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a b s t r a c t

In this paper, we consider the output regulation problem for a one dimensional wave equation with
harmonic disturbance anti-collocatedwith control. We first design an adaptive observer by themeasured
output to estimate unknown parameters of the disturbance and recover the system state. Then by
using the observer system and estimator of unknown harmonic disturbance, we construct an auxiliary
system in which the control and the anti-collocated disturbance become collocated. By applying the
Backstepping method for infinite dimensional system, we design an output feedback adaptive controller
which regulates the output to zero and keeps all the states bounded.
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1. Introduction

The output regulation problem, or alternatively the servomech-
anism, is one of the central problems in control theory, which ad-
dresses designing of a feedback controller to achieve asymptotic
tracking of prescribed reference signals and asymptotic rejection
of undesired disturbances in an uncertain system while maintain-
ing closed-loop stability. In the finite-dimensional system (linear
or nonlinear) setting, there are many classical results which in-
clude internal model principle to address this problem such as
Callier and Desoer (1980), Davison (1976), Desoer and Lin (1985),
Francis (1977), Francis andWonham (1976) and Isidori and Byrnes
(1990), among many others. Much work has been done to ex-
tend these classical results to infinite-dimensional systems, see,
for instance Byrnes, Laukó, Gilliam, and Shubov (2000), Deutscher
(2011), Hämäläinen and Pohjolainen (2010), Paunonen and Pohjo-
lainen (2010) and Rebarber and Weiss (2003). Most of the above
works about output regulation problem focus on the extension of
internal model principle theory to infinite-dimensional systems
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where reference signal and disturbance are generated by finite-
dimensional or infinite-dimensional exosystem.

Also some attempts concerned with adaptive servomecha-
nism design for infinite-dimensional systems have been made.
Earlier work on applying adaptive servomechanism design for
infinite-dimensional systems is reported in Logemann and Ilch-
mann (1994). In paper Kobayashi and Oya (2002), an adaptive
servomechanism control is designed based on passivity princi-
ple for a class of distributed parameter system where the input
and output operators are collocated and the disturbance is col-
located with control. Those works build a theoretical framework
which covers a large class of real systems. However, many real
control systems are not included in those abstract frameworks,
such as the boundary control PDE (Partial Differential Equation)
system which is anticollocated, or is unstable or even antistable
itself. In this situation, the input–output operator is typically no
longer passive or uncontrolled system has real positive eigenval-
ues, which results in that the passivity principle cannot be di-
rectly applied anymore. In the last few years, there have been
a few works contributed to the boundary feedback stabilization
and observer design of these systems. An observer-based compen-
sator which exponentially stabilizes the string system with an an-
ticollocated actuator/ sensor configuration is proposed in Guo and
Xu (2007). A lot of papers show that the backstepping method
introduced in PDEs Krstic and Smyshlyaev (2008a) is very pow-
erful in dealing with unstable or even antistable PDE system. In
Krstic, Guo, Balogh, and Smyshlyaev (2008b), an observer-based
controller is designed using both the displacement and velocity
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measurement via the backsteppingmethod to exponentially stabi-
lize an unstable one-dimensional wave equation. A breakthrough
was made recently in Smyshlyaev and Krstic (2009), where the
anti-stable wave equation is exponentially stabilized through a
novel backstepping transformation method. The stabilization of
unstable shear beam equation is addressed in Krstic, Guo, Balogh,
and Smyshlyaev (2008a), where the non-collocated boundary sta-
bilization is discussed by using the backstepping method and
observer-based feedback.

Almost at the same time, much more attention has also been
paid to the adaptive boundary control by using backstepping
method for these anticollocated, unstable or even antistable PDE
systems. The early efforts on applying the backstepping method
to the design of adaptive boundary state feedback controllers
or output feedback controllers for partial differential equation
control systems have beenmade in Krstic and Smyshlyaev (2008b)
and Smyshlyaev and Krstic (2007a,b), particularly for parabolic
PDEs with boundary control and unknown parameters that may
cause instability of the system and affect the interior of the
domain. Adaptive boundary state feedback stabilization and recent
output feedback stabilization for the most challenging anti-stable
wave equation with unknown anti-damping in the uncontrolled
boundary can be found in Krstic (2010) and Bresch-Pietri and
Krstic (2014) respectively. A recent result on adaptive anti-
collocated feedback stabilization for general first-order hyperbolic
partial integro-differential equations with unknown functional
coefficients is addressed in Bernard and Krstic (2014). Other
effort on adaptive parameter identification for unstable parabolic
PDEs is made in Smyshlyaev, Orlov, and Krstic (2009). Recently,
an adaptive observer design for a semilinear heat equation can
be found in Ahmed-Ali, Giri, Krstic, Lamnabhi-Lagarrigue, and
Burlion (2016), where online estimates of the system state and
unknown parameters based on sampled data are provided. As for
adaptive feedback stabilization for one-dimensional unstablewave
equations with collocated harmonic disturbances, we refer to Guo
and Guo (2013a,b,c).

However, to the best knowledge of the authors, there are few
works so far to solve the output regulation problem for these
anticollocated, unstable or even antistable PDE systems. Recently
inGuo andGuo (2016), an adaptive servomechanism is constructed
for one-dimensional wave equation to reject the disturbances and
track the reference signal.

In this paper, we are concerned with wave equation:
ytt(x, t) = yxx(x, t), x ∈ (0, 1), t > 0,
yx(0, t) = d(t), t ≥ 0,
yx(1, t) = U(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1,
yout(t) = (y(0, t), yt(0, t))

(1)

where (and henceforth) y′ or yx denotes the derivative of y with
respect to x and ẏ or yt the derivative with respect to t . U(t) is the
control input; yout is themeasured output; and (y0, y1) is the initial
value; d represents the general harmonic disturbance which has
the following form:

d(t) =

m
j=1

[aj cosωjt + bj sinωjt].

