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a b s t r a c t

This paper proposes a non-model based approach to iterative learning control (ILC) via extremumseeking.
Single-input–single-output discrete-time nonlinear systems are considered, where the objective is to
recursively construct an input such that the corresponding system output tracks a prescribed reference
trajectory as closely as possible on finite horizon. The problem is formulated in terms of extremum
seeking control, which is amenable to a range of local and global optimisation methods. Contrary to the
existing ILC literature, the formulation allows the initial condition of each iteration to be incorporated
as an optimisation variable to improve tracking. Sufficient conditions for convergence to the reference
trajectory are provided. The main feature of this approach is that it does not rely on knowledge about the
system’s model to perform iterative learning control, in contrast to most results in the literature.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Iterative learning control (ILC) is a learning based method for
tracking a prescribed trajectory. It carries out the same task multi-
ple times with respect to recursively updated control inputs while
improving the tracking performance by learning from previous ex-
ecutions (Moore, 1993; Moore, Dahleh, & Bhattacharyya, 1992;
Xu & Tan, 2003). ILC is known to achieve good performance in
the presence of repeating disturbances and certain model uncer-
tainty due to its iteratively learning feature. Practically, ILC has
been applied to awide range of engineering applications, including
robotics (Messner, Horowitz, Kao, & Boals, 1991), inductionmotors
(Saab, 2004), rolling mills (Garimella & Srinivasan, 1998), stroke
rehabilitation (Freeman, Rogers, Burridge, Hughes, & Meadmore,
2015; Freeman, Rogers, Hughes, Burridge, &Meadmore, 2012), and
aluminium extruders (Pandit & Buchheit, 1999); see Ahn, Chen,
and Moore (2007) for a classification of the ILC literature. It is also
useful within the context of motion planning (Srinivasan & Ruina,
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2006). Bristow, Tharayil, and Alleyne (2006) contains an excellent
survey of a particular ILC algorithmbyMoore (1993),where several
topics in analysis (e.g. performance, transients, robustness) and de-
sign methods (e.g. plant inversion, quadratically optimal) are cov-
ered.

This paper proposes an extremum-seeking based framework
within which to perform iterative learning control of discrete-
time single-input–single-output time-varying nonlinear systems
on finite horizon. It is noted here that multi-input–multi-output
systems are addressable with the same approach. A key feature
of extremum seeking is its ability to locate an optimum with
respect to some measure without assuming knowledge about
the underlying models governing the dynamics of the nonlinear
systems (Ariyur & Krstić, 2003; Zhang & Ordóñez, 2011). Such
knowledgemay be unavailable due to the difficulty associatedwith
modelling of complicated nonlinear systems. Extremum seeking
has found applications in a wide array of problems, including
biochemical reactors (Guay, Dochain, & Perrier, 2003;Wang, Krstić,
& Bastin, 1999), gas-turbine combustors (Moase, Manzie, & Brear,
2010), power electronics (Scheinker, Bland, Krstić, & Audia, 2014),
multi-agent source seeking (Khong, Tan, Manzie, & Nešić, 2014),
and finite-horizon optimal control (Frihauf, Krstić, & Başar, 2013).
Within the context of ILC, extremum seeking has been applied to
pulse shaping in a double-pass laser amplifier (Ren, Frihauf, Rafac,
& Krstić, 2012).

In this paper, we propose a unifying framework in which
to apply optimisation-based extremum seeking algorithms to
ILC in the spirit of Khong, Nešić, Tan, and Manzie (2013) and
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Nešić, Tan, Moase, and Manzie (2010). In particular, the proposed
framework is shown to be amenable to a broad range of local
and global optimisation methods (Khong, Nešić, Manzie, & Tan,
2013; Pintér, 1996; Teel & Popović, 2001). This allows complexity
of implementation and convergence speed of the algorithms to
be taken into account in the control design stage. For instance, if
large variations in the control input is undesirable but convergence
to local optima is tolerable, local optimisation methods may be
selected. Furthermore, Newton-based methods can be employed
if a quadratic convergence rate is solicited. In the proposed
framework, the cost function is defined as the distance between the
system output and the reference trajectory. For local optimisation
methods, ultimately bounded asymptotic stability of local minima
is demonstrated. In the case of global optimisation, it is shown that
the proposed ILC converges to a global minimum.

