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1 | INTRODUCTION

Control of coupled linear hyperbolic PDE systems. The linear 2 x 2 hyperbolic PDE system can describe a wide range
of physical systems, including open channels,' gas flow pipelines,” and oil wells.> Considering the wide range of practical
applications, many efforts have been put into stabilizing linear 2 X 2 hyperbolic PDEs in recent years. The boundary
stabilization and state estimation for a 2 x 2 system of first-order hyperbolic linear PDEs with spatially varying coefficients
was considered in the work of Vazquez et al.* Stabilization of 2 x 2 first-order hyperbolic linear PDEs with uncertain
parameters was solved via adaptive control in the work of Anfinsen and Aamo.® Disturbance rejection in a 2 x 2 linear
coupled hyperbolic system was studied in the works of Aamo® and Anfinsen and Aamo.” Furthermore, the robust output
regulation problem of a coupled 2 x 2 linear hyperbolic PDE system in the presence of disturbances has been solved in the
work of Deutscher.® Backstepping design of output-feedback regulators that achieve finite time regulation for boundary
controlled linear 2 x 2 hyperbolic systems was presented in the work of Deutscher.” Moreover, stabilization of n + 1
coupled first-order hyperbolic coupled linear PDEs was considered in the work of Di Meglio et al.'® Control problem of
a first-order hyperbolic linear PDE general system where the number of PDEs in either direction is arbitrary was solved
in the work of Hu et al.™ Disturbance rejection and parameter estimation for this general hyperbolic coupled linear PDE
systems were also presented in the work of Anfinsen et al'>'* A backstepping solution to the output regulation problem
for general linear heterodirectional hyperbolic systems with disturbances and spatially varying coefficients was presented
in the work of Deutscher.™
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Control of PDE-ODE systems. Stabilization of PDE-ODE coupled structures has drawn much attention in the last
decade when consider the compensation of infinite-dimensional states in the actuating or sensing paths of ODEs, such
as time delay,">'® vibration string,'” and diffusion phenomenon.’® Many results about control of wave PDE-ODE,'"**
heat PDE-ODE,*?! and transport PDE-ODE?* have been obtained so far. The research on coupled linear hyperbolic
PDE-ODE coupled system is limited. In a very recent result, the stabilization of a general coupled linear hyperbolic
PDE-ODE system was considered in the work of Di Meglio et al,* where an ODE is stabilized through compensating lin-
ear coupled hyperbolic PDEs in the actuating path. However, except for the input delay compensation of an ODE, with
an integration at the input of the transport delay in the work of Krstic,? no attempts have been made to address the con-
trol problem of a coupled linear hyperbolic system sandwiched between 2 ODEs. In fact, except for the work of Liu and
Krstic,”” when the viscous Burgers' equation with an integration at the input was considered, the present paper is the first
when an ODE-PDE cascade is considered, with actuation of the ODE.

Coupled hyperbolic linear ODE-PDE-ODE systems. The ODE-hyperbolic PDE-ODE “sandwich” system can model
many physical systems. For example, a mining cable elevator shown in Figure 1A, where the control input drives a drum
winding a cable to lift a cargo, the dynamics of the drum could be described by an ODE in the input path of the following
coupled linear hyperbolic PDE-ODE, which correspond to the vibration dynamics of the distributed parameter cable and
the cargo, respectively. Note that the cable vibrations are described by a wave PDE, which can be converted to 2 x 2 coupled
linear hyperbolic PDEs via introducing the Riemann variables.? The vibration control problem of this cable elevator can
be regarded as stabilization of a 2 X 2 coupled linear hyperbolic system sandwiched between 2 ODEs shown in Figure 1B, ie,

X(t) = AX(t) + B(0, 1), ¢y
ui(x, t) = —puy(x, t) + c1v(x, t), 2
vi(x, ) = pue(x, t) + cou(x, ), 3)
u(0,t) = qv(0,t) + CX(1), @

v(1, 1) = z(1), (5)
2(t) = coz(t) + ru(1, ) + U(D), (6)

Y(x, ) € [0,1] X [0, 0), where X(t) € R™! and ZT(t) = [z(t),2()] = [z1(t), 22(D)] € R>! are ODE states. u(x,t) € R,
v(x,t) € R are states of the PDEs. A € R™", B € R"™! satisfy that the pair [A;B] is controllable. C € R" and
o, C1,C2,7,q € R are arbitrary. p is the arbitrary positive transport velocity. Note that we consider the absolute values of
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FIGURE1 A, Mining cable elevator; B, Schematic view of the coupling ODE-PDE-ODE vibration dynamic system [Colour figure can be
viewed at wileyonlinelibrary.com|
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the transport velocities of (2)-(3) are equal in this paper but with a possible extension to the case where the absolute val-
ues of the transport velocities of the 2 transport PDEs are different. U(¢) is the control input to be designed. Full relative
degree in (5)-(6) is assumed for the design. The control objective here is to exponentially stabilize all ODE states Z(t), X(t)
and PDE states u(x, t), v(x, t) by designing a control input U(t). Moreover, the result is extended to a more general system
where arbitrary order ODEs sandwiching PDE.

Another physical model of this “sandwich” system is a overhead crane,® which consists of a motorized platform (ODE)
driving a cable (hyperbolic PDE) connecting a payload (ODE) at the bottom. Besides, oil drilling where a control input
acting at the rotary table (ODE) to drive the drilling bit (ODE) through the drilling string (hyperbolic PDE) also can
be modeled as hyperbolic PDEs sandwiched by 2 ODEs. In addition to aforementioned applications, a hyperbolic PDE,
such as a flow model,® with actuator and sensor dynamics can also be described by the “sandwich” system concerned in
this paper.

Main contributions:

« We extend the problem in the works of Krstic?® and Cai et al®® to a more challenging case where the input dynamics
are not first but second order or even m order, and the single transport equation is developed to 2 counterconvecting
coupled transport PDEs.

Additional 2 ODEs are introduced to sandwich the counterconvecting and coupled transport PDEs compared with

most exiting results dealing with coupled transport PDEs.*!

« Compared with a very recent result in the work of Di Meglio et al,® where an ODE is stabilized through compensating
linear coupled hyperbolic PDEs in the actuating path, we need to compensate both the actuated ODE and the linear
coupled hyperbolic PDEs in the actuating path to stabilize another ODE.

« It is the first result of stabilizing such an ODE-PDE-ODE “sandwiched” system. Our result is new even if the 2
counterconvecting coupled transport PDEs are replaced by the standard wave PDE.

Organization. The rest of this paper is organized as follows. We seek an infinite-dimensional backstepping transfor-
mation that maps the plant into the target system in Section 2. We deal with the input ODE with a number of perturbation
terms of PDE states via the ODE backstepping method in Section 3. A controller is proposed and the exponential stability
of the closed-loop system is proved by Lyapunov analysis in Section 4. The boundedness and exponential convergence of
the controller in the closed-loop system are proved in Section 5. In Section 6, we extend the proposed method and the
according proofs to a more general case where the input ODE is arbitrary order. The simulation results are provided in
Section 7. The conclusion and future work are presented in Section 8.

2 | BACKSTEPPING FOR PDE-ODE

2.1 | Backstepping transformations and target system
We consider the infinite-dimensional backstepping transformation of the PDE state u(x, £), v(x, t), ie,

alx,t) = ux, 1), (7

px, 1) =v(x, 1) - / w(x, Yu(y, Hdy — / P, y(y, Hdy — y ()X (0). €]
0 0

The kernel equations for y(x,y) and ¢(x, y), y(x) are introduced in Section 2.2. The well-posedness of the kernel equations
is proved in Section 2.3. Note that the reason why we only apply the backstepping transforation on v is that the source
term in (3) is more sensitive to the stability result in the following Lyapunov analysis. Using this partial backstepping
transformation (7)-(8) would achieve less calculation of kernels and the simpler structure of the controller.

The inverse of (7)-(8) is considered as

u(x,t) = ax, 1), 9

v(x, 1) = (x, 1) — / w'(x, y)a(y, tydy — / @' (x, »)B(y, Hdy — Y ()X (1), (10)
0 0

where ¢!(x,y), w!(x,y), and y’(x) are the kernels of the inverse transformation (10), and the well-posedness of them is
shown in Section 2.4.
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Our aim is to convert the original system (1)-(5) to the following target system:
X = (A + Bx)X(t) + Bp(0, 1), 11)

at(xs t) == pax(x’ t) + Clﬂ(xs t) - Cl/ Wl(x’ y)a(ys t)dyv
0

- / @' (x, »)B(y, dy — c1y ()X (D), (12)

0
ﬁt(x9 t) = pﬁx(x’ t)’ (13)
a(0,t) = gp(0,t) + CoX(1), (14)

where Cy = C + gy(0). Since the pair [A; B] is controllable, there exists indeed x such that A + Bk is Hurwitz.
Let us now consider the boundary state f(1, t). It is easily seen that
ﬂtt(l’ t) = vt[(la t) + PW(L l)ut(17 t) - Pll/(la 0)“[(0, t) + p (pll/y(la 1) + CZ¢(1’ 1)) u(17 t)
— p (pw,(1,0) + c2¢p(1,0)) u(0, ) — pp(1, Hvi(1, £) + (pp(1,0) — ¥ (1)B) (0, 1)

—y(A’X(®) = p (iy (1, 1) = pd, (1, 1)) w(1, £) + (pery(1,0) = p*¢p,(1,0) — y(DAB) w(0, )
1

1
- / (PPwyy(Ly) + 1w (1, ) u(y, Hdy — / (P, ) + c1c20(1, y)) v(y, Hdy. 15
0 0

Considering (5)-(6), we h
onsidering (5)(6), we have Va1, ) = ¢oui(1, 1) + rul, ) + U (D). (16)

Plugging (13) and the inverse transformations (9)-(10) into (15), after a lengthy calculation that involves a change of
the order of integration in a double integral, we get

Bu(L, 1) = a1, 1) + hsB(L, ) + U + hae(L, ) + hs (0, ) + haa(0, ) + (e + Paa(L, D
1 1
T R0, 1) + hga(0, 1) + / ho()B( )y + / ho(a(y, Dy + HyX (@), (17)
0 0

which also belongs to the chosen target system. hy, h, hs, ha, hs, he, hy, hs, he(Y), h10(y), and Hy; are shown in Appendix.
Note that (17) is a second-order ODE system (4(1, t), §,(1, t)) with a number of PDE state perturbation terms.

