x)v2(x)

]
dx + u1(1)u2(1).
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Define a linear operator  in  associated to system (30){(𝑦, z) = (z, 𝑦′′),
D() =

{
(𝑦, z) ∈ H2(0, 1) × H1(0, 1)| 𝑦′(0) = 0, z(1) = 0

}
.

(31)

A straightforward calculation and performing of integration by parts shows that  is skew-symmetric in . Thus, all
eigenvalues of  are located on the imaginary axis.

Now, we claim that each eigenvalue of  is geometrical simple, and hence, algebraically simple from general functional
analysis theory. To see this, we solve the eigenvalue problem

(𝜙, 𝜓) = 𝜆(𝜙,𝜓)

for any 𝜆 ∈ 𝜎𝑝(). The solution is 𝜓 = 𝜆𝜙 with 𝜙 ≠ 0 satisfying{
𝜆2𝜙(x) − 𝜙′′(x) = 0,
𝜙′(0) = 0, 𝜆𝜙(1) = 0.

(32)

Solve (32) in the case where 𝜆 = 0 to give
𝜙(x) = c ≠ 0, (33)

where c is a constant. When 𝜆 ≠ 0,
𝜙(x) = e𝜆x + e−𝜆x (34)

with e2𝜆 = −1. Hence, 𝜆 is geometrically simple.
Finally, we claim that the spectrum of  consists of isolated eigenvalues only. In fact, for a given ( 𝑓, g) ∈  and

𝜇 ∈ 𝜌(), 𝜇 ≠ 0, solve (𝜇I −)(𝜙, 𝜓) = ( 𝑓, g), ie,⎧⎪⎨⎪⎩
𝜙′′(x) = 𝜇2𝜙(x) − 𝜇𝑓 (x) − g(x),
𝜙′(0) = 0, 𝜙(1) = 𝑓 (1)

𝜇
,

𝜓(x) = 𝜇𝜙(x) − 𝑓 (x)

to give {
𝜙(x) = m1e𝜇x + m2e−𝜇x − 1

𝜇
∫ x

0 sinh(𝜇x − 𝜇𝜉) [𝜇𝑓 (𝜉) + g(𝜉)] d𝜉,
𝜓(x) = 𝜇𝜙(x) − 𝑓 (x),

(35)

where
m1 = 1

2𝜇 cosh𝜇

[
e−𝜇𝑓 (0) + ∫

1

0
sin h(𝜇(1 − 𝜉))d𝜉

]
,

m2 = 1
2𝜇 cosh𝜇

[
∫

1

0
sin h(𝜇(1 − 𝜉))d𝜉 − e𝜇𝑓 (0)

]
.

It follows from (35) that
(𝜇 −)−1(𝑓, g) = (𝜙, 𝜓), ∀ ( 𝑓, g) ∈ ,

and hence ‖(𝜇 −)−1( 𝑓, g)‖H2(0,1)×H1(0,1) ≤ C1‖(𝑓, g)‖
for some constant C1 > 0. By the Sobolev embedding theorem, (𝜇I −)−1 is compact on . That is,  is a skew-adjoint
operator with compact resolvent on . Consequently, the spectrum of  consists of isolated eigenvalues only.

Furthermore, from (34), we can obtain eigenpairs of {
𝜆n =

(
n𝜋 + 𝜋

2

)
i, 𝜆−n = 𝜆n,

Φn =
(
𝜆−1

n 𝜙n, 𝜙n
)
, Φ−n =

(
𝜆−1
−n𝜙n, 𝜙n

)
, n ∈ Z,

(36)

where 𝜙n(x) = cos
(

n + 1
2

)
𝜋x. By general theory of functional analysis, {Φn}n∈Z forms an orthogonal basis for .

Therefore, the solution of (30) can be represented as

(z(·, t), ż(·, t)) = k1a0(c, 0) +
∞∑

n=1
ane𝜆ntΦn +

∞∑
n=1

a−ne𝜆−ntΦ−n,

where the constants {an}n∈Z are determined by the initial condition. That is,

z0 = a0c +
∞∑

n=1

an

𝜆n
𝜙n +

∞∑
n=1

a−n

𝜆−n
𝜙n, z1 =

∞∑
n=1

an𝜙n +
∞∑

n=1
a−n𝜙n.
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Hence,

zx(1, t) =
∞∑

n=1
an

𝜙′
n(1)
𝜆n

e𝜆nt +
∞∑

n=1
a−n

𝜙′
n(1)
𝜆−n

e𝜆−nt

= k1a0c + ã0 cos𝜛t + b̃0 sin𝜛t + c̃0 cos𝜔t + d̃0 sin𝜔t.

