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a b s t r a c t

In deep oil drilling, the length of the domain overwhich thewave equationmodels the torsional dynamics
of the drill string keeps changing with time, and it also depends on the drill bit speed. Moreover, the drill
bit speed cannot be controlled directly. In this context, we consider predictor-based design for the cascade
system of a nonlinear ODE and a wave PDE with a moving uncontrolled boundary. In comparison with
prior results on wave PDE–ODE cascades, this work differs by giving rise to a prediction horizon that is
not given explicitly but has to be found from an implicit relationship involving the delay function and the
future solution of the system. Stability analysis of the closed-loop system is conducted by constructing
infinite-dimensional backstepping transformations and a Lyapunov functional. An explicit feedback law
for compensating thewave actuator dynamics is obtained. For themoving boundary that depends on both
the ODE’s state and time, a region of attraction is estimated. For the moving boundary that depends on
time, a global stabilization for the closed-loop system is achieved. Finally, an example is given to illustrate
the effectiveness of the proposed design technique.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Predictor-based techniques have been developed for compen-
sating constant input delays in linear plants (Artstein, 1982;
Bekiaris-Liberis & Krstic, 2011; Krstic, 2008; Manitius & Olbrot,
1979; Mondie & Michiels, 2003). These designs are extended for
unknown system parameters in Bresch-Pietri and Krstic (2009),
an unknown actuator delay in Bresch-Pietri and Krstic (2010), and
time-varying input delays in linear systems in Krstic (2010a) and
Nihtila (1989, 1991). Over the last ten years,manyworks have been
done on control designs and stability analysis for nonlinear sys-
tems with input delays, for instance Cai, Han, and Zhang (2011),
Cai andKrstic (2014), Karafyllis (2010), Karafyllis andKrstic (2012),
Krstic (2009a), Mazenc and Bliman (2006), Mazenc, Mondie, and
Francisco (2004) and Teel (1998). Predictor control for nonlinear
systems with arbitrarily large input delays was presented in Krstic
(2010b), where a Lyapunov functional is provided to the stabil-
ity analysis of the closed-loop system. For nonlinear systems with
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time-varying input delay, asymptotic stability was achieved based
on a backstepping transformation of the actuator state and a Lya-
punov functional (Bekiaris-Liberis & Krstic, 2012). The results in
Bekiaris-Liberis and Krstic (2012) were further extended to state-
dependent input delay in Bekiaris-Liberis and Krstic (2013a), and
time and state-dependent input delay in Bekiaris-Liberis and Krstic
(2013b). An explicit feedback law for compensating the wave par-
tial differential equation (PDE) dynamics at the input of a linear or-
dinary differential equation (ODE) can be found in Krstic (2009b).
Based on an infinite-dimensional backstepping–forwarding trans-
formation, a feedback law for a multi-input linear system which
compensates the wave PDE dynamics was given in Bekiaris-Liberis
and Krstic (2013c).

In thedrilling application, the torsional dynamics of a drill string
are modeled as a wave PDE, which is coupled with a nonlinear
ODE that describes the dynamics of the angular velocity of the
drill bit at the bottom of the drill string (Saldivar, Mondie, Loiseau,
& Rasvan, 2011). The stick–slip phenomenon is a common type
of instability for drilling, which is an undesirable limit cycle of
the drill string velocity yielding potentially significant damages
on oil production facilities (Bresch-Pietri & Krstic, 2014; Sagert,
Di Meglio, Krstic, & Rouchon, 2013). Based on the linearization of
its dynamics, a control scheme for the stabilization of the drilling
instability was acquired in Sagert et al. (2013). Furthermore,
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by the fact that the friction force is nonlinear, a general result
for compensating wave PDE dynamics at the input of a general
nonlinear ODEwas presented in Bekiaris-Liberis and Krstic (2014).
The result of Bekiaris-Liberis and Krstic (2014) was extended to
nonlinear system under wave actuator dynamics with time- and
state-dependent moving boundary in Cai and Krstic (2015).

However, in oil drilling, the length of the domain over which
thewave equationmodels the torsional dynamics of the drill string
keeps changingwith time, and it also depends on the drill bit speed.
Moreover, the drill bit speed cannot be controlled directly. In this
context, it is of interest to study nonlinear stabilization through
wave PDE dynamics with a moving uncontrolled boundary.

Similar other applications exist where a wave equation of
varying length cascades into a nonlinear ODE. One example is
hoists/elevators in coal mining, which run as deep as 2 km, and
where a platform at the bottom end of the cables, as well as the
cables themselves, must be kept from pendulating, while the cable
length is changing with time. Another example, where the cable
length goes through a large and fast change, and the cable and its
load at the end must be kept from oscillating, is arresting gear for
aircraft landing on aircraft carriers.

In this paper, a predictor-based design for nonlinear systems
throughwave PDEdynamicswith amoving uncontrolled boundary
is studied. The result in Cai and Krstic (2015) cannot be
adapted to the case of a moving uncontrolled boundary because,
while in Cai and Krstic (2015) the prediction horizon is given
explicitly, in the present problem the prediction horizon is given
implicitly, through an equation that involves the known delay
function and the system solution, which is not known a priori.
Stability analysis of the closed-loop system is conducted by
constructing infinite-dimensional backstepping transformations
and a Lyapunov functional. For the moving boundary that depends
on both the ODE’s state and time, an estimate of the region of
attraction is acquired. For the moving boundary that depends on
time, a global stabilization for the closed-loop system is achieved.
In addition, the assumption that extended closed-loop system is
backward complete in Cai and Krstic (2015) is removed in this
paper.

The paper is organized as follows: System description and
control design are in Section 2. Standing assumptions are in
Section 3. Local stability is analysed in Section 4. Global stability
is proved in Section 5. An illustrative example is given in Section 6.
Some conclusions are drawn in Section 7.

Notation.We use the common definitions of classK ,K∞,K L

functions from Krstic (2009a). We say that a function ρ : R+ ×

(0, 1) → R+ belongs to class K ι if it is increasing with respect
to its first argument and continuous with respect to its second
argument. It belongs to class K ι∞ if it is in K ι and in K∞

with respect to its first argument. For an n-vector, the norm | · |

denotes the usual Euclidean norm. Let δ : Rn
× R+ → R. For a

scalar function u(·, t) ∈ L∞
[δ(X, t), 1], we denote with ∥u(t)∥∞

its supremum norm, i.e. ∥u(t)∥∞ = supx∈[δ(X,t),1] |u(x, t)| .
Similarly, for w(·, t) ∈ L∞

[0, 1 − δ(X, t)], denote ∥w(t)∥∞1 =

supx∈[0,1−δ(X, t)] |w(x, t)| .∇ stands for the gradient.
The argument of the functions and of the functionals will be

omitted or simplified whenever no confusion can arise from the
context. For example, one may denote a function δ(X(t), t) by
simply δ(X, t).

2. System description and control design

Consider the nonlinear system under wave actuator dynamics
given by

Ẋ = f (X, u(δ(X, t), t)) (1)
utt(x, t) = uxx(x, t) (2)
ux(δ(X, t), t) = 0 (3)
ux(1, t) = U(t) (4)

where X ∈ Rn is the state vector and U is the scalar input, f : Rn
×

R → Rn is locally Lipschitz with f (0, 0) = 0, and u(x, t) is the state
of the PDE dynamics of the wave actuator, and δ : Rn

× R+ → R is
continuously differentiable.

For system (1)–(4), let

ζ (x, t) = ut(x, t)+ ux(x, t), (5)
η(x, t) = ut(x, t)− ux(x, t), (6)

which in reverse gives

ut(x, t) =
ζ (x, t)+ η(x, t)

2
, (7)

ux(x, t) =
ζ (x, t)− η(x, t)

2
. (8)

Noting that

u̇(δ(X, t), t) =
ζ (δ(X, t), t)− η(δ(X, t), t)

2

×


∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


+
ζ (δ(X, t), t)+ η(δ(X, t), t)

2
(9)

with (3), (5) and (6), yields u̇(δ(X, t), t) = ζ (δ(X, t), t). So system
(1)–(4) can be represented as

Ẋ = f (X, u(δ(X, t), t)) (10)
u̇(δ(X, t), t) = ζ (δ(X, t), t) (11)

ζt(x, t) = ζx(x, t) (12)
ηt(x, t) = −ηx(x, t) (13)

η(δ(X, t), t) = ζ (δ(X, t), t) (14)
ζ (1, t) = η(1, t)+ 2U(t). (15)

If there exists a control law κ : Rn
→ R such that the system

Ẋ = f (X, κ(X)) is globally asymptotically stable, then a feedback
law µ for system (10), (11) can be constructed as

µ(X, u(δ(X, t), t)) = −c1(u(δ(X, t), t)− κ(X))

+
∂κ(X)
∂X

f (X, u(δ(X, t), t)) (16)

where c1 > 0 is arbitrary.

Remark 1. The design objective of feedback law µ is to make
the extended closed-loop system (X, u(δ(X, t), t)) input-to-state
stable (ISS) with respect to the transformed state of the transport
PDE which affects this system as an external disturbance.

