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a b s t r a c t

While non-smooth approaches (including sliding mode control) provide explicit feedback laws that
ensure finite-time stabilization but in terminal time that depends on the initial condition, fixed-time
optimal control with a terminal constraint ensures regulation in prescribed time but lacks the explicit
character in the presence of nonlinearities and uncertainties. In this paper we present an alternative
to these approaches, which, while lacking optimality, provides explicit time-varying feedback laws that
achieve regulation in prescribed finite time, even in the presence of non-vanishing (though matched)
uncertain nonlinearities. Our approach employs a scaling of the state by a function of time that grows
unbounded towards the terminal time and is followed by a design of a controller that stabilizes the system
in the scaled state representation, yielding regulation in prescribed finite time for the original state. The
achieved robustness to right-hand-side disturbances is not accompanied by robustness to measurement
noise, which is also absent from all controllers that are nonsmooth or discontinuous at the origin.

© 2017 Published by Elsevier Ltd.

1. Introduction

Motivation. Regulation in finite time (Haimo, 1986) is com-
monly achieved using non-smooth feedback, including sliding
mode control. However, regulation in prescribed finite time is
a more demanding objective, which arises in missile guid-
ance (Zarchan, 2007) and other applications. Two approaches to
solving this problem are common—the classical (and elementary)
proportional navigation feedback, which employs time-varying
gains that go to infinity towards the terminal time, and optimal
controlwith a terminal constraint, where such a dependency of the
gains is implicit.

In this paper we present a systematic approach to regulation
in prescribed finite time, which is inspired by PN for second-
order missile model, but which we present for the general class
of nonlinear systems in the ‘‘normal form’’ with a possibly non-
vanishing uncertainty matched by control.

Literature on finite-time stabilization. Apart from classical
sliding mode control, most finite time control results are built on
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under the direction of Editor Daniel Liberzon.
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the ‘‘Lyapunov differential inequality’’ introduced by Bhat and
Bernstein (2000) and refined by Shen and Xia (2008) and Shen
and Huang (2012). By using this inequality, together with other
conditions, C0 finite time feedback is presented for the double
integrator by Bhat and Bernstein (1998) and for a class of planar
systems by Qian and Li (2005). Homogeneous finite time local con-
trol for triangular systems and a certain class of nonlinear systems
was developed by Hui, Haddad, and Bhat (2008), Hong (2002),
Hong and Jiang (2006a); Hong, Wang, and Cheng (2006b). Huang,
Lin, and Yang (2005) perform global finite-time stabilization of
strict feedback systems; Polyakov and Poznyak (2009) present a
sign function based (discontinuous) controller; Feng, Yu, and Man
(2002) design a non-singular terminal sliding controller for robot
systems; Shen and Huang (2009) present a global finite-time ob-
server for globally Lipschitz systems; based on Implicit Lyapunov
Functions (ILF) approach, finite-time and fixed-time stability anal-
ysis for a chain of integrators were presented in Li, Du, and Lin
(2011), Polyakov, Efimov, and Perruquetti (2015), Wang, Li, and
Shi (2014) andWang and Xiao (2010) extended finite time control
to consensus or containment of agents governed by single/double
integrators.

The sophisticated technique of ‘‘adding power integration’’ in-
troduced by Coron and Praly (1991) is employed by most authors
including Huang et al. (2005), Huang et al. (2015), Li et al. (2011),
Wang et al. (2014), and Wang, Song, Krstic, and Wen (2016).
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Most finite time controllers (Bhat & Bernstein, 1998, 2000; Feng
et al., 2002; Hong, 2002; Hong et al., 2001; Hong & Jiang, 2006a;
Hong et al., 2006b; Huang et al., 2015, 2005; Hui et al., 2008; Li et
al., 2011; Miao & Xia, 2014; Qian & Li, 2005; Shen & Huang, 2009;
Shen et al., 2015; Wang et al., 2014, 2016; Wang & Xiao, 2010) use
fractional power feedback of the form x

l
p (with p and l being some

positive odd integers). Such control can only address constant
unknown gains in second-order mechanical systems (Huang et
al., 2015) or high-order systems with known control gains (Hong,
2002; Hong & Jiang, 2006a; Hong et al., 2006b; Huang et al., 2005;
Polyakov et al., 2015; Shen & Huang, 2009).

Contributions of the paper. We introduce an entirely new
methodology for solving finite-time regulation, with a prescribed
regulation time, rather than a regulation time that depends on the
initial condition (see Polyakov & Fridman, 2014) for differences
between finite-time and fixed-time stability). We employ a scaling
of the state by a function that grows unbounded towards the terminal
time (somewhat akin to Seo et al., 2008), and then design a
controller that stabilizes the system in the scaled state represen-
tation, yielding regulation in prescribed time for the original state.
We develop our results for nonlinear systems diffeomorphically
equivalent to the ‘‘normal form’’

ẋi = xi+1, i = 1, . . . , n − 1
ẋn = f (x, t) + b(x, t)u, (1)

where x = [x1, . . . , xn]T is the state, u ∈ R is control, and b, f are
possibly uncertain and non-vanishing. Our result is limited to this
class because non-vanishing uncertainties are impossible to reject
in finite time unless they arematched by control. Since the stability
proof for the class (1) for arbitrary n is rather complicated, we first
present a result for the scalar case in Section 3 and then for the
general case in Section 4. In addition to designs, in Section 2 we
introduce new analysis tools in Lemma 1 and Corollary 1—time-
varying counterparts of the lemmas by Bhat and Bernstein (2000).