Therefore,

− k1a0c +
∞∑

n=1
an

𝜙′
n(1)
𝜆n

e𝜆nt +
∞∑

n=1
a−n

𝜙′
n(1)
𝜆−n

e𝜆−nt

− 1
2
[ã0 − ib̃0]ei𝜛t − 1

2
[ ã0 + ib̃0]e−i𝜛t − 1

2
[̃c0 − id̃0]ei𝜔t − 1

2
[ c̃0 + id̃0]e−i𝜔t = 0.

(37)

We now show that a±n = 0, for all n ≥ 1. Since otherwise, if there exists n0 ≥ 1 such that |an0

𝜙′
n0
(1)

𝜆n0
| ≠ 0, then an0 ≠ 0

due to the fact 𝜙′
n(1) ≠ 0 for all n. Furthermore, the smoothness of the initial value guarantees that

∑
n∈Z,n≠0

|an
𝜙′

n(1)
𝜆n

| < ∞,

which implies that there exists an integer N > n0 such that

∞∑
n=N

|||an
𝜙′

n(1)
𝜆n

||| < 1
4

||||an0

𝜙′
n0
(1)

𝜆n0

|||| ,
∞∑

n=N

|||a−n
𝜙′
−n(1)
𝜆−n

||| < 1
4

||||an0

𝜙′
n0
(1)

𝜆n0

|||| . (38)

Since 𝜆n ≠ 𝜆m for any n,m ∈ Z,n ≠ m, and |𝜆n+1 − 𝜆n| = 𝜋,n ∈ Z, one has, for t > 0,

an0

𝜙′
n0
(1)

𝜆n0
+

∞∑
n=N+1

an
𝜙′

n(1)
𝜆n

e(𝜆n−𝜆n0 )t +
N∑

n=1,n≠n0

an
𝜙′

n(1)
𝜆n

e(𝜆n−𝜆n0 )t +
∞∑

n=N+1
a−n

𝜙′
−n(1)
𝜆−n

e(𝜆−n−𝜆n0 )t +
N∑

n=1
a−n

𝜙′
−n(1)
𝜆−n

e(𝜆−n−𝜆n0 )t

−k1a0ce−𝜆n0 t − 1
2
[ ã0 − ib̃0]e(i𝜛−𝜆n0)t − 1

2
[ ã0 + ib̃0]e−(i𝜛+𝜆n0)t − 1

2
[ c̃0 − id̃0]e(i𝜔−𝜆n0)t − 1

2
[ c̃0 + id̃0]e−(i𝜔+𝜆n0)t = 0.

(39)

Integrating over [0, t] on both sides of (39) and using (38), and the fact Re𝜆n = 0, we obtain

|||||an0

𝜙′
n0
(1)

𝜆n0

||||| t ≤ 2
||||||∫

t

0

N∑
n=1,n≠n0

an
𝜙′

n(1)
𝜆n

e(𝜆n−𝜆n0 )sds
|||||| + 2

||||||∫
t

0

N∑
n=1

a−n
𝜙′
−n(1)
𝜆−n

e(𝜆−n−𝜆n0 )sds
||||||

+ 2
|||||∫

t

0
k1a0ce−𝜆n0 sds

||||| + 2
|||||∫

t

0
[ ã0 − ib̃0]e(i𝜛−𝜆n0)sds

||||| + 2
|||||∫

t

0
[ ã0 + ib̃0]e−(i𝜛+𝜆n0)sds

|||||
+ 2

|||||∫
t

0
[ c̃0 − id̃0]e(i𝜔−𝜆n0)sds

||||| + 2
|||||∫

t

0
[ c̃0 + id̃0]e−(i𝜔+𝜆n0)sds

||||| .
Since the right side of the aforementioned equation has an upper bound for all t ≥ 0, we get that an0 = 0, which is
a contradiction. Hence, a±n = 0,n = 1, 2, · · · and by (37), a0 = ã0 = b̃0 = c̃0 = d̃0 = 0. We have thus proved that
 = {(0, 0, 0, 0, 0, 0, 1, 0, 1, 0)}, in other words,

lim
t→∞

[
1
2 ∫

1

0

[
z2

t (x, t) + z2
x(x, t)

]
dx + c0z2(0, t) + ã2(t)

2r1
+ b̃2(t)

2r1
+ c̃2(t)

2r2
+ d̃2(t)

2r2

]
= 0.