Let

φ(t) = t − (1 − δ(X, t)), (17)

σ(θ) = φ−1(θ), φ(t) ≤ θ ≤ t. (18)

Note that the input to the system (10), (11) is the delayed signal
ζ (1, t) = U(t), we employ the prediction of X and u(δ(X, t), t).
The control law for system (10)–(15) is given by

U(t) = −0.5(ut(1, t)− ux(1, t))− 0.5c1(P2(t)− κ(P1(t)))

+ 0.5
∂κ(P1(t))
∂P1

f (P1(t), P2(t)) (19)

where c1 > 0, and for all φ(t) ≤ θ ≤ t ,

P1(θ) = X(t)+

 θ

φ(t)
σ̇ (s)f (P1(s), P2(s))ds, (20)
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P2(θ) = u(δ(X, t), t)

+

 θ

φ(t)
σ̇ (s)ζ (δ(P1(s), σ (s)), σ (s))ds, (21)

σ̇ (s) = 1/(1 + ∇δ(X(σ (s)), σ (s)))
× f (X(σ (s)), u(δ(X(σ (s)), σ (s)), σ (s)))

+
∂(δ(X(σ (s)), σ (s)))

∂σ (s)
, (22)

for t ≥ 0. The initial predictor P1(θ), P2(θ), θ ∈ [φ(0), 0] are given
by (20), (21) for t = 0, respectively.

From (20)–(21), it is easy to show that

P1(φ(t)) = X(t), P2(φ(t)) = u(δ(X, t), t) (23)

for all t ≥ 0. It can be deduced

P1(t) = X(σ (t)), P2(t) = u(δ(X(σ (t)), σ (t)), σ (t)), (24)

for all t ≥ 0.

Remark 2. The design objective of control law (19)–(22) is such
that ω(1 − δ(X, t), t) = 0 in the target system (X, u((X, t), t),
ω,ϖ) which is transformed by system (10)–(15) under the
backstepping transformations.

Remark 3. In Cai and Krstic (2015), p1(x, t) ∈ Rn, p2(x, t) ∈ R are
x-time-units-aheadpredictions ofX(t) andu(0, t) respectively, the
prediction horizon is given explicitly. In the present case, we need
σ(t) − t-time-units-ahead predictions of X(t) and u(δ(X, t), t)
respectively. The prediction horizon is given implicitly, through an
equation that involves the known delay function and the system
solution, which is not known a priori. Further, the assumption
that extended closed-loop system is backward complete in Cai and
Krstic (2015) is removed in this paper. So the result in Cai andKrstic
(2015) cannot be adapted to this case.

3. Standing assumptions

Note that (10), (11) can be expressed as follows

Ż = ϕ(Z, ζ (δ(X, t), t)) (25)

where

Z =


X

u(δ(X, t), t)


, (26)

and

ϕ(Z, ζ (δ(X, t), t)) =


f (X, u(δ(X, t), t))
ζ (δ(X, t), t)


. (27)

Assumption 1. For the system Ż = ϕ(Z, v), there exist smooth
positive definite functions R1, R2 and class K∞ functions α1, . . . ,
α6 such that

α1(|Z |) ≤ R1(Z) ≤ α2(|Z |) (28)
∂R1(Z)
∂Z

ϕ(Z, v) ≤ R1(Z)+ α3(|v|) (29)

α4(|Z |) ≤ R2(Z) ≤ α5(|Z |) (30)

−
∂R2(Z)
∂Z

ϕ(Z, v) ≤ R2(Z)+ α6(|v|) (31)

for all Z ∈ Rn+1 and for all v ∈ R.

Assumption 2. The system Ẋ = f (X, κ(X)+ v) satisfies input-to-
state stability propertywith respect to v and the function κ : Rn

→

R is continuously differentiable with locally Lipschitz derivative
∂κ( X)
∂X and it satisfies κ(0) = 0.
4. Local stability

With the assumptions on the nonlinear function f (X, w) stated
below (4), the following holds

|f (X, w)| ≤ ϑ1(|X | + |w|) (32)

for a class K∞ function ϑ1.
Throughout this section, we consider the solutions which are

such that

Fc : 0 ≤ ∇δ(X, t)f (X, u(δ(X, t), t))+
∂δ(X, t)
∂t

≤ c (33)

for 0 < c < 1, and t ≥ 0.We refer to Fc as the feasibility condition.
The feasibility condition (33) ensures that the transport

velocities have the correct sign; if not, the boundary conditions are
not in the correct side of the equations. In addition, we make the
following assumption on the moving boundary.

Assumption 3. The moving boundary δ(X, t) is continuously
differentiable and satisfies

0 ≤ δ(X, t) ≤ 1 (34)

for all t ≥ 0, and ∇δ(X, t), δt(X, t) are locally Lipschitz, and there
exist class K∞ functions ϑ2, ϑ3 such that

|∇δ(X, t)| ≤ |∇δ(0, 0)| + ϑ2(|X |), (35)
|δt(X, t)| ≤ |δt(0, 0)| + ϑ3(|X |), (36)

for all t ≥ 0.
Denote

π∗

1 = sup
θ≥δ−1(X(0), 0)


∇δ(X(θ), θ)f (X(θ), u(δ(X, θ), θ))

+
∂δ(X(θ), θ)

∂θ


, (37)

π∗

2 = inf
θ≥δ−1(X(0), 0)


∇δ(X(θ), θ)f (X(θ), u(δ(X, θ), θ))

+
∂δ(X(θ), θ)

∂θ


. (38)

Remark 4. With the condition (33), it holds 0 ≤ ∇δ(X, t)
f (X, u(δ(X, t), t))+ ∂δ(X, t)

∂t < 1, for t ≥ 0. So there exist a unique
supremum π∗

1 defined by (37) and satisfying π∗

1 < 1, and a unique
infimum π∗

2 defined by (38) and satisfying π∗

2 ≥ 0.

4.1. Backstepping transformations and inverse backstepping trans-
forms

Denote

g(t) = t + 1 − δ(X, t), (39)

and

h(θ) = g−1(θ), t ≤ θ ≤ g(t). (40)

Lemma 1 (Backstepping Transforms). The backstepping transforma-
tions of ζ , η are defined as

ω(x − δ(X, t), t) = ζ (x, t)− µ(l(x, t)), (41)
ϖ(x − δ(X, t), t) = η(x, t)− µ(r(x, t)), (42)

where

l(x, t) = Z(t)+

 x

δ(X,t)
σ̇ (s + t − 1)ϕ(l(s, t),

ζ (δ(l1(s, t), σ (s + t − 1)), σ (s + t − 1)))ds, (43)
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r(x, t) = Z(t)−

 x

δ(X,t)
ḣ(t + 1 − s)ϕ(r(s, t),

η(δ(r1(s, t), h(t + 1 − s)), h(t + 1 − s)))ds, (44)

for all δ(X, t) ≤ x ≤ 1, t ≥ 0 and µ is defined in (16) and
l(x, t) = [lT1(x, t), l2(x, t)]

T , r(x, t) = [rT1 (x, t), r2(x, t)]
T , and the

control law (19)–(22) transform system (25), (12)–(15) to the target
system given by

Ż = ϕ(Z, µ(Z)+ ω(0, t)) (45)

ωt(x, t) =


1 + ∇δ(X, t)f (X, u(δ(X, t), t))

+
∂δ(X, t)
∂t


ωx(x, t) (46)

ϖt(x, t) = −


1 − ∇δ(X, t)f (X, u(δ(X, t), t))

−
∂δ(X, t)
∂t


ϖx(x, t) (47)

ϖ(0, t) = ω(0, t) (48)
ω(1 − δ(X, t), t) = 0. (49)

Proof. By setting x = δ(X, t) into (41), with (25), (43), we have
(45). Using (12), it can be deduced that ζ is a function of x+ t, that
is, ζ (x, t) = χ1(x + t) for some function χ1 and by (20), (21) and
(43), we get l(x, t) = [PT

1 (x + t − 1), P2(x + t − 1)]T , in view of
(41), so ω(x, t) is a function of x + δ(X, t) + t . It can be deduced
ωt(x, t) = (1 + ∇δ(X, t)f (X, u(δ(X, t), t))+ ∂δ(X,t)

∂t )ωx(x, t), that
is, (46). Using (13), we know that η is a function of t − x. With the
help of (44), it can be deduced that r(x, t) = Z(h(t + 1 − x)), so
(47) holds. In view of l(δ(X, t), t) = Z(t) and r(δ(X, t), t) = Z(t),
and with the help of (14), (41) and (42), we get (48). Last, we prove
(49). Noting that µ(l(1, t)) = µ(P1(t), P2(t)) = −c1(P2(t) −

κ(P1(t)))+
∂κ(P1(t))
∂P1

f (P1(t), P2(t)), and with (15), (19) and (41), we
have ω(1 − δ(X, t), t) = ζ (1, t)−µ(l(1, t)) = η(1, t)+ 2U(t)−
µ(l(1, t)) = 0.