Though our approach applies to this general class of disturbances,
for simplicity of writing, we takem = 1, namely,

d(t) = a cosωt + b sinωt.

Here the frequency ω ≠ 0 is assumed to be known, whereas
a, b are unknown constants. We consider the case where ω
is to be known, which is same as the requirement for finite
harmonic signals considered in internal model principle. There
are references on disturbance cancellation which incorporate
estimation of the unknown frequencies (Liu, Chen, & Huang, 2009;
Pyrkin, Smyshlyaev, Bekiaris-Liberis, & Krstic, 2010).

The objective of this paper is to find an adaptive feedback
control law for system (1) such that limt→∞ y(0, t) = 0 and the
unknown harmonic disturbance is rejected.

System (1) is a typical anti-collocated Neumann control
problem: control is on one end and the output is on the other end.
In addition, the disturbance and control, in fact, are anticollocated.
This paper is the first to perform adaptive cancellation of anti-
collocated disturbances and its contribution should be viewed
in relation to Guo and Guo (2016) and Kobayashi and Oya
(2002) where only collocated disturbances are cancelled. It takes
adaptive disturbance cancellation in the same direction as Bresch-
Pietri and Krstic (2014) and Krstic (2010) have taken adaptive
stabilization. The applications of adaptive cancellation of anti-
collocated disturbances arise inmany applications, fromoil drilling
to atomic force microscopy, where disturbances appear on the
opposite boundary relative to the actuator.

The key characteristic of our approach is the use of the
measurement (y(0, t), yt(0, t)) to first give a backstepping-based
adaptive observer of the state and the estimator of the parameters
of the disturbances and then construct an auxiliary system in
which the control and the anti-collocated disturbance become
collocated. Our adaptive observer and controller do not seem to
employ the internal model principle and the regulator equations
associated with the output regulation approach.

The paper is organized as follows. In next section, Section 2, we
give the adaptive disturbance cancellation controller design. The
asymptotic stability of the error system is given in Section 3. In
Section 4,we give the convergence analysis of the auxiliary system.
We present some illustrative simulation results in Section 5.
Conclusions are made in Section 6. �

2. Adaptive disturbance cancellation controller design

We now design an adaptive observer for system (1) using the
measurement of yout(t) = (y(0, t), yt(0, t)). Since the plant is
second-order in time, yt(0, t) is not to be thought as a derivative
of the displacement y(0, t) but as a measured part of the overall
state (y, yt). Indeed it is common to virtually all results in boundary
control of flexible structures to employ measurements of the
velocity at the boundary.

Our adaptive observer is given as:

ytt(x, t) =yxx(x, t),yx(0, t) =a(t) cosωt +b(t) sinωt
+ k1(yt(0, t)− yt(0, t))+ k2(y(0, t)− y(0, t)),yx(1, t) = U(t),̇a(t) = −r(yt(0, t)−yt(0, t)) cosωt,̇b(t) = −r(yt(0, t)−yt(0, t)) sinωt,a(0) =a0, b(0) =b0,y(x, 0) =y0(x), yt(x, 0) =y1(x),

(2)

where k1, k2, r > 0 are design parameters. In the rest of the paper,
we omit the (obvious) domains for t and x.

Remark 2.1. The observer design for the case d(t) =
m

j=1[aj
cosωjt + bj sinωjt] is still valid because we only need to write
the terma(t) cosωt +b(t) sinωt in (2) to be

m
j=1aj(t) cosωjt +bj(t) sinωjt and the update law to be ̇aj(t) = −rj(yt(0, t) −yt(0, t)) cosωjt, ̇bj(t) = −rj(yt(0, t) − yt(0, t)) sinωjt, j =

1, 2, . . . ,m.
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Let ε = y −y anda = a −a(t),b = b −b(t) be parameter
estimation error, then from (1) and (2), ε is governed by

εtt(x, t) = εxx(x, t),
εx(0, t) = k1εt(0, t)+ k2ε(0, t)+a(t) cosωt +b(t) sinωt,
εx(1, t) = 0,̇a(t) = rεt(0, t) cosωt,̇b(t) = rεt(0, t) sinωt,
ε(x, 0) = ε0(x) εt(x, 0) = ε1(x),

(3)

where

ε(x, 0) = y0(x)−y0(x), εt(x, 0) = y1(x)−y1(x). (4)

Define the energy function for system (3) as follows:

Eε(t) =
1
2

 1

0
[ε2t (x, t)+ ε2x (x, t)]dx

+
k2
2

[ε(0, t)]2 +
1
2r

[a2(t)+b2(t)]. (5)

A simple computation of the derivative of Eε(t) with respect to t
along the solution to (3) shows that

Ėε(t) = −k1[εt(0, t)]2 ≤ 0, (6)

from which we obtain the update law ofa(t) andb(t) in system
(2). By the update law of a(t) and b(t) in system (2), a formal
computation gives

d
dt

[a(t) cosωt +b(t) sinωt + rε(0, t)]

= ω[b(t) cosωt −a(t) sinωt],
d2

dt2
[a(t) cosωt +b(t) sinωt + rε(0, t)]

= −ω2
[a(t) cosωt +b(t) sinωt].