The proof is complete.
Proof of Theorem 3: For any initial value (𝑦0, 𝑦1, â0, b̂0, ĉ0, d̂0) ∈  , It is obvious from (8) that (z0, z1, ã0, b̃0, c̃0, d̃0) ∈  ,

which implies that there exists a unique solution (weak) (z, zt, ã, b̃, c̃, d̃) ∈ C[0,∞;] to (12). This, together with (40), con-
cludes that system (21) admits a unique solution (weak) (𝑦, 𝑦t, â, b̂, ĉ, d̂) ∈ C([0,∞;). The first part is proved. Theorem 2
with (6) gives property i, ii, and iii. We say that a = b = c = d = 0, which implies there are no disturbance and
reference signal, ie, â(t) = b̂(t) = ĉ(t) = d̂(t) ≡ 0. Thus, iv is valid as a well-known result. The proof is completed.
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3 ANTICOLLOCATED ERROR FEEDBACK REGULATION, yout=y(0, t)

3.1 Adaptive anticollocated tracking controller design and main result
This section is devoted to the design of the adaptive tracking controller for system (4) where e(t) = y(0, t) − r(t). We
construct the first auxiliary system in which the measured error becomes output. Let

z(x, t) = 𝑦(x, t) − cos𝜛(1 − x)
cos𝜛

[a cos𝜛t + b sin𝜛t], x ∈ [0, 1], t ≥ 0. (40)

Then, by (4), we obtain the following auxiliary system:⎧⎪⎨⎪⎩
ztt(x, t) = zxx(x, t),
zx(0, t) = c cos𝜔t + d sin𝜔t +𝜛 tan𝜛[a cos𝜛t + b sin𝜛t],
zx(1, t) = u(t),
z(x, 0) = z0(x), zt(x, 0) = z1(x),

(41)

where
z0(x) = 𝑦0(x) − a cos𝜛(1 − x)

cos𝜛
, z1(x) = 𝑦1(x) − b𝜛 cos𝜛(1 − x)

cos𝜛
. (42)

Moreover,

z(0, t) = 𝑦(0, t) − [a cos𝜛t + b sin𝜛t] = e(t). (43)

To recover the state of system (41), we design an adaptive observer for system (41) by using the measured output z(0, t)
and its time derivative zt(0, t)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẑtt(x, t) = ẑxx(x, t),
ẑx(0, t) = ĉ(t) cos𝜔t + d̂(t) sin𝜔t +𝜛 tan𝜛[â(t) cos𝜛t + b̂(t) sin𝜛t]

+k1
(

ẑt(0, t) − zt(0, t)
)
+ k2

(
ẑ(0, t) − z(0, t)

)
,

ẑx(1, t) = u(t),
̇̂c(t) = −r1

(
zt(0, t) − ẑt(0, t)

)
cos𝜔t,

̇̂d(t) = −r1
(

zt(0, t) − ẑt(0, t)
)

sin𝜔t,
̇̂a(t) = −r2𝜛 tan𝜛

(
zt(0, t) − ẑt(0, t)

)
cos𝜛t,

̇̂b(t) = −r2𝜛 tan𝜛
(

zt(0, t) − ẑt(0, t)
)

sin𝜛t,
ĉ(0) = ĉ0, d̂(0) = d̂0, â(0) = â0, b̂(0) = b̂0,

ẑ(x, 0) = ẑ0(x), ẑt(x, 0) = ẑ1(x),

(44)

where k1, k2, r1, and r2 > 0 are design parameters.
Let 𝜀 = z − ẑ, c̃ = c − ĉ(t), d̃ = d − d̂(t), ã = a − â(t), and b̃ = b − b̂(t) be parameter estimation error; then, from (44) and

(41), 𝜀 is governed by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜀tt(x, t) = 𝜀xx(x, t),
𝜀x(0, t) = k1𝜀t(0, t) + k2𝜀(0, t) + c̃(t) cos𝜔t + d̃(t) sin𝜔t

+𝜛 tan𝜛
[

ã(t) cos𝜛t + b̃(t) sin𝜛t
]
,

𝜀x(1, t) = 0,
̇̃c(t) = r1𝜀t(0, t) cos𝜔t,
̇̃d(t) = r1𝜀t(0, t) sin𝜔t,
̇̃a(t) = r2𝜛 tan𝜛𝜀t(0, t) cos𝜛t,
̇̃b(t) = r2𝜛 tan𝜛𝜀t(0, t) sin𝜛t,

𝜀(x, 0) = 𝜀0(x) 𝜀t(x, 0) = 𝜀1(x),
c̃(0) = c̃0, d̃(0) = d̃0, ã(0) = ã0, b̃(0) = b̃0,

(45)

where {
𝜀0(x) = z0(x) − ẑ0(x), 𝜀1(x) = z1(x) − ẑ1(x),
c̃0 = ĉ0 − c, d̃0 = d̂0 − d, ã0 = â0 − c, b̃0 = b̂0 − b.