Remark 1. We can obtain the well-posedness of the closed-loop system through analyzing the well-posedness of the
target system (11)-(14), (17). Considering an ODE being well-posed straightly, neglecting that of the input ODE (17),
it can be expected that the well-posedness of the target system depends on that of the 2 X 2 coupled linear hyperbolic
PDE-ODE (11)-(14), which can be obtained similarly to the proof of Lemma 1, which will be shown as follows.

2.2 | Kernel equations of the backstepping transformation

Taking the derivative of (8) with respect to x and ¢, respectively, along the solution of (1)-(4) and substituting the results
to (13), we get

X

ﬁ[('xv t) - pﬂx(x’ [) = v[(xv t) - / W(x7 y)ut(y7 t)dy - / d)(x’ y)V[(y, t)dy - pvx(x’ t) + p/ II/X(x’ y)u(y9 t)dy
0 0 0
+p / G, Y(y, Ay + py (X, )ux, £) + pd(x, X)v(x, £) — y ()X () + py’ ()X (t)
0

= cu(x, t) + / py (X, Y)uy(y, Hdy — / c1y (x, y)v(y, Hydy — / PP, y)ve(y, HHdy
0 0 0

- / c20(x, y)u(y, Hdy + / pyx(x, Y)u(y, Hdy + / px(x, y)v(y, Hydy
0 0 0

+ Py (X, )u(x, t) + pdx, ), £) — y ()X () + py' ()X (8)
= (c2 + 2pw (x, X)) u(x, 1) + (pop(x, 0) — y(X)B — py(x, 0)q) v(0, £)

+ / (—ery (X, y) + pu(x. y) + py(x. y)) v(y, t)dy
0

- / (c2p(x, y) — py(X, ¥) + pyy(x, »)) u(y, ydy
0

+ (pr'®) — y(0)A — py(x,0)C) X(1) = 0. (18)
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For (13) to hold and matching (11), (14) with (1), (4) via the transformations (8), we obtain the following kernel equations:

¢ + 2py(x,x) = 0, (19)

pp(x,0) = y(X)B + pw(x,0)q, (20)
—c1y (X, y) + px(X. y) + pd,(x, ) = 0, (21)
29X, y) — pwx(X, y) + pyy(x, y) = 0, (22)
pY'(¥) = y(0A - py (x,0)C = 0, (23)
7(0) = x, (24)

where0 <y<x<1,t>0.

2.3 | Well-posedness of the kernel equations

In Section 2.2, we have obtained the kernel equations (19)-(24) for the transformation (8). In this section, we show the
well-posedness of the kernel equations (19)-(24) by using the methods of characteristics and successive approximations.*

Lemmal. Thekernel equations (19)-(24) have a unique solution (yw(x,y), p(x,y)) € C*(D)xC* (D) whereD = {(x,)|0 <
y<x<1}.

Proof. The proof of this lemma is presented in Appendix. O

2.4 | Inverse transformation

In order to ensure the invertibility of the transformation (8), in this section, we search for the inverse transformation
of (8), which can convert the target system (11)-(14) to the original system (1)-(4).
Recalling the transformation (8) and rewriting it as

v(x, t) — / o, yv(y, dy = p(x, 1) + / w(x, yu(y, Hdy + y ()X (0). (25)
0 0

Considering Lemma 1, ¢(x,y) is continuous, and it can be concluded that a unique continuous y(x,y) exists on D =
{(, )]0 £y < x < 1} such that (see, eg, the work of Su et al*")

y

v(x, 1) = p(x, 1) + / w(x, yuy, Hdy + y ()X (@) + / 1, ) <ﬂ(y, )+ / v (y, 2u(z, t)dz+y(y)X(t)> dy, (26)
0 0 0

where the proof can be seen in chapter 9.9 in the work of Vazquez.*
Equation (26) can be rewritten in the form of (10) as

v(x, ) = p(x, 1) + / 20 By, Hdy + / < / 1,2y (z, y)dz + w(x, y)) a(y, dy
0 0 y

+ (V(X) + /0 x)((x, y)y(y)dy> X(®). (27)
Comparing (27) with (10), we obtain
v y) = - /y e iz -y, ), (28)
¢'(x, y) = —x(x, y), (29)
() = —y(x) - /0 x)((x, »y(dy. (30)

According to the well-posedness of w(x,y), y(x,y), and y(y) in D = {(x,»)|0 < ¥y < x < 1}, we can conclude the
well-posedness of kernels y!(x,y), ¢'(x,y), y(x) on D in (10), which shows the invertibility between the target system
(a(x, 1), f(x, 1)) and the original one (u(x, t), v(x, t)).
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3 | BACKSTEPPING FORINPUT ODE WITH PDE STATE PERTURBATIONS

The following backstepping transformation for the ((1, 1), f,(1, t)) system (17) is made
n® = pA,t), (31)
y2(t) = B(L, 1) + n1[A(L, D], (32)

where 7, to be defined in the following steps is the virtual control in the ODE backstepping method.
Step 1. We consider a Lyapunov function candidate as

1
Vi = 5)’1(02- (33)
Taking derivative of (33), we obtain
Vi = y1®)y1(8) = y1()(ya(t) — 7). (34)
Define
71 = Ciy1(b), (35)

where ¢, is a positive constant to be determined later.
Substituting (35) into (34) yields to

Vi = =110 + y1(D)y2(0). (36)
Step 2. Similarly, a Lyapunov function candidate is considered as
1 1 1
Vy= Vi + =30 = Sy + =y (37)
2 2 2
Taking the derivative of (37), we have
Vy = =0 + yi0)a(t) + y2(0) (Bu(1,0) + 1) (38)

Recalling (17), we have

Vy = =ty + y10)y2(0) + y2(0) <U(t) + i fi(1,8) + hs p(1, £) + hpay (1, £) + h3 (0, £) + haa(0, 1)

1 1
+ (he + Na(l, 1) + h75(0, 1) + hsa(0, 1) + / he(»)B(y, )dy + / ho(a(y, dy + Hu X (1) + T'1> , (39)
0 0

where the gains h, ... , hio, H1; shown in Appendix are related to the kernel functions (y(x,y), ¢(x,y)) € W 2L(D).
Choosing

U@t) = —Cy2(8) — y1(0) — 11 — i (1, £) — hsf(1, 1) — hpa (1, £) — h3 (0, 1) — haay (0, 1)
=—(Cr+ ¢ +h)fi(1,8) — (€182 + 1 + hs)P(A, 1) — hoar(1, ) — h3f:(0, 1) — hsar(0, 1), (40)

where ¢, is a positive constant to be determined later, we have

V, ==t (®)? = 2yt + ya(D) <(h6 + Na(l, 1) + hy (0, 1) + hsa(0, 1)

1 1
+ / ho(»)p(y, t)dy + / hio(y)a(y, Hdy +H11X(t)> : (41)
0 0

4 | CONTROLLER AND STABILITY ANALYSIS

4.1 | Control law
Substituting the PDE transformation (7)-(8) into (40), we get the controller expressed by the original states
U(t) = - nlvl(l’ t) + nzv(l, t) - hzu[(]-’ t) - n3u(15 t) - h’3v[(09 t) - n4v(09 t) - h4ut(05 t)

1 1
+ nsu(0, t) + Ns X () + / ne(y)u(y, Hdy + / ny(yv(y, Hdy, (42)
0 0
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where
n =0+ +h, (43)
ny = (¢ +¢1 + hy)gp(1,1) — (¢1¢; + 1 + hs), (44)
n3 = (G, + ¢ + hp)w(1,1), (45)
ng = (¢ + ¢1 + hy)(¢(1,0) — y(1)B) — h3y(0)B, (46)
ns = (¢, + ¢ + h1)w(1,0), 47)
ne(y) = (€2 + &1 + h)(yy(1, y) + ©29(1, y)) + (€162 + 1 + hs)w (1, y), (48)
n7(y) = (€ + & + h)(ey (L, y) — (1, ) + (G182 + 1 + hs)g(1, y), (49)
Ng = h3y(0)A + (G2 + ¢ + h)y(DA + (€162 + 1 + hs)y(1). (50)

The pending control parameters ¢; and ¢, will be determined in the following stability analysis.
By substituting (2)-(3) at x = 0 and x = 1 into (42), the controller is rewritten as

UM = —nipvx(L, ) + (n2 — hac)v(L, 1) + hopux(1, 1) — (n3 + nicp)u(l, £) — h3pv(0, 1) — (n4 + hac)v(0, 1)
1 1
+ hapux(0, 1) + (ns — h3c2)u(0, 1) + N X(1) + / ne(y)u(y, idy + / n7(yw(y, H)dy, (51)
0 0

which is well defined.

4.2 | Stability analysis of states

Theorem 1. Ifinitial values (u(x,0),v(x,0)) € W2>2(0,1), for some ¢, and ¢,, the closed-loop system consisting of the
plant (1)-(6) and the control law (51) is exponentially stable at the origin in the sense of the norm
1/2

1 1
</ u?(x, tydx + / V2(x, Hdx + [ XO1 + z1(0)? + Zz(t)2> . (52)
0 0

Proof. We start from studying the stability of the target system. The equivalent stability property between the target
system and the original system is ensured due to the invertibility of the PDE backstepping transformation (7)-(8) and
ODE backstepping transformation (31)-(32).