Several optimisation-based ILCmethods can be found in the lit-
erature, but the vast majority of them rely on knowledge on the
models. For instance, the updating control laws as well as con-
vergence of the ILC methods in Gunnarsson and Norrlöf (2001)
and Owens and Hätönen (2005) depend on the precise knowledge
of the nominal model. Owens, Hatonen, and Daley (2009) pro-
poses a robust monotone gradient-based scheme for ILC of linear
time-invariant (LTI) systems, where the multiplicative modelling
uncertainty is assumed to be bounded. The robustness analysis
therein reminisces that performed in Bristow et al. (2006). Schoel-
lig, Mueller, and D’Andrea (2012) considers the case where an LTI
model is subject to noisy disturbances and proposes a combined
model-based Kalman filter and convex optimisation approach to
ILC. Mishra, Topcu, and Tomizuka (2011) proposes a primal bar-
rier method to ILC of LTI systems contingent on the availability of
knowledge about the gradient and Hessian of the quadratic cost
function, which in turn is dependent on the models.

While the standard ILC literature considers learning controllers
for systems that perform the same operation repetitively under the
same initial conditions, we depart from such a setting and incor-
porate the initial conditions as parts of the optimisation variables,
so that they may vary from one iteration to the next for improved
tracking. Indeed, the former is subsumed by the latter by setting
the initial conditions to be constant across all iterations. The for-
mulation in this paper differs from that of repetitive control (Long-
man, 2000) and repetitive learning control (Sun, Ge, & Mareels,
2006), where the initial conditions of the current iteration are set
to be the final conditions of the previous trial. It is also noteworthy
that the proposed extremum seeking based ILC, which updates the
control input signal, differs from iterative feedback tuning (Hjal-
marsson, Gevers, Gunnarsson, & Lequin, 1998), where non-model
based optimisation methods are exploited to iteratively tune con-
troller’s parameters in order to achieve tracking of an output tra-
jectory given a fixed reference input.

The paper has the following structure. A formal definition of
ILC and the class of nonlinear systems considered in this paper are
stated in the next section. In Section 3, ILC is formulated in terms
of an extremum seeking problem. Subsequently, local and global
optimisation based extremum seeking approaches are discussed
in Sections 4 and 5 respectively. Section 6 contains simulation
examples illustrating the main results. Finally, some concluding
remarks are provided in Section 7.

2. Iterative learning control

The problem of iterative learning control (ILC) is formulated
in this section. The special case where the plant is linear time-
invariant (LTI) and a commonly used ILC method are reviewed.
2.1. Nonlinear plants

Consider the following dynamical discrete-time time-varying
nonlinear state-space system defined over a finite time inter-
val/horizon k = 0, 1, . . . , T :

x(k + 1) = f (x(k), u(k), k) x(0) = x̄;
y(k) = h(x(k), u(k), k), (1)

where f : Rn
× R × T → Rn and h : Rn

× R × T → R are locally
Lipschitz functions in each argument and T := {0, 1, . . . , T }.
Repeated disturbances that are present on both the state-update
differential and state-to-output algebraic equations are accounted
for by f and h being functions of the time unit k. The corresponding
input–output operator for system (1) is denoted by Σ , whereby
y = Σ(x̄, u). Also, given a z : T → R, define the ℓ2 norm by

∥z∥2 :=

 T
t=0

z(k)2.

With a slight abuse of notation, ∥v∥2 is also used to denote the
Euclidean norm for the vector v ∈ Rn. Only discrete-time plants
are considered in this paper. It is a natural formulation because ILC
uses information from previous trials which needs to be stored on
suitable digitalmedia. By the same token, the dynamics of the plant
are assumed to evolve along a finite horizon [0, T ].

Denote by r : T → R the reference trajectory. The control
objective is to construct a u∗ and an x̄∗ such that the corresponding
system output y∗

= Σ(x̄∗, u∗) tracks r as accurately as possible. In
other words,

(x̄∗, u∗) := argmin
u∈U;x̄∈Ω

∥r − Σ(x̄, u)∥2,

whereU is an appropriate compact subset of {u : T → R} andΩ a
compact subset of Rn. In general, any ℓp-normmay be employable
when defining the distance above. Note that a reference r may
not be realisable by the system, i.e. there exist no x̄∗ and u∗ such
that Σ(x̄∗, u∗) = r . In this case, the achievable minimum of the
optimisation problemabove is nonzero.WhenΣ is an LTI operator,
realisability of references may be studied using the notions of
controllability and observability. Characterising this when Σ is
nonlinear is a lot harder, and may require knowledge about the
solutions to (1).