Lemma 2 (Inverse Backstepping Transforms). The inverse backstep-
ping transformations of ω,ϖ are defined as

ζ (x, t) = ω(x − δ(X, t), t)+ µ(ι(x, t)), (50)
η(x, t) = ϖ(x − δ(X, t), t)+ µ(λ(x, t)), (51)

where

ι(x, t) = Z(t)+

 x

δ(X,t)
σ̇ (s + t − 1)ϕ(ι(s, t),

ω(0, σ (s + t − 1))+ µ(ι(s, t)))ds, (52)

λ(x, t) = Z(t)−

 x

δ(X,t)
ḣ(t + 1 − s)ϕ(λ(s, t),

ϖ(0, h(t + 1 − s))+ µ(λ(s, t)))ds, (53)

for all δ(X, t) ≤ x ≤ 1, t ≥ 0 and µ is defined in (16) and
ι(x, t) = [ιT1(x, t), ι2(x, t)]

T , λ(x, t) = [λT1(x, t), λ2(x, t)]
T , and

the control law (19)–(22) transform the target system (45)–(49) to
system (25), (12)–(15).
Proof. The proof follows from straightforward computations.

4.2. Stability of the target system

Lemma 3 (Extended Closed-loop System is ISS).Under Assumption 2,
consider the following system

Ż = ϕ(Z, µ(Z)+ v) =


f (X, u(δ(X, t), t))

µ(Z)+ v


(54)
where the control law µ given as (16) and Z = [XT , u(δ(X, t), t)]T .
Then there exist a class K L function β and a class K∞ function γ
such that |Z(t)| ≤ β(|Z(t0)|, t − t0) + γ (supt0≤τ≤t |v(τ)|), for
t ≥ t0.

Proof. The proof is similar to that of Cai and Krstic (2015), so it is
omitted.

Lemma 4 (Stability Estimate for Target System). Under Assump-
tions 2 and 3, consider system (45)–(49), there exists a class K L

function β , such that for all solutions of the system satisfying (33) for
0 < c < 1, the following holds

|X(t)| + |u(δ(X, t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1

≤ β(|X(0)| + |u(δ(X(0), 0), 0)|

+ ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t) (55)

for all t ≥ 0.

Proof. Based on Assumption 2, from Lemma 3, there exist a
smooth function S : Rn+1

→ R+ and class K∞ functions α7, α8,
α9, α10 such that

α7(|Z |) ≤ S(Z) ≤ α8(|Z |), (56)
∂S(Z)
∂Z

ϕ(Z, µ(Z)+ ω(0, t)) ≤ −α9(|Z |)+ α10(|ω(0, t)|) (57)

where Z = [XT , u(δ(X, t), t)]T . The new variable v(x, t), x ∈

[−1 + δ(X, t), 1 − δ(X, t)] is defined as

v(x, t) =


ω(x, t), for all x ∈ [0, 1 − δ(X, t)],
ϖ(−x, t), for all x ∈ [−1 + δ(X, t), 0]. (58)

By (46), (47), (49), we get vt(x, t) = (1 + ∇δ(X, t) × f (X,
u(δ(X, t), t)) +

∂δ(X,t)
∂t )vx(x, t) for all x ∈ [0, 1 − δ(X, t)], and

vt(x, t) = (1 − ∇δ(X, t)f (X, u(δ(X, t), t))− ∂δ(X,t)
∂t )vx(x, t) for all

x ∈ [−1 + δ(X, t), 0], and v(1 − δ(X, t), t) = 0. Let Γ (t) denote
the following norm

Γ (t) = sup
x∈[−1+δ(X,t),1−δ(X,t)]

eg1(1+x)v(x, t)


= lim
n→∞

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n

(59)

where g1 > 0, and n is a positive integer. The derivative of Γ (t) is
given by

Γ̇ (t) = lim
n→∞

d
dt

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n

= lim
n→∞

1
2n

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n −1

×

 1−δ(X,t)

−1+δ(X,t)
2ne2ng1(1+x)v(x, t)2n−1vt(x, t)dx

− e2ng1δ(X,t)v(−1 + δ(X, t), t)2n

×


∇(δ(X, t))f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


. (60)

With integration by parts we get 1−δ(X,t)

−1+δ(X,t)
2ne2ng1(1+x)v(x, t)2n−1vt(x, t)dx

=


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


×

 0

−1+δ(X,t)
2ne2ng1(1+x)v(x, t)2n−1vx(x, t)dx
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+


1 + ∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


×

 1−δ(X,t)

0
2ne2ng1(1+x)v(x, t)2n−1vx(x, t)dx

=


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


×

 0

−1+δ(X,t)
e2ng1(1+x)dv(x, t)2n

+


1 + ∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


×

 1−δ(X,t)

0
e2ng1(1+x)dv(x, t)2n

=


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


×


e2ng1v(0, t)2n − e2ng1δ(X,t)v(−1 + δ(X, t), t)2n

− 2ng1

 0

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx


+


1 + ∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


×


−e2ng1v(0, t)2n − 2ng1

 1−δ(X,t)

0
e2ng1(1+x)v(x, t)2ndx


. (61)

By (60), (61), we get

Γ̇ (t) = lim
n→∞

1
2n

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n −1

×


−e2ng1δ(X,t)v(−1 + δ(X, t), t)2n

− 2e2ng1v(0, t)2n


∇δ(X, t)f (X, u(δ(X, t), t))+
∂δ(X, t)
∂t


− 2ng1


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


×

 0

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

− 2ng1


1 + ∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


×

 1−δ(X,t)

0
e2ng1(1+x)v(x, t)2ndx


. (62)

Using (33), for 0 < c < 1, one has ∇δ(X, t)f (X, u(δ(X, t), t)) +
∂δ(X,t)
∂t ≥ 0, for t ≥ 0, so we get

Γ̇ (t) ≤ lim
n→∞

1
2n

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n −1

×


−2ng1


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


×

 0

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

− 2ng1


1 + ∇δ(X, t)f (X, u(δ(X, t), t))+

∂δ(X, t)
∂t


×

 1−δ(X,t)

0
e2ng1(1+x)v(x, t)2ndx



≤ −g1 lim
n→∞

 1−δ(X,t)

−1+δ(X,t)
e2ng1(1+x)v(x, t)2ndx

 1
2n

×


1 − ∇δ(X, t)f (X, u(δ(X, t), t))−

∂δ(X, t)
∂t


. (63)

With (37), we have Γ̇ (t) ≤ −g1(1 − π∗

1 )Γ (t), for t ≥ 0.
Take a Lyapunov functional as

V (t) = S(Z)+
2

g1(1 − π∗

1 )

 Γ (t)

0

α10(r)
r

dr, (64)

where α10 is a class K∞ function given as (57), the derivative of
V (t) along the solutions of system (45)–(49) satisfies

V̇ (t) ≤ −α9(|Z |)+ α10(|ω(0, t)|)− 2α10(Γ (t)). (65)

Noting that |ω(0, t)| ≤ supx∈[0,1−δ(X,t)] |ω(x, t)| ≤ Γ (t), we have
V̇ (t) ≤ −α9(|Z(t)|) − α10(Γ (t)). By (56), there is a class K

function Υ1 such that V̇ (t) ≤ −Υ1(V (t)). Using the comparison
principle, there is a class K L function β1 such that V (t) ≤

β1(V (0), t) for t ≥ 0. By some calculation, using (64), then there
exists a class K L function β2 such that

|Z(t)| + Γ (t) ≤ β2(|Z(0)| + Γ (0), t). (66)

It is easy to see that

0.5(∥ω(t)∥∞1 + ∥ϖ(t)∥∞1) ≤ Γ (t)

≤ e2g1(∥ω(t)∥∞1 + ∥ϖ(t)∥∞1), (67)

thus we get

|X(t)| + |u(δ(X, t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1

≤
√
2|Z(t)| + 2Γ (t)

≤ 2β2(|Z(0)| + Γ (0), t)
≤ 2β2(e2g1(|Z(0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1), t)
≤ 2β2(e2g1(|X(0)| + |u(δ(X(0), 0), 0)|

+ ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1), t). (68)

Let β(s, t) = 2β2(e2g1s, t), with g1 > 0, we have |X(t)| +

|u(δ(X, t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1 ≤ β(|X(0)| +

|u(δ(X(0), 0), 0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t) for all t ≥ 0.