The achieved robustness to right-hand-side disturbances is not
accompanied by robustness to measurement noise, which is also
absent from all controllers that are nonsmooth or discontinuous at
the origin.

2. Assumptions and definitions

Assumption 1 (Global Controllability). For system (1) there exists
a known b ̸= 0 (and w.l.o.g. b > 0) such that b ≤ |b(x, t)| < ∞ for
all x ∈ Rn, t ∈ R+.

Assumption 2. (Bound on Matched but Possibly Nonvanishing
Uncertainty) The nonlinearity f in (1) obeys

|f (x, t)| ≤ d(t)ψ(x), (2)

where d(t) is a disturbance with an unknown bound

∥d∥[t0,t] := sup
τ∈[t0,t]

|d(τ )|, (3)

and ψ(x) ≥ 0 is a known scalar-valued continuous function.

The basis of our fixed-time designs is the monotonically in-
creasing function

µ1(t − t0) =
T

T + t0 − t
, t ∈ [t0, t0 + T ), (4)

where T > 0,with theproperties thatµ1(0) = 1 andµ1(T ) = +∞.
We introduce two new fixed-time stability definitions.

Definition 1 (FT-ISS). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state stable

in time T (FT-ISS) if there exist a class KL function β and a class K
function γ , such that, for all t ∈ [t0, t0 + T ),

|x(t)| ≤ β
(
|x0|, µ1(t − t0) − 1

)
+ γ

(
∥d∥[t0,t]

)
. (5)

The function µ1(t − t0) − 1 = (t − t0)/(T + t0 − t) starts from
zero at t = t0 and grows monotonically to infinity as t → t0 + T .
Therefore, a system that is FT-ISS is, in particular, ISS, with the
additional property that, in the absence of the disturbance d, it is
fixed-time globally asymptotically stable in time T .

Definition 2 (FT-ISS+C). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state stable
in time T and convergent to zero (FT-ISS+C) if there exist class KL
functions β and βf , and a class K function γ , such that, for all
t ∈ [t0, t0 + T ),

|x(t)| ≤ βf

(
β
(
|x0|, t − t0

)
+ γ

(
∥d∥[t0,t]

)
, µ1(t − t0) − 1

)
. (6)

Clearly a system that is FT-ISS+C is also FT-ISS, with the addi-
tional property that its state converges to zero in time T despite
the presence of a disturbance.

Lemma 1. Consider the function

µ(t − t0) =
T n+m

(T + t0 − t)n+m = µ1(t − t0)n+m (7)

on [t0, t0 + T ), with positive integers m, n. If a continuously differen-
tiable function V : [t0, t0 + T ) → [0,+∞) satisfies

V̇ (t) ≤ −2kµ(t − t0)V (t) +
µ(t − t0)

4λ
d(t)2 (8)

for positive constants k and λ, then

V (t) ≤ ζ (t − t0)2kV (t0) +
∥d∥2

[t0,t]

8kλ
, ∀t ∈ [t0, t0 + T ), (9)

where ζ is the monotonically decreasing (smooth ‘‘bump-like;’’ Fry &
McManus (2002)) function

ζ (t − t0) = exp
T

m+n−1

(
1−µ1(t−t0)m+n−1

)
, (10)

with the properties that ζ (0) = 1 and ζ (T ) = 0.

Proof. Solving the differential inequality (8) gives

V (t) ≤ exp−2k
∫ t
t0
µ(τ−t0)dτV (t0)

+
1
4λ

∫ t

t0

exp−2k
∫ t
τ µ(s−t0)dsd(τ )2µ(τ − t0)dτ . (11)

We compute the second term on the right side of (11) to get∫ t

t0

exp−2k
∫ t
τ µ(s−t0)dsd(τ )2µ(τ − t0)dτ

≤ ∥d∥2
[t0,t]

∫ t

t0

exp2k
(
−
∫ t
t0
µ(s−t0)ds+

∫ τ
t0
µ(s−t0)ds

)
µ(τ − t0)dτ

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds

×

∫ t

t0

exp2k
∫ τ
t0
µ(s−t0)dsd

(∫ τ

t0

µ(s − t0)ds
)

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds 1

2k
exp2k

∫ τ
t0
µ(s−t0)ds

⏐⏐⏐⏐t
t0

= ∥d∥2
[t0,t] exp−2k

∫ t
t0
µ(s−t0)ds 1

2k

(
exp2k

∫ t
t0
µ(s−t0)ds

− 1
)

= ∥d∥2
[t0,t]

1
2k

(
1 − exp−2k

∫ t
t0
µ(s−t0)ds

)
≤

∥d∥2
[t0,t]

2k
. (12)
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According to∫ t

t0

µ(τ − t0)dτ =
T

n + m − 1
(µ1(t − t0)n+m−1

− 1), (13)

with (11) and (12), we obtain

V (t) ≤ exp−2k T
m+n−1 (µ1(t−t0)m+n−1

−1)V (t0) +
∥d∥2

[t0,t]

8kλ

= ζ (t − t0)2kV (t0) +
∥d∥2

[t0,t]

8kλ
. ■ (14)

Corollary 1. Under the conditions of Lemma 1, if d(t) ≡ 0, then
limt→t0+TV (t) = 0.