(7)

Let

z(x, t) =y(x, t)−
1
ω

sinωx[a(t) cosωt
+b(t) sinωt + rε(0, t)], (x, t) ∈ [0, 1] × [0,∞). (8)

Then from (2) and (7), we can get the following auxiliary system:
ztt(x, t) =zxx(x, t)− ωr sinωxε(0, t),zx(0, t) = −k1εt(0, t)− (k2 + r)ε(0, t),zx(1, t) = U(t)− cosω[a(t) cosωt +b(t) sinωt]

− r cosωε(0, t),z(x, 0) =z0(x),zt(x, 0) =z1(x),
(9)

where

z0(x) =y0(x)−
a0 + rε1(0)

ω
sinωx,z1(x) =y1(x)−b0 sinωx. (10)

Moreover,z(0, t) =y(0, t).
Remark 2.2. (a) The motivation of constructing auxiliary system

(9) is tomake the control and the anticollocated disturbance to
be collocated and obtainz(0, t) =y(0, t).

(b) Herewe consider the auxiliary system (9)without the dynamic
equations fora(t) andb(t) since they have been determined by
the error system (3) already.
(c) This construction is still valid for the case d(t) =
m

j=1[aj
cosωjt + bj sinωjt] if we letz(x, t) =y(x, t)−m

j=1
1
ωj

sinωjx

[aj(t) cosωjt +bj(t) sinωjt + rjε(0, t)].

We present the controller for (9) as follows:

U(t) = cosω[a(t) cosωt +b(t) sinωt] − c0z(1, t)
− c1zt(1, t)− c0c1

 1

0
zt(ξ , t)dξ + r cosωε(0, t), (11)

where c0, c1 are positive design parameters. The closed-loop
system of (8) corresponding to controller (11) is
ztt(x, t) =zxx(x, t)− ωr sinωxε(0, t),zx(0, t) = −k1εt(0, t)− (k2 + r)ε(0, t),zx(1, t) = −c0z(1, t)− c1zt(1, t)− c0c1

 1

0
zt(ξ , t)dξ,z(x, 0) =z0(x),zt(x, 0) =z1(x).

(12)

Introduce the following transformation (see Krstic et al., 2008a or
page 83 in Krstic & Smyshlyaev, 2008a)

z(x, t) =z(x, t)+ c0

 x

0
z(ξ , t)dξ, (13)

which is invertible. The inverse is given by

z(x, t) =z(x, t)− c0

 x

0
e−c0(x−ξ)z(ξ , t)dξ .

It is seen that transformation (13) converts system (12) into
ztt(x, t) =zxx(x, t)− [ωr sinωx + c0k2

+ 2c0r cosωx]ε(0, t)+ c0k1εt(0, t),zx(0, t) = c0z(0, t)− k1εt(0, t)− (k2 + r)ε(0, t),zx(1, t) = −c1zt(1, t),z(x, 0) =z0(x),zt(x, 0) =z1(x),
(14)

where

z0(x) =z0(x)+ c0

 x

0
z0(ξ)dξ,

z1(x) =z1(x)+ c0

 x

0
z1(ξ)dξ . (15)

Then controller (11) is obtained in the process of transforming (12)
into (14) under the Backstepping transformation (13). Notice that
controller (11) is expressed by variablez. In order to get the closed-
loop of system (1), it is necessary to write controller (11) to be
expressed by variabley. Then by (8), we rewrite the controller (11)
to be

U(t) = −c0y(1, t)− c1yt(1, t)
− c0c1

 1

0
yt(ξ , t)dξ +


c0 sinω
ω

+ cosω


× [a(t) cosωt +b(t) sinωt]
+ r

 c0
ω

sinω + cosω

[y(0, t)−y(0, t)]

+ c1


sinω +

c0(1 − cosω)
ω


[b(t) cosωt −a(t) sinωt]. (16)
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Combined by (1), (2) and (16), the resulting closed-loop is governed
by

ytt(x, t) = yxx(x, t),
yx(0, t) = a cosωt + b sinωt,
yx(1, t) =yx(1, t),ytt(x, t) =yxx(x, t),yx(0, t) =a(t) cosωt +b(t) sinωt

+ k1(yt(0, t)− yt(0, t))+ k2(y(0, t)− y(0, t)),yx(1, t) = −c0y(1, t)− c1yt(1, t)
− c0c1

 1

0
yt(ξ , t)dξ +


c0 sinω
ω

+ cosω


× [a(t) cosωt +b(t) sinωt]
+ r

 c0
ω

sinω + cosω

[y(0, t)−y(0, t)]

+ c1


sinω +

c0(1 − cosω)
ω


[b(t) cosωt −a(t) sinωt],

̇a(t) = −r(yt(0, t)−yt(0, t)) cosωt,̇b(t) = −r(yt(0, t)−yt(0, t)) sinωt,a(0) =a0, b(0) =b0,y(x, 0) =y0(x), yt(x, 0) =y1(x),
y(x, 0) = y0(x), yt(x, 0) = y1(x). �

(17)

3. Stability of the error system

Let L2(0, 1) be the usual Hilbert space with the inner product
⟨·, ·⟩ and the inner product induced norm ∥ · ∥. Since system (3)
is non-autonomous linear system, we introduce some additional
variables to make it time invariant. Let

ξ(t) = sinωt, η(t) = cosωt.

Obviously (ξ , η) satisfies the following equation
d
dt


ξ(t)
η(t)


=


0 −ω
ω 0


ξ(t)
η(t)


,

ξ(0)
η(0)


=


ξ0
η0


=


1
0


.