(46)

Let
𝜀(x, t) = 𝜀(1 − x, t).
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Then, 𝜀(x, t) satisfies ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜀tt(x, t) = 𝜀xx(x, t),
𝜀x(1, t) = −k1𝜀t(1, t) − k2𝜀(1, t) − c̃(t) cos𝜔t − d̃(t) sin𝜔t

−𝜛 tan𝜛
[

ã(t) cos𝜛t + b̃(t) sin𝜛t
]
,

𝜀x(0, t) = 0,
̇̃c(t) = r1𝜀t(1, t) cos𝜔t,
̇̃d(t) = r1𝜀t(1, t) sin𝜔t,
̇̃a(t) = r2𝜛 tan𝜛𝜀t(1, t) cos𝜛t,
̇̃b(t) = r2𝜛 tan𝜛𝜀t(1, t) sin𝜛t,

𝜀(x, 0) = 𝜀0(x) 𝜀t(x, 0) = 𝜀1(x),
c̃(0) = c̃0, d̃(0) = d̃0, ã(0) = ã0, b̃(0) = b̃0.

(47)

Observe that the structure of (47) is almost same to system (12). We now give the well-posedness and the convergence
result directly without proof.

Theorem 4. Suppose that
𝜔 ≠ 0,n𝜋 + 𝜋

2
, n ∈ Z. (48)

Then, for any initial value (𝜀0, 𝜀1, c̃0, d̃0, ã0, b̃0) ∈  , there exists a unique (weak) solution to (45) such that
(𝜀, 𝜀t, c̃, d̃, ã, b̃) ∈ C(0,∞;). Moreover, the solution of system (45) is asymptotically stable in the sense that

lim
t→∞

[
1
2 ∫

1

0

[
𝜀2

t (x, t) + 𝜀2
x(x, t)

]
dx + k2𝜀

2(0, t)
]
= 0

and
lim
t→∞

ĉ(t) = c, lim
t→∞

d̂(t) = d, lim
t→∞

â(t) = a, lim
t→∞

b̂(t) = b.

By the update law of ĉ(t), d̂(t), â(t), and b̂(t) in system (45), a formal computation gives

d
dt
[̂c(t) cos𝜔t + d̂(t) sin𝜔t + r1𝜀(0, t)] = 𝜔[d̂(t) cos𝜔t − ĉ(t) sin𝜔t],

d2

dt2 [̂c(t) cos𝜔t + d̂(t) sin𝜔t + r1𝜀(0, t)] = −𝜔2[̂c(t) cos𝜔t + d̂(t) sin𝜔t],

d
dt
[â(t) cos𝜛t + b̂(t) sin𝜛t + r2𝜛 tan𝜛𝜀(0, t)] = 𝜔[b̂(t) cos𝜛t − â(t) sin𝜛t],

d2

dt2 [â(t) cos𝜛t + b̂(t) sin𝜛t + r2𝜛 tan𝜛𝜀(0, t)] = −𝜔2[â(t) cos𝜛t + b̂(t) sin𝜛t].

(49)

Now, we construct the second auxiliary system in which the disturbance and reference signal becomes collocated with
the control. To do it, let

𝑝(x, t) = ẑ(x, t) − 1
𝜔

sin𝜔x[ ĉ(t) cos𝜔t + d̂(t) sin𝜔t + r1𝜀(0, t)]

− tan𝜛 sin𝜛x[â(t) cos𝜛t + b̂(t) sin𝜛t + r2𝜛 tan𝜛𝜀(0, t)].
(50)

Then, from (44) and (49), we can get the following auxiliary system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝tt(x, t) = 𝑝xx(x, t) − (𝜔r1 sin𝜔x + r2𝜛
3tan2𝜛 sin𝜛x)𝜀(0, t),

𝑝x(0, t) = −k1𝜀t(0, t) − (k2 + r1 + r2𝜛
2tan2𝜛)𝜀(0, t),

𝑝x(1, t) = u(t) − cos𝜔[ ĉ(t) cos𝜔t + d̂(t) sin𝜔t]
−𝜛 sin𝜛[â(t) cos𝜛t + b̂(t) sin𝜛t] − (r1 cos𝜔 + r2𝜛