When f and h are known precisely, a brute-force optimisation
over x̄, u(1), . . . , u(T ) can be used to generate a y∗ such that the
error e(k) := r(k) − y∗(t) is minimised. Alternatively, should this
prove to be an infeasible approach, by introducing an additional
iteration-time domain j, several model-based ILC algorithms in the
literature (Moore, 1993; Xu & Tan, 2003) can be used to iteratively
design uj based on previous trials’ outputs yi = Σ(x̄, ui) for i < j
such that uj → u∗ in the ℓ2-norm for a fixed x̄ across all iterations.
By tuning the parameters of the ILC algorithms appropriately, the
desired transient properties, such as monotone convergence, may
be achieved.

Control design in ILC can be specified in the following form.
If x̄j is the initial condition and uj is the input applied to the
plant at trial j = 0, 1, 2, . . . and ej := r − yj = r −

Σ(x̄j, uj) is the resulting tracking error, the control design involves
constructing an iteratively updated control law expressed as a
functional relationship typified by the equation

x̄j+1 = g1(ej, . . . , ej−s, uj, . . . , uj−t , x̄j, . . . , x̄j−t)

uj+1 = g2(ej, . . . , ej−s, uj, . . . , uj−t , x̄j, . . . , x̄j−t),

where s, t ≤ j. Ideally, the control law should have the property
that u∞ := limj→∞ uj = u∗ and x̄∞ := limj→∞ x̄j = x̄∗, or
equivalently, e∞ := limj→∞ ej = 0. A looser requirement on this is
that there exists some small ϵ > 0 such that ∥u∞ − u∗

∥2 < ϵ and
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∥x̄∞ − x̄∗
∥2 < ϵ, i.e. uj (resp. x̄j) converges to an ϵ-neighbourhood

of u∗ (resp. x̄∗).

3. An extremum seeking approach to iterative learning control

In this section, an extremum seeking approach to ILC of
nonlinear system (1) without assuming knowledge on the model
is proposed. Unlike the LTI ILC scheme in Bristow et al. (2006),
Moore (1993) and Moore et al. (1992), the approach builds upon
well-studied optimisation methods (Boyd & Vandenberghe, 2004;
Jones, Pertunnen, & Stuckman, 1993), in which the significance of
the convergence properties is better understood. This section sets
up the framework in which to apply local and global optimisation
methods to ILC in subsequent sections.

The object under study is the nonlinear time-varying plant Σ

given in (1). For all iterations j = 0, 1, . . . , the system output
yj : T → R is related to the system input uj : T → R and initial
condition x̄j ∈ Rn through the state xj : T → Rn by

xj(k + 1) = f (xj(k), uj(k), k) xj(0) = x̄j;
yj(k) = h(xj(k), uj(k), k).

(2)

The tracking error ēj in each iteration is measured by the ℓ2

distance:

ēj := ∥r − yj∥2.

Recall that the goal of ILC is to iteratively construct x̄j and uj so that
ēj is minimised as j → ∞. The update equations for x̄j+1 and uj+1
depend on the tracking errors, initial conditions, and inputs in past
executions:

x̄j+1 = g1(ēj, . . . , ēj−s, uj, . . . , uj−s, x̄j, . . . , x̄j−s)

uj+1 = g2(ēj, . . . , ēj−s, uj, . . . , uj−s, x̄j, . . . , x̄j−s),

for some s ≤ j.

Remark 1. In order to optimise over the initial condition of the
plant, it is first necessary to know its dimension. In the event that
this is inaccessible, one may set the initial condition to be constant
across all learning iterations as in standard ILC.

Remark 2. Since the ILC trial duration is finite, the state and
output signals of (1) are always bounded in every iteration. In
the absence of uniform asymptotic stability of (1), however, the
transient response along the trials may be unsatisfactory. In this
case, a stabilising controller may be synthesised for the plant (1)
and the ILC designed for the resulting stable dynamics.

The formulation above can be transformed into a problem
of static optimisation, as shown below. Denote by U the set of
functions u : T → R. Given a vector v ∈ Rn+T+1, define the
demultiplexer D : Rn+T+1

→ Rn
× U by

D(v) = (w, z)
w = [v1, . . . , vn]

T

z(k) = vn+1+k k = 0, 1, . . . , T .