(18)

We consider (3) and (18) in the energy state space H = V × R2:

⟨(u1, v1, θ, ϑ, ψ, ω), (u2, v2, θ̂ , ϑ̂, ψ̂, ω̂)⟩H

=

 1

0
u′

1(x)u
′

2(x)dx +

 1

0
v1(x)v2(x)dx + k2u1(1)u2(1)

+


θ θ̂

r
+
ϑϑ̂

r
+ ψψ̂ + ωω̂


,

∀ (u1, v1, θ, ϑ, ψ, ω), (u2, v2, θ̂ , ϑ̂, ψ̂, ω̂) ∈ H ,

where V = H1(0, 1) × L2(0, 1) × R2. Hence (3) and (18) can be
written as a nonlinear autonomous evolution equation in the state
space H

d
dt

z(·, t) = A z(·, t), z(·, 0) = z0(·) ∈ H , (19)

where
z(x, t) =


ε(x, t), εt(x, t),a(t),b(t), ξ(t), η(t),

z0(x) = (ε0(x), ε1(x),a0,b0, ξ0, η0),
andA (u, v,a,b, ξ , η) = (v, u′′, rv(0)ξ ,−rv(0)η,−ωη,−ωξ),
D(A ) = {(u, v,a,b, ξ , η) ∈ H2(0, 1)× H1(0, 1)× R4

|

u′(0) = k1v(0)+ k2u(0)+aξ +bη, u′(1) = 0}.
Eq. (19) is a nonlinear autonomous evolution system. However,
same as Guo and Guo (2013a), it seems hard to use nonlinear
semigroup to prove its well-posedness due to the lack of
dissipativity of A or any other kind of A + µI for constant µ ∈ R.
Hence we invoke the Galerkin method to establish the existence
and uniqueness for the solution of Eq. (3). To do this, we need a
basis to construct a Galerkin approximation, which can be realized
by the operator A defined in L2(0, 1) as follows:
Aφ = −φ′′, ∀φ ∈ D(A),
D(A) = {φ ∈ L2(0, 1)|φ′(0) = 0, φ(1) = 0}.

It is seen that A is unbounded self-adjoint positive definite in
L2(0, 1)with compact resolvent. A simple computation shows that
the eigenpairs {(λn, φn)}

∞

n=1 of A are
λn = −ω2

n, ωn = i

n +

1
2


π,

φn(x) = 2 cosωnx = 2 cos

n +

1
2


πx.

(20)

Since {φn(x)}∞n=1 defined by (20) forms an orthogonal basis for
L2(0, 1), we can then follow the steps as those in Guo and Guo
(2013a) to construct a Galerkin scheme to prove the existence and
uniqueness for the classical solution to error system (3).

Let V = H3(0, 1)


D(A).

Theorem 3.1. Suppose that (ε0, ε1,a0,b0) ∈ V × V × R2, and they
satisfy the following compatible condition:

k1ε1(0)+ k2ε0(0)+a0 = 0 (21)

and

k1ε′′

0(0)− ωb0 = 0. (22)

Then system (3) admits a unique classical solution ε. That is to say, for
any time T > 0,

ε ∈ L∞(0, T ;H3(0, 1)), εt ∈ L∞(0, T ;H2(0, 1)),
εtt ∈ L∞(0, T ;H1(0, 1)), a ∈ C1

[0, T ],b ∈ C1
[0, T ],

εtt(x, t)− εxx(x, t) = 0 in L∞(0, T ; L2(0, 1)),
εx(0, t) = k1εt(0, t)+ k2ε(0, t)+a(t) cosωt +b(t) sinωt,
εx(1, t) = 0,̇a(t) = rεt(0, t) cosωt,̇b(t) = rεt(0, t) sinωt,a(0) =a0, b(0) =b0,
ε(x, 0) = ε0(x), εt(x, 0) = ε1(x).

By the Sobolev embedding theorem, it follows that ε ∈ C([0, 1] ×

[0, T ]).

Remark 3.1. In Theorem 3.1, condition (21) is the natural compat-
ible condition for the classical solution of (3), and condition (22) is
for the existence of the more smoother solution that we shall need
in the proof of Theorem 3.2.

Next, we establish the convergence of error system (3). To do this,
we need the weak solution of (3).

Definition 3.1. For any initial data (ε0, ε1,a0,b0) ∈ V ,the weak
solution (ε, εt ,a,b) of Eq. (3) is defined as the limit of any con-
vergent subsequence of (εn, εnt ,an,bn) in the space L∞(0,∞; V )

where (εn, εnt ,an,bn) is the classical solution (ensured by Theo-
rem 3.1) with the initial condition (for all x ∈ (0, 1))
εn(x, 0), εnt (x, 0),an(0),bn(0)
=

εn0(x), ε

n
1(x),an0,bn0 ∈ V × V × R2,
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which satisfies

lim
n→∞

εn0(x), εn1(x),an0,bn0− (ε0, ε1,a0,b0)V
= 0.

By (5) and (6), the above weak solution is well defined, since
it does not depend on the choice of initial sequence (εn(x, 0),
εnt (x, 0),an(0),bn(0)).
Theorem 3.2. Suppose that

ω ≠ 0, nπ +
π

2
, n ∈ Z. (23)

Then for any initial value (ε0, ε1,a0,b0) ∈ V , the solution of
system (3) is asymptotically stable in the sense that

lim
t→∞


1
2

 1

0
[ε2t (x, t)+ ε2x (x, t)]dx + k2ε2(0, t)


= 0

and

lim
t→∞

a(t) = a, lim
t→∞

b(t) = b.

Proof. By density argument, we may assume without loss of
generality that the initial value (ε0, ε1,a0,b0) belongs to V × V ×

R2 and satisfies compatible conditions (5) and (6). Construct the
Lyapunov functional Vε(t) for system (19) as follows:

Vε(t) =
1
2

 1

0
[ε2t (x, t)+ ε2x (x, t)]dx +

k2
2
ε2(0, t)

+
1
2r

a2(t)+b2(t)+ [ξ 2(t)+ η2(t)]. (24)

A simple computation of the time derivative of Vε(t) along the
solution of system (19) shows

V̇ε(t) = −k1[εt(0, t)]2.