Corollary 1 is a time-varying fixed-time counterpart of the
basic non-smooth finite-time result of Theorem 4.2 by Bhat and
Bernstein (2000), whereas Lemma 1 is a time-varying finite-time
counterpart of the robustness result in Theorem 5.2 by Bhat and
Bernstein (2000).

3. The basic design idea (a scalar example)

We first consider the following first-order system,

ẋ = b(x, t)u + f (x, t), x0 = x(t0) (15)

where x, u ∈ R, under Assumptions 1 and 2.

3.1. Design and analysis

The key element in our development for finite time regulation
is the time-varying scaling function (7) with n = 1, i.e.,

µ(t − t0) =
T 1+m

(T + t0 − t)1+m = µ1(t − t0)1+m. (16)

We employ µ in the scaling transformation

w(t) = µ(t − t0)x(t), (17)

with which the original model (15) is converted into

ẇ = µẋ + µ̇x = µ

(
bu + f +

µ̇

µ
x
)
. (18)

A feedback law is designed next both for the stabilization of this
w-system and of the original x-system.

Theorem 1. The system (15) with the controller

u = −
1
b

(
k + λψ(x)2 +

1 + m
T

)
µ(t − t0)x, (19)

where k, λ > 0, is FT-ISS+C and

|x(t)| ≤ ν(t − t0)1+m
(
ζ (t − t0)k|x(t0)| +

∥d∥[t0,t]

2
√
kλ

)
(20)

for all t ∈ [t0, t0 + T ), where

ν(t − t0) = µ1(t − t0)−1
= 1 −

t − t0
T

, (21)

is a monotonically decreasing linear function with the properties that
ν(0) = 1 and ν(T ) = 0, which means, in particular, that regulation
is achieved in prescribed time T . Furthermore, the input remains
uniformly bounded over [t0, t0 + T ).

Proof. We start by noting that µ satisfies

µ̇ =
(1 + m)T 1+m

(T + t0 − t)1+m+1 =
1 + m

T
µ2+m

1 . (22)

We then choose the Lyapunov function candidate V = w2/2,
whose derivative along the solutions of (18) is

V̇ = wµ̇x + wµbu + wµf . (23)

The last two of the three terms in this expression are uncertain and
we compute bounds on them. But first,

wµ̇x = w
1 + m

T
µ2+m

1 x = wµ
1 + m

T
µ1x

= wµ
1 + m

T
νmµx ≤ wµb

1
b
1 + m

T
µx. (24)

Second, by applying Young’s inequality with λ > 0,

wµf ≤ µ|w|dψ ≤ µλw2ψ2
+
µ

4λ
d2

≤ wµb
1
b
λψ2µx +

µ

4λ
d2. (25)

Inserting (24) and (25) into (23) yields

V̇ ≤ wµb
(
u +

1
b
µλψ2x +

1
b
1 + m

T
µx
)

+
µ

4λ
d2. (26)

Upon applying the control law (19), we get from (26) that

V̇ ≤ −
b
b
kµw2

+
µ

4λ
d2 ≤ −2kµV (t) +

µ

4λ
d2. (27)

With Lemma 1 we get (9), which implies that V , as well as w, are
bounded on [t0, t0 + T ). Further,

x(t)2 =
1

µ(t − t0)2
w(t)2 = ν(t − t0)2(1+m)2V (t)

≤ ν(t − t0)2(1+m)

(
ζ (t − t0)2kx(t0)2 +

∥d∥2
[t0,t]

4kλ

)
(28)

for all t ∈ [t0, t0 + T ), which yields (20). The claimed properties of
control follow from writing (19) as

u = −
1
b

(
k + λψ(x)2 +

1 + m
T

)
w, (29)

with the boundedness of w following from (9) and the bounded-
ness of x established in (28). ■

3.2. A discussion of the merits of the design approach

(a) Fixed-time regulation: Fixed-time regulation is the result
of employing the gain µ(t − t0), defined in (16) and growing
to infinity, inside the control law (19). The design is based on
the scaling transformation (17), followed by a stabilizing control
design for the scaled system, (18). Employing unbounded gain
seems counterintuitive—are we achieving fixed-time regulation
with unbounded inputs, a strong result at an exorbitant price? The
answer is no. As illustrated by (19), the product µx in the control
law is the scaled state w, which is kept bounded by (9). As µ goes
to infinity, x goes to zero, resulting in the boundedness of w and
hence of u. In the absence of uncertainty, the result achieved in
(20) yields even more insight. Suppose, for simplicity, that b and
f in (15) are known, in which case the control is chosen as u =

−(1/b)
[
f +

(
k +

1+m
T ν(t − t0)

)
µ(t − t0)x

]
to result in the closed-

loop ẇ = −kµ(t−t0)w. The scaled statew is not only bounded but
goes to zero in finite time T . This results in x going to zero in finite
time T at a rate that is not (merely) polynomially fast, namely, at a
rate dictated by ν(t−t0)1+m, but at a rate that is fixed-time exponen-

tial and governed by the function ζ (t − t0) = exp
T
m

(
1−1/ν(t−t0)m

)
,

which is a function with a property that not only its value goes
to zero in time T but all of the function’s derivatives are zero at
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the final time T . This means that x(t) approaches zero not only at
a fast rate but it ‘‘lands smoothly’’ at time T . This is captured in
the theorem’s estimate (20), which, when d = 0, gives |x(t)| ≤