2 sin𝜛 tan𝜛)𝜀(0, t),
𝑝(x, 0) = 𝑝0(x), 𝑝t(x, 0) = 𝑝1(x),

(51)

where
𝑝0(x) = ẑ0(x) −

ĉ0 + r1𝜀0(0)
𝜔

sin𝜔x − tan𝜛 sin𝜛x[â0 + r2𝜛 tan𝜛𝜀0(0)],

𝑝1(x) = ẑ1(x) − b̂0 sin𝜔x.
(52)
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Moreover,
𝑝(0, t) = ẑ(0, t). (53)

We present the controller for (51) as follows:

u(t) = cos𝜔
[̂

c(t) cos𝜔t + d̂(t) sin𝜔t
]
+𝜛 sin𝜛

[
â(t) cos𝜛t + b̂(t) sin𝜛t

]
− c0𝑝(1, t)

−c1𝑝t(1, t) − c0c1 ∫
1

0
𝑝t(𝜉, t)d𝜉 + (r1 cos𝜔 + r2𝜛

2 sin𝜛 tan𝜛)𝜀(0, t),
(54)

where c0 and c1 are positive design parameters. The closed-loop system of (50) corresponding to controller (54) is⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝tt(x, t) = 𝑝xx(x, t) − (𝜔r1 sin𝜔x + r2𝜛
3 tan2𝜛 sin𝜛x)𝜀(0, t),

𝑝x(0, t) = −k1𝜀t(0, t) − (k2 + r1 + r2𝜛
2 tan2𝜛)𝜀(0, t),

𝑝x(1, t) = −c0𝑝(1, t) − c1𝑝t(1, t) − c0c1 ∫
1

0
𝑝t(𝜉, t)d𝜉,

𝑝(x, 0) = 𝑝0(x), 𝑝t(x, 0) = 𝑝1(x).

(55)

Define H = H1(0, 1) × L2(0, 1), which is a Hilbert space with the two following equivalent norms induced by the inner
product:

‖(𝜙,𝜓)‖2
(H;‖·‖1)

= ∫
1

0

[||𝜙′(x)||2dx + |𝜓(x)|2] dx + c0|𝜙(1)|2, ∀(𝜙,𝜓) ∈ H

and ‖(𝜙, 𝜓)‖2
(H;‖·‖2)

= ∫
1

0

[||𝜙′(x)||2dx + |𝜓(x)|2] dx + c0|𝜙(0)|2, ∀ (𝜙,𝜓) ∈ H.

In the rest of this paper, we write norm || · ||H without discrimination.

Theorem 5. For any initial value (p0, p1) ∈ 𝐇, there exists a unique (weak) solution to (55) such that (p, pt) ∈
C(0,∞;𝐇). Moreover, the solution of (55) is asymptotically stable in the sense that

lim
t→∞

E𝑝(t) = lim
t→∞

[
1
2 ∫

1

0

[
𝑝2

x(x, t) + 𝑝2
t (x, t)

]
dx + 1

2
c0[𝑝(1, t)]2

]
= 0.

Introduce the following transformation (see the works of Krstic et al23 or Krstic and Smyshlyaev20 p83 ):

q(x, t) = [I + P](𝑝)(x, t) = 𝑝(x, t) + c0 ∫
x

0
𝑝(𝜉, t)d𝜉, (56)

which is invertible. The inverse is given by

𝑝(x, t) = q(x, t) − c0 ∫
x

0
e−c0(x−𝜉)q(𝜉, t)d𝜉.

It is seen that transformation (56) converts system (55) into the following target system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

qtt(x, t) = qxx(x, t) + [c0k2 − 𝜔r1 sin𝜔x + c0r1 cos𝜔x
−r2𝜛

3 tan2𝜛 sin𝜛x + r2𝜛
2 tan2𝜛 cos𝜛x]𝜀(0, t) + c0k1𝜀t(0, t),

qx(0, t) = c0q(0, t) − k1𝜀t(0, t) − (k2 + r1 + r2𝜛
2 tan2𝜛)𝜀(0, t),

qx(1, t) = −c1qt(1, t),
q(x, 0) = q0(x), qt(x, 0) = q1(x),

(57)

where

q0(x) = 𝑝0(x) + c0 ∫
x

0
𝑝0(𝜉)d𝜉, q1(x) = 𝑝1(x) + c0 ∫

x

0
q1(𝜉)d𝜉. (58)