First, we study the stability proof of the target system via Lyapunov analysis of the PDE-ODE system. Second,
considering the Lyapunov analysis of the input ODE in Section 3, Lyapunov analysis of the whole ODE-PDE-ODE
system is provided, where the control parameters ¢; and ¢, in the control law (51) are determined. O

4.2.1 | Lyapunov analysis for the PDE-ODE system

Define the norm
Q) = IBC DI + llaC O + X0, (53)
where || f(-, 1)||? is a compact notation for ]01 p(x, t)*dx.
Consider now a Lyapunov function

1 1
Vi) = XT(OPLX(t) + % / e p(x, H)*dx + % / e " a(x, t)2dx, (54)
0 0

where there exists the matrix P; = P] > 0 being the solution to the Lyapunov equation
P1(A+Bx)+ (A+ Bx)'P, = —Q, (55)

for some Q; = Q;7 >0 by recalling A + Bk is Hurwitz. The positive parameters a;, by, and 6, are to be chosen later.
From (53), we have
011821 () < V1(t) < 01204(2), (56)
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where
5
01 = min{/lmm(Pl) al blez : } >0, (57)
ale bl
012 = max § Amax(P1), ) > 0. (58)

Time derivative of V;(¢) along (11)-(14) is obtained as
VA() < = Amin(QUIX®)* + 2X"PLBAO. 1) + Sa1e™ (L. 1) = Zan (0. 1)
p ! p ! p p
-84 / €M B(x, £)>dx — =8,b, / e 0% (x, t)2dx — Zbhie % a(1, £)* + =b1a(0, t)?
2 o 2 0 2 2

1 X X
+ by / e~ a(x, ey <ﬁ(x, t)— / v (x, y)a(y, tydy — / @' (x, y)B(y, Hdy — v' (X)X(t)> dx. (59)
0 0 0

Let us consider the final part in (59) first. Using Young's inequality and Cauchy-Schwarz inequality for the final part in
(59) yields the existence of £ > 0 such that

/0 1e-élxoz(x, e fx, Hdx < & / le_‘slxa(x, tidx 4+ & / 1e51"/3(x, t)%dx, (60)

/0 1e_51xa(x, e / v, ya(y, Hdydx < = / e % a(x, t)?dx, (61)

/0 1e_51xa(x, He /0 x¢f(x, VB, Hdydx < = / g (x, £)*dx + = 3 / e f(x, 1)*dx, (62)
/0 e ate, e X (@)dx < 2 K0P + s / “Sika(x, f2dx (63)

Recalling (14), applying Young's inequality and substituting (60)-(63) to (59), we obtain
4|PB|
Amin(Ql)

Vi(t) < - (%Amm(Qn - pbllcolz) IX@)* - <§a1 - pb1g* - ) (0, 1)

1
- <§5101 - bié - blé%) /0 Bx, t)*dx

14 2bi& ézb% 5 /1 2
- =6y ——=—-—"7"7"->b e a(x, tH)*dx
(2 A W (o N , T

- gble“sla(l, 1% + gale‘slﬂ(l, £)2. (64)

Choose parameters by, 61, and a; in sequence to satisfy

ﬂmin(Ql) { 2 < gzbl ) }
0<by<————=, 6 >max<1,=|(3E+ s 65
P 2plcr » \ 7t @) (65)
8|PB| 2 2018 2big
a; > max{ ———— b1, + — 66
! {P/Imin(Ql) 20 pé1 pé; (66)
to make
1
m= Eimin(Ql) — pb1|Co|?* > 0, (67)
p 2 4|PB|
=—a; —pb — 0, 68
n2 2611 pb1q Amin(Q1) > (68)
D ¢
N3 ==61a1 —biE—b1= >0, (69)
2 o1

2b2
Ng = <B51b1 - % - L - blé) e% > 0. (70)
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Defining
=2he? >0, ne=Lae’ >0
Ns = E 1€ >0, ng= Eale >0,

we arrive at

1 1
Vi(t) < —m|X(®)|* — mpO,1)* — 13 / Blx, t)*dx — 4 / a(x, )*dx — nsa(1, H)* + nef(1, ).
0 0

4.2.2 | Lyapunov analysis for the whole ODE-PDE-ODE system
Recall (37) and define a Lyapunov function
V() = Vi) + V().
Defining the norm
QD) = 1BC. DI + llaC DI + IXO1 + 31D + y2(0°,
we have
02182 (t) < V(£) < 02200(0),

. bie
0 = mm{zmm(Pl) 4 % ;} >0,

where

ae® by 1
02 = max{ Amax(P1), ==, =, 5} > 0.
Taking the derivative of (73) and using (72) and (41), we get
1 1
V <= mIX®O = n2p0,° — n3 / Blx, )*dx — na / a(x, )*dx — psa(1, 1)’
0 0

+ 16 B(L, 1)* =y (8 = Caya(8) + ya(t) <(h6 + Na(l, 1) + h7 (0, 1)

1 1
+ hs(gB(0, 1) + CoX (1) + / ho(»)B(y, )dy + / hio(ya(y, H)dy + H11X(t)> )
0 0

where (14) is used.
Applying Young's inequality, Cauchy-Schwarz inequality and (31) into (78), we have

— (m = n|Hul* - r7hs |Col?) 1X(DI? = (n2 — hrs — rshs’q*) p(O, 1)>
1
— (13 = r5hg ) ﬂ(x, H?dx — (s — rzhf(,max)/ alx, t)*dx
0 0

— (15 = (he + 1’rs) a1, > = 1 — ne)y1 (1)
_ 1 1 1 1 1 1 R

S I I I SIS 12,
(cz <4r1 4r) +4r3+4r4+4r5+4r6+4r7>>y2()

We choose positive constants ry, r,, 13, 74, I's, ¥'s, 7

m M4 12 B
"= |H11|2’ h2 e ﬁ’m (he + 1)’
10 max 7
2
rs < },6<’72_h7"3 7<711—”1|Hl1|2
) 2 2 ) 2 2 ’
9 max hSq h8|C0|

where
h = max {|hoX®)|}, h = max {|h;o®)|},
9 max xe[O,l]{l 9(X)|} 10 max xe[O,l]{l 10X)]}
and choose the control parameters ¢; and ¢,

C1 > 76>

(73)

(74)

(75)

(76)

(77

(78)

(79)

(80)

(81)

(82)

(83)
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such that

V < —105Q; — iof(0, 1)* — a1, 1)

<
< —AV = 700, 1) — ina(l, 1), (84)
for some positive 1. Note g = 1, — h2r; — rehs’q? > 0and A, = ns — (he + 1)2rs > 0.

From (75) and (84), we can conclude that the target system (f(x, t), a(x, t), X(¢), y;(£), y,(£)) is exponentially stable for the

norm
1/2

1 1
< / a*(x, t)dx + / B> (x, tydx + | X (0] + y1(6)* + Y2(t)2> . (85)
0 0

Using the invertibility between the target system (a(x, t), f(x, t)) and the original system (u(x, t), v(x, t)) via the transforma-
tion (8) and its inverse (10), and the invertibility between (y, (¢),y,(t)) and (8(1, t), B,(1, t)) via the invertible transformations
(31), (32), together with (5), we can conclude that the (v(x, t), u(x, t), X(t), z1(t), 5,(1, t)) system are exponentially stable for
the norm

1 1 1/2
< / u?(x, H)dx + / V20, dx + X0 + 210 + B, t)2> : (86)
0 0
Taking the derivative of the inverse transformation (10) and setting x = 1, together with (5), we have

2(0) =v(1, 1)
= B(L,0) + py' (1, Da(1, ) — p¢' (1, DL, 1)
- py'(1,0)a(0, ) + (pp'(1,0) — ¥ (1)B) B0, 1)

1 1
+/ </ ay' 1oy (o, y)dv—pt//yl(l,y)> a(y, tdy
0

y

1 1
+/ </ ay'1,0)¢' (o, y)do — cip’(1, y) +p¢y1(1,y)> B(y,Hdy
0 y

1
+ ( / av' Ly (mdy — YDA + BK)> X(@). (87)

0

Applying Cauchy-Schwarz inequality into (87), considering the exponential stability results in terms of the norm
laC, OI1% + 118G, DII? + 1X(®1? + 12(O]* + |B(1,8)]? shown in (85) and (86), we can obtain the exponential convergence
results in terms of |z(t)|?, namely, z,(t)%.

Then, the proof of Theorem 1 is completed.

5 | BOUNDEDNESS AND EXPONENTIAL CONVERGENCE OF THE
CONTROLLER U(T)

In the last section, we have proposed the controller and proved that all states of PDEs and ODEs are exponentially sta-
ble in the closed-loop system including the plant (1)-(6) and the controller (51). Moreover, in this section, we prove the
exponential convergence and boundedness of the controller U(¢) in the closed-loop system.

Theorem 2. In the closed-loop system including the plant (1)-(6) and the controller U(t) (51), there exist positive constants
Ay and Yo making that |U(t)| is bounded and exponentially convergent to zero in the sense of

A
|U(6)] < Yoe 2. (88)

Considering (51) and Theorem 1, we know that if we want to show the exponential convergence of the bound of the
controller (51), exponential convergence of 8 signals u(1, £), ux(1, t), v(0, £), (0, £), v(1, 1), Vx(1, ), u(0, t), and u,(0, t) in (51)
need to be proved, which can be obtained through producing L, estimates of u,(x, t), Vx(X, £), Uy (X, 1), Vi (X, 1).