ν(t − t0)(1+m)ζ (t − t0)k|x(t0)|.
(b) Robustness (to uncertainty in b and f ):Our controller achieves

not only FT-ISS but FT-ISS+C, guaranteeing that x(t) → 0 in the
presence of any non-vanishing uncertainty, even when its size
∥d∥[t0,t] is unknown. To see things clearly, consider the special
situation where x0 = 0. In that case (20) yields |x(t)| ≤ ν(t −

t0)1+m ∥d∥[t0,t]

2
√
kλ

, ensuring that x is regulated to zero in T under a
non-vanishing disturbance. This is reminiscent of sliding mode
control (which also employs a gain that goes to infinity as x reaches
zero), but the result here is stronger. In sliding mode a bound
on ∥d∥[t0,t] needs to be known, unlike here, where we employ
nonlinear damping ψ(x)2µ(t − t0)x in the controller (19).

(c) Consequences of employing a gain that grows unbounded and
its necessity for stabilization in prescribed finite time: Even though,
ideally, the product µx of two signals, the latter of which goes to
zero, while the former goes to infinity, is bounded, problems may
arise either under measurement noise of x, resulting in a product
of a gain µ that grows unbounded, while x does not decay fully
to zero, or in the computation of the feedback µx, where a mul-
tiplication of very large and very small values creates numerical
problems.

Such problems can be addressed in multiple ways. One way is
employing a deadzone on x. This approach somewhat sacrifices
the asymptotic performance—the regulation is not to zero but to
a small neighborhood. Another way is by setting T in the gain
µ to a larger value than the desired finite time of regulation,
which prevents the gain from becoming infinite over the desired
regulation time but, again, with some sacrifice on the regulation
accuracy.

The ‘‘high-gain challenge’’ in our approach should be contrasted
with non-smooth (or sliding) feedback, where the gain similarly
becomes infinite near x = 0 and the problem manifests itself
through chattering in ‘‘long-time’’ applications. Our approach is
specifically intended for fixed-time applications, and the concern
arises only at the terminal time, with viable ways to address it
discussed above.

Any approach that is geared towards regulation in prescribed
finite time, including finite-horizon optimal controlwith a terminal
constraint, inevitably yields gains that go to infinity. So, the ‘‘high-
gain challenge’’ is not particular to the approach presented here.
The advantage of the present approach is its simplicity, trans-
parency, and explicitness, both in terms of the feedback that needs
to be implemented and in terms of the convergence estimates
provided.

4. Fixed-time regulation for nth order systems

We consider the scaling function (7) and denote by µ(q) (q =

0, . . . , n) the qth derivative of µ with µ(0)
= µ, and denote by µl

the lth power ofµ(t). By taking the derivatives ofµ(t) successively,
we get

µ(k)
=

(n + m + k − 1)!
T k(n + m − 1)!

µn+m+k
1 , k = 1, . . . , n, (30)

where µ1 is as in (4).

4.1. Scaled state and system

To achieve fixed-time regulation for the high-order system (1),
we use the scaling function µ in (7) as

w1(t) = µ(t − t0)x1(t),
wq(t) = dwq−1(t)/dt, q = 2, . . . , n + 1. (31)

We denote wn+1 = ẇn and xn+1 = ẋn, with which we present the
following two lemmas, whose proofs are in the Appendix.

Lemma 2 (Scaling Transformation). The scaling transformation
x(t) ↦→ w(t) given by

w = µm+1
1 P(µ1)x, (32)

where the matrix P(µ1) is a lower triangular matrix having elements
{pij} given by

pij(µ1) = p̄ijµ
n+i−j−1
1 , 1 ≤ j ≤ i ≤ n (33)

p̄ij =

(
i − 1
i − j

)
(n + m + i − j − 1)!
T i−j(n + m − 1)!

, (34)

yields the system (31).

Lemma 3 (Inverse Transformation). Given the transformation
x(t) ↦→ w(t) defined by w(t) = µm+1

1 P(µ1)x(t) in (32), the inverse
transformation w(t) ↦→ x(t) is given by

x = νm+1Q (ν)w, (35)

where the inverse matrix Q (ν) := P(µ1)−1 is a lower triangular
matrix having elements {qij} given by

qij(ν) = q̄ijνn+j−i−1, 1 ≤ j ≤ i ≤ n (36)

q̄ij =

(
i − 1
i − j

)
(−1)i−j(n + m)!

T i−j(n + m + j − i)!
. (37)

Furthermore, q̄ = supν∈(0,1]|Q (ν)| is finite.

4.2. A scalar system for control design

Denote

r1 = [w1, . . . , wn−1]
T

= J1w ∈ Rn−1 (38)

r2 = ṙ1 = [w2, . . . , wn]
T

= J2w ∈ Rn−1, (39)

where

J1 =
[
In−1, 0(n−1)×1

]
, J2 =

[
0(n−1)×1, In−1

]
, (40)

andKn−1 = [k1, . . . , kn−1]
T

∈ Rn−1, whereKn−1 is an appropriately
chosen coefficient vector so that the polynomial sn−1

+ kn−1sn−2
+

· · · + k1 and the matrix

Λ =

[
0 In−2

−k1 −k2 · · · − kn−1

]
(41)

are both Hurwitz. Nowwe replace the statewn by the new variable
z as

z = wn + K T
n−1r1. (42)

This then results in

ṙ1 = Λr1 + en−1z, (43)

where en−1 = [0, . . . , 0, 1]T ∈ Rn−1. Before proceeding, we note
that the linear system (43) is ISS.