The target system (57) will be proved to be asymptotically stable later.
Then, controller (54) is obtained in the process of transforming (50) into (57) under the backstepping transfor-

mation (56). Notice that controller (54) is expressed by variable p. In order to get the closed loop of system (4), it is necessary
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to write controller (54) to be expressed by variable ẑ. Then, by (50), we rewrite the controller (54) to be

u(t) = − c0ẑ(1, t) − c1ẑt(1, t) − c0c1 ∫
1

0
ẑt(𝜉, t)d𝜉

+
{(

cos𝜔 + c0

𝜔
sin𝜔

)
ĉ(t) +

[
c1 sin𝜔 + c0c1

𝜔
(1 − cos𝜔)

]
d̂(t)

}
cos𝜔t

+
{(

cos𝜔 + c0

𝜔
sin𝜔

)
d̂(t) −

[
c1 sin𝜔 + c0c1

𝜔
(1 − cos𝜔)

]
ĉ(t)

}
sin𝜔t

+
{
(𝜛 sin𝜛 + c0 tan𝜛 sin𝜛)â(t) + [c1𝜛 tan𝜛 sin𝜛 + c0c1(tan𝜛 − sin𝜛)] b̂(t)

}
cos𝜛t

+
{
(𝜛 sin𝜛 + c0 tan𝜛 sin𝜛)b̂(t) − [c1𝜛 tan𝜛 sin𝜛 + c0c1(tan𝜛 − sin𝜛)] â(t)

}
sin𝜛t

+
[c0r1

𝜔
sin𝜔 + r1 cos𝜔 + r2𝜛

2 sin𝜛 tan𝜛 + r2c0𝜛(tan𝜛 sin𝜛)2
] [

z(0, t) − ẑ(0, t)
]
.

(59)

Combined by (4), (44), and (59), the resulting closed loop depicted in Figure 2 is governed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦tt(x, t) = 𝑦xx(x, t),
𝑦x(0, t) = c cos𝜔t + d sin𝜔t,
𝑦x(1, t) = ẑx(1, t),
ẑtt(x, t) = ẑxx(x, t),
ẑx(0, t) = ĉ(t) cos𝜔t + d̂(t) sin𝜔t

+𝜛 tan𝜛
[

â(t) cos𝜛t + b̂(t) sin𝜛t
]
+ k1

(
ẑt(0, t) − ė(t)

)
+ k2

(
ẑ(0, t) − e(t)

)
,

ẑx(1, t) = −c0ẑ(1, t) − c1ẑt(1, t) − c0c1 ∫ 1
0 ẑt(𝜉, t)d𝜉

+
{(

cos𝜔 + c0
𝜔

sin𝜔
)

ĉ(t) +
[

c1 sin𝜔 + c0c1
𝜔
(1 − cos𝜔)

]
d̂(t)

}
cos𝜔t

+
{(

cos𝜔 + c0
𝜔

sin𝜔
)

d̂(t) −
[

c1 sin𝜔 + c0c1
𝜔
(1 − cos𝜔)

]
ĉ(t)

}
sin𝜔t

+
{
(𝜛 sin𝜛 + c0 tan𝜛 sin𝜛)â(t) + [c1𝜛 tan𝜛 sin𝜛 + c0c1(tan𝜛 − sin𝜛)] b̂(t)

}
cos𝜛t

+
{
(𝜛 sin𝜛 + c0 tan𝜛 sin𝜛)b̂(t) − [c1𝜛 tan𝜛 sin𝜛 + c0c1(tan𝜛 − sin𝜛)]â(t)

}
sin𝜛t

+
[

c0r1
𝜔

sin𝜔 + r1 cos𝜔 + r2𝜛
2 sin𝜛 tan𝜛 + r2c0𝜛(tan𝜛 sin𝜛)2

] [
e(t) − ẑ(0, t)

]
,

̇̂c(t) = −r1
(

ė(t) − ẑt(0, t)
)

cos𝜔t,
̇̂d(t) = −r1

(
ė(t) − ẑt(0, t)

)
sin𝜔t,

̇̂a(t) = −r2𝜛 tan𝜛
(

ė(t) − ẑt(0, t)
)

cos𝜛t,
̇̂b(t) = −r2𝜛 tan𝜛

(
ė(t) − ẑt(0, t)

)
sin𝜛t,

e(t) = z(0, t) = 𝑦(0, t) − [a cos𝜔t + b sin𝜔t]
â(0) = â0, b̂(0) = b̂0, ĉ(0) = ĉ0, d̂(0) = d̂0,

𝑦(x, 0) = 𝑦0(x), 𝑦t(x, 0) = 𝑦1(x).