This concludes that Vε(t) ≤ Vε(0), hence

sup
t≥0


1
2

 1

0
[ε2t (x, t)+ ε2x (x, t)]dx + k2ε2(0, t)

+ |a(t)| + |b(t)| < ∞. (25)

In particular, one has

εt(0, t) ∈ L2(0,∞). (26)

Similarly, define

U(t) =
1
2

 1

0
[ε2xx(x, t)+ ε2tx(x, t)]dx +

k2 + r
2

ε2t (0, t).

The time derivative of U(t) along the solution of (3) can be found
as

U̇(t) = −k1[εtt(0, t)]2 + ωεtt(0, t)[a(t) sinωt −b(t) cosωt].
(27)

Integrating over [0, t] on both sides of (27) gives

U(t) = −k1

 t

0
[ε̈(0, s)]2ds + ω

 t

0
ε̈(0, s)[a sinωs

−b(s) cosωs]ds + U(0)

= −k1

 t

0
[ε̈(0, s)]2ds + ωε̇(0, t)[a(t) sinωt

−b(t) cosωt] − ωε1(0)b0 + ω

 t

0
ε̇(0, s)[a(t) cosωs
+b(s) sinωs]ds = −k1

 t

0
[ε̈(0, s)]2ds

+ωε̇(0, t)[a(t) sinωt −b(t) cosωt] − ωε1(0)b0
+
ω

2r
[a2(t)+b2(t)] −

ω

2r
[a20 +b20] + U(0). (28)

Use Young Inequality in (28) to obtain

U(t) ≤
1
δ2k2

[a(t) sinωt −b(t) cosωt]2 + δ2k2ε2t (0, t)

+ |ωε1(0)b0| +
ω

2r
[a2(t)+b2(t)] + U(0). (29)

Taking 0 < δ2 <
1
4 in (29) gives

U(t)− δk2ε2t (0, t) ≥
1
2
U(t),

which implies

U(t) ≤
2
δ2k2

[a(t) sinωt −b(t) cosωt]2
+ 2|ωε1(0)b0| +

ω

r
[a2(t)+b2(t)] + 2U(0). (30)

It follows from (25), (26) and (30) that

sup
t≥0

U(t) < ∞,

which implies that the trajectory of system (3)

γ (ε0) = {(ε, εt , ,a(t),b(t), ξ(t), η(t))|t ≥ 0}

is precompact in H . In the light of Lasalle’s invariance principle
(Walker, 1980), any solution of system (3) tends to the maximal
invariant set of the following:

S = {(ε, εt ,a(t),b(t), η1(t), η2(t)) ∈ H |V̇ε(t) = 0}.

Now, since V̇ε(t) = 0, it follows that εt(0, t) = 0, which implieṡa(t) ≡ 0 and ̇b(t) ≡ 0. Soa ≡ a0 andb ≡ b0. Thus the solution
reduces toεtt(x, t) = εxx(x, t),
εx(0, t) = kε0(0)+a0 cosωt +b0 sinωt,
εx(1, t) = 0, εt(0, t) = 0.

(31)

The proof will be completed if we can prove that (31) admits zero
solution only. To this end, we first consider the equation
εtt(x, t) = εxx,
εx(1, t) = 0, εt(0, t) = 0. (32)

Introduce a Hilbert space H = H1
L (0, 1) × L2(0, 1) with the inner

product

⟨(y1, z1), (y2, z2)⟩H =

 1

0
[y′

1(x)y
′

2(x)+ z1(x)z2(x)]dx,

where H1
L (0, 1) = {u ∈ H1(0, 1)|u(0) = 0}. Define a linear opera-

tor A in H associated to system (32)
A(y, z) = (z, y′′),

D(A) = {(y, z) ∈ H2(0, 1)× H1(0, 1)|y′(1) = 0, z(0) = 0}.
(33)

It is a simple exercise to show that (µI − A)−1 is compact on H for
someµ > 0. Hence A is a skew-adjoint operator with compact re-
solvent on H. Consequently, the spectrum of A consists of isolated
eigenvalues on the imaginary axis only, and froma general result of
functional analysis, the algebraic multiplicity of each eigenvalue of
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A is equal to its geometric multiplicity. Solve the eigenvalue prob-
lem

A(φ, ψ) = λ(φ,ψ)

for any λ ∈ σp(A). The solution is ψ = λφ with φ ≠ 0 satisfying
λ2φ(x)− φ′′(x) = 0,
φ′(1) = 0, λφ(0) = 0. (34)

Solve (34) in the case where λ = 0 to give

φ(x) = c, (35)

where c is a constant. When λ ≠ 0,

φ(x) = eλx − e−λx (36)

with

e2λ = −1. (37)

So λ is geometrically simple. So each λ is algebraically simple.
Furthermore, from (36), we can obtain eigen-pairs of A:
λn =


nπ +

π

2


i, λ−n = λn,

Φn = (λ−1
n φn, φn),Φ−n = (λ−1

−nφn, φn),
(38)

where

φn(x) = sin

n +

1
2


πx, n ∈ Z.

By general theory of functional analysis, {Φn}n∈Z forms an orthogo-
nal basis forH. Therefore, the solution of (32) can be represented as

(ε(·, t), ε̇(·, t)) = k2d0(c, 0)+

∞
n=1

dneλntΦn +

∞
n=1

d−neλ−ntΦ−n,

where the constants {dn}n∈Z are determined by the initial condi-
tion. That is,

ε0 = d0c +

∞
n=1

dn
λn
φn +

∞
n=1

d−n

λ−n
φn,

ε1 =

∞
n=1

dnφn +

∞
n=1

d−nφn.