(3)

Similarly, given a w ∈ Rn and z ∈ U, define the multiplexer
M : Rn

× U → Rn+T+1 by

v = M(w, z)
vi = wi i = 1, . . . , n
vk = z(k) k = n + 1, n + 2, . . . , n + T + 1.

(4)

The demultiplexer and multiplexer are useful for analytically
connecting the behaviour of the plant with the optimisation
method, as will be demonstrated later.
Optimisation method

Fig. 1. An extremum seeking based framework for iterative learning control.

Now given x̄j ∈ Rn, uj ∈ U, and θj := M(x̄j, uj), let Q :

Rn+T+1
→ R be defined as

Q (θj) = ∥r − Σ(D(θj))∥2 = ∥r − Σ(x̄j, uj)∥2

= ∥r − yj∥2

= ēj, (5)

where yj is related to x̄j and uj via (2). Note thatQ is locally Lipschitz
continuous by hypothesis. Also, when Σ is LTI, Q is a convex
function on Rn+T+1. The process above transforms the problem of
ILC to one of static optimisation, towhich a broad array of local and
global algorithms is applicable. In particular, θj+1 can be designed
iteratively based on some update relationship

θj+1 = Γ (ēj, . . . , ēj−s, θj, . . . , θj−s)

and applied to Σ via the demultiplexer D. Fig. 1 illustrates
the extremum seeking based approach to ILC. Notice that the
demultiplexer accepts as its input a vector of real numbers from the
optimisationmethod and outputs a corresponding initial condition
and control input signal to the plant.

In the succeeding sections, both local (gradient based) and
non-convex global (sampling based) optimisation methods are
explored in the setup shown in Fig. 1.

4. Local optimisation

Local optimisation methods generally employ estimations
about the (first or higher order) derivatives of the cost function
in updating the inputs. This section demonstrates how they can
be applied to performing ILC within the extremum seeking based
framework introduced in the previous section.

First, some notation is introduced. A function γ : R≥0 → R≥0 is
of class-K (denoted γ ∈ K) if it is continuous, strictly increasing,
and γ (0) = 0. If γ is also unbounded, then γ ∈ K∞. A continuous
function β : R≥0 × R≥0 → R≥0 is of class-KL if for each fixed t ,
β(·, t) ∈ K and for each fixed s,β(s, ·) is decreasing to zero (Khalil,
2002). Given any subset X of Rm and a point x ∈ Rm, define the
distance of x from X as ∥x∥X := infa∈X ∥x − a∥2.

Consider the following static function optimisation problem:

z∗
:= min

θ∈Ω
Q (θ), (6)

where Q : Rm
→ R is continuously differentiable and Ω ⊂ Rm

is compact. Assume that the Jacobian ∇Q = 0 in a nonempty,
compact set C ⊂ Rm, i.e. Q achieves its minimum on C. A local
optimisation method Γ may generate its update according to

θj+1 = Γ (θj, . . . , θj−1, zj, . . . , zj−s),

where zi = Q (θi). The following assumption is satisfied by a broad
class of local gradient-based optimisation algorithms.
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Assumption 3. The optimisation method Γ , when applied to (6),
satisfies the following conditions:
(i) Γ is time-invariant. Denote by {θj}

∞

j=0 ⊂ Ω ⊂ Rm the output
sequence Γ generates based on inputs to Γ , {zj}∞j=1, where
zj := Q (θj). Γ is causal in the sense that the output at any
time N ∈ N, i.e. θN , is determined based only on θj and zj for
j = 0, 1, . . . ,N − 1, i.e. the past probe values to Q and the
corresponding measurements.

(ii) Denote by S(θ0) the set of all admissible output sequences of
Γ with respect to the initial point θ0. There exists a class-KL
function β such that for any initial point θ0 ∈ Ω , all outputs
θ ∈ S(θ0) satisfy for some δ ≥ 0

∥θj(θ0)∥C ≤ β(∥θ0∥C, j) + δ ∀j ≥ 0. (7)

Note that Assumption 3(ii) states that the sequence θj converges
asymptotically to a δ-neighbourhood of C.