(60)

Define  = H ×  . Let us consider system (60) in space  .

Theorem 6. Suppose that 𝜔,𝜛 ≠ 0,n𝜋 + 𝜋

2
, n ∈ Z. For any initial value (𝑦0, 𝑦1, ẑ0, ẑ1, ĉ0, d̂0, â0, b̂0) ∈  , there exists

a unique (weak) solution to (60) such that (𝑦(·, t), 𝑦t(·, t), ẑ(·, t), ẑt(·, t), ĉ(t), d̂(t), â(t), b̂(t)) ∈ C([0,∞);). Moreover, this
closed-loop solution has the following properties.

i. supt≥0[∫ 1
0 [𝑦2

t (x, t) + 𝑦2
x(x, t) + ẑ2

t (x, t) + ẑ2
x(x, t)]dx + ĉ2(t) + d̂2(t) + â2(t) + b̂2(t)] < ∞·

ii. limt→∞ĉ(t) = c, limt→∞d̂(t) = d, limt→∞â(t) = a, limt→∞b̂(t) = b.



16 GUO ET AL.

FIGURE 2 Block diagram of the closed-loop system (60)

iii. limt→∞e(t) = 0.
iv. When c = d = a = b = 0, ∫ 1

0 [𝑦2
t (x, t) + 𝑦2

x(x, t)]dx + c0𝑦
2(0, t) → 0 as t → ∞.

3.2 Proof of the main result
3.2.1 Proof Theorem 2
For any initial value ( p0, p1) ∈ H, it follows from (58) that (q0, q1) ∈ H. By the transformation (56), it is sufficient to
prove system (57) has a unique (weak) solution (q, qt) ∈ C(0,∞;H) and asymptotical stabilization of system (57) in the
sense that

lim
t→∞

Eq(t) = lim
t→∞

[
1
2
∫ 1

0
[
q2

x(x, t) + q2
t (x, t)

]
dx + 1

2
c0[q(0, t)]2

]
= 0. (61)

Define an operator A ∶ D(A) → H by{
A(u, v)⊤ = (v,u′′)⊤, ∀(u, v) ∈ D(A)
D(A) =

{
(u, v)⊤ ∈ H| A(u, v)⊤ ∈ H, 𝑓 ′(0) = c0𝑓 (0), 𝑓 ′(1) = −c1g(1)

}
.

(62)

Then, system (57) can be written as

d
dt

(
q(·, t)
qt(·, t)

)
= A

(
q(·, t)
qt(·, t)

)
+
(

0
𝑓 (·, t)

)
+ B

[
−k1𝜀t(0, t) − (k2 + r1 + r2𝜛

2tan2𝜛)𝜀(0, t)
]
, (63)

where B = (0, − 𝛿(x))⊤ and

𝑓 (x, t) = [c0k2 − 𝜔r1 sin𝜔x + c0r1 cos𝜔x − r2𝜛
3tan2𝜛 sin𝜛x + r2𝜛

2tan2𝜛 cos𝜛x]𝜀(0, t) + c0k1𝜀t(0, t).

It is well known that A generates an exponential stable C0-semigroup. Then, there exist K, 𝜇 > 0 such that

‖‖‖eAt‖‖‖ ≤ Ke−𝜇t. (64)

It is a routine exercise that B and I are admissible for eAt.35 On the other hand, by Theorem 4, we obtain limt→∞𝜀(0, t) = 0.
By the proof of Theorem 2, comparing (47) with (12), and noting (24), we have 𝜀t(1, t) ∈ L2(0,∞). Therefore, it follows
from lemma 2.1 in the work of Zhou and Weiss36 that system (63) has a unique solution that is asymptotically stable.

3.2.2 Proof of Theorem 6
Let

A1(x, t) = cos𝜛(1 − x)
cos𝜛

[a cos𝜛t + b sin𝜛t]



GUO ET AL. 17

and

A2(x, t) = 1
𝜔

sin𝜔x
[̂

c(t) cos𝜔t + d̂(t) sin𝜔t + r1𝜀(0, t)
]
+ tan𝜛 sin𝜛x

[
â(t) cos𝜛t + b̂(t) sin𝜛t + r2𝜛 tan𝜛𝜀(0, t)

]
.