Hence

εx(0, t) =

∞
n=1

dn
φ′
n(0)
λn

eλnt +

∞
n=1

d−n
φ′
n(0)
λ−n

eλ−nt

= k2d0c +a0 cosωt +b0 sinωt.
Therefore,

− k2d0c +

∞
n=1

dn
φ′
n(0)
λn

eλnt

+

∞
n=1

d−n
φ′
n(0)
λ−n

eλ−nt −
1
2
[a0 − ib0]eiωt

−
1
2
[a0 + ib0]e−iωt

= 0. (39)

We now show that d±n = 0, for all n ≥ 1. Since otherwise, if there

exists n0 ≥ 1 such that
dn0 φ′

n0
(0)

λn0

 ≠ 0, then dn0 ≠ 0 due to the

fact φ′
n(0) ≠ 0 for all n. Furthermore, the smoothness of the initial
value guarantees that


n∈Z,n≠0

dn φ′
n(0)
λn

 < ∞, which implies that
there exists an integer N > n0 such that

∞
n=N

dn φ′
n(0)
λn

 < 1
4

dn0 φ′
n0(0)

λn0

 ,
∞

n=N

d−n
φ′

−n(0)
λ−n

 < 1
4

dn0 φ′
n0(0)

λn0

 . (40)

Sinceλn ≠ λm for anyn,m ∈ Z, n ≠ m and |λn+1−λn| = π, n ∈ Z,
one has, for t > 0,

dn0
φ′
n0(0)

λn0
+

∞
n=N+1

dn
φ′
n(0)
λn

e(λn−λn0 )t

+

N
n=1,n≠n0

dn
φ′
n(0)
λn

e(λn−λn0 )t +

∞
n=N+1

d−n
φ′

−n(0)
λ−n

e(λ−n−λn0 )t

+

N
n=1

d−n
φ′

−n(0)
λ−n

e(λ−n−λn0 )t

− k2d0ce−λn0 t −
1
2
[a0 − ib0]e(iω−λn0)t

−
1
2
[a0 + ib0]e−(iω+λn0)t = 0. (41)

Integrating over [0, t] on both sides of (41) and using (40), and the
fact Reλn = 0, we havedn0 φ′

n0(0)

λn0

 t ≤ 2


 t

0

N
n=1,n≠n0

dn
φ′
n(0)
λn

e(λn−λn0 )sds


+ 2


 t

0

N
n=1

d−n
φ′

−n(0)
λ−n

e(λ−n−λn0 )sds


+ 2

 t

0
k2d0ce−λn0 sds

+  t

0
[a0 − ib0]e(iω−λn0)sds


+

 t

0
[a0 + ib0]e−(iω+λn0)sds

 .
Since the right side of the above equation has an upper bound for
all t ≥ 0,we conclude that dn0 = 0,which is a contradiction. Hence
d±n = 0, n = 1, 2, . . . and by (39), d0 = a0 = b0 = 0.We have
thus proved that S = {(0, 0, 0, 0, 1, 0)}, that is

lim
t→∞


1
2

 1

0
[ε2t (x, t)+ ε2x (x, t)]dx + c0ε2(0, t)

+
1
2r
a2(t)+

1
2r
b2(t) = 0.

The proof is complete. �

4. Convergence of the auxiliary system

Define H = H1(0, 1) × L2(0, 1), which is a Hilbert Space with
the two following equivalent norms induced by the inner product:

∥(p, q)∥2
(H;∥·∥1)

=

 1

0
[|p′(x)|2dx + |q(x)|2]dx + c0|p(1)|2,

∀(p, q) ∈ H

and

∥(p, q)∥2
(H;∥·∥2)

=

 1

0
[|p′(x)|2dx + |q(x)|2]dx + c0|p(0)|2,

∀ (p, q) ∈ H.
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In the rest of the paper, we write norm ∥ · ∥H without discrimina-
tion.

Theorem 4.1. For any initial value (z0,z1) ∈ H, then there exists
a unique (weak) solution to (12) such that (z,zt) ∈ C(0,∞;H),
Moreover, the solution of (12) is asymptotically stable in the sense
that

lim
t→∞

Ez(t) = lim
t→∞


1
2

 1

0
[z2x (x, t)+z2t (x, t)]dx +

1
2
c0[z(1, t)]2

= 0.

Proof. For any initial value (z0,z1) ∈ H, it follows from (15) that
(z0,z1) ∈ H. By the transformation (13), it is sufficient to prove
system (14) has a unique (weak) solution (z,zt) ∈ C(0,∞;H) and
asymptotically stabilization of system (14) in the sense that

lim
t→∞

Ez(t) = lim
t→∞


1
2

 1

0
[z2x (x, t)+z2t (x, t)]dx +

1
2
c0[z(0, t)]2

= 0. (42)

Define an operator A : D(A) → H byA(u, v)⊤ = (v, u′′)⊤, ∀(u, v) ∈ D(A)
D(A) = {(u, v)⊤ ∈ H| A(u, v)⊤ ∈ H,

f ′(0) = c0f (0), f ′(1) = −c1g(1)}.
(43)

Then system (14) can be written as

d
dt

z(·, t)zt(·, t)


= A
z(·, t)zt(·, t)


+


0

f (·, t)


+ B[−k1εt(0, t)− (k2 + r)ε(0, t)],

where f (x, t) = −ε(0, t)[ωr sinωx − c0r cosωx + 2c0r + c0k2] +

c0k1εt(0, t), B = (0,−δ(x))⊤.
It is well-known that A generates an exponential stable C0-

semigroup. Then there exist K , µ > 0 such that

∥eAt∥ ≤ Ke−µt . (44)

It is a routine exercise
that B are admissible for A. By Weiss (1989), it concludes that

for any initial value (z0,z1) ∈ H, there exists an unique solution
(z,zt)(∈ C(0,∞;H)) to system (14) in H, which takes the formz(·, t)zt(·, t)