The derivative of the new state (42) is

ż = ẇn + K T
n−1J2w, (44)

which, by substitution of ẇn = wn+1, ẋn = xn+1 and then (A.1), and
writing out the k = 0 term from the sum, yields

ż = µ(ẋn + L0 + L1) = µ(bu + f + L0 + L1) (45)

with

L0 :=

n∑
k=1

(
n
k

)
µ(k)

µ
xn+1−k, L1 := νn+mK T

n−1J2w. (46)

In the following lemma, whose proof is in the Appendix, the quan-
tity L0 is expressed in terms of w.
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Lemma 4 (Rewriting L0). The quantity L0 is expressed as

L0 = νml0(ν)w, (47)

where l0(ν) =
[
l0,1, l0,2, . . . , l0,n

]
, and for j = 1, 2, . . . , n,

l0,j(ν) = l̄0,jν j−1 (48)

with

l̄0,j =
n + m
T n+1−j

n−j∑
i=0

(
n

n − i − j + 1

)(
i + j − 1

i

)
×

(−1)i(2n + m − i − j)!
(n + m − i)!

. (49)

Furthermore, l0(ν) is bounded.

4.3. Design without uncertainties

We consider the normal-form system (1) and first present a
simple design for the case where the functions b(x, t) and f (x, t)
are known.

Theorem 2. The system (1) with the controller

u = −
1
b

(
f + L0 + L1 + kz

)
, (50)

has a globally fixed-time asymptotically stable equilibrium at the
origin, with a prescribed convergence time T , and there exist M̃, δ̃ > 0
such that

|x(t)| ≤ ν(t − t0)m+1M̃e−δ̃(t−t0) |x(t0)| (51)

for all t ∈ [t0, t0 + T ). Furthermore, the control u remains uniformly
bounded over [t0, t0 + T ) and, if f (x, t) is vanishing at x = 0, u(t)
also converges to zero as t → t0 + T .

Proof. By substituting (50) into (45), we get

ż = −kµz, (52)

which, following Corollary 1, yields

|z(t)| ≤ ζ (t − t0)k|z0|, ∀t ∈ [t0, t0 + T ). (53)

At the same time, as indicated earlier, (43) is a linear system that
is ISS with respect to z, which means that there exist positive
constantsM1, δ1, γ1 such that

|r1(t)| ≤ M1e−δ1(t−t0)|r1(t0)| + γ1∥z∥[t0,t], ∀t ∈ [t0, t0 + T ). (54)

Applying the standard cascade stability theorem to the system (43)
and (52), from (10), (53) and (54) it follows that there exist positive
constants M̄, δ̄ such that

|w̄(t)| ≤ M̄e−δ̄(t−t0) |w̄(t0)| , ∀t ∈ [t0, t0 + T ), (55)

where

w̄ =

[
r1
z

]
=

(
JT1 + enK T

n−1

)
r1 + enwn =: Rw, (56)

which follows from (38) and (40), and (42), with the lower-
triangular matrix R and its inverse defined as

R = I + enK T
n−1J1, R−1

= I − enK T
n−1J1. (57)

From (35) and (56) it follows that

x = νm+1Q (ν)R−1w̄, (58)

whereas from (32) and (56) it follows that

w̄0 = RP(0)x0. (59)

Invoking the last statement in Lemma 3, (58) and (59), and (55), we
get, for all t ∈ [t0, t0 + T ),

|x(t)| ≤ ν(t − t0)m+1q̄
⏐⏐R−1

⏐⏐ |RP(0)|M̄e−δ̄(t−t0) |x(t0)| (60)

and arrive at (51) with M̃ = q̄
⏐⏐R−1

⏐⏐ |RP(0)|M̄ and δ̃ = δ̄.
Now we turn our attention to proving the claims regarding the

input u given in (50). From (46) and (47) we get

L0 + L1 = νm
(
l0(ν) + νnK T

n−1J2

)
w, (61)

which is bounded and goes to zero as t → t0 + T . From (53),
the term kz in (50) is also bounded and goes to zero. Finally, f is
bounded and, if f (0, t) ≡ 0, then f (x(t), t) also goes to zero as
t → t0 + T , establishing the same for u(t). ■

4.4. Design with uncertainties

Theorem3. Under Assumptions 1 and 2, consider the system (1)with
the controller

u = −
1
b

(
k + θ + λψ(x)2

)
z, (62)

where z is defined via (38) and (42), and Lemma 4 as

z =µ1(t − t0)m+1K T
+
P(µ1(t − t0))x, (63)

K T
+

= [k1, . . . , kn−1, 1]T . (64)

If the control gains are chosen such that ρ, k, λ > 0,

ρk > γ1/4, (65)

where γ1, defined in (54), depends on the choice of the gain vector
Kn−1 in (41) and (43), and where θ ≥ θ∗ and

θ∗ = kn−1 + l̄0,n

+ ρ max
ν∈[0,1]

⏐⏐(νnK T
n−1J2 + l0(ν)

)(
JT1 − enK T

n−1

)⏐⏐2, (66)

then the closed-loop system (1) with (62) is FT-ISS+C and there exist
M̌, δ̌, γ̌ such that

|x(t)| ≤ ν(t − t0)m+1
(
M̌e−δ̌(t−t0) |x(t0)| + γ̌ ∥d∥[t0,t]

)
(67)

for all ∀t ∈ [t0, t0 + T ). Furthermore, the control u remains uniformly
bounded over [t0, t0 + T ).