Then, from (41) and (50), together with the fact 𝜀 = z − ẑ, one has

𝑦(x, t) = 𝜀(x, t) + 𝑝(x, t) + A2(x, t) + A1(x, t), ẑ(x, t) = 𝑝(x, t) + A2(x, t). (65)

For any initial value (𝑦0, 𝑦0, ẑ0, ẑ1, ĉ0, d̂0, â0, b̂0) ∈  , it is obvious from (42),(46), and (52) that (𝜀0, 𝜀1, c̃0, d̃0, ã0, b̃0) ∈  and
(p0, p1) ∈ H, which implies that there exists a unique solution (weak) (𝜀, 𝜀t, ẑ, ẑt, c̃, d̃, ã, b̃) ∈ C([0,∞);) to (41) and a
unique solution (p, pt) ∈ C([0,∞);H) to (55), respectively. It follows from (65) and (50) that system (60) admits a unique
solution (weak) (𝑦, 𝑦t, â, b̂, ĉ, d̂) ∈ C([0,∞);). The first part is proved.

Theorem 4 with (40) gives property i to iii. We say that a = b = c = d = 0, which implies there are no disturbance
and reference signal, ie, â(t) = b̂(t) = ĉ(t) = d̂(t) ≡ 0. Thus, iv is a well-known result. The proof is completed.

4 NUMERICAL EXAMPLES

In this section, we present some numerical simulation for illustrating the theory results. In the simulation, the
second-order equations in time are firstly converted into a system of two one-order equations, and then the backward
Euler method in time and the Chebyshev spectral method in space are used. The grid size is taken as N = 20 and time
step dt = 0.001. We choose k1 = 0.9, k2 = 1.1,𝜛 = 𝜋

4
, 𝜔 = 𝜋

3
, r1 = 1, and r2 = 2. We set the four unknown parameters to

be that a = 1, b = −1, c = −1.5, and d = 1.5. The initial state for (21) is taken as y(x, 0) = 2x − x2, yt(x, 0) = −2x + x2,
â(0) = −1, b̂(0) = 1, ĉ(0) = 1.5, and d̂(0) = −1.5. The initial state for (60) is taken as y(x, 0) = 2x − x2, yt(x, 0) = −2x + x2,
ẑ(x, 0) = −2x + x2, ẑt(x, 0) = 2x − x2, â(0) = −1, b̂(0) = 1, ĉ(0) = 1.5, and d̂(0) = −1.5.

Figures 3 and 4 show that the output signal to regulate tracks asymptotically the references for both collocated and anti-
collocated case. Figures 5 and 6 show approximation of the parameters. It is seen that the estimates â(t), b̂(t), d̂(t), and d̂(t)
approximated, respectively, the system parameters a, b, c, and d. In the collocated error feedback output regulation case,
the numerical results for y(x, t) and z(x, t) are presented in Figures 7 and 8. We see that the state of y(x, t) is bounded and
“z-part” of system (12) is indeed asymptotically stable. In the anticollocated error feedback output regulation case, the
numerical results for y(x, t) and 𝜀(x, t) are presented in Figures 9 and 10. It is seen that y(x, t) is bounded and “𝜀-part” of
system (45) converges to zero.
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FIGURE 3 The output tracking signal y(1, t) and the reference signal r(t) = sin 𝜋
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FIGURE 4 The output tracking signal y(0, t) and the reference signal r(t) = sin 𝜋
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FIGURE 5 Parameters estimations â(t), b̂(t), ĉ(t), and d̂(t) for system (21) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Parameters estimations â(t), b̂(t), ĉ(t), and d̂(t) for system (60) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 The displacement of y(x, t) for system (21) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 The displacement of z(x, t) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 The displacement of y(x, t) for system (60) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 The displacement of 𝜀(x, t) [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUDING REMARKS

This paper has investigated the adaptive error feedback output regulation problem for 1D wave equation with harmonic
disturbance anticollocated with control. We present two different adaptive error feedback output regulator designs for
two different types of tracking error. Different from the classical error feedback output regulator design based on the
internal mode principle, we first give the adaptive servomechanism design for the system by making use of the measured
tracking error(and its time derivative) and the estimation mechanism for the parameters of the disturbances and tracking
reference. The key characteristic of our approach is by constructing some auxiliary systems in which the measured error
becomes output and the control becomes collocated with the disturbance. The four control objectives are (i) regulate the
error output to zero, (ii) keep all the states bounded, (iii) estimate the unknown parameters, and (iv) make the resulting
closed loop stable when disconnected with disturbance and reference is obtained. In future works, applying our approach
to beam equation seems interesting, and relaxing the harmonic disturbance to general bounded disturbance is also an
interesting problem. In addition, a future research direction may be to use adaptive fuzzy control design method in the
works of Tong et al37 and Tong et al38 to solve output regulation problem for infinite-dimensional systems described
by PDEs.
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