Before the proof of Theorem 2, we propose 2 lemmas first. The first one shows the exponential stability estimates in
terms of the norm ||u,(x, t)||> + ||vx(x, t)||?. The second one gives the exponential stability estimates in terms of the norm
lluex e, DI + [V Ce, DI
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Lemma 2. Foranyinitial data (u(x, 0), v(x, 0)) € H'(0, 1), the closed-loop system (u(x, t), v(x, £))(1)-(6) with the controller
(51) is exponentially stable in the sense of

[l DI + [va DI (89)

Proof. Differentiating (12) and (13) with respect to x, differentiating (14) with respect to t, we have

(X, £) = —paex(, 1) + €1 B, £) — ery’ COX (D) — ey’ (x, X)a(x, 1)

— ' (x,x)px, 1) — ¢ / Wi (6, y)a(y, Hdy — ¢ / &' (x, )B(y, H)dy, (90)
0 0
ﬁxt(x, t) = pﬂxx(x» t), (91)
—a(0, ) = gA(0, ) + i (ColA + Br) + c171(0)) X(t) + i(COB — e)B(0, ). (92)
Considering
1 1
A= —/ bze_ézxax(x, t)de, (93)
2 Jo
1 1
AZ = 5/ azeﬁzxﬂx(X, t)zdx’ (94)
0

where b, is an arbitrary positive constant, which can adjust the convergence rate, and the positive constants é,, a, will
be chosen later.
Taking the derivative of (93) along (90)-(91), we obtain

1
Ay = -Lhre 0,1, 6% + 2hyan(0, )% = 2h,s, / e~ (x, £)2dx
2 2 2 o
1 1
- / b a(x, ey’ (x, X)a(x, H)dx — / bye™ ™ ay(x, H)c1 ' (x, X)B(x, £)dx
0 0
1 X 1 X
- / bye " ay(x, H)cy / Wi (%, y)a(y, H)dydx — / bye™ ay(x, H)cy / &' (x, )B(y, Hdydx
0 0 0 0

1 1
+ / bae % a(x, t)cy By (x, t)dx — / bae™ ay(x, Hery” ()X ()dx. (95)
0 0

Let us consider the last 6 terms in (95) first. Using Young's inequality and Cauchy-Schwarz inequality yields the
existence of &, > 0 such that

1 1 1
/ 6—52xax(x’ t)Cl Wl(x’ x)a(x’ t)dx < 52/ e—ﬁzxax(x’ t)zdx + 52/ e—52x(x(x, t)zdx, (96)
0 0 0
1 1 1
/ e ay(x, Der ! (x, 0P, Dix < & / €05 (x, £kx + & / & p(x, P, 7
0 0 0
1 X 5 1 5 1
/ e ap(x, f)ey / (w0, ) + ¥ (x, ) a(y, Hdydx < 5_2 / e a(x, 1)*dx + 5—2 / e~ a(x, t)’dx, (98)
0 0 2J0 2J0

2

. 1
sz / e o (x, 1)2dx + = / e p(x, 1)*dx, (99)
62 Jo 0

1 X
/ e a(x, ey / (' (x, ) + @' (x, »)) B(y, Hdydx < 5
0 0

1 1 1
/ e ay(x, e Bi(x, DX < & / e ay(x, £ dx + & / €™ fu(x, 1) dx, (100)
O 0

0

1 1
/ e a(x, Dery! (OX(Ddx, < E|IXO + & / e % (x, t)%dx. (101)
0 0
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Substituting (96)-(101) into (95) and rewriting it as

A <— gbze—ézaxa, 12 + gbzax(o, )2

1
- <§b252 —4byé, — 2b2§2> / e ay(x, 1)*dx
0

02
+ <§2b2 - ‘%)

2

1
/ e“szxa(X, £)?dx + by&; |X(t)|2

0

1 1
+ <§2b2 + %) / e B(x, £)>dx + &b, / e B, (x, t)>dx. (102)
2 0 0
Taking the derivative of (94), we have
p p p !
Ay = Eaz«fszﬁx(l,t)2 - 5@p0, 1? — 5a262 / " Bu(x, 1)*dx. (103)
0
Defining
A= A+ A, (104)

taking the derivative of 4, and using (102), (103), we have

A < - gbze-ﬁzax(l, 02+ ’E’bzaxm, 02+ gazeézﬂx(l, B2 - gazﬂx(o, 0>

1
- gbzéz —4&b; — 26202 / e % (x, £)*dx
2 5 0

1
- <§az52 - ifzbz) / e r(x, )*dx + (é’zbz + %)
0 2

+ <§2b2 + %)

2

1
/ e q(x, t)2dx

0

1
/ e B(x, t)dx + &b, | X ()] (105)

0

Considering (104) and recalling (73), we propose a Lyapunov function

Vo) =A+R,V. (106)

Define the norm
Qs(6) = 18:C, DI + oG, DI + 1BC, DI + - DI + IXOF + B0 + y2(0)°. (107)

We have
031Q3(8) < V() < 032Q4(0), (108)
where
03, = min {Rlezl, @ be™ } >0, (109)
2 2

03, = max {Rlezz, azTe‘Sz’ %} > 0. (110)

Taking the derivative of (106), recalling (105), (84), and applying Cauchy-Schwarz inequality into (92) to rewrite
a,(0, 1)? in (105) as

(0, 0% < 3¢24(0,0)% + I%|CO(A + Bi) + ar O IX (O + %(COB — e)?B(0, 1%, (111)
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then we get

Vy(t) = A+ R,V

3pb
< —’E’bze‘%ex(l,t)2 - <’5’a2 P 2q >ﬂx(0 t?
1
- (Bb252 —4&by — 2552b2) / ax(x, )*dx — <§az52 - fzbz) / e Br(x, £)2dx
2 0 0

12
Rifo — —(c1 + CoB)2> B0, 1)7? — <R10m - Te> 2(1)? - (R1 E%) p(1, 1)

( p
1 1
<R1922/1 — &by — §2_bz> / alx, H)*dx — (131922/1 — &bye” — fg_bzeaz> / Bx, t)*dx
0 2 0

02
3b X
R10x4 — &b,y — 2—1)2|C1VI(0) + Co(A + BK)|2> IX(0]* = Rifna(l,t)?

< —103,Q3() — Riia(1, 1) — #28(0, )* — 73 (0, £)?
— M Va(t) = Rimna(l, )* = 7280, 1)* — 713 (0, 1)%, (112)

for some positive 4;, with the choice

2 2
5y > max{l 126 } a; > max{%ﬁbzqz} (113)
p 2

3Pb2q

and sufficiently large R;. Note 7, = Rifjo — %(cl +CoB?>0andf; =2 > 0.

Then, recalling (108), (112), we can give the exponential stability estimates of (ax(x 1), f(x, t)) for the norm
llax G, DI + 115 O (114)

Differentiating (9)-(10) with respect to x, we have

Ux(X, 1) = ax(x, ), (115)

Vx(X, £) = f(x, 1) — / wix, ya(y, tydy — / dL(x, y)B(y, Hdy
0 0

— 7 OX () — w' (%, D)a(x, 1) — ¢ (X, 0) B, 1). (116)
Using the Young and Cauchy-Schwartz inequalities, we get the inequalities
Ivete, DI < 6 (Ilﬁx(x DI + KasllaGe. DI+ Las|Cx. DI + max { 17" oI | |X<t)|2> , (117)

where K, = max {|w(x, )|*} + max {|y!(x,x)|?} and L, = max {|d«(x, »)|?} + max {|¢'(x,x)|?}. Based on the
x.y)eD xel0.1] (y)ED xe[0.1]

exponential stability estimates in terms of the norms || ey (-, £)[|2+]| fx (-, t)||? proved above, together with the exponential
stability results in terms of the norm including ||a(-, £)||? + [|AC, HI|?> + |X(t)|? provided in Theorem 1, we obtain the
exponential stability estimates in terms of the norm ||u,(-, )||? + |[vc(-, D>

The proof of Lemma 2 is completed. O

Lemma 3. Foranyinitial data (u(x, 0), v(x, 0)) € H*(0, 1), the closed-loop system (u(x, t), v(x, t))(1)-(6) with the controller
(51) is exponentially stable in the sense of

[V (-, t)llz + |t x (-, [)”2_ (118)
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Proof. Twice differentiating (12) and (13) with respect to x, twice differentiating (14) with respect to ¢, we have

Tt (6 1) = = P, £) + €1 B, £) — 1y COX (D)

-0 / Wax' (6, Yy, Hdy — cry! (x, X)ax(x, 1)
0

- / brx (6, B, Yy — 19" (6, X)Bu(x, 1)
0

- (2C1WXI(X,X) + CIWyI(x’x)) (X(X, t)

— (2019 (6, ) + €190,/ (x, %)) B(x, 1), (119)
Bt (X, ) = pPrxx(X, 1), (120)
and
(0, 1) = qBer(0, 1) + })coBﬂx(o, H- })clu/’(o, 0)a(0, 1
- = (perr"© = Cota + By — vy + By ) X1
- 1% (Co(A + Bx)B + pc1'(0,0) — ¢17(0)B) (0, 1). (121)
Considering
1
Bl = % / bse % ay . (x, t)*dx, (122)
0
1
B, = % / 3™ Bex(x, )*dx, (123)
0

where the positive constant b; can be chosen arbitrarily to adjust the convergence rate, and positive constants 63, as
will be defined later.
Taking the derivative of (122) along (119)-(120), we have

1
Bty =— §b3e—53axx<1, 02+ gbgaxxm, 0% — §b353 / e g (x, 1)2dx
0

1 1
+ / bse " (X, £)c1 frex(X, H)dx — / bse " a (x, ey (0X(t)dx
0 0

1

bse % xax(X, D)cy / Wix' (4, p)a(y, Hdydx
0
1

/
/

bse ™ ayx(x, t)cy / b’ 06, Y)B(, dydx
0

(=]