Remark 4. The set of outputs S(θ0) in Assumption 3(ii) arises,
for example, from modelling the optimisation algorithm with a
difference inclusion involving a set-value ‘state-update’ map F by
θ+

∈ F(θ,Q (θ)); see Kellet and Teel (2005). In the simplest case,
S(θ0) is a singleton, i.e. there is only one possible output sequence
given a fixed initial condition. For example, one modelled by the
difference equation θ+

= F(θ,Q (θ)).

Recall the demultiplexerD andmultiplexerM defined in (3) and
(4) respectively.

Theorem 5. Given a nonlinear plant Σ in (1) and a reference
trajectory r ∈ U, the feedback interconnection shown in Fig. 1 with
the optimisation method Γ satisfying Assumption 3 in which m =

n+T +1 has the following convergence property: there exists a class-
KL function β such that for any initial point θ0 ∈ Ω and for some
δ ≥ 0,

∥M(x̄j, uj)∥C ≤ β(∥M(x̄0, u0)∥C, j) + δ ∀j ≥ 0, (8)

where Q : Ω ⊂ Rm
→ R is as defined in (5), whose Jacobian is zero

on C ⊂ Ω , the search domain of interests.

Proof. Note that by the setup of the feedback interconnection in
Fig. 1, (x̄j, uj) = D(θj) for all j = 0, 1, . . . . By applying Γ to Q , it
follows from Assumption 3 that there exists a class-KL function
β such that for any initial point θ0 ∈ Ω and some δ ≥ 0,

∥θj∥C ≤ β(∥θ0∥C, j) + δ ∀j ≥ 0.

This is equivalent, via the relationship (x̄j, uj) = D(θj), to (8), as
claimed. �

Theorem 5 contains sufficient conditions under which the
iterations on x̄j and uj are convergent in the ℓ2 sense to a
δ-neighbourhood of local minima of the function Q defined in (5),
which measures the ℓ2-size of the tracking error.

In the following,wedetail twoof themostwell-knownmethods
(Boyd & Vandenberghe, 2004; Polak, 1997) in operations research
which satisfy Assumption 3. They are (i) the gradient descent
method:

θj+1 = θj − λj∇Q (θj), (9)

where λi denotes the step size which can be computed by, say, the
Armijo method (Polak, 1997, Alg. 1.3.3) and (ii) Newton’s method:

θj+1 = θj − ∇
2Q (θj)

−1
∇Q (θj),

where ∇Q (·) and ∇
2Q (·) denote, respectively, the Jacobian and

Hessian of Q . It can be readily seen that the gradient and Newton
methods satisfy the time-invariance and causality Assumption 3(i).
The following result can be found in Boyd and Vandenberghe
(2004) and Polak (1997).
Gradiient descent
method

Derivative
estimator

Fig. 2. A gradient-based extremum seeking controller paradigm.

Proposition 6. Suppose Q : Ω → R is twice Lipschitz continuously
differentiable and strictly convex on S ⊂ Ω , whereby there exist
M, M̄ ∈ R such that

MI ≤ ∇
2Q (θ) ≤ M̄I for all θ ∈ S.

Furthermore, suppose there exists a minimiser θ∗
∈ S such that

∇Q (θ∗) = 0. Let {θj}
∞

j=0 be the sequence generated by the gradient
or Newton method when applied to minimising Q . Then there exists a
class-KL function β such that for any θ0 ∈ S,

∥θj − θ∗
∥2 ≤ β(∥θ0 − θ∗

∥2, j) ∀j ≥ 0. (10)

Note that the rate of convergence for the gradient descent method is
linear while that for Newton is quadratic, at least within a sufficiently
small neighbourhood of the minimiser.

Proposition 6 states the convergence conditions for the gradient
descent and Newton method when exact values of the Jacobian
∇Q (θj) andHessian∇

2Q (θj). In practice, they need to be estimated
from several past measurements. This can be achieved by using
the Euler methods, trapezoidal method, or the more sophisticated
Runge–Kutta methods (Press, Teukolsky, Vetterling, & Flannery,
2007); see Fig. 2.

To be more specific, let the initial output of the optimisation
method be θ0 := τ0. As determined by the derivative estimator,
the following length-p sequence of step commands {θj}

p−1
j=0 can be

used to probe Q along the desired directions:

(τ0 + d1(τ0), . . . , τ0 + dp(τ0)), (11)

where di : Ω → Rm, i = 1, . . . , p denote the dither signals. The
corresponding outputs ofQ are then collected by the derivative es-
timator to numerically approximate the Jacobian ∇Q (θ0). Exploit-
ing this information, the optimisation algorithm can then update
its next probing point τ1, and the series of steps described above
repeats to generate {θj}

2p−1
j=p .