Proof. Consider (45). The derivative of V = z2/2 is

V̇ = µzbu + µzf + µz(L0 + L1). (68)

By using Young’s inequality, we have

zµf ≤ µ|z|dψ ≤ µλz2ψ2
+
µ

4λ
d2

≤ zµb
1
b
λψ2z +

µ

4λ
d2. (69)

From (56) it follows that

w =
(
JT1 − enK T

n−1

)
r1 + enz. (70)

Substituting (70) into (61), we obtain

L0 + L1 = νm
[
νn−1(kn−1ν + l̄0,n

)
z

+
(
νnK T

n−1J2 + l0(ν)
)(
JT1 − enK T

n−1

)
r1

]
, (71)
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where, from (49), we note that

l̄0,n =
n(n + m)

T
(n + m)!
(n + m)!

> 0. (72)

Then, using (71) and Young’s inequality, we get

µz(L0 + L1) ≤ µνm+n−1
⏐⏐kn−1ν + l̄0,n

⏐⏐z2 + µρν2m

×

⏐⏐⏐⏐(νnK T
n−1J2 + l0(ν)

)(
JT1 − enK T

n−1

)⏐⏐⏐⏐2z2 + µ
|r1|2

4ρ
, (73)

with ρ > 0. Denote

ρ1(ρ) = ρ max
ν∈[0,1]

⏐⏐⏐⏐(νnK T
n−1J2 + l0(ν)

)(
JT1 − enK T

n−1

)⏐⏐⏐⏐2. (74)

Since kn−1 > 0 and, from (72), l̄0,n > 0, with (74) it follows from
(73) that

µz(L0 + L1) ≤ µ

[(
kn−1 + l̄0,n + ρ1(ρ)

)
z2 +

|r1|2

4ρ

]
. (75)

From (68) and (69), and (75) we get

V̇ ≤µzb
[
u +

1
b

(
kn−1 + l̄0,n + ρ1(ρ) + λψ2

)
z
]

+
µ

4

(
|r1|2

ρ
+

d2

λ

)
. (76)

Substituting (62)–(66) into (76), with Lemma 1 we obtain, for t ∈

[t0, t0 + T ), that

|z(t)| ≤ ζ (t − t0)k|z0| +
1

2
√
k

(
∥r1∥[t0,t]

√
ρ

+
∥d∥[t0,t]

√
λ

)
. (77)

Hence, the z-system is FT-ISSw.r.t. the r1-inputwith a gain of 1
2
√
kρ ,

and is, additionally, FT-ISS w.r.t. the d-input. By being FT-ISS, the z-
system is, in particular, ISS, w.r.t. the same inputs (r1, d). From (54)
we recall that the r1-system is ISS (though not FT-ISS) w.r.t. the
z-input with a gain of γ1. Hence, if

γ1
2
√
kρ < 1, namely, if ρk > γ1/4,

the (r1, z)-system is ISS w.r.t. d. Note that we cannot conclude the
FT-ISS property for the overall (r1, z)-system w.r.t. d, but only the
ISS property, because the r1-subsystem ismerely ISS. It is clear from
(56) that (r1, z) = w̄, then by using the small-gain and the ISS
argument that we have just completed, it follows that there exist
positive constants M̂, δ̂, γ̂ such that

|w̄(t)| ≤ M̂e−δ̂(t−t0) |w̄(t0)| + γ̂ ∥d∥[t0,t], ∀t ∈ [t0, t0 + T ). (78)

Following the same argument as in (58)–(59), we obtain

|x(t)| ≤ ν(t − t0)m+1

× q̄
⏐⏐R−1

⏐⏐ (|RP(0)|M̂e−δ̂(t−t0) |x(t0)| + γ̂ ∥d∥[t0,t]

)
(79)

and arrive at (67)with M̌ = q̄
⏐⏐R−1

⏐⏐ |RP(0)|M̂ , γ̌ = q̄
⏐⏐R−1

⏐⏐ γ̂ , δ̌ = δ̂,
establishing also that the x-system is FT-ISS+C w.r.t. input d. The
boundedness of u is proved as in Theorem 2. ■

4.5. Comparison with non-smooth finite-time designs

Existing non-smooth designs, such as (Huang et al., 2015, 2005;
Hui et al., 2008; Li et al., 2011; Wang et al., 2014, 2016; Wang &
Xiao, 2010), guarantee finite time of regulation, T ∗

≤
V (x(t0))1−α

c(1−α) ,
which grows with the size of the initial condition. Prescribed reg-
ulation time T is achievable with such non-smooth approaches by
suitably adjusting their gains based on the initial condition follow-
ing the guidance by Polyakov and Poznyak (2009) and in Theorem
13 by Polyakov and Fridman (2014). Such gain adjustments are
seldom simple. Polyakov (2012) developed fixed-time designs for
linear controllable systems.

(a) x1 .

(b) x2 .

(c) u.