= eAt

z(·, 0)zt(·, 0)


+

 t

0
eA(t−s)


0

f (·, s)


ds − k1

 t

0
eA(t−s)Bεt(0, s)ds

− (k2 + r)
 t

0
eA(t−s)Bε(0, s)ds. (45)

The first part is proved.
Nowwe are in a position to prove system (14) is asymptotically

stable. By (44), the norm of the first term on the right side of (45)
can be estimated aseAtz(·, 0)zt(·, 0)


H

≤
eAtz(·, 0)zt(·, 0)


H

≤ Ke−µt
z(·, 0)zt(·, 0)


H
. (46)

We rewrite the second term on the right side of (45) to be t

0
eA(t−s)


0

f (·, s)


ds =

 t

0
eA(t−s)


0

m(·)


ε(0, s)ds

+

 t

0
eA(t−s)


0

c0k1


εt(0, s)ds, (47)
where m(x) = ωr sinωx − c0r cosωx + 2c0r + c0k2. For the first
term on the right side of (47), one has  t

0
eA(t−s)


0

m(·)


ε(0, s)ds


H

≤

 t

0
∥eA(t−s)

∥∥m(·)∥L2(0,1)|ε(0, s)|ds

≤ K∥m(·)∥L2(0,1)

 t

0
e−µ(t−s)

|ε(0, s)|ds. (48)

By the fact

ε2(0, t) ≤
2
k2

Eε(t) → 0, as t → ∞.

For any given η > 0, there exists t0 > 0, such that |ε(0, t)| < µη

2 ,
for all t > t0. Then t

0
e−µ(t−s)

|ε(0, s)|ds ≤

 t0

0
e−µ(t−s)

|ε(0, s)|ds

+

 t

t0
e−µ(t−s)

|ε(0, s)|ds

≤


2
k2

Eε(0)µ−1e−µ(t−t0) +
η

2
.

Choosing t > t0 large enough, the first term on the right-
hand side above will be less than η

2 , and thus for t large enough t
0 e−µ(t−s)

|ε(0, s)|ds < η, which implies that

lim
t→∞

 t

0
e−µ(t−s)

|ε(0, s)|ds = 0.

This together with (48) concludes that

lim
t→∞

  t

0
eA(t−s)


0

m(·)


ε(0, s)ds


H

= 0. (49)

On one hand, for the second term on righthand of (47), we have  t

0
eA(t−s)


0

c0k1


εt(0, s)ds


H

≤ c0k1

 t

0
e−µ(t−s)

|εt(0, s)|ds.

On the other hand, t

0
e−µ(t−s)

|εt(0, s)|ds =

 t
2

0
e−µ(t−s)

|εt(0, s)|ds

+

 t

t
2

e−µ(t−s)
|εt(0, s)|ds =

 t

t
2

e−µτ
|εt(0, t − τ)|dτ

+

 t

t
2

e−µ(t−s)
|εt(0, s)|ds

≤


t
2
e−

µt
2

 t

t
2

[εt(0, t − τ)]2dτ
 1

2

+

 t

t
2

e−2µ(t−s)ds
 1

2
 t

t
2

[εt(0, s)]2ds
 1

2

≤


t
2
e−

µt
2


∞

0
[εt(0, τ )]2dτ

 1
2

+


+∞

t
2

[εt(0, s)]2ds
 1

2

.
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This together with the fact εt(0, t) ∈ L2(0,∞) yields  t

0
eA(t−s)


0

c0k1


εt(0, s)ds


H

≤ c0k1

 t

0
e−µ(t−s)

|εt(0, s)|ds → 0, as t → ∞. (50)

The admissibility of B implies that  t0

0
eA(t0−s)Bε(0, s)ds

2
H

≤ Ct0∥ε(0, s)∥
2
L2loc (0,t0)

≤ t20Ct0∥ε(0, s)∥
2
L∞(0,t0),

where Ct0 is a positive constant that is independent of ε(0, s). From
the fact that eAt is exponentially stable, it follows from Proposition
2.5 of Weiss (1989) that  t

t0
eA(t−s)Bε(0, s)ds


H

=

  t

0
eA(t−s)B(0�t0ε)(s)ds


H

≤ K0∥ε(0, s)∥L∞(0,∞) <
η

2
, (51)

where K0 is a constant is independent of ε(0, s), and

(u�τv)(t) =


u(t), 0 ≤ t ≤ τ
v(t − τ), t > τ.

Thus one has  t

0
eA(t−s)Bε(0, s)ds


H

=

eA(t−t0)
 t0

0
eA(t0−s)Bε(0, s)ds

+

 t

t0
eA(t−s)Bε(0, s)ds


H

≤

eA(t−t0)
 t0

0
eA(t0−s)Bε(0, s)ds


H

+

  t

t0
eA(t−s)Bε(0, s)


H

≤ Ke−µ(t−t0)

Ct0t0∥ε(0, s)∥L∞(0,t0) +

η

2
. (52)

Choose t > t0 large enough to let the first term on the right-
hand side above be less than η

2 , and thus for t large enough  t
0 eA(t−s)Bε(0, s)ds


H
< η,which implies that

lim
t→∞

 t

0
eA(t−s)Bε(0, s)ds


H

= 0. (53)

By the fact that εt(1, t) ∈ L2(0,∞), it follows that for any given
σ > 0,

∞

t1
|εt(1, s)|2ds ≤ σ . (54)

The admissibility of B implies that  t

0
eA(t−s)Bεt(0, s)ds


H

≤

eA(t−t1)
 t1

0
eA(t1−s)Bεt(1, s)ds


H

+

  t

t1
eA(t−s)Bεt(1, s)ds


H

≤ Ke−ω(t−t1)

Kt1 t1∥εt(1, s)∥L2(0,t1)

+

  t

0
eA(t−s)B(0�t1)εt(1, s)ds


H

≤ Ke−ω(t−t1)

Kt1 t1∥εt(1, s)∥L2(0,t1) + K1∥εt(1, s)∥L2(t1,∞)

≤ Ke−ω(t−t1)

Kt1 t1∥εt(1, s)∥L2(0,t1) + K1

√
σ . (55)

Same to (52), we have

lim
t→∞

  t

0
eA(t−s)Bεt(1, s)ds


H

= 0. (56)

It follows from (45), (46), (49), (50), (53) and (56) that

lim
t→∞

z(·, t)zt(·, t)


H
= 0.