1
/ b3e_63xaxx(xv t)(2C1 le(x’ x) + Cl ll/yl(x7 x))a(x7 t)dx
0
1
/ bse % aex (X, 1)(2c1hy’ (X, %) + c1b,’ (x, %)) B(x, H)dx
0

1
/ bse " ax (X, Dc1y’ (X, X)ax(x, H)dx
0

1
- / bse %  ay(x, H)cr ! (x, X) B (x, t)dx. (124)

0

Now, let us deal with the last 8 terms in (124) by using Young's inequality and Cauchy-Schwarz inequality. Similar
to (96)-(101), there exists a £&; > 0 such that

1 1 1
/ e (X, £)e1 Prx (X, dx < 53/ e (X, 1)dx + 53/ €7 B (x, 0)*dx, (125)
0 0

0

1 1
/ e (X, e 7 (X (H)dx < & / e o (x, D)7dx + & X (1), (126)
0 0
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53Xaxx(x’ [)cl/ Wxxl(x ya(y, dydx < 53/ a axx(x t)de+ 53/ —53xa(x’ t)de,
0 0 0

1
L
0 3 3
1
/ Ko, ey / a6, )Py, Ddydx < 2 / gy x, Pdx + 2 / ¢ Bx, 1)
0 0 3 0

1 1 1
‘/f“%ﬂﬁkdw%JHﬁwﬁJWmﬁw<Q/Q%WMLNM+§/ﬂ%mﬁw,
0 0 0

1 1 1
/e%mnmopq@wmﬂw@ﬂanuﬁm<é/e%MMnﬁM+é/emeNM,
0 0

0

1 1 1
/}ﬂMMLMW%mmwﬁM<@/}@WM&W&+§/EW%WNM,
0 0 0

1 1 1
/ e o (x, D)C1 @ (X, X) B (X, )dx < &3 / e e (x, )7 dx + &3 / % Be(x, t)*dx
0 0 0
Substituting (125)-(132) into (124), we have

1
/ e %% (o, £)2dx

. b
Bi(t) < — ’E’bae-%axxu, £ + ’E’bgaxx(o, t? - <§b353 6&3bs — ég 3)
0

3

1 1 1
+ &by / % Prx(x, )2 dx + &3bs / % (x, 1)*dx + bs <§3+?> / ™ B(x, t)*dx
0 0 3 0

1
<53 + ?) / e a(x, 1)’dx + &3bs / €™ ae(x, 1)*dx + £3b3 X ().
3 0

Taking the derivative of (123) along (119)-(120), we have

1 1
BZ(t) = / a3eﬁ3xﬂxx(x’ D) (x, H)dx = p/ a3953xﬁxx(x’ D) Prxx(x, £)dx
0 0

1
=gaﬁﬁmgLﬁz—gag&AQﬂz—gaﬁ{/‘?“Am@dem
0

Define
B=B;+B,.
Applying Cauchy-Schwarz inequality into (121) as
(0,12 < 520,17 + I%lcoBlzﬁx(o, 02 + I%c%u/’(o, 0)%a(0, £)°
# 2 (pear" @ = Cota + Br? — errO)a + B ) X(OF

+5“@&4+B@B+pq¢wxn—qﬂm3fmaoa

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)
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which is used to replace a,(0, £)? in (133), then by recalling (133),(134), the inequality of the derivative of (135) can
be obtained as

E = Bl + Bz
p &bs !
< — | =b3b3 — 6&3b; — 27— / e_53x(xxx(x, t)zdx
2 53 0

1 5pbsg>
- (’—2’a363—§3b3) /0 €93 (x, 1)dx — <§a3— P ;q )ﬂxx(o, %

1 1
- gbse—ﬁsaxx(l, 1)* + &3bs / % Pr(x, H)*dx + bs <§3 + §—3> / e  f(x, £)*dx
0 3 0

1 1
+ b, <§3 + ?) / e %% a(x, t)?dx + &bs / e % (x, £)2dx + §a3e53 Bu(1,t)?
0 0

3

+ <5_b3 (pclyl/(O) — Co(A + Bx)* — c1y (0)(A + BK))Z + §3b3> IX@|*

2p3
+ Z_zi (CO(A + Bx)B + pCld)I(O, 0)— Cly(())B)Zﬁ(O’ t)2
B 2
+ SR 0,027 + 202 0,07 .

Note that (137) includes a positive term f,(1, t). Substituting (40) into (17) yields
Bu(1,t) = — (C2 + C1)Bi(1, 1) — (€182 + D)B(L, 0) + (he + Na(1, 1) + h75(0, 1) + hsa(0, 1)

1 1
+ / ho(»)B(y, )dy + / hio(ya(y, tydy + Hi1 X (t). (138)
0 0

Then, applying Cauchy-Schwarz inequality in (138), (1, f) can be rewritten as

Bu(1,) < 8(C, + €1)* (1, 1) + 8(€182 + 1)*A(L, 1) + 8(hs + r)?a(1, )* + 8h7> (0, 1)?
+ 8hg”a(0, )* + 8hg max || A, DII* + 810 maxlla(, OII* + 8H1 2| X (8)|*. (139)

Replacing f,(1, t) in (137) by (139) will be used in the following Lyapunov analysis.
Define a Lypunov function

V.=R,V,+B. (140)
Considering the norm

Qu(0) = [|BexC, DI + llaxxC, DI + 1B, DI + Nl DI

+[IBCON + llaC, OlI* + 1X®)1 + BA, 1) + ya(t)?, (141)
we have
041€24(8) < Vu(t) < 042Q4(0), (142)
where
041 = min {R2031, % b3e;3 } >0, (143)

9
04, = max {R2932, a3TeS’ % } > 0. (144)
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Considering (31), (32), (35), (110), (112), (137), and (139), taking the derivative of V;,, we have
Vu = Rng + B

3

1 5 b 2
- <§a353 - §3b3) / e Py (x, )?dx — <§a3 - p23q > Prx(0, )
0

1
g—%&hw—<§m@ 6&3bs — 533>/axx(x,t)2dx
0

1
— s b1, 02 = (SRoAi05; — Esbse ) / Pulx, P dx
2 2 o

1
- <%R2/11932 — &bye’ — 53—1)3653 - 4P03€§3h9max> / Bx, t)*dx
0

(3
-
[1

1
Ry 1033 — &3bs3 — 52—3 — 4paze 3h10max> / alx, t)*dx
3 0

N | =

1
Ry 4103, —§3b3>/ ax(x, H)*dx
0

N[ =

5b, 2
2R2/11932 - < <PC1 I'(0) — Co(A + Bx)? — c17(0)(A +BK)> + §3b3>

5b
— dpaze® Hyy* -2 (—3ciw(0, 0)* + 4pa3e53h82> |C0|2] Xt

2p
. (sb
- [Rmz - <2—p§ (Co(A + Bx)B + pes¢(0,0) — ¢17(0)B)” + 4pa3e53h72>

5b 5|CyB|*b
-2¢° <—3c%w<o, 0)* + 4pa3e53h82)] (0, 1)* — (Rzﬁs _ S1CoBITbs
2p 2p
1 _ _
— (GRot032 — 4pase® @ + ©1)* ) AL, 12

- (%Rzmaz — 4pased @12, + 17 ) L1

— (RaRyfiy — 4paze®(he + r)*) a(1, ).

1 2
53 > max{l, 6—53} , a3 > max{ §3b3,5b3q2}
p )23

and large sufficient R,, we have
V) < 3R Vs - 03B,

Choosing

with the positive constant

2min { §b353 6&3b3 — 222 —(1353 - §3b3}

Oy = 5
max{as, bs }e 3

Then, we arrive at
Vu(t) < _AZVu(t),

where
. 1
/12 = min { 511,62} .

Hence,

Vu(t) < e *V,(0), Vt>0.

Then, we get the exponential stability estimates in terms of the norm ||ayx(-, O)||? + || fex (> D)II2.

> p(0, )

(145)

(146)

(147)

(148)

(149)

(150)
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Twice differentiating (9)-(10) with respect to x, we have

Uxx(X, 1) = axx (X, B),
Ve (X, £) = rx(x, ) — 71 00X (0)
— (2w 00 + w06 x)) a(x, 1) — (26 (6 X) + ¢, (x,X)) B, )

- / w0, ya(y, dy — / BLr (e, YA, tdy
0 0

- Wl(x’ x)ax(x’ t) - ¢I(x9x)ﬁx(xs t) (15]—)

Through a similar calculation of (117), considering the exponential stability estimates in terms of the norm
llaxxC, D> + |1Bex(-, D)]|?> proved above, and recalling the exponential stability estimates in terms of the norm
llax (-, D% + |1 Bx(-, ]|? shown in Lemma 2, together with the exponential stability results in terms of the norm includ-
ing |laC-, O)1> + || B¢, ]|* + |X(¢)|? provided in Theorem 1, we can conclude the exponential stability estimates in terms
of the norm [|txx(-, )| + [[vex(, D2

The proof of Lemma 3 is completed. O

Using Lemma 2 and Lemma 3, we can prove Theorem 2 now.

Proof of Theorem 2. Recalling (51) and using Cauchy-Schwarz inequality, we obtain

UMD < (B, 07 + Ev, 0% + Eue(1, 0% + Eu(L, 1) + Esv,(0, 1) + Ea1(0, 1)
+ Eu(0, 07 + &u(0, 0 + EIXO* + EpolluC, Ol1> + Enllve, D7), (152)

for some positive constants &, &, &, &, &, &, &7, &, &, &ro, £11.

Recalling the exponential estimates in terms of the norms [lu(-, )|y, + |[v(, Dllg, and ||uC, Ollg, + V¢, Dllx,
proved in Lemmas 2 and 3, using Sobolev inequality, we can obtain the exponential estimate in terms of the norm
[luC, Ollcr + ||v(-, O]l cr, which gives the exponential convergence of |U(¢)| by recalling (152) and Theorem 1. The upper
boundedness Y, of |U(f)| depends on the initial values of the norms in (152).