Fig. 1. Response of system (80) with control law (62) under k = 2, θ = 2, λ1 = 0.1,
k1 = 0.1 and T = 1s for ‘‘Wing-Rock’’ model (Monahemi & Krstic, 1996).

5. Numerical simulations

We consider the model of the ‘‘wing-rock’’ unstable motion in
high-performance aircraft at high angle of attack (Monahemi &
Krstic, 1996),

ẋ1 = x2, ẋ2 = b(·)u + f (·), (80)

where f (·) = a0+a1(t)x1+a2(t)x2+a3|x1|x2+a4|x2|x2+a5x31 with
a0 = 1, c1 = 1, c2 = 2, a3 = 2, a4 = 3, a5 = 1, a1(t) = c1 cos(ϖ1t)
and a2(t) = c2 sin(ϖ2t), and b(·) = 2 + 0.4 sin(t). We use three
sets of initial conditions for simulation: t0 = 0, x1(t0) = 0.1, 0.2
and 0.3, and x2(t0) = 0, 0 and 0, respectively. For the system under
consideration, it is readily verified that all the assumptions and
conditions are satisfied, thus the control scheme as given in (62)
is directly applicable, which takes the form,

u = −
1
b

(
k + θ + λψ(x)2

)
z,

where z is defined as z = w2 + k1w1 according to (42), in which
w1 = µn+m

1 x1 and w2 = µ5
1
4
T µ1x1 + µ4

1x2 according to (A.4) (here
k1 = 0.1, n = 2, m = 2 and T = 1s in µ1), and ψ(x) is obtained as
ψ(x) = 1 + |x1| + |x2| + |x1x2| + x22 + |x1|3 according to |f (·)| ≤

dψ(x) in Assumption 2. In the simulation the following control
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(a) x1 .
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(b) u.

Fig. 2. Response of double integrator system with the proposed control law (50)
under k = 1, k1 = 0.1 and T = 1s.

parameters are used: b = 1.6, k = 4, θ = 8, λ = 0.1. The results
are shown in Fig. 1, which confirm the appealing performance of
the proposed fixed-time control method.

To further compare our method with the improved version of
the commonly used finite-time control by Shen and Huang (2012),
we conduct simulation on the double integrator system (because
the existing method by Shen and Huang (2012) is not applicable
to systems with time-varying and unknown control gain and non-
vanishing uncertainty). The fixed-time controller (50) is used with
the design parameters: k = 1 and k1 = 0.1, with T = 1s and
m = 2. According to the algorithm given in Shen and Huang
(2012), the corresponding finite time control law is

u = −ξ
q3
2

[
c2 + l/3

(
1 + ξ 22

)]
, (81)

with ξ2 = x1/q22 − x∗1/q2
2 , x∗

2 = −(c1x1)q2 (1+ l(1+ x21)), in which the
parameters are set as q2 = 3/5, q3 = 1/5, c1 = 2.5, c2 = 4.5, and
l = 0.18 as in Shen and Huang (2012).

The evolution (versus time) of x1 of the double integrator under
the control of the proposed scheme (50) and the scheme (81) by
Shen & Huang is presented in Fig. 2a and Fig. 3a respectively.
It is seen that our control (50) achieves fixed-time regulation in
T = 1s, whereas the convergence time of the controller by Shen
and Huang (2012) depends on initial conditions. Besides, from
Fig. 2b and Fig. 3b it is observed that our scheme demands a lower
overall (initial) control effort and exhibits smoother control action,
avoiding the sharp transitions (nearly jumps) at sign changes as
reflected in Fig. 3b.

6. Conclusions

We introduced a time-varying approach for fixed-time regu-
lation in the presence of non-vanishing uncertainties. Our design

4

3

2

1

0

0 0.5 1 1.5

(a) x1 .

0 0.5 1 1.5

20

0

–20

–40

–60

(b) u.

Fig. 3. Response of double integrator system with control law (81) in Shen and
Huang (2012) under q2 = 3/5, c1 = 2.5 and c2 = 4.5.

is another option in the control designer’s toolbox and we do not
claim its superiority with respect to the existing designs but high-
light the tradeoffs. As in fixed-time optimal control with a terminal
penalty, our gains grow unbounded towards the terminal time.
Such a high gain character (near the set point) is similar to sliding
mode control (SMC). Unlike SMC and other non-smooth methods,
our time-varying approach achieves regulation in prescribed time
and, when the nonlinearity is vanishing, the control goes to zero.

The main shortcoming of the results that we have presented is
that they are restricted to matched uncertainties. This limitation
is shared by SMC and is fundamental to the problem of completely
rejecting non-vanishing uncertainties—this can be done onlywhen
the uncertainties are matched and requires infinite gain.

Any finite-time feedback, including the non-smooth ones and
our time-varying one, exhibit a steep deterioration of asymptotic
performance under measurement noise. The practitioner’s simple
solution (for example, in missile guidance) is to slightly lengthen
the control horizon, which prevents the gains from going to infin-
ity, while degrading the regulation slightly from perfect regulation
to an acceptably small neighborhood of the target state.