(42) is then proved. �

5. Main result

We now go back to the closed-loop (17). Define X = H × V .
Let us consider system (17) in space X .

Theorem 5.1. Suppose that ω ≠ 0, nπ +
π
2 , n ∈ Z. For any initial

value (y0, y1,y0,y1,a0,b0) ∈ X , there exists a unique (weak) so-
lution to (17) such that (y(·, t), yt(·, t),y(·, t),yt(·, t),a(t),b(t) ∈

C([0,∞]); X ). Moreover, this closed-loop solution has the following
properties: (i). supt≥0[

 1
0 [y2t (x, t)+y2x(x, t)+y2t (x, t)+y2x(x, t)]dx+a2(t)+b2(t)] < ∞.

(ii). limt→∞

 1
0 {[yx(x, t)−yx(x, t)]2 + [yt(x, t)−yt(x, t)]2}dx +

(y(0, t)−y(0, t))2 = 0.

(iii). limt→∞a(t) = a, limt→∞
b(t) = b.

(iv). limt→∞ y(0, t) = 0.
(v). When a = b = 0,

 1
0 [y2t (x, t) + y2x(x, t)]dx + c0y2(0, t) →

0 as t → ∞.

Proof. For any initial value (y0, y1,y0,y1,a0,b0) ∈ X , it is easy
to verify from (4) and (10) that (ε0, ε1,a0,b0) ∈ V and (z0,z1)
∈ H, which implies that there exist a unique solution (ε, εt ,a(t),b(t)) ∈ C[0,∞; V ] to (3) and a unique solution (z,zt) ∈ C[0,∞;

H] to (9), respectively. It follows from (8) and y =y+ε that system
(17) has a unique solution (weak) (y(·, t), yt(·, t),y(·, t),yt(·, t),a(t),b(t)) ∈ C([0,∞); X ). The first part is proved.

From (8), we havey(·, t)yt(·, t)


H
≤

z(·, t)zt(·, t)


H

+ ∥ cosωx∥L2(0,1)|a(t) cosωt +b(t) sinωt + rε(0, t)|

+ ∥ sinωx∥L2(0,1)|a(t) sinωt −b(t) cosωt|.
This together with Theorems 3.2, 4.1 and the facty(0, t) =z(0, t)
gives property (i)–(iv). (v) directly follows from (ii) and the stability
of ε andy.
Remark 5.1. The technique in this paper can be used to track
general sinusoidal and cosinusoid reference signals. For tracking
the reference yref(t) = A cos(αt + φ) + B sin(βt + ψ) + C with
the output y(0, t), we only needz in (8) to take the form:z =y− 1

ω
sinωx[a(t) cosωt+b(t) sinωt+rε(0, t)]−cosαxA cos(αt+

φ)− cosβxB sin(βt + ψ)− C . �
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Fig. 1. Displacement of ε(x, t) (left) andz(x, t) (right).
Fig. 2. Parameters estimationsa(t) andb(t) (left) and the convergence ofz(0, t) (right).

6. Numerical simulation

In this section, we present some numerical simulations to
illustrate the theory results. In the simulation, the second order
equations in time are firstly converted into a system of two first
order equations, and then the backward Euler method in time and
the Chebyshev spectral method in space are used. The grid size is
taken as N = 20 and time step dt = ×10−3. We choose k1 =

0.9, k2 = 4, c0 = 2, c1 = 0.9 and r = 1. The other parameters are
taken as: a = 0.1, b = −0.2, andω = 3.We can choose the proper
initial conditions which are not listed here for simplicity to give
the following simulation results. The numerical results for ε(x, t)
andz(x, t) are presented in Fig. 1. It is can be seen that system (3)
and (14) are indeed asymptotically stable, which implies that the
convergence of ε(0, t) andz(0, t). Fig. 2(left) shows approximation
of the parameters. It is seen that the estimatesa(t) andb(t) with
initial valuesa0 = 0.2 andb0 = 0.1 approximate, respectively, the
system parameters a = 0.1 and b = −0.2. Fig. 2(right) shows
that the convergence ofz(0, t). The convergence of ε(0, t) andz(0, t) together with the fact ε(0, t) = y(0, t)−y(0, t),y(0, t) =z(0, t) = z(0, t) shows that y(0, t) is convergent to zero as time
goes to infinity. �

7. Concluding remarks

This paper is concernedwith output regulation and disturbance
rejection for a wave equation with external harmonic disturbance
anticollocated with control. An adaptive observer by themeasured
output is designed to estimate unknown parameters of the
disturbance and recover the system state. An auxiliary system
is constructed by using the observer and parameter estimators
to make the control and the anticollocated disturbance to be
collocated. By applying the Backstepping method for infinite
dimensional system, we design an adaptive output feedback
controller which regulates the output to zero and keep all the
states bounded. This design method used in this paper also can
be applied to an unstable wave equation presented in Krstic et al.
(2008a). In future works, applying our approach to beam equation
seems interesting, and relaxing the harmonic to general bounded
disturbance is also interesting problem.
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