The proof of Theorem 2 is completed. O

6 | EXTENSION TO ODES OF ARBITRARY ORDER

In this section, we consider the input ODE is not second but arbitrary m order and provide a sketch of the design
and analysis for this general case. Due to the space limitation, we omit some detailed calculations, which can refer to
Sections 2 to 5.
Replace (5)-(6) by
v(1,t) = CZ(t), (153)

Z(t) = A,Z(t) + B,U() + ¢, (154)

where Z(t) € R™!, A, = [0,1,0, ...,0;0,0,1,0, ... ,0; ... ;0, ... ,0,1;az, ... ,azm] € R™" a,, ... ,ay, are arbitrary
constants. B, = [0,0, ... ,1]T e R™1, C, =[1,0, ... ,0] € R, and

1 1
b, = Rpav(0, 1) + Rpou(1, 1) + / Rys(0)ulx, H)dx + / Rea (v, H)dx + RysX(0), (155)
0 0

with Ry1, Ry; being arbitrary constants, Ry3(x), Ry4(X) being arbitrary functions, and R,s being an arbitrary constant matrix.
Full relative degree in (153)-(154) is assumed for the design.

6.1 | Control design

Equation (154) where Z(t) = [z1(£), ... ,Zm(t)]T can be written as the form of a chain of m integrators as

21(0) = 22(0), (156)
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22(t) = z3(b), (157)
(158)

Zm-1(8) = 2m(2), (159)
Zm(0) = auzai(D) + -+ - + Agmm(0) + U () + ¢, (160)

The m order form of (17) is obtained as
orp, ) =U®) + [qmd) ' BL, 0 + qm10" A, 1) + - - - + @281, 1) + @1 f(1, 1))
+ [pm0" a1, 0) + pro19] (1,0 + - + paae(L, 1) + pra(l, )]
+ (@m0 B0, ) + Gm-10]" 20, 1) + - - - + @280, 1) + §1 (0, 1))
+ [Pm0 (0, 0) + P10 (0, 1) + - - + pry(0, 1) + pra(0, 1)

1 1
+ / Q()B(y, ydy + / P(y)a(y, )dy + HX (1), (161)
0 0

whereq,,, ... .91, Dp> -+ »P1> Qmo -+ > Q15 Pms -+ 5 D1, Q(»), P(y), and H, are coefficients consisting of the kernel functions
in the backstepping transformation (8), (10) and the system parameters in (1)-(4), (153)-(154), (155).
The following backstepping transformation for the (f(1, ¢), (1, ¢), ... ,6;“‘1ﬂ(1, t)) system (161) is made

() = p(Q, 1), (162)
y2(0) = f(1, 1) + 1 [A(L, 1)), (163)
(164)
Ym(®) = 0" B0 + Ty [B(LL D), .., 012 D) (165)
where 74, ... , 7,1 defined in the following steps are the virtual controls in the ODE backstepping method.

Step 1. We consider a Lyapunov function candidate as

1
Vi = 5)’10)2- (166)
Taking the derivative of (166), we obtain
Vi = =e1y1()? + y1()y2(0), (167)
with the choice of
71 = C1y1(0)s (168)
where ¢; is a positive constant to be determined later.
Step 2. A Lyapunov function candidate is considered as
1 .5 1 .5 1
Vio=Vu + 5)’2(0 = 5)’1(1‘) + 5)’2(0 . (169)
Taking the derivative of (169), we have
Viz = =1 ()% + y1(O)y2(t) + y2(0)(y3(0) — 72 + 11). (170)
Choosing 7, = 71 + y1(t) + C2y2(t) , we have
Via = =iy (1) — &202(0)* + y2(0)y3(0). (171)

Step 3.

Step m.-1
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Step m. Similarly, a Lyapunov function candidate is considered as

1 1 1 1 1
Vym =V, + Eym(t)2 = Eyl(t)z + EYz(t)z +ooot Eym_l(oz + zym(t)z. (172)

Taking the derivative of (172), we have

I./ym = _61)’1(02 - ézyZ(t)Z - ém—lym—l(t)2 + Ym-1(OYym(t) + ym(O) Y (8). (173)

Considering (161), (173) can be rewritten as
Vym = = 81310 — &30 = - - - = 81 Ym-1()* + Y1 O Ym(®) + yim (D) [U(f)

+ (gm0 BAL D) + gm0 2B D + - - - + @1, 1) + q1 (L, D)]
+ [pm0 (L, 0) + pma10]" (1, 1) + - -+ paae(L, 1) + pra(l, )]
+ [0 PO, 1) + Gm-10]" B0, 1) + - - - + 32510, 1) + G1A(0, 1)]
+ [P0 ' @(0, ) + P10 2a(0,1) + - - - + pra,(0, 1) + pra(0, 1)]

1 1
+ / QB(y, tydy + / P(y)a(y, )dy + H X (t) + fm—1] , (174)
0 0
where
Tme1 = C O+ YO + GO+ O+ ey (D, Ym 2 4, (175)
Note that y(t) denotes n order derivative of y;(t),Vi =1, ... ,m.

Design the controller as

U®t) == (gm0 ' B, 1) + gm-10]" B, 1) + - - - + @2 B(1, ) + q1 f(1, 1)]

= [pm0]" " a(1, ) + pm10* a1, 1) + - - - + pra(1, 1)

= [@m0" 1 BO. 1) + Gm-10]" 20, 1) + - - - + G2 (0, 1)]

— [P0 ' @(0. ) + pm-10]" (0, 1) + - - - + poay(0, )] — ym-1() — Tn-1 — EmYm()
m-2 m-2

=- qu + Zéi> oA, + (qm_1 +m-2+ Zf:iéi_l) "B ) + - -+ q1f(L, 1)

i=1 i=2

= [Pm0" (1, ) + pm_10]" a1, 0) + - - - + prau(1, 1))

— @m0 O, 1) + Gm-10]" B0, 1) + - - - + 2 5(0, )]

= [Bm0" (0, 0) + pm-10]""*a(0,1) + - - - + o (0, 1)]

= Ym=1() = Cm1Vm-1(8) = Cmym(D). (176)

Note that using the transformations (162)-(165), (7)-(8) and the system equations (2)-(3) at x = 0 and x = 1, the
controller (176) can be expressed as a function of the original state u(x, t), v(x, )
U(t) = Apo1 07 WL, ) + A0 7201, 1) + -+« + 0L, £) + kin—1 07 (L, £) + Kim_a0f~2u(1, 1)
+ o+ kou(L, £) + 10770, £) + 207 20(0, £) + - - - + AgW(0, £) + Lp_1 07 u(0, )
1 1
+ L 200 u(0,8) + - - - + Lou(0, 1) + DX (8) + / N(yyu(y, ydy + / L(yyv(y, vdy, (177)
0 0

which is well defined. A1, ... , Ao, Km—1, .. »Kos Amts - s Figy Int, ... . loand D, N(y), L(y) are control gains consisting of

the kernels in the backstepping transformations (8), (10), system parameters in (1)-(4), (153)-(154), and control parameters

C1, «ov »Cms K.
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Now, we get
Viym = = y1(8)* = 82320 = - = Enym(®) + ym(0) (6'11/3(0, 0 + pra(0,£) + pra(l, £)
1 B 1 _
+ / QA(y, Hydy + / P(y)a(y, t)dy+HzX(t)> , (178)
0 0
where ¢4, ... , Gy, are positive constants to be determined later.

6.2 | Stability analysis of states

Theorem 3. If initial values (u(x,0),v(x,0) € W™2(0,1), the closed-loop system consisting of the plant (1)-(4),
(153)-(154), and the control law (177) is exponentially stable at the origin in the sense of the norm

1 1 1/2
( / u?(x, tydx + / vz(x,t)dx+|X(t)|2+Z1(t)2+~-~+zm(t)2> . (179)
0 0

Proof. Recalling (172) and (54), and define a Lyapunov function as

Vin() = V1(®) + V(D). (180)
Defining the norm

Qom(t) = IBC. DI + laC O + 1XO1 + 3107 + - + ym(D)?, (181)

we have
0210 (8) £ Vin(8) < 022Q0,(0), (182)

where
61
01 = min { Amin(P1), = a bleTs ; } >0, (183)
ae’ by 1

02, = max {Amax(m, 17, 31, S0 (184)

Taking the derivative of (180) and using (72) and (178), we get

1 1
Vin < —m|X(@®)|> = 120, 1)* — 113/ B(x, )*dx — 114/ a(x, H)*dx — nsa(1, 1)
0

0

+ 16311 = E1y1(07 — 822 =+ -+ = L1 Ym-1(6)* = Em¥m()* + Ym(0) <Q1ﬂ(0, f)

1 1
+1310!(0,f)+l?10!(1’t)+/ QB(y, f)dJ/+/ P(y)a(y, t)dy+HzX(t)>- (185)
0

0
Recalling (14), then applying Young's inequality, Cauchy-Schwarz inequality, and (162) into (185), we have
Vin < = (m = PH|* = 72571 Col?) IX(OI® = (2 = G173 = Fo7q”) PO, 1)°
— (13 = PsQfnax / pOc, 2 dx — (s = 2Pray ) /0 a7
(’15 ) a(1,1)* = @1 — 1)1 () = &2y2(t)* — - - - = Epo1 Y1 (B

Ll el ) ) o (186)
4r1 4r2 4r;  4ry  4rs 4Py 47y
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We choose positive constants 7, 7, 73, 74, s, 76, 77 as

?1<—’112,?'2< _'274 ,?3<$, ?'4<rl—2,
|H| Phoax q; Py
— %7 2
N u M —qirs — 1 |H.
Fs < _23 s T T;, F7 %, (187)
max qu P1|C0|

where

Qmax = max {lQ(x)l 1, Prax = max {|P(x)| | (188)

x€[0,1] x€[0,1]

and choose the control parameters ¢; and ¢, as

1 > 16, (189)

?:m>—<Al+A—+A—+A—+A—+—+—>. (190)

Note that positive control parameters ¢,, ... , &n—1 can be chosen arbitrarily to adjust the exponential decay rate of
the closed-loop system.
Finally, we arrive at

Vin(t) < =AVi(0) — 3680, 0 — Gya(1, 1)?, (191)

for some positive 4 and §, = 12 — §*F3 — Fep2q® > 0, §; = 15 — p*#4 > 0.
Through a process similar to (85)-(87), we arrive at Theorem 3. 0

6.3 | Boundedness and exponential convergence of the controller U(t)(177)

In this section, we prove the exponential convergence and boundedness of the controller U(t)(177) in the closed-loop
system including the m order input ODE.