Suppose the use of the derivative estimates (instead of their
precise values) in Fig. 2 introduces a bounded additive error term
in the update of the gradient and Newton methods:

θj+1 = θj − λj∇Q (θj) + e1(k, θj) and

θj+1 = θj − ∇
2Q (θj)

−1
∇Q (θj) + e2(k, θj),

(12)

where

∥e1(k, θj)∥2 ≤ l1 + q1α(∥θj∥C) and
∥e2(k, θj)∥2 ≤ l2 + q2α(∥θj∥C),

(13)

for some l1, l2, q1, q2 ≥ 0. It follows from the non-vanishing
perturbation results for discrete-time systems in Cruz-Hernández,
Alvarez-Gallegos, and Castro-Linares (1999) that for sufficiently
small l and q, the gradient/Newton-based extremum seeking
controller in Fig. 2 satisfies the ultimately bounded asymptotic
stability Assumption 3(ii). In particular, there exist a class-K
function α and a class-KL function β such that

∥θj∥C ≤ β(∥θ0∥C, j) + α(l) ∀j = 0, 1, . . . .

Assumption 7. There exists an αd ∈ K and c > 0 such that the
dither signals in (11) satisfy for each i = 1, . . . , p,

∥di(θ)∥2 ≤ αd(∥θ∥C) + c.



242 S.Z. Khong et al. / Automatica 66 (2016) 238–245
When Assumption 7 holds with c = 0, it follows that the
step size used in estimating the derivatives converges to zero as
θj tends to the minimising set C. This implies by the definition of
differentiation that the magnitudes of the error terms e1 and e2 in
(13) tend to zero as k → ∞, i.e. l1 = l2 = 0. In other words, the
perturbations are vanishing and the extremum seeking controller
is asymptotically stable as in Assumption 3(ii) with δ = 0 (Cruz-
Hernández et al., 1999).

Remark 8. When the plant Σ in Theorem 5 is LTI, the resulting
Q in (5) is convex. It follows that either the gradient descent or
Newtonmethods would result in convergence to a neighbourhood
of a global minimum of Q . On the contrary, if Σ is nonlinear,
convergence to a neighbourhood of a local minimum can be
achieved.

Besides the gradient descent and Newton methods detailed
above, other local optimisation methods satisfying Assumption 3
include the following difference inclusion form (Teel & Popović,
2001):

θ+
∈ F(θ,G(θ)), (14)

where F is an upper semi-continuous set-valued map (the update
θ+ can be any element of the set) and G is a function that carries
information regarding the estimate of the gradient of Q around θ .
In particular, F maps from Rm

× Rp to subsets of Rm,

G(θj) :=

Q (θj + d1(θj))
...

Q (θj + dp(θj))

 ,

and di : Ω → R, i = 1, . . . , p are dither/perturbation functions.
See Teel (2000) for a class of Lyapunov-based non-smooth optimi-
sation algorithms of the form described above which employ the
notion of Clarke generalised gradient.

5. Global optimisation

In the case where large variations in the initial condition
and control input can be tolerated from iteration to iteration,
sampling-based global optimisationmethods which do not exploit
information about gradients of the cost function can be employed
to locate global minima in the presence of local ones in ILC.
Bounds on initial conditions and input saturation constraints are
naturally accommodated by these methods. This section adapts
such methods for ILC within the framework of extremum seeking
control described in Section 3.

Consider the following bound-constrained optimisation prob-
lem:

z∗
:= min

θ∈Ω
Q (θ), (15)

where

Ω :=

θ ∈ Rm

| θi ∈ [ai, bi] ⊂ R, i = 1, 2, . . . ,m

. (16)

Assume that Q : Ω ⊂ Rm
→ R is a globally Lipschitz continuous

function (Khalil, 2002), i.e. there exists a known L > 0 such that

|Q (θ) − Q (θ ′)| ≤ L∥θ − θ ′
∥2

for all θ, θ ′
∈ Ω . Note that Q possesses a global minimum by

the extreme value theorem (Rudin, 1976, Thm. 4.16) since it is
(Lipschitz) continuous on a compact domain Ω . The compactness
ismotivated by the ubiquity of control input saturation constraints
in physical systems (Khalil, 2002). It is assumed that Q achieves its
global minimum on a nonempty set C ⊂ Ω .
A global optimisation method Γ may generate its update
according to

θj+1 = Γ (θj, . . . , θj−1, zj, . . . , zj−s),

where zi = Q (θi). Define

ẑk := min
i=0,1,...,k

zi.