Extensions to trajectory tracking are straightforward. We con-
sider the output y = x1, with a reference output yr(t), and denote
the tracking error state components εi = xi − y(i−1)

r (t), for which
ε̇i = εi+1 and ε̇n = f + bu + y(n−1)

r (t). If b is known, y(n−1)
r (t) is

canceled by control, whereas, if only b’s lower bound is known,
y(n−1)
r (t) is treated in the same fashion as the disturbance d in the

paper.
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Appendix

A.1. Proof of Lemma 2

Since w1 := µx1, the generalized Leibniz rule gives

wi+1 =(µx1)(i) =

i∑
k=0

(
i
k

)
µ(k)x(i−k)

1

=

i∑
k=0

(
i
k

)
µ(k)xi+1−k, i = 0, . . . , n − 1, n. (A.1)

Shifting the i index gives

wi =

i−1∑
k=0

(
i − 1
k

)
µ(k)xi−k, i = 1, . . . , n, n + 1. (A.2)

We next rewrite the summation using the substitution j := i − k,
where j = 1, 2, . . . , i, and arrive at

wi =

i∑
j=1

(
i − 1
i − j

)
µ(i−j)xj, i = 1, . . . , n, n + 1. (A.3)

Substituting the expression for µ(i−j) in (30) results in

wi = µn+m
1

i∑
j=1

(
i − 1
i − j

)
(n + m + i − j − 1)!
T i−j(n + m − 1)!

µ
i−j
1 xj, (A.4)

from which we find the elements {pij} by inspection.

A.2. Proof of Lemma 3

Since x1 =
1
µ
w1, the generalized Leibniz rule gives

xi+1 = x(i)1 =

(
1
µ
w1

)(i)

=

i∑
k=0

(
i
k

)(
1
µ

)(k)

w
(i−k)
1

=

i∑
k=0

(
i
k

)(
1
µ

)(k)

wi+1−k, i = 0, . . . , n − 1, n. (A.5)

Taking the kth derivative of 1/µ, we have(
1
µ

)(k)

=
(−1)k(n + m)!
T k(n + m − k)!

νn+m−k. (A.6)

Substituting (A.6) into (A.5), we obtain

xi+1 = νn+m
i∑

k=0

(
i
k

)
(−1)k(n + m)!
T k(n + m − k)!

ν−kwi+1−k,

i = 0, . . . , n − 1, n, (A.7)

which after shifting the i index can be written as

xi = νn+m
i−1∑
k=0

(
i − 1
k

)
(−1)k(n + m)!
T k(n + m − k)!

ν−kwi−k. (A.8)

We next rewrite the summation using the substitution j := i − k,
where j = 1, 2, . . . , i to arrive at

xi = νn+m
i∑

j=1

(
i − 1
i − j

)
(−1)i−j(n + m)!

T i−j(n + m + j − i)!
ν j−iwj, (A.9)

fromwhichwe find the elements {qij} by inspection. The finiteness
of q̄ follows from the fact that |Q (ν)| is a continuous function of a
bounded argument ν ∈ (0, 1].

A.3. Proof of Lemma 4

By substituting in (A.5) for xn+1−k in (46), we obtain

L0 =

n∑
k=1

(
n
k

)
µ(k)

µ

[
n−k∑
i=0

(
n − k

i

)(
1
µ

)(i)

wn−k+1−i

]

=

n∑
k=1

n−k∑
i=0

(
n
k

)(
n − k

i

)
µ(k)

µ

(
1
µ

)(i)

wn−k+1−i. (A.10)

The double sum can be viewed as the sum of function evaluations
fki(n) defined on a triangle in (k, i) space. Viewed this way, the
double sum can be reordered as

n∑
k=1

n−k∑
i=0

fki(n) =

n−1∑
i=0

n−i∑
k=1

fki(n). (A.11)

This allows us to write (A.10) as

L0 =

n−1∑
i=0

n−i∑
k=1

(
n
k

)(
n − k

i

)
µ(k)

µ

(
1
µ

)(i)

wn−k+1−i. (A.12)

Next define j := n − k + 1 − i, where j = n − i, n − i − 1, . . . , 1.
Rewriting (A.12) in terms of j rather than k results in

L0 =

n−1∑
i=0

n−i∑
j=1

(
n

n − i − j + 1

)(
i + j − 1

i

)

×
µ(n−i−j+1)

µ

(
1
µ

)(i)

wj. (A.13)

We now reorder the double sum in (A.13) using (A.11) in reverse
order to obtain

L0 =

n∑
j=1

n−j∑
i=0

(
n

n − i − j + 1

)(
i + j − 1

i

)

×
µ(n−i−j+1)

µ

(
1
µ

)(i)

wj. (A.14)

Then after substituting in (30) for µ(n−i−j+1), (A.6) for (1/µ)(i), and
1/µ = νn+m, we arrive at

L0 =

n∑
j=1

n−j∑
i=0

(
n

n − i − j + 1

)(
i + j − 1

i

)
νn+m

×

[
(2n + m − i − j)!

T n−i−j+1(n + m − 1)!
µ

2n+m−i−j+1
1

]
×

[
(−1)i(n + m)!
T i(n + m − i)!

νn+m−i
]
wj, (A.15)

which reduces to

L0 =

n∑
j=1

n + m
T n−j+1

n−j∑
i=0

(
n

n − i − j + 1

)(
i + j − 1

i

)

×
(−1)i(2n + m − i − j)!

(n + m − i)!
νm+j−1wj, (A.16)

which proves the first part of the lemma. The boundedness of the
l0,j(ν) follows by inspection, since ν(t − t0) ≤ 1 for t ∈ [t0, t0 + T ),
and l̄0,j are bounded since they are finite sums of real numbers.
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