Theorem 4. In the closed-loop system including the plant (1)-(4), (153), (154) and the controller U(t) (177), there exist
positive constants Ap and Yo, making that |U(t)| is bounded and exponentially convergent to zero in the sense of

IU®] < Yome™ 2. (192)

We would produce and analyze L, estimates of u,(x, t), vy(x, 1), ..., 0" u(x, t), o7 tv(x, ), oM u(x, t), Ov(x, t) to prove
the exponential convergence of the bounds of signals 0" 1v(1, t), 97 1u(1, ), a7 1w(0, t), 9™ u(0, t), 07 2u(1, t), " 21(0, ¢),
om2u(0, t), ..., v(1, 1), u(l, t), (0, t), u(0, t) in the controller (177).

Lemma 4. For any initial data (u(x, 0),v(x, 0)) € H"1(0, 1), the closed-loop system (u(x, t), v(x, H))(1)-(4), (153), (154)
with the controller (177) is exponentially stable in the sense of

o= u, o)|* + [|or—"ve-, o). (193)

Proof. Define a Lyapunov function

1 1
By (t) = % / 1€ 0 a(x, £)*dx + % / Amo€”m07 7 B(x, 1) dx, (194)
0 0

where the positive constant b,,—; can be chosen arbitrarily to adjust the convergence rate and positive constants
Am-1, Om—1 Will be defined later.

Taking the derivative of (194) along the system obtained from m — 1 times differentiating (12)-(13) with respect to x
and m — 1 times differentiating (14) with respect to ¢, using Cauchy-Schwarz inequality, we can choose positive a,,—;
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and 6,,_1 (see Remark 2) such that
. _ 1 B 1
Bm_1(t) < — M, / e om1¥ MLy (x, £)*dx — M, / 1%L p(x, £)*dx
0 0
= W00 90,02 = Sbp1e 1 0L, 02 + ZaporeP 10 AL 17
1
+ M, / e [0 2 B(X, )% + - - - + fe(X, ) + Bx, )] dx
0

1
+ Ms / e [0 2a(x, ) + - - - + ay(x, 1) + a(x, 1)?] dx
0
+ Mgl XD + My [0772 B0, + - - - + (0, 1) + B0, )] , (195)

where My, M,, M3, My, Ms, Mg, M; are positive constants.

Remark 2. As in (137), we can choose a,,_1,6m,-1 to make sure m — 1 order terms |07 ta(-, )||%, ||071B(-, 0)||%,
0™16(0, 1)* in B,,_1 negative except for 01 (1, £)2. The positive term 9" f(1,t)? = 0" 1p(1,)* can be accommo-
dated by the exponential results in the sense of the norms y; (£)?, ... , ym(t)? provided in Theorem 3. Note that as (136),
the positive term 071 (0, t)? can be written as positive terms 07~ #(0, £)2, 07" 2 (0, t)?, ... , f(0, t)* and | X(¢)|? via using
Cauchy-Schwarz inequality into the m — 1 order time derivative of (14) with (12). As in (137), 9"~ (0, t)? can be over-
came by choosing a,, 1, and other positive terms with coefficients My, M; are kept in (195). These rest positive terms
will be overcame in the following steps.

All positive m — 2, ... ,1 order terms can be accommodated by the exponential estimates in the sense of the norm
107 =2a(-, 0)[|? + |02 B, DI, ... , laxC, D%+ || (]2, which can be obtained according to Lemma 2 and Lemma 3.
Together with the exponential results in the sense of the norm ||a(:, || + ||BC, DII? + X + y1(0)* + - - - + ym(£)?
provided in Theorem 3, we define a Lyapunov function

m-—2 m—2 m-—2 m-=2

Vam(®) = Ry | [[RVm(®) + [[RA® + [[RB® + [ [RBs(®) + - - - + Bpa(®) | + Ba(0), (196)
i=1 i=2 i=3 i=4

where B;(t), Vi=3, ...,m — 2 are Lyapunov functions similar to (194), where m — 1 is replaced by i.
Taking the derivative of (196) and choosing sufficiently large R; > 0, we have

Viim-1)(8) = = Am-1Vum-1y () = §oa(1, 1) = &3 [07 7 B(0, 0> + 07 2B(0,1)* + - - - + B0, 1) + B0, 1)?] , (197)

for some positive Ay,-1, 95, §5-
Now, we obtain the exponential stability estimates in terms of the norms ||a{"-1a(~, D|* + ||a;"-1 A, 012
Through a similar process with (115)-(117), we can prove Lemma 4. O

Lemma 5. For any initial data (u(x,0),v(x,0)) € H™(0,1), the closed-loop system (u(x, t), v(x, t))(1)-(4), (153), (154)
with the controller (177) is exponentially stable in the sense of

lloy'uC-, OlI> + llogv(, D> (198)

Proof. Define a Lyapunov function

1 1
Bn(t) = % / be oM a(x, t)*dx + % / ame®* o B(x, t)*dx, (199)
0 0
where the positive constant b,, can be chosen arbitrarily to adjust the convergence rate and positive constants a,, and
S, Wwill be defined later.

Taking the derivative of (199) along the system obtained from m times differentiating (12)-(13) with respect to x
and m times differentiating (14) with respect to ¢, using Cauchy-Schwarz inequality, we can choose positive a,, and
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Sm (see Remark 3) such that

1 1
Bn(t) < =M, / e %M a(x, t)>dx — M, / e M B(x, t)*dx
0 0

— M30™B(0, t)* — %bme_‘sma;”a(l, 0% + %ameﬁma;glﬁu, £)?
1
+M, / X [0y T B ) + - - -+ B )P + Bx. 1)P]dx
0

1
+ M / e M a(x, ) + - - - + ae(x, £ + alx, 1)?]dx
0

+ Mg | XD + M7 [0771 B0, 1) + - - - + Be(0,)* + (0, %], (200)
where My, M, M3, My, Ms, Mg, M7, and Mg are positive constants.

Remark 3. We can choose a,,, and 8, to make sure all m order terms |0 a(-, t)|12, |07 B¢, D)%, @0, 1) in By,
negative except for 07"f(1,t)>. Note that as in (136), the positive term 07«(0, )* can be written as positive terms
" B(0, 1), 0140, )2, ..., B(0,t)* and |X(¢)|? via using Cauchy-Schwarz inequality into the m order time derivative
of (14) with (12). As in (137), 0™ B(0, t)? can be overcame by choosing a,,, and other positive terms with coefficients
Mg, M7 are kept in (200).

Substituting (176) into (161), using Cauchy-Schwarz inequality, 7' (1, t)* = o/ B(1, £)? in (200) yields to the positive
terms

Mo| [0} B, 0> + 012 B(L, 0 + - - - + Bi(1, 1) + B(L, 1)°]

1 1
+ (0,0 + a1, 1)* + / By, 0*dy + / a(y, *dy + |X(0)|*] , (201)
0 0

where My is a positive constant. Note that «(0,f)?> can be combined into A(0,t)* and |X(f)|* via applying
Cauchy-Schwarz inequality into (14).

According to Lemma 2, Lemma 3, and Lemma 4, we obtain the exponential estimates in sense of ||a;"‘1a(~, > +
10728, I + - - - + llax(, OI? + ||B(-, D], which accommodate the m — 1, ... , 1 order positive terms in B, (200).
Together with the exponential results in terms of the norm [|a(-, £)[|2 + || BC, D> + | X(®)|> + y1(£)* +- - -+ yu(t)* provided
in Theorem 3, define a Lyapunov function

Vum = R Vu(m—l) + Bm- (202)

Taking the derivative of V,,,, and choosing sufficiently large R,,, we arrive at
Vum(t) < _/lmVum(t), (203)

for some positive A,.
Through a similar process with (150)-(151), we arrive at Lemma 5.

Proof of Theorem 4. Using the exponential estimates in terms of the norm ||u(-, )||2+[|v(, D112+ |uxC, D112 +11veC, D>+
coo 10T U, D12 + [[0Mv-, D12 + z1(0)? + 22(8) + - - - + Zm(1)? + |X(8)|? provided in Lemma 2, Lemma 3, Lemma 4,
Lemma 5, and Theorem 3, through a similar process with proof of Theorem 2, we arrive at Theorem 4. O

7 | SIMULATION

We use the finite difference method to conduct the simulation with the time interval 0.00025 and spatial interval 0.005.
Note that the solutions of the kernel equations (19)-(24), which are coupled linear hyperbolic PDEs in D = {(x,y)|0 <
y < x < 1}, are also solved by the finite difference method. Then, there would be 3 loops corresponding to ¢t € [0, ),
x € [0,1], ¥ € [0,x] in the programming code of the simulation. We define the system parameters in (1)-(6) as
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% {

FIGURE 5 Response of v(x, ¢) in the plant (1)-(6) with the controller (51) [Colour figure can be viewed at wileyonlinelibrary.com]

[A,B,c1,¢,q9,p,C,co, ] = [0.5,1,0.5,0.5,1,1,1,1,1] and the control parameters are chosen as [k, ¢, ¢;] = [-2,5,13].
Both initial conditions of v(x, £) and u(x, t) are defined as v(x, 0) = u(x, 0) = sin(2zx). Then, the initial conditions of X(t)
and z(f) are X(0) = u(0, 0) — v(0, 0) = 0, z(0) = v(1, 0) = 0 according to (4) and (5).