In what follows we consider global optimisation algorithms that
satisfy the next assumption.

Assumption 9. The global optimisation algorithm Γ , when ap-
plied to optimisation (15), has the convergence property that a sub-
sequence of {θj}∞j=0 converges to C, which implies that ẑk → z∗.

Theorem 10. Given a nonlinear plant Σ in (1) and a reference
trajectory r ∈ U, the feedback interconnection shown in Fig. 1 with
the optimisation method Γ satisfying Assumption 9 in which m =

n+ T + 1 has the following convergence property: {M(x̄j, uj)}
∞

j=0 has
a subsequence which converges to C, where Q : Ω ⊂ Rm

→ R as
defined in (5) achieves its global minimum on a nonempty set C ⊂ Ω

and Ω is as in (16) for some ai, bi ∈ R, i = 1, . . . ,m.

Proof. It can be seen from the feedback interconnection in Fig. 1
that (x̄j, uj) = D(θj) for all j = 0, 1, . . . . By applying Γ to Q , it
follows fromAssumption 9 that a subsequence of {θj}∞j=0 converges
to C. This is equivalent, via the relationship (x̄j, uj) = D(θj), to
{M(x̄j, uj)}

∞

j=0 having a subsequence which converges to C. �

While a wide range of global optimisation algorithms satisfying
Assumption 9 are available in the literature (Pintér, 1996; Strongin
& Sergeyev, 2000), we describe in the following a particular one
called the DIRECT (DIviding RECTangles) optimisation method
(Jones et al., 1993) to be used in the simulation example later.

5.1. DIRECT optimisation algorithm

Here, a brief review of the DIRECT optimisation method (Jones
et al., 1993) is given. DIRECT is a deterministic sampling method
which solves (15). The only assumption that DIRECT makes is the
Lipschitz continuity of Q . DIRECT does not require knowledge of
the function Q or the Lipschitz constant. It also makes no attempts
at estimating derivatives of Q .

Algorithm 1. The DIRECT algorithm (Jones et al., 1993).
Given: A Lipschitz function Q : Ω ⊂ Rm

→ R.
Notation: q denotes the iteration number of DIRECT and k

the total number of samples. Input samples taken by DIRECT are
denoted θi ∈ Ω , i = 0, 1, . . . , k−1 and the corresponding outputs
zi := Q (θi).

(i) Initialise q := 1 and k := 0.
(ii) Evaluate Q (θ0), where θ0 ∈ Rm denotes the centre point of Ω .

Set ẑ0 := Q (θ0) and increment k, i.e. k+
:= k + 1.

(iii) Identify the set of indices of potentially optimal hyper-
rectangles S, i.e. all j ∈ {0, . . . , k − 1} for which there exists a
positive L̃ ∈ R such that

Q (θj) − L̃dj ≤ Q (θi) − L̃di ∀i = 0, . . . , k − 1

Q (θj) − L̃dj ≤ ẑk − ϵ|ẑk| for some ϵ > 0,
(17)

where di denotes the distance from the centre point to the
vertices of the ith hyper-rectangle. As noted in Jones et al.
(1993), the set of potentially optimal hyper-rectangles can
be found using Graham’s scan (Graham, 1972), which is an
efficient algorithm for determining the convex hull of a finite
set.
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Fig. 3. Reference trajectory.

(iv) For every j ∈ S, subdivide the jth hyper-rectangle with centre
θj according to the following rule. First identify the set I of di-
mensions i ∈ {1, . . . ,m} in which the jth hyper-rectangle has
the maximum side length and let δ be one-third of this value.
Sample Q at the points θj ± δei for all i ∈ I , where ei denotes
the ith unit vector in Rm. Sequentially divide the jth hyper-
rectangle into thirds along the dimension i ∈ I in an ascend-
ing order of min{Q (θj + δei),Q (uj − δei)}. Set k+

:= k + ∆k,
where∆k is the number of new points sampled during the qth
iteration.

(v) Set q+
:= q + 1 and the minimal estimate

ẑq := min
i=0,1,...,k

zi. (18)

(vi) Loop from (iii).