4.3. Bounds on the predictors

Lemma 5 (Bound on Extended Forward State Predictor). Under As-
sumptions 1 and 3, there exists a class K∞ function γ1 such that for
all solutions of the system satisfying (33) for 0 < c < 1, the following
holds

sup
δ(X,t)≤x≤1

|l(x, t)| ≤ γ1(|Z(t)| + ∥ζ (t)∥∞). (69)

Proof. By differentiating (43) with respect to x, we get

lx(x, t) = σ̇ (x + t − 1)ϕ(l(x, t), ζ (δ(l1(x, t),
σ (x + t − 1)), σ (x + t − 1))). (70)

Using (29), we get

∂R1(l(x, t))
∂ l

ϕ(l(x, t),

ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1)))
≤ R1(l(x, t))

+α3(|ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1))|). (71)
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With (33), we have φ̇(t) ≥ 1 + π∗

2 > 0 for t ≥ 0, so 0 <

σ̇(x + t − 1) ≤
1

1+π∗
2
for δ(X, t) ≤ x ≤ 1, we get

∂R1(l(x, t))
∂ l

σ̇ (x + t − 1)ϕ(l(x, t),

ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1)))

≤
1

1 + π∗

2
(R1(l(x, t))

+α3(|ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1))|)). (72)

With (70), we have

∂R1(l(x, t))
∂x

≤
1

1 + π∗

2
(R1(l(x, t))

+α3(|ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1))|)). (73)

With (34), it follows for all δ(X, t) ≤ x ≤ 1 that

R1(l(x, t))

≤ e
1−δ(X, t)
1+π∗

2 R1(l(δ(X, t), t))+ (e
1−δ(X, t)
1+π∗

2 − 1)
× sup

δ(X,t)≤x≤1
α3(|ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1))|)

≤ e
1

1+π∗
2 R1(Z(t))+ (e

1
1+π∗

2 − 1)α3(∥ζ (t)∥∞). (74)

Using (28), for all δ(X, t) ≤ x ≤ 1, we get that

l(x, t) ≤ α−1
1 (e

1
1+π∗

2 α2(|Z(t))| + (e
1

1+π∗
2 − 1)α3(∥ζ (t)∥∞)). (75)

Denote γ1(s) = α−1
1 (e

1
1+π∗

2 α2(s) + (e
1

1+π∗
2 − 1)α3(s)), we have

supδ(X,t)≤x≤1 |l(x, t)| ≤ γ1(|Z(t)| + ∥ζ (t)∥∞).

Lemma 6 (Bound on Extended Backward State Predictor). Under As-
sumptions 2 and 3, there exists a class K ι∞ function ρ1 such that for
all solutions of the system satisfying (33) for 0 < c < 1, the following
holds

sup
δ(X, t)≤x≤1

|r(x, t)| ≤ ρ1(|Z(t)| + ∥η(t)∥∞, c). (76)

Proof. By differentiating (44) with respect to x, we get

rx(x, t) = −ḣ(t + 1 − x)
×ϕ(r(x, t), η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))). (77)

Using (31), we get

−
∂R2(r(x, t))

∂r
×ϕ(r(x, t), η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x)))

≤ R2(r(x, t))
+α6(|η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))|). (78)

With the help of (33), we have ġ(t) ≥ 1 − c > 0 for t ≥ 0. So it
can be deduced 0 < ḣ(t + 1 − x) ≤

1
1−c , for all δ(X, t) ≤ x ≤ 1.

Using (78), we arrive at

∂R2(r(x, t))
∂r

(−ḣ(t + 1 − x))

×ϕ(r(x, t), η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x)))

≤
1

1 − c
(R2(r(x, t))

+α6(|η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))|)). (79)
By (77), one has

∂R2(r(x, t))
∂x

≤
1

1 − c
(R2(r(x, t))

+α6(|η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))|)). (80)

With the comparison principle, using (34), it follows that

R2(r(x, t)) ≤ e
1−δ(X, t)

1−c R2(r(δ(X, t), t))+ (e
1−δ(X, t)

1−c − 1)
× sup

δ(X,t)≤x≤1
α6(|η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))|)

≤ e
1

1−c R2(Z(t))+ (e
1

1−c − 1)α6(∥η(t)∥∞). (81)

With (30), for all δ(X, t) ≤ x ≤ 1, we get that

|r(x, t)| ≤ α−1
4 (e

1
1−c α5(|Z(t)|)+ (e

1
1−c − 1)α6(∥η(t)∥∞)). (82)

Denote ρ1(s, c) = α−1
4 (e

1
1−c α5(s) + (e

1
1−c − 1)α6(s)), we have

supδ(X,t)≤x≤1 |r(x, t)| ≤ ρ1(|Z(t)| + ∥η(t)∥∞, c).

Lemma 7 (Bound on Forward Predictor). Under Assumptions 2 and
3, there exists a class K function γ2 such that for all solutions of the
system satisfying (33) for 0 < c < 1, the following holds

sup
δ(X, t)≤x≤1

|ι(x, t)| ≤ γ2(|Z(t)| + ∥ω(t)∥∞1). (83)

Proof. UnderAssumption 2, fromLemma3, there exist a classK L

functionβ and a class K∞ functionγ such that

|Z(t)| ≤ β(|Z(t0)|, t − t0)+ γ ( sup
t0≤τ≤t

|v(τ)|) (84)

where Z(t) is the solution of system (54). By differentiating (52)
with respect to x, we get

ιx(x, t) = σ̇ (x + t − 1)ϕ(ι(x, t), ω(0, σ (x + t − 1))
+µ(ι(x, t))) (85)

with ι = [ιT1, ι2]
T . Denote θ = x+ t − 1, ι(x, t) = Π(θ), we arrive

at

Π̇(θ) = σ̇ (θ)ϕ(Π(θ), ω(0, σ (θ))+ µ(Π(θ))) (86)

with Π = [Π T
1 ,Π2]

T . Using the change of variable y = σ(θ), we
have

dΠ(φ(y))
dy

= ϕ(Π(φ(y)), ω(0, y)+ µ(Π(φ(y)))), (87)

for t ≤ y ≤ σ(t).With (84) and (87), one has

|Π(θ)| ≤ β(|Z(t)|, θ − φ(t))+ γ ( sup
φ(t)≤τ≤t

|ω(0, σ (τ ))|) (88)

for φ(t) ≤ θ ≤ t. It can be deduced that

|ι(x, t)| ≤ β(|Z(t)|, 0)+ γ (∥ω(t)∥∞1). (89)

Denote γ2(s) = β(s, 0)+ γ (s),we have (83).

Lemma 8 (Bound on Backward Predictor). Under Assumptions 2 and
3, there exists a class K function γ3 such that for all solutions of the
system satisfying (33) for 0 < c < 1, the following holds

sup
δ(X,t)≤x≤1

|λ(x, t)| ≤ γ3(|Z(t)| + ∥ϖ(t)∥∞1). (90)
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Proof. UnderAssumption 2, fromLemma3, there exist a classK L

function β and a class K∞ function γ such that (84) holds. By
differentiating (53) with respect to x, one has

λx(x, t) = −ḣ(t + 1 − x)× ϕ(λ(x, t),ϖ(0, h(t + 1 − x))
+µ(λ(x, t))) (91)

with λ = [λT1, λ2]
T . Denote ϑ = t + 1− x, λ(x, t) = Λ(ϑ), we get

Λ̇(ϑ) = ḣ(ϑ)ϕ(Λ(ϑ),ϖ(0, h(ϑ))+ µ(Λ(ϑ))) (92)

with Λ = [ΛT
1,Λ2]

T . Using the change of variable y = h(ϑ), we
have

dΛ(g(y))
dy

= ϕ(Λ(g(y)),ϖ(0, y)+ µ(Λ(g(y)))), (93)

for t ≤ y ≤ h(t).With (84) and (93), we arrive at

|Λ(ϑ)| ≤ β(|Z(t)|, ϑ − g(t))+ γ ( sup
t≤τ≤g(t)

|ϖ(0, h(τ ))|) (94)

for t ≤ ϑ ≤ g(t). It can be deduced that

|λ(x, t)| ≤ β(|Z(t)|, 0)+ γ (∥ϖ(t)∥∞1). (95)

Denote γ3(s) = β(s, 0)+ γ (s),we have (90).

4.4. Stability of the closed-loop system

Lemma 9 (Original PDE State Bounded by Target PDE State). Un-
der Assumptions 2 and 3, consider system (45)–(49), and the output
maps are (50), (51). Then there exists a class K∞ function γ4 such
that for all solutions of the system satisfying (33) for 0 < c < 1, the
following holds

|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞

≤ γ4(|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1). (96)

Proof. The proof is similar to that of Cai and Krstic (2015), so it is
omitted.

Lemma 10 (Target PDE State Bounded by Original PDE State). Un-
der Assumptions 1 and 3, consider system (25), (12)–(15), and the
output maps are (41), (42). Then there exists a class K ι∞ function ρ2
such that for all solutions of the system satisfying (33) for 0 < c < 1,
the following holds

|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1

≤ ρ2(|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞, c). (97)

Proof. The proof is similar to that of Cai and Krstic (2015), so it is
omitted.

Lemma 11 (Ball Around the Origin Within the Feasibility Re-
gion). Under Assumption 3, there exists a class K ι function ϱc such
that all of the solutions that satisfy

B1(c) : |X(t)| + |u(δ(X, t), t)| + ∥ut(t)∥∞ + ∥ux(t)∥∞

≤ ϱc(c, c), (98)

for t ≥ 0 and 0 < c < 1, also satisfy (33).

Proof. With (32), (35) and (36), we know if a solution satisfies

(|∇δ(0, 0)| + ϑ2(|X(t)|))ϑ1(|X(t)| + |u(δ(X, t), t)|)
+ |δt(0, 0)| + ϑ3(|X(t)|) ≤ c, (99)
for t ≥ 0, and 0 < c < 1, then it also satisfies (33). We conclude
that (99) is satisfied for 0 < c < 1 as long as (98) holds where the
class K ι function ϱc is defined as

ϱc(s, c) = |δt(0, 0)| + ϑ3(s)+ (|∇δ(0, 0)| + ϑ2(s))ϑ1(s) (100)

and with ϱc , we denote the inverse function of ϱc with respect to
ϱ

′

cs first argument.

Lemma 12 (Estimate of the Region of Attraction). There exists a class
K function ψROA such that for all initial conditions of the closed-loop
system (1)–(4), (19)–(22) that satisfy

B0(c) : Ω(0) ≤ ψROA(c) (101)

for some 0 < c < 1, where

Ω(t) = |X(t)| + |u(δ(X, t), t)| + ∥ut(t)∥∞ + ∥ux(t)∥∞, (102)

the solutions of the system satisfy (98) for 0 < c < 1 and, hence,
satisfy (33).

Proof. With the help of (5)–(8), we have

∥ζ (t)∥∞ + ∥η(t)∥∞ ≤ 2(∥ut(t)∥∞ + ∥ux(t)∥∞), (103)
∥ut(t)∥∞ + ∥ux(t)∥∞ ≤ ∥ζ (t)∥∞ + ∥η(t)∥∞. (104)

Using Lemmas 4, 9, 10, we get

|X(t)| + |u(δ(X, t))| + ∥ut(t)∥∞ + ∥ux(t)∥∞

≤ |X(t)| + |u(δ(X, t))| + ∥ζ (t)∥∞ + ∥η(t)∥∞

≤
√
2(|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞)

≤
√
2γ4(|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1)

≤
√
2γ4(|X(t)| + |u(δ(X, t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1)

≤
√
2γ4(β(|X(0)| + |u(δ(X(0), 0), 0)|

+ ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t))

≤
√
2γ4(β(

√
2(|Z(0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1), t))

≤
√
2γ4(β(

√
2ρ2(|Z(0)| + ∥ζ (0)∥∞ + ∥η(0)∥∞, c), t))

≤
√
2γ4(β(

√
2ρ2(|X(0)| + |u(δ(X(0), 0), 0)|

+ ∥ζ (0)∥∞ + ∥η(0)∥∞, c), t))

≤
√
2γ4(β(

√
2ρ2(|X(0)| + |u(δ(X(0), 0), 0)|

+ 2(∥ut(0)∥∞ + ∥ux(0)∥∞), c), t))

≤
√
2γ4(β(

√
2ρ2(2(|X(0)| + |u(δ(X(0), 0), 0)|

+ ∥ut(0)∥∞ + ∥ux(0)∥∞), c), t)) (105)

where Z(t) = [XT (t), u(δ(X, t), t)]T . By defining the class K∞

functionα(s) asα(s) =
√
2γ4(β(s, 0)),we obtain

Ω(t) ≤ α(√2ρ2(2Ω(0), c)). (106)

Hence, for all initial conditions that satisfy the bound (101) with
any class K function choice ψROA(c) ≤ ψ

∗

ROA(ϱc(c, c), c), where
ψ

∗

ROA(s, c) is the inverse of the class K ι∞ function ψ∗

ROA(s, c) =α(√2ρ2(2s, c))with respect toψ∗

ROA
′s first argument, the solutions

satisfy (98) for 0 < c < 1 and, hence, satisfy (33).

Theorem 1. Consider system (1)–(4), together with the control
law (19)–(22). Under Assumptions 1–3, there exist a class K ι∞
function ϱ, and a class K L function β such that for all initial
conditions which are compatible with the feedback law (19) and
satisfy (101), there exists a unique solution to the closed-loop system
with the ODE component X(t) that is continuously differentiable
on [0,∞) and the PDE component (u(x, t), ut(x, t)) that is
continuously differentiable on [δ(X, t), 1] × [0,∞), and such
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that

Ω(t) ≤ β(ϱ(Ω(0), c), t), for all t ≥ 0, (107)

whereΩ(t) is given by (102).

Proof. Using (105), we obtain (107) withβ(s, t) =
√
2γ4(β(s, t))

and ϱ(s, c) =
√
2ρ2(2s, c).With (46), (49), we have

ω(x, t)

=


ω0(t + x + δ(X, t)), δ(X, t) ≤ t + x + 2δ(X, t) < 1

0, t + x + 2δ(X, t) ≥ 1 (108)

where ω0(x) is given by (41) with t = 0. With the help of (5),
for any initial condition u(x, 0) ∈ C1

[δ(X(0), 0), 1], ut(x, 0) ∈

C1
[δ(X(0), 0), 1] which is compatible with the feedback law (19)

and satisfies (101), we have ζ (x, 0) ∈ C1
[δ(X(0), 0), 1], and hence

using

lx(x, t) = σ̇ (x + t − 1)
×ϕ(l(x, t), ζ (δ(l1(x, t), σ (x + t − 1)), σ (x + t − 1))), (109)

l(δ(X, t), t) = Z(t), (110)

and the Lipschitzness of ϕ, we conclude the existence and
uniqueness of l(x, 0) ∈ C1

[δ(X(0), 0), 1]. Thus, with (41) and the
compatibility condition we get ω0(x) ∈ C1

[0, 1 − δ(X(0), 0)].
With (45), (108), and the Lipschitzness of ϕ and µ we conclude
the existence and uniqueness of (X(t), u(δ(X, t), t)) ∈ C1

[0,∞).
Using the fact ω0(x) ∈ C1

[0, 1 − δ(X(0), 0)], the compatibility
condition and (108), guarantee the existence of ω(x, t) ∈

C1([0, 1 − δ(X(t), t)] × [0,∞)). The uniqueness of this solution
follows from the uniqueness of the solution to (46), (49).

With the similar arguments as above and using (6), the
following ODE

rx(x, t) = −ḣ(t + 1 − x)
×ϕ(r(x, t), η(δ(r1(x, t), h(t + 1 − x)), h(t + 1 − x))) (111)

r(δ(X, t)), t = Z(t), (112)

relations (47), (48), and the fact that

ϖ(x, t) =


ϖ0(x + δ(X, t)− t), 0 ≤ t < x + δ(X, t),
ω0(t − x − δ(X, t)), δ(X, t) ≤ t − x < 1,

0, t − x > 1,
(113)

with ϖ0(x) given by (42) with t = 0 and the compatibility
condition and ux(δ(X(0), 0), 0) = 0, we obtain the existence
and uniqueness of ϖ ∈ C1([0, 1 − δ(X, t)] × [0,∞)). With
the inverse backstepping transformation (50), (51) and ι(x, t) ≡

l(x, t), λ(x, t) ≡ r(x, t), we have the existence and uniqueness
of ζ (x, t), η(x, t) ∈ C1([δ(X(t), t), 1] × [0,∞)). So by (7), (8),
there exists a unique solution (u(x, t), ut(x, t))∈ C1([δ(X, t), 1]×
[0,∞)).

5. Global stability

Throughout this section, we consider time-dependent moving
boundary δ(t), simplify the feasibility condition (33) as

0 ≤ δ̇(t) < 1, (114)

for all t ≥ 0, and make the following assumption:

Assumption 4. The moving boundary δ : R+ → R is continuously
differentiable and satisfies

0 ≤ δ(t) ≤ 1 (115)

for all t ≥ 0, and δ̇(t) is locally Lipschitz.
Denote

π1 = sup
θ≥δ−1(0)

δ̇(X(θ)), (116)

π2 = inf
θ≥δ−1(0)

δ̇(X(θ)). (117)

Remark 5. Under the condition (114), it is easy to know π1 < 1
and π2 ≥ 0.

5.1. Backstepping transformations and inverse backstepping trans-
forms

Denote

g(t) = t + 1 − δ(t), (118)

and

h(θ) = g−1(θ), t ≤ θ ≤ g(t). (119)

Lemma 13 (Backstepping Transforms). The backstepping transfor-
mations of ζ , η are defined as

ω(x − δ(t), t) = ζ (x, t)− µ(l(x, t)), (120)
ϖ(x − δ(t), t) = η(x, t)− µ(r(x, t)), (121)

where

l(x, t) = Z(t)+

 x

δ(t)
σ̇ (s + t − 1)ϕ(l(s, t),

ζ (δ(l1(s, t), σ (s + t − 1)), σ (s + t − 1)))ds, (122)

r(x, t) = Z(t)−

 x

δ(t)
ḣ(t + 1 − s)ϕ(r(s, t),

η(δ(r1(s, t), h(t + 1 − s)), h(t + 1 − s)))ds, (123)

for all δ(t) ≤ x ≤ 1, t ≥ 0 and µ is defined in (16) and
φ(t) = t − 1 + δ(t), σ (θ) = φ−1(θ), φ(t) ≤ θ ≤ t, l(x, t) =

[lT1(x, t), l2(x, t)]
T , r(x, t) = [rT1 (x, t), r2(x, t)]

T , and the control
law (19)–(22) transform system (25), (12)–(15) to the target system
given by

Ż = ϕ(Z, µ(Z)+ ω(0, t)) (124)

ωt(x, t) = (1 + δ̇(t))ωx(x, t) (125)

ϖt(x, t) = −(1 − δ̇(t))ϖx(x, t) (126)
ϖ(0, t) = ω(0, t) (127)

ω(1 − δ(t), t) = 0. (128)

Proof. Note that δ(X, t) in system (25), (12)–(15) is δ(t) now, the
proof is similar to that of Lemma 1, so it is omitted.

Lemma 14 (Inverse Backstepping Transforms). The inverse back-
stepping transformations of ω,ϖ are defined as

ζ (x, t) = ω(x − δ(t), t)+ µ(ι(x, t)), (129)
η(x, t) = ϖ(x − δ(t), t)+ µ(λ(x, t)), (130)

where

ι(x, t) = Z(t)+

 x

δ(t)
σ̇ (s + t − 1)ϕ(ι(s, t),

ω(0, σ (s + t − 1))+ µ(ι(s, t)))ds, (131)

λ(x, t) = Z(t)−

 x

δ(t)
ḣ(t + 1 − s)ϕ(λ(s, t),

ϖ(0, h(t + 1 − s))+ µ(λ(s, t)))ds, (132)
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for all δ(t) ≤ x ≤ 1, t ≥ 0 and µ is defined in (16) and
ι(x, t) = [ιT1(x, t), ι2(x, t)]

T , λ(x, t) = [λT1(x, t), λ2(x, t)]
T , and

the control law (19)–(22) transform the target system (124)–(128) to
system (25), (12)–(15).

Proof. The proof is similar to that of Lemma 2, so it is omitted.

5.2. Stability of the target system

Lemma 15 (Stability Estimate for Target System). Under the condi-
tion (114), Assumptions 2 and 3, consider system (124)–(128), there
exists a class K L function β , such that the following holds

|X(t)| + |u(δ(t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1

≤ β(|X(0)| + |u(δ(0), 0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t) (133)

for all t ≥ 0.

Proof. Based on Assumption 2, from Lemma 3, there exist a
smooth function S : Rn+1

→ R+ and class K∞ functions α7, α8,
α9, α10 such that (56), (57) hold. The new variable υ(x, t), x ∈

[−1 + δ(t), 1 − δ(t)] is defined as

υ(x, t) =


ω(x, t), for all x ∈ [0, 1 − δ(t)],
ϖ(−x, t), for all x ∈ [−1 + δ(t), 0]. (134)

By (125), (126), (128), we get υt(x, t) = (1 + δ̇(t))υx(x, t) for
all x ∈ [0, 1 − δ(t)], and υt(x, t) = (1 − δ̇(t))υx(x, t) for all
x ∈ [−1 + δ(t), 0], and υ(1 − δ(t), t) = 0. Let Γ (t) denote the
following norm

Γ (t) = sup
x∈[−1+δ(t),1−δ(t)]

eg(1+x)υ(x, t)


= lim
n→∞

 1−δ(t)

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx

 1
2n

(135)

where g > 0, and n is a positive integer. The derivative of Γ (t) is
given by

˙Γ (t) = lim
n→∞

d
dt

 1−δ(t)

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx

 1
2n

= lim
n→∞

1
2n

 1−δ(t)

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx

 1
2n −1

×

 1−δ(t)

−1+δ(t)
2ne2ng(1+x)υ(x, t)2n−1υt(x, t)dx

− e2ngδ(t)υ(−1 + δ(t), t)2nδ̇(t)

. (136)

With integration by parts we get 1−δ(t)

−1+δ(t)
2ne2ng(1+x)υ(x, t)2n−1υt(x, t)dx

=

 0

−1+δ(t)
2ne2ng(1+x)υ(x, t)2n−1(1 − δ̇(t))υx(x, t)dx

+

 1−δ(t)

0
2ne2ng(1+x)υ(x, t)2n−1(1 + δ̇(t))υx(x, t)dx

= (1 − δ̇(t))
 0

−1+δ(t)
e2ng(1+x)dυ(x, t)2n

+ (1 + δ̇(t))
 1−δ(t)

0
e2ng(1+x)dυ(x, t)2n

= (1 − δ̇(t))(e2ngυ(0, t)2n − e2ngδ(t)υ(−1 + δ(t), t)2n
− 2ng
 0

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx)

+ (1 + δ̇(t))(−e2ngυ(0, t)2n

− 2ng
 1−δ(t)

0
e2ng(1+x)υ(x, t)2ndx). (137)

By (136), (137), one has

˙Γ (t) = lim
n→∞

1
2n

 1−δ(t)

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx

 1
2n −1

×


−e2ngδ(t)υ(−1 + δ(t), t)2n − 2e2ngυ(0, t)2nδ̇(t)

− 2ng(1 − δ̇(t))
 0

−1+δ(t)
e2ng(1+x)υ(x, t)2ndx

− 2ng(1 + δ̇(t))
 1−δ(t)

0
e2ng(1+x)υ(x, t)2ndx


(138)

note 0 ≤ δ̇(t) < 1 and (116), so we have ˙Γ (t) ≤ −g(1−π1)Γ (t),
for t ≥ 0.

Take a Lyapunov functional as

V (t) = S(Z)+
2

g(1 − π1)

 Γ (t)

0

α10(r)
r

dr, (139)

where α10 is a class K∞ function given as (57), the derivative of
V (t) along the solutions of system (124)–(128) satisfies

V̇ (t) ≤ −α9(|Z |)+ α10(|ω(0, t)|)− 2α10(Γ (t)). (140)

Noting that |ω(0, t)| ≤ supx∈[0,1−δ(t)] |ω(x, t)| ≤ Γ (t), we
have V̇ (t) ≤ −α9(|Z(t)|) − α10(Γ (t)). Using the arguments
as in Lemma 4, then there is a class K L function β, such that
|X(t)| + |u(δ(X, t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1 ≤ β(|X(0)| +

|u(δ(X(0), 0), 0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t) for all t ≥ 0.

5.3. Bounds on the predictors

Lemma 16 (Bound on Extended Forward State Predictor). Under the
condition (114), Assumptions 1 and 3, there exists a classK∞ function
γ 1 such that the following holds

sup
δ(t)≤x≤1

|l(x, t)| ≤ γ 1(|Z(t)| + ∥ζ (t)∥∞). (141)

Proof. Similar to the proof of Lemma 5, it can be deduced that

there exists a class K∞ function γ 1 as γ 1(s) = α−1
1 (e

1
1+π2 α2(s) +

(e
1

1+π2 − 1)α3(s)) such that supδ(t)≤x≤1 |l(x, t)| ≤ γ 1(|Z(t)| +

∥ζ (t)∥∞).

Lemma 17 (Bound on Extended Backward State Predictor). Under
the condition (114), Assumptions 2 and 3, there exists a class K∞

function γ 2 such that the following holds

sup
δ(t)≤x≤1

|r(x, t)| ≤ γ 2(|Z(t)| + ∥η(t)∥∞). (142)

Proof. Similar to the proof of Lemma 6, it can be deduced
that there exists a class K∞ function γ 2(s) as γ 2(s) =

α−1
4 (e

1
1−π1 α5(s)+(e

1
1−π1 −1)α6(s)) such that supδ(t)≤x≤1 |r(x, t)| ≤

γ 2(|Z(t)| + ∥η(t)∥∞).

Lemma 18 (Bounds on Forward and Backward Predictor). Under the
condition (114), Assumptions 2 and 3, there exist class K functions
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γ 3, γ 4 such that the following hold

sup
δ(t)≤x≤1

|ι(x, t)| ≤ γ 3(|Z(t)| + ∥ω(t)∥∞1), (143)

sup
δ(t)≤x≤1

|λ(x, t)| ≤ γ 4(|Z(t)| + ∥ϖ(t)∥∞1). (144)

Proof. The proof can be adapted from Lemmas 7 and 8.

5.4. Stability of the closed-loop system

Lemma 19 (Original PDE State Bounded by Target PDE State). Under
the condition (114), Assumptions 2 and 3, consider system (124)–
(128), and the output maps are (129), (130). Then there exists a class
K∞ function γ 5 such that the following holds

|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞

≤ γ 5(|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1). (145)

Proof. The proof is similar to that of Lemma 9, so it is omitted.

Lemma 20 (Target PDE State Bounded by Original PDE State). Under
the condition (114), Assumptions 1 and 3, consider system (25), (12)–
(15), and the output maps are (120), (121). Then there exists a class
K∞ function γ 6 such that the following holds

|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1

≤ γ 6(|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞). (146)

Proof. The proof is similar to that of Lemma 10, so it is omitted.

Theorem 2. Under the condition (114), Assumptions 1, 2 and 4,
consider system (1)–(4), together with the control law (19)–(22) for
any initial condition u(·, 0) ∈ C1

[δ(0), 1], ut(·, 0) ∈ C1
[δ(0), 1]

which is compatible with the feedback law (19), the closed-loop
system has a unique solution

X(t) ∈ C1
[0,∞) (147)

(u(·, t), ut(·, t)) ∈ C1([δ(t), 1] × [0,∞)) (148)

and there exists a class K L function β such that

|X(t)| + ∥u(t)∥∞ + ∥ut(t)∥∞ + ∥ux(t)∥∞

≤ β(|X(0)| + ∥u(0)∥∞ + ∥ut(0)∥∞ + ∥ux(0)∥∞, t) (149)

for all t ≥ 0.

Proof. Owing to

u(x, t) = u(δ(t), t)+

 x

δ(t)
uy(y, t)dy, (150)

so we have

sup
δ(t)≤x≤1

|u(x, t)| ≤ |u(δ(t), t)| + sup
δ(t)≤x≤1

|ux(x, t)|. (151)

Using Lemmas 15, 19, 20, and with (103), (104), we get

|X(t)| + ∥u(t)∥∞ + ∥ut(t)∥∞ + ∥ux(t)∥∞

≤ |X(t)| + |u(δ(t), t)| + ∥ut(t)∥∞ + 2∥ux(t)∥∞

≤ 2(|X(t)| + |u(δ(t), t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞)

≤ 2
√
2(|Z(t)| + ∥ζ (t)∥∞ + ∥η(t)∥∞)

≤ 2
√
2γ 5(|Z(t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1)

≤ 2
√
2γ 5(|X(t)| + |u(δ(t), t)| + ∥ω(t)∥∞1 + ∥ϖ(t)∥∞1)

≤ 2
√
2γ 5(β(|X(0)| + |u(δ(0), 0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1, t))

≤ 2
√
2γ 5(β(

√
2(|Z(0)| + ∥ω(0)∥∞1 + ∥ϖ(0)∥∞1), t))
≤ 2
√
2γ 5(β(

√
2γ 6(|Z(0)| + ∥ζ (0)∥∞ + ∥η(0)∥∞), t))

≤ 2
√
2γ 5(β(

√
2γ 6(|X(0)| + |u(δ(0), 0)|

+ ∥ζ (0)∥∞ + ∥η(0)∥∞), t))

≤ 2
√
2γ 5(β(

√
2γ 6(|X(0)| + ∥u(0)∥∞

+ 2(∥ut(0)∥∞ + ∥ux(0)∥∞)), t))

≤ 2
√
2γ 5(β(

√
2γ 6(2(|X(0)| + ∥u(0)∥∞

+ ∥ut(0)∥∞ + ∥ux(0)∥∞)), t)) (152)

where Z(t) = [XT (t), u(δ(t), t)]T . Denote β(s, t) = 2
√
2γ 5

(β(
√
2γ 6(2s), t)),we have (149).

With (125), (128), we have

ω(x, t) =


ω0(t + x + δ(t)), δ(t) ≤ t + x + 2δ(t) < 1

0, t + x + 2δ(t) ≥ 1 (153)

where ω0(x) is given by (120) with t = 0. With the help of (5), for
any initial condition u(x, 0) ∈ C1

[δ(0), 1], ut(x, 0) ∈ C1
[δ(0), 1]

which is compatible with the feedback law (19), we have ζ (x, 0) ∈

C1
[δ(0), 1], and hence using

lx(x, t) = σ̇ (x + t − 1)ϕ(l(x, t), ζ (δ(l1(x, t),
σ (x + t − 1)), σ (x + t − 1))), (154)

l(δ(t), t) = Z(t), (155)

and the Lipschitzness of ϕ, we conclude the existence and
uniqueness of l(x, 0) ∈ C1

[δ(0), 1]. Thus, with (120) and the
compatibility condition we get ω0(x) ∈ C1

[0, 1 − δ(0)].
With (124), (153), and the Lipschitzness ofϕ andµwe conclude

the existence and uniqueness of (X(t), u(δ(t), t)) ∈ C1
[0,∞).

Using the factω0(x) ∈ C1
[0, 1− δ(0)], the compatibility condition

and (153), guarantee the existence of ω(x, t) ∈ C1([0, 1 −

δ(t)] × [0,∞)). The uniqueness of this solution follows from the
uniqueness of the solution to (125), (128).

With the similar arguments as above and using (6), the
following ODE

rx(x, t) = −ḣ(t + 1 − x)ϕ(r(x, t), η(δ(r1(x, t),
h(t + 1 − x)), h(t + 1 − x))) (156)

r(δ(t), t) = Z(t), (157)

relations (126), (127), and the fact that

ϖ(x, t) =


ϖ0(x + δ(t)− t), 0 ≤ t < x + δ(t),
ω0(t − x − δ(t)), δ(t) ≤ t − x < 1,

0, t − x > 1,
(158)

with ϖ0(x) = ϖ(x, 0) given by (121) with t = 0 and the
compatibility condition and ux(δ(0), 0) = 0, the existence and
uniqueness of ϖ ∈ C1([0, 1 − δ(t)] × [0,∞)) is obtained. With
the inverse backstepping transformation (129), (130) and ι(x, t) ≡

l(x, t), λ(x, t) ≡ r(x, t), we have the existence and uniqueness of
ζ (x, t), η(x, t) ∈ C1([δ(t), 1] × [0,∞)). So by (7), (8), there exists
a unique solution (u(x, t), ut(x, t)) ∈ C1([δ(t), 1] × [0,∞)).

6. Example

Consider the cascade of the benchmark system and a wave PDE
actuator given by

Ẋ1 = X2 + ϵX2
3 (159)

Ẋ2 = X3 (160)

Ẋ3 = u(δ(X, t), t) (161)
utt(x, t) = uxx(x, t) (162)

ux(δ(X, t), t) = 0 (163)
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Fig. 1. Time response of the states of system (159)–(164)with the control law (166)–(171) (solid line) andwith the nominal control law (165) (dashdot line) for c1 = 2, ϵ = 1
and initial condition as X1(0) = 0, X2(0) = 0.1, X3(0) = 0.1 and u(x, 0) = 0.1, ut (x, 0) = 0.1 for all x ∈ [δ(X(0), 0), 1].
Fig. 2. Time response of the state X3 for the proposed control law (166)–(171) and the uncompensated nominal control law (left) and the control law (right) for initial
condition as X1(0) = 0, X2(0) = 0.1, X3(0) = 0.1 and u(x, 0) = 0.1, ut (x, 0) = 0.1 for all x ∈ [δ(X(0), 0), 1].
ux(1, t) = U(t) (164)

where X = [X1, X2, X3]
T and ϵ is a scalar parameter. System (159)–

(161) is a representative of a larger class of nonlinear systems
with parameters. A delay-free design for system (159)–(161) is (see
Sepulchre, Jankovic, & Kokotovic, 1996) as follows

κ(X) = −3X2 − 2X3 − X1

− ϵ(X1X3 + X2X3 + 0.5X2
2 )− 0.5ϵ2X3X2

2 . (165)

The closed-loop system (159)–(161) and (165) is globally asymp-
totically stable without any restriction on ϵ. For all φ(t) ≤ θ ≤ t ,
define the estimated predictors of X1, X2 and X3 as

P1(θ) = X1(t)+

 θ

φ(t)
σ̇ (s)(P2(s)+ ϵP2

3 (s))ds, (166)

P2(θ) = X2(t)+

 θ

φ(t)
σ̇ (s)P3(s)ds, (167)

P3(θ) = X3(t)+

 θ

φ(t)
σ̇ (s)P4(s)ds, (168)

P4(θ) = u(δ(X, t), t)+

 θ

φ(t)
σ̇ (s)ζ (δ(P(s), σ (s)), σ (s))ds, (169)

σ̇ (s) = 1/

1 + ∇δ(P(s), σ (s))f (P(s), P4(s))

+
∂(δ(P(s), σ (s)))

∂σ (s)


(170)

for t ≥ 0 with P(s) = [P1(s), P2(s), P3(s)]T , f (P(s), P4(s)) =

[P2(s)+ ϵP2
3 (s), P3(s), P4(s)]

T .
The control law for system (159) to (164) is given by

U(t) = −0.5(ut(1, t)− ux(1, t))− 0.5c1(P4(t)− κ(P(t)))

+ 0.5
∂κ(P(t))
∂P

f (P(t), P4(t)) (171)

where c1 > 0, and P1, P2, P3, P4 are given by (166) to (169)
respectively, and κ is given by (165). Assume δ(X, t) as

δ(X, t) =
1 + X2

2 (t)+ t
2 + X2

2 (t)+ t
, (172)

we have

0 < δ(X, t) < 1, (173)

|δt(X, t)| ≤
1
4
, (174)

|∇δ(X, t)| ≤
|X(t)|

2
, (175)

for all t ≥ 0, and

|f (X, u(δ(X, t), t))|2

= (X2 + ϵX2
3 )

2
+ X2

3 + u2(δ(X, t), t)

≤ (2 + 2ϵ2)(X2
2 + X4

3 + X2
3 + u2(δ(X, t), t)) (176)

there exists a class K∞ function ϑ1(χ) =
√
2 + 2ϵ2|χ |

×

1 + |χ |2 such that |f (X, u(δ(X, t), t))| ≤ ϑ1(|X | +

|u(δ(X, t), t)|), the feasibility condition (33) is

0 ≤
1 + 2X2X3

(2 + X2
2 + t)2

≤ c (177)

for 0 < c < 1, and for all t ≥ 0.
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In Fig. 1, time response of the states X1, X2 of system (159)–
(164) for the case of the proposed control law (166)–(171) and the
case of the uncompensated nominal control law (165) are shown.
One can observe, in the former case, the stabilization is achieved,
whereas in the latter case, the closed-loop system is unstable. In
Fig. 2, time response of the state X3 of system for the proposed
control law and the uncompensated nominal control law and the
proposed control law (166)–(171) are shown. One can observe that
the control law converges to zero.

7. Conclusion

We introduce and solve stabilization problems for nonlinear
systems through wave PDE dynamics with a moving uncontrolled
boundary. Stability analysis of the closed-loop system is achieved
with infinite-dimensional backstepping transformations and by
constructing a Lyapunov functional. An explicit feedback law for
compensating the wave actuator dynamics is designed. For the
moving boundary that depends on both the ODE’s state and time,
a region of attraction is estimated. For the moving boundary that
depends on time, a global stabilization result is achieved. The
feedback stabilization is illustrated by an example.

References

Artstein, Z. (1982). Linear systems with delayed controls: a reduction. IEEE
Transactions on Automatic Control, 27, 869–879.

Bekiaris-Liberis, N., & Krstic, M. (2011). Lyapunov stability of linear predictor
feedback for distributed input delay. IEEE Transactions on Automatic Control, 56,
655–660.

Bekiaris-Liberis, N., & Krstic, M. (2012). Compensation of time-varying input and
state delays for nonlinear systems. Journal of Dynamic Systems, Measurement,
and Control, 134, 011009-1–011009-14.

Bekiaris-Liberis, N., & Krstic, M. (2013a). Compensation of state-dependent input
delay for nonlinear systems. IEEE Transactions on Automatic Control, 58,
275–289.

Bekiaris-Liberis, N., & Krstic, M. (2013b). Robustness of nonlinear predictor
feedback laws to time- and state-dependent delay perturbations. Automatica,
49, 1576–1590.

Bekiaris-Liberis, N., & Krstic, M. (2013c). Compensating the distributed effect of a
wave PDE in the actuation or sensing path of MIMO LTI Systems. Systems &
Control Letters, 59, 713–719.

Bekiaris-Liberis, N., & Krstic, M. (2014). Compensation of wave actuator dynamics
for nonlinear systems. IEEE Transactions on Automatic Control, 59, 1555–1570.

Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown
input delay and plant parameters. Automatica, 45, 2074–2081.

Bresch-Pietri, D., & Krstic,M. (2010). Delay-adaptive predictor feedback for systems
with unknown long actuator delay. IEEE Transactions on Automatic Control, 55,
2106–2112.

Bresch-Pietri, D., & Krstic, M. (2014). Output-feedback adaptive control of a wave
PDE with boundary anti-damping. Automatica, 50, 1407–1415.

Cai, X., Han, Z., & Zhang, W. (2011). Globally uniformly asymptotical stabilization
of time-delay nonlinear systems. International Journal of System Science, 42,
1175–1183.

Cai, X., & Krstic, M. (2014). Control of discrete-time nonlinear systems actuated
through counterconvecting transport dynamics. Journal of Control and Decision,
1, 34–50.

Cai, X., & Krstic, M. (2015). Nonlinear control under wave actuator dynamics with
time- and state-dependent moving boundary. International Journal of Robust
and Nonlinear Control, 25, 222–253.

Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse
optimality and robustness to delay mismatch. Automatica, 44, 2930–2935.

Krstic, M. (2009a). Delay compensation for nonlinear, adaptive, and PDE systems.
Boston: Birkhauser.

Krstic, M. (2009b). Compensating a string PDE in the actuation or sensing path of
an unstable ODE. IEEE Transactions on Automatic Control, 54, 1362–1368.
Krstic, M. (2010a). Lyapunov stability of linear predictor feedback for time-varying
input delay. IEEE Transactions on Automatic Control, 55, 554–559.

Krstic, M. (2010b). Input delay compensation for forward complete and feed
forwardnonlinear systems. IEEE Transactions onAutomatic Control, 55, 287–303.

Karafyllis, I. (2010). Stabilization by means of approximate predictors for systems
with delayed input. SIAM Journal on Control and Optimization, 49, 1100–1123.

Karafyllis, I., & Krstic,M. (2012). Nonlinear stabilization under sampled and delayed
measurements, and with inputs subject to delay and zero-order hold. IEEE
Transactions on Automatic Control, 57, 1141–1154.

Manitius, A. Z., & Olbrot, A.W. (1979). Finite spectrum assignment for systemswith
delays. IEEE Transactions on Automatic Control, AC-24, 541–553.

Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-
delay systems with a safe implementation. IEEE Transactions on Automatic
Control, 48, 2207–2212.

Mazenc, F., & Bliman, P. A. (2006). Backstepping design for time-delay nonlinear
systems. IEEE Transactions on Automatic Control, 51, 149–154.

Mazenc, F., Mondie, S., & Francisco, R. (2004). Global asymptotic stabilization of
feedforward systems with delay at the input. IEEE Transactions on Automatic
Control, 49, 844–850.

Nihtila, M. (1989). Adaptive control of a continuous-time systemwith time varying
input delay. Systems & Control Letters, 12, 357–364.

Nihtila, M. (1991). Finite pole assignment for systems with time-varying input
delays. In Proceedings of IEEE Conference on Decision and Control (pp. 927–928).
IEEE.

Sagert, C., Di Meglio, F., Krstic, M., & Rouchon, P. (2013). Backstepping and flatness
approaches for stabilization of the stick–slip phenomenon for drilling. In Proc.
of IFAC symposium on system, structure and control (pp. 779-784).

Saldivar, M.B., Mondie, S., Loiseau, J.J., & Rasvan, V. (2011). Stick–slip oscillations
in oillwell drilstrings: distributed parameter and neutral type retarded model
approaches. In Proc. of IFAC 18th world congress (pp. 283-289).

Sepulchre, R., Jankovic, M., & Kokotovic, P. V. (1996). Constructive nonlinear control.
New York: Springer.

Teel, A. R. (1998). Connections between Razumikhin-type theorems and the ISS
nonlinear small gain theorem. IEEE Transactions on Automatic Control, 43,
960–964.

Xiushan Cai received her Ph.D. degree in control the-
ory and control engineering from Shanghai Jiao Tong Uni-
versity, China, in 2005. She was a visiting scholar in the
department of Mechanical & Aerospace Engineering, Uni-
versity of California, San Diego from September 2012 to
September 2013. She is currently a professor in Zhejiang
Normal University. Her research interests include nonlin-
ear systems theory, control of PDE systems and delay sys-
tems.

Miroslav Krstic holds the Alspach endowed chair and is
the founding director of the Cymer Center for Control
Systems and Dynamics at UC San Diego. He also serves
as Associate Vice Chancellor for Research at UCSD. As a
graduate student, Krstic won the UC Santa Barbara best
dissertation award and student best paper awards at CDC
and ACC. Krstic is Fellow of IEEE, IFAC, ASME, SIAM, and
IET (UK), Associate Fellow of AIAA, and foreign member of
the Academy of Engineering of Serbia. He has received the
PECASE, NSF Career, and ONR Young Investigator awards,
the Axelby and Schuck paper prizes, the Chestnut textbook

prize, the ASME Nyquist Lecture Prize, and the first UCSD Research Award given
to an engineer. Krstic has also been awarded the Springer Visiting Professorship
at UC Berkeley, the Distinguished Visiting Fellowship of the Royal Academy of
Engineering, the Invitation Fellowship of the Japan Society for the Promotion
of Science, and the Honorary Professorships from the Northeastern University
(Shenyang) and the Chongqing University, China. He serves as Senior Editor in
IEEE Transactions on Automatic Control and Automatica, as editor of two Springer
book series, and has served as Vice President for Technical Activities of the IEEE
Control Systems Society and as chair of the IEEE CSS Fellow Committee. Krstic has
coauthored eleven books on adaptive, nonlinear, and stochastic control, extremum
seeking, control of PDE systems including turbulent flows, and control of delay
systems.

http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref1
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref2
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref3
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref4
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref5
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref6
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref7
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref8
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref9
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref10
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref11
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref12
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref13
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref14
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref15
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref16
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref17
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref18
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref19
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref20
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref21
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref22
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref23
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref24
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref25
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref26
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref29
http://refhub.elsevier.com/S0005-1098(16)00044-3/sbref30

	Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary
	Introduction
	System description and control design
	Standing assumptions
	Local stability
	Backstepping transformations and inverse backstepping transforms
	Stability of the target system
	Bounds on the predictors
	Stability of the closed-loop system

	Global stability
	Backstepping transformations and inverse backstepping transforms
	Stability of the target system
	Bounds on the predictors
	Stability of the closed-loop system

	Example
	Conclusion
	References