Comparing Figure 2 that shows the open-loop response of u(x, t) and Figure 3 that gives the closed-loop response of
u(x, t), as one can observe, in the latter case, convergence to zero is achieved, whereas the states grow unbounded in
the former case. Similar results can be obtained via comparing Figure 4 and Figure 5, which show the open-loop and
closed-loop responses of v(x, ), respectively.


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Response of input ODE states z(t), Z(t) in the open-loop and closed-loop cases. A, z(t), open-loop case; B, z(¢), closed-loop case;
C, z(t), open-loop case; D, z(t), closed-loop case

t t
(A) (B)

FIGURE 7 Response of ODE state X(t) in the open-loop and closed-loop cases. A, X(¢), open-loop case; B, X(¢), closed-loop case

FIGURE 8 Controller U(t)(51) in the closed-loop system

In Figure 6, we show the responses of the input ODE states z(t), z(t) in both open-loop (left side) and closed-loop (right
side) cases. We observe that the states z(t), Z(f) grow unbounded in the open-loop case and converge to zero under control.
Similar results can be observed in Figure 7, which shows both open-loop and closed-loop responses of the ODE state X(f).

In Figure 8, we show the response of the control input U(¢)(51) in the closed-loop system. As one can observe, U(t)

converges to zero.
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8 | CONCLUSION

We present a novel methodology combining PDE backstepping and ODE backstepping to stabilize a 2 x 2 coupled lin-
ear hyperbolic system sandwiched between 2 ODEs. All PDE and ODE states are proved exponentially stable in the
closed-loop system via Lyapunov analysis. Moreover, the boundedness and exponentially convergence of the designed
control input are also proved in this paper. This paper opens a door for stabilization of ODE-PDE-ODE sandwich systems
where the 2 X 2 coupled linear hyperbolic system can be extended to other PDE types.
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APPENDIX

hy, hy, h3, hy, hs, he, hy, hg, ho(), hio(y), Hy1 are shown as

hy = ¢y — pp(1,1), hy = py(1,1), hz = pp(1,0) — y(1)B, hy = —pw(1,0),
hs = —pew(1,1) + p*dy(1, 1) + p*p(1, 1) (1, 1) — cogp’ (1, Dp,
he = Pwy(1,1) + peap(1,1) + coy’ (1, 1)p — p* (1, Dy (1, 1),
hy = perw(1,0) — p*y(1,0) — y(DAB — p*p(1, D' (1,0) — cor’ (1B
+ pp(1, 1)y (1)B + o' (1.0)p — (pgp(1,0) — y(1)B)y'(0)B,
hs = p*¢(1, Dy (1,0) — coy’ (1,0)p — p(pw,(1,0) + c2¢p(1,0)),

1
ho(y) = p(1, Dy’ (1, y)ey — / pp(1, Dy'(1, 8)c1¢' (8, y)ds
y
1
+ / (PPyy(1,6) + c1020(1,8)) $'(8,»)d6 — (P*h,y(1, ) + c1029(1, 1))
y

+ p(aw(1,1) — pd,(1, 1) (1, y) + cody (L. y)p + /10011’[(1, 8)c1¢' (8, y)ds
— cow' (L y)er — P’p(1. D)@' (1, ). y

hio(y) = / 1COWI(L5)011111(5,y)615 — copy’ (1, )
—y(pzwyy(l, W+ ey, y) + plaw, 1) — poy(1, D', y)

1
+/ (P21 (1,6) + c1c20(1, 8)) (8, y)dé
y

1
+ 2oL, Dy, (1, ) — / pp(1, Dy’ (1, 8)crw’ (8, y)ds,
y
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1
Hi = pp(1, 1y (DA + / (PP (1,6) + c1626(1,8)) ¥ (6)dS + plery (1, 1) = pepy(1, 1)y (1)
0

— (pery(1,0) = p*,(1,0) — y(DAB) ¥ (0) + cor (DB’ (0) — pp(1, 1)y' (1)By' (0)
— 7(DA* + (pp(1,0) — y(1)B)y'(0)*B — (p¢p(1,0) — y(1)B)y'(0)A

1 1
+ / cow' (L, y)ery (y)dy — / ppL, Dy (1, yery' (m)dy — cor' (DA.
0 0

Proof of Lemma 1. 1. First, we transform the kernel equations (19)-(24) to integral equations using the method of
characteristics.
Considering (23), (24), we can get the solution of y(x) expressed with v, ie,

1 X
y(x) = ker™ + C/ ey (2, 0)dr. (A1)
0

Then, we use the method of characteristic line'® to give the successive approximations of w(x,y), ¢(x,y). Along the
line x = —y + a;, according to (22), (19), we have

dy(s _
Zi ) - —Cp(ar — s, ), (A2)
a; ) Cy
“y__ & A3
v (3 > (A3)
considering the characteristic (—s + aj, ) that reaches to (x,y). According to the ODE (A2)-(A3), we obtain
c e
yooy=-2— | Zg0c+y-r0dr. (A4)
74 )% p
Then, (A4) can be rewritten as the integral form
v, y) = Go(x, y) + Glol(x, y), (A5)
where
Golx,y) = — =2, (A6)
2p
y
c
Glplx,y) = —/H;Zd)(ery—T, 7)dr. (A7)
=z
Substituting (A1) into (20), considering (20), (21) along the line x = y + a,, we have
d
PO _ Gy, +5,9) (A8)
S p
_ lAaz 1 @ lA(dz—r) B
¢(0) =ker" *B+ =C er y(r,0)dzB + w(a,, 0)q, (A9)
P Jo
with the characteristic (s + @, s) that reaches to (x,y). According to the ODE (A8)-(A9), we obtain
1 xX=y y
Px,y) = e Vp 4 1C/ e;A(x_y_T)l,U(T, 0)dtB+w(x — y,0)q + l/ ayx—y+r,7)dr. (A10)
P Jo PJo

Substituting (A4) into (A10) yields

1 X=y 4
d(x.y) = ke B+ 1o / "™y (z,0)drB
P Jo

Xy

C 2
—2+q/ &g —y-r,0de — L2
2p o P 2p
rre C1Cy
- , p—2¢(x = y+ 27— p, p)dudr, (A11)
0 X=y+21

2

which can be rewritten as the integral form

d)(x’ J’) = FO(x’ .V) +F[ll/7 d)](x’ y)a (Alz)

where
Ay 902 Gt

Fo(x,y) = ke —= . Al3
x.y) = wes " 2 (A13)
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X—y

X=y P
Fly, $1(x, y) = II—JC / ey (r,0)deB + g / ‘;%qb(x —y—r,0)dr
0

0
Y [T e
— / / , ;—chj)(x —y+ 27—y, ududr. (A14)
0 X—y+21
2

2. Second, we use the method of successive approximations to construct a solution to the integral equations (A5),
(A12) in the form of a converging series.

Setting
v,y =0, (A15)
¢°(x,y) =0, (A16)
v, y) = Go(x. y) + Gl¢"](x. ) (A17)
" (X, y) = Fo(x, ) + Fly™", $"1(x, y), (A18)

for n = 0,1 ..., with the definition of increments Ay"*! = y"*! — y" and AP™! = ¢"*! — ¢", where Ay® =
Go(x,y), A¢° = Fy(x,y), it is easy to see that

Ay™! = G[AP"](x, y), (A19)
A¢™! = F[Ay", Ag"](x, y). (A20)
Define ) )
@ = max {CezA’“B, Ke;A"B} , (A21)
x€[0,1]
= 1 1
b= ; max {cz, qcs, ;clcz} s (A22)
n = 2a+ 4b. (A23)
According to the definition of Ay® and A¢°, we observe Ay® <  and A¢° < 7. Assume now that
Y )
|Ay"| < n”“—(x ,y U (A24)
n!
JERY /)
jagn] <t =20 (A25)
n

are true for some n € N*,
Substituting (A24), (A25) into (A19), (A20) expressed in (A7) and (A14) through straight calculation, we obtain

X — n+1
Au) < T (A26)
n+1 n+2 (X — y)n+1
[Ap" [ <1 NCESE (A27)
Therefore, the series
vy = Y Ap"x,y), (A28)
n=0
$x, ) = Y AP (x,y) (A29)
n=0

uniformly converges to the solution (y(x,y), ¢(x,y)) of the kernel equations (19)-(24) in D = {(x,y)|0 <y < x < 1},
and then, the solution y(x) can be obtained via (Al).

Now, we show the continuity of the sum (A28), (A29). First, it is straightforward to show that for n € N*, Ay? =
Go(x,y) and A¢° = Fy(x, y) are continuous on D. Indeed Ay and A¢° are continuous on D as a composition of
continuous functions. Besides, if we assume that Ay” and A¢" are continuous, then Ay"*! and A¢"™ are continuous
as the integral (with continuous limits of integration) of continuous functions times Ay™ and A¢" composed with
continuous functions. Finally, the normal convergence ensures continuity of the solutions y(x, y), ¢(x,y) on D.*°

The proof of uniqueness of the solutions, which directly relies on the linearity of the kernel equations, is identical
to the work of Krstic and Smyshlyaev.*> We will not detail it here for the brevity purposes.

The proof of Lemma 1 is completed.
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