See Jones et al. (1993) for more details regarding the DIRECT
method, including a pictorial illustration. Finkel (2004) contains
a numerical implementation of the algorithm using MATLAB.
Since DIRECT identifies all potentially optimal hyper-rectangles via
(17) for subdivision, it is well-balanced between local and global
searches. Indeed, once DIRECT locates the basin of convergence of
a global optimum, the local part of the algorithm automatically
exploits it to expedite the search (Jones et al., 1993). The following
demonstrates that the DIRECT algorithm satisfies Assumption 9,
whereby Theorem 10 holds with DIRECT being the optimisation
method.

Proposition 11 (Jones et al., 1993). As the number of iterations
approaches infinity, the points sampled by DIRECT form a dense
subset of Ω . Since Q is Lipschitz continuous, the estimate by DIRECT
converges to z∗ in (15). Mathematically, it holds that

lim
q→∞

ẑq = z∗
:= min

θ∈Ω
Q (θ).

The denseness in domain-sampling property of DIRECT men-
tioned in theproposition above is of critical importance in the proof
of its convergence. It holds by the way the algorithm is set up,
which subdivides all potentially optimal rectangles in the search
space iteratively.

6. Illustrative examples

Consider the following forced pendulum equation modified
from Khalil (2002, Example 4.4):

ẋ1 = x2
ẋ2 = − sin(x1) − 0.2x2 + u
y = x1.
Fig. 4. Tracking error vs. the number of iterations of gradient descent.

Fig. 5. Minimising input and the corresponding output from gradient descent.

Discretising the plant using Euler’s method with respect to a
sampling period of 0.1s yields

x1(k + 1) = x1(k) + 0.1x2(k)
x2(k + 1) = −0.1 sin(x1(k)) + 0.98x2(k) + 0.1u(k).

(19)

Issues arising from the discretisation phase are not considered
in this example; they can be dealt with using, for instance, the
analysis in Nešić, Teel, and Kokotović (1999). Let T = 10. Fig. 3
illustrates a prescribed reference trajectory r to be tracked. It is
noted here that as constrained by the dynamics of the plant (19),
such a trajectory r is not realisable as an output. In what follows,
both local and global optimisation methods will be applied to ILC
of (19) with respect to the prescribed reference.

6.1. Gradient descent method

The extremum seeking based ILC scheme in Fig. 1 is employed
for the plant (19) with the optimisationmethod being the gradient
descent (9). The optimisation step size λj := 0.5∀j and first-order
Euler approximation is used for estimating the derivative with a
step size of 0.01, where 14 samples are needed to compute one
estimation. In particular, the dither sequence is given by d1 = 0
and di = 0.01 ∗ ϵi−1 for i = 2, . . . , 14, where ϵi ∈ R13 denotes the
canonical vector containing only zero entries except the ith-entry,
where it is equal to 1. Both the initial condition and starting input
are set to 0.

A total of 1000 iterations of the gradient descent method are
simulated, which result in 14000 executions of the plants. The
final ℓ2 tracking error is 3.97. Fig. 4 illustrates the tracking error
with respect to the number of iterations of the gradient descent
method. The resulting initial condition is [1.24, 4.78]. Fig. 5 shows
the resulting input and the corresponding output.
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Fig. 6. Tracking error vs. the number of samples taken by DIRECT.

Fig. 7. Minimising input and the corresponding output from DIRECT.

6.2. DIRECT method

The same ILC scheme in Fig. 1 is applied to the plant (19),
but with the optimisation method being the DIRECT Algorithm 1.
Suppose that each coordinate of the initial condition and input lies
within the compact interval [−15, 15], i.e. ai = −15 and bi = 15
for i = 1, . . . , 13 in (16).

After 34 iterations of the DIRECT algorithm and 15293 runs
of the plant, the final ℓ2 tracking error achieved is 3.79. Fig. 6
illustrates the tracking error with respect to the number of runs of
the plant. The resulting initial condition is [1.11, 5.56]. Fig. 7 shows
the resulting input and the corresponding output.

7. Conclusions

An extremum seeking based framework has been proposed for
iterative learning control of discrete-time nonlinear time-varying
systems. It is demonstrated that the framework accommodates
both local and global optimisation algorithms. Simulation exam-
ples are provided to illustrate the results. Future research di-
rections may involve investigating iterative learning under noisy
measurements and stochastic optimisation methods.
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