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a b s t r a c t

Solutions exist for the problems of canceling sinusoidal disturbances and compensating input delays. In
this paper, two problems are considered simultaneously and an adaptive controller is designed to can-
cel unknown sinusoidal disturbances forcing an unknown linear time-invariant system in controllable
canonical form despite input delay. The design is based on three steps, (1) parametrization of the sinu-
soidal disturbance as the output of a known feedback systemwith anunknownoutput vector that depends
on unknown disturbance parameters, (2) representation of the delay as a transport PDE, (3) design of the
adaptive controller by using the backstepping boundary control technique for PDEs. It is proven that the
equilibrium of the closed loop system is stable and the state of the considered system converges to zero
as t → ∞ with perfect disturbance estimation. The effectiveness of the controller is illustrated with a
simulation example of a second order system.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of canceling sinusoidal disturbances in dynamical
systems is a fundamental control problem, withmany applications
such as active noise control (Bodson, Jensen, & Douglas, 2001),
rotatingmechanisms control (Gentili &Marconi, 2003), andmarine
vehicles (Basturk & Krstic, 2013b; Basturk, Rosenthal, & Krstic,
2013; Marconi, Isidori, & Serrani, 2002). The common method to
approach this problem is the internal model principle for which
a general solution is given in Francis and Wonham (1975) and
Johnson (1971) in the case of linear systems. In the internal model
approach, the disturbance is modeled as the output of a linear
dynamic system which is called an exosystem.

The output regulation problem for minimum phase, uncertain
nonlinear systems is solved in Serrani and Isidori (2000), Serrani,
Isidori, andMarconi (2001), and extended for non-minimumphase
plants inMarconi, Isidori, and Serrani (2004).Moreover, designs for
nonlinear systems are proposed in Ding (2003), Marino and Santo-
suosso (2005), Marino and Tomei (2005) and Nikiforov (2001). The
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regulation of a linear time-varying system for unknown exosystem
is considered inMarino and Tomei (2000). Disturbance cancelation
and output regulation designs also exist for continuous-time LTI
systems (Bobtsov & Pyrkin, 2009; Bodson &Douglas, 1997; Serrani,
2006; Zhang & Serrani, 2006) and discrete-time LTI systems (Guo &
Bodson, 2009). Rejection algorithms are also given by state deriva-
tive feedback for both known (Basturk & Krstic, 2012a, 2013a) and
unknown (Basturk & Krstic, 2012b, 2014) LTI systems.

On the other hand, the input delay causes significant stabi-
lization problems in many dynamical systems including various
chemical systems, hydraulically actuated systems, and combustion
systems which may be driven by unknown sinusoidal distur-
bances. Therefore, the design of controllers for the stabilization of
systems with delays continues to be an active research area. Con-
trollers for both linear (Artstein, 1982; Bekiaris-Liberis & Krstic,
2010b; Fiagbedzi & Pearson, 1986; Jankovic, 2009, 2010; Kwon
& Pearson, 1980; Mondie & Michiels, 2003; Olbrot, 1978; Zhong,
2006a,b) and nonlinear systems (Bresch-Pietri & Krstic, 2014;
Krstic, 2008, 2010; Mazenc, Mondie, & Francisco, 2004; Mazenc
& Niculescu, 2011) exist in the literature, many of which are
based on predictor-like techniques. The solution for time vary-
ing delays in nonlinear systems is given in Bekiaris-Liberis and
Krstic (2012). Input delays that depend on state in nonlinear sys-
tems are considered in Bekiaris-Liberis, Jankovic, and Krstic (2012).
Moreover, adaptive control schemes for uncertain plants can be
found in Evesque, Annaswamy, Niculescu, and Dowling (2003) and
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Niculescu and Annaswamy (2003). The robustness of the standard
adaptive backstepping technique with respect to time delay in in-
put and unmodeled dynamics in the system is studied in Zhou,
Wang, and Wen (2009). Adaptive controllers for unknown delays
are given in Bekiaris-Liberis and Krstic (2010a) and Bresch-Pietri
and Krstic (2010). The designs of trajectory tracking for uncertain
linear systemswith unknown input delay are given in Bresch-Pietri
andKrstic (2009) and Bresch-Pietri, Chauvin, and Petit (2012). Con-
troller designs for canceling unknown sinusoidal disturbanceswith
input delay are considered in Bobtsov and Pyrkin (2008), Bobtsov,
Kolyubin, and Pyrkin (2010) and Pyrkin et al. (2010a,b). However,
in these references, the disturbance cancellation algorithms are
given for systemswhose parameters are assumed to be known.We
present a method that does not require to know the actual value of
the parameters of the system. This is the main contribution of the
presented work and provides an important advantage for the ap-
plication of the result.

In this note, an adaptive controller is designed to estimate and
cancel the unknown sinusoidal disturbances forcing general LTI
systems in the controllable canonical form with input delay and
unknown system parameters by full state feedback. The unknown
disturbance is represented in a parameterized form by using
the technique given in Nikiforov (2004). The essence of the ap-
proach for the compensation of the input delay is predictor feed-
back which has been shown in Krstic and Symslayev (2008a) to be
a form of backstepping boundary control for PDEs (Krstic & Sym-
slayev, 2008b). The results given in Krstic and Symslayev (2008a)
and Nikiforov (2004) allow us to reformulate the problem as an
adaptive control problem for an uncertain PDE–ODE coupled sys-
tem. Update laws for uncertain parameters are based on normal-
ized Lyapunov-based tuning which is a similar approach given in
Bresch-Pietri and Krstic (2009). Finally, it is proven that the equi-
librium of the closed loop system is stable and the state converges
to zero as t → ∞ with perfect disturbance estimation.

In Section 2, the problem is introduced. The representation of
unknown sinusoidal disturbances is given in Section 3. In Section 4,
the main design is presented and the stability theorem is stated. In
Section 5, the proof of the stability theorem is given. A simulation
example is presented in Section 6.

2. Problem statement

We consider the single-input LTI system

Ẋ(t) = A0X(t) + B(γ TX(t) + ν(t) + bU(t − D)), (1)

where A0 =


0n−1 In−1
0 0Tn−1


, B =


0n−1
1


, γ = [a1, . . . , an]T , with

0n−1 = [0, . . . , 0]T ∈ Rn−1, the known input delay D ∈ R, the
state X = [X1, . . . , Xn]T ∈ Rn, the input U ∈ R, and the unknown
sinusoidal disturbance ν ∈ R given by
ν(t) = g sin(ωt + φ), (2)
where ω, g, φ ∈ R.

The sinusoidal disturbance ν can be represented as the output
of a linear exosystem,

Ẇ (t) = SW (t), (3)

ν(t) = hTW (t), (4)

where W (t) ∈ R2, S =


0 ω

−ω 0


, hT

=

1 0


.The matrix S

depends on the unknown frequency of the sinusoidal disturbance
ν, while the uncertainty of amplitude and phase is related to the
unknown initial condition of (3).

The system parameters γ and b are unknown, the input delay D
is known. The disturbance ν(t) is not measured. Themeasurement
of the state X is available for feedback.

Wemake the following assumptions regarding the plant (1) and
the exosystem (3)–(4):
Assumption 1. ωmax ≥ ω ≥ ωmin > 0, where ωmax and ωmin are
known.

Assumption 2. gmax ≥ |g| where gmax is known.

Assumption 3. ai ∈ [amin, amax] for i = 1, . . . , n. The bounds
amin, amax are known and a = max{|amax|, |amin|}.

Assumption 4. The sign of b is known and bmax ≥ |b| ≥ bmin > 0
where bmax, bmin are known.

The main aim is to design an adaptive controller to achieve the
stability of the equilibrium of the closed loop system and the con-
vergence of the state X(t) to zero as t → ∞ despite the input
delay, unmeasured sinusoidal disturbance and uncertain system
parameters.

3. Disturbance representation

The disturbance is parameterized by following (Nikiforov,
2004). Let G ∈ R2×2 be a Hurwitz matrix with distinct eigenvalues
and let (G, l) be a controllable pair. Since (hT , S) is observable and
the spectra of S and G are disjoint the unique and nonsingular
solutionM ∈ R2×2 of the Sylvester equation

MS − GM = lhT (5)

is invertible (Chen, 1984). The change of coordinates Z(t) =

MW (t) transforms the exosystem (3)–(4) into the form

Ż(t) = GZ(t) + lν(t), (6)

ν(t) = θ T
s Z(t), (7)

ν̇(t) = θ T
d Z(t), (8)

where θ T
s = hTM−1, θ T

d = hT SM−1. Since there is a delay in the
input, the disturbance ν(t) needs to be represented with a delayed
Z(t) to be able to design an adaptive controller. The following
lemma establishes this result.

Lemma 1. The disturbance can be represented as

ν(t) = θ TZ(t − D), (9)

where

θ = cos(Dω)θs +
sin(Dω)

ω
θd. (10)

Proof. Using (2), the necessary trigonometric calculations yield

ν(t + D) = cos(Dω)ν(t) +
sin(Dω)

ω
ν̇(t). (11)

Substituting (7) and (8) into (11), we get (9). �

Since ν(t) is not measured, the state Z(t) cannot be used in the
design. To overcome this problem, an observer is designed. The
following lemma establishes the properties of the observer and the
representation of the unknown disturbance.

Lemma 2. The unknown disturbance ν(t) can be represented in the
form

ν(t) = θ TΞX (t − D) +

n
i=1

βT
i Ξi(t − D)

+ βT
u ΞU(t − D) + θ T

δ δ(t) (12)

where θδ = e−GDθ, βu = bθ, βi = aiθ for i = 1, . . . , n.
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The observer filters are given by

Ξ̇0(t) = G (Ξ0(t) + NX(t)) , (13)

Ξ̇i(t) = GΞi(t) − lXi(t), i = 1, . . . , n (14)

Ξ̇U(t) = GΞU(t) − lU(t − D), (15)

and

ΞX = Ξ0(t) + NX(t) (16)

with 2 × n matrix N which is given by N =
1

BT B
lBT , where the given

N is one of the many solutions of the following equation NB = l.
The estimation error δ ∈ R2 obeys the equation

δ̇(t) = Gδ(t). (17)

Proof. Following (Nikiforov, 2004), the estimation error δ(t) is
given by

δ(t) = Z(t) −


ΞX (t) +

n
i=1

aiΞi(t) + bΞu(t)


. (18)

Using (18) and the fact that NA0 = 0 and NB = l, the time
derivative of (18) in view of (1), (13)–(15) yields (17). Representing
Z(t −D) by using (18) and substituting it into (9), we get (12). �

The representation (12) established with Lemmas 1 and 2, al-
lows us to represent a time-varying unknown sinusoidal distur-
bance ν(t) as a constant unknown vector multiplied by a known
regressor which is delayed, plus an unknown exponentially decay-
ing disturbance δ(t).

Defining the bound of the unknown vector θ is necessary
for the update law. The parametric solution of (5) is given by

m1(ω) = −
(g1 l1+g2 l2)ω2

+g1g24 l1+g22 g3 l2
σm

−
g2g4(g1 l2+g3 l1)

σm
,m2(ω) = −

l1ω3
+ω(g24 l1−g1g2 l2+g2g3 l1−g2g4 l2)

σm
,m3(ω) = −

ω2(g3 l1+g4 l2)+g2g23 l1+g21 g4 l2
σm

−
g1g3(g2 l2+g4 l1)

σm
,m4(ω) = −

l2ω3
+ω(g21 l2−g1g3 l1+g2g3 l2−g3g4 l1)

σm
, with

σm = ω4
+ ω2


g2
1 + 2g2g3 + g2

4


+ (g1g4 − g2g3)2 where M =

m1 m2
m3 m4


,G =


g1 g2
g3 g4


, l =


l1
l2


.Then using (10) and θ T

s =

hTM−1, θ T
d = hT SM−1, θ is written as

θ T (ω) = [θ1(ω), θ2(ω)] (19)

where θ1(ω) =
cos(Dω)m4(ω)−sin(Dω)m3(ω)

det{M(ω)}
and

θ1(ω) =
− cos(Dω)m2(ω)+sin(Dω)m1(ω)

det{M(ω)}
. The extreme values of θ1(ω)

and θ2(ω) for ω ∈ [ωmin, ωmax] are defined by taking the first
derivative with respect to ω and finding the roots. Define the sets
Ωi = {ω ∈ R|ωmin ≥ ω ≥ ωmax and

dθi(ω)

dω = 0} for i = 1, 2.
If Ωi = 0, then it is defined as Ωi = {ωmin, ωmax}. The maximum
value of |θ1|, |θ2| can be defined as follows

θ =


max
ω∈Ω1

|θ1(ω)|, max
ω∈Ω2

|θ2(ω)|

T
. (20)

4. Main result-design and stability statement

The delayed signals are represented as the boundary of a trans-
port PDE to prepare the system for the design. This idea for delay
systems is given and discussed in Krstic and Symslayev (2008a).
Substituting (12) into (1) and representing the delayed signals as
the boundary of a transport PDE, the ODE–PDE coupled system is
written as
Ẋ(t) = A0X(t) + B

γ TX(t) + θ T ξX (0, t) + bu(0, t)

+ βT
u ξU(0, t) +

n
i=1

βT
i ξ ai(0, t) + θ T

δ δ(t)

, (21)

ut(x, t) = ux(x, t), (22)
u(D, t) = U(t), (23)

ξX
t(x, t) = ξX

x(x, t), (24)

ξX (D, t) = ΞX (t), (25)

ξ ai
t(x, t) = ξ ai

x(x, t), i = 1, . . . , n (26)

ξ ai(D, t) = Ξi(t), (27)

ξU
t(x, t) = ξU

x(x, t), (28)

ξU(D, t) = ΞU(t). (29)

The solutions of the transport PDEs are given by u(x, t) = U(t+x−
D), ξX (x, t) = ξX (t + x−D), ξ ai(x, t) = ξ ai(t + x−D), ξU(x, t) =

ξU(t + x − D). The adaptive controller for the system (21)–(29) is
given by

U(t) =
1

b̂


−θ̂ (t)TΞX (t) −

n
i=1

β̂i(t)TΞi(t) − β̂u(t)TΞU(t)

+ (K − γ̂ T )
 D

0
e(A0+Bγ̂ )(D−y)Bζ (y, t)dy

+ (K − γ̂ T )e(A0+Bγ̂ )DX(t)


(30)

where the control gain K ∈ R1×n is chosen so that

AT
0 + BK


is

Hurwitz and the positive definite matrices P and PG are solutions
of the matrix equations

(AT
0 + BK)TP + P(AT

0 + BK) = −Q , (31)

GTPG + PGG = −QG (32)

with λmin{QG} > 1 + 2max{c0, cγ }, λmin{Q } > 2 + λmax{PGGllT

GTPG}+nλmax{PGllTPG}+2c0λmax{NTN} > 0where c0, cγ > 0 and

ζ (x, t) = uβu(x, t) + θ̂ T ξX (x, t) +

n
i=1

β̂T
i ξ ai(x, t), (33)

where

uβu(x, t) = b̂u(x, t) + β̂uξ
U(x, t). (34)

The update laws are given by

˙̂b(t) = κbProjΠb
{u(0)τc(t)} , (35)

˙̂γ (t) = κγ ProjΠγ
{X(t)τc(t)} , (36)

˙̂
θ(t) = κθProjΠθ


ξX (0)τc(t)


, (37)

˙̂
β i(t) = κβiProjΠβi


ξ ai(0)τc(t)


, i = 1, . . . , n (38)

˙̂
βu(t) = κβuProjΠβu


ξU(0)τc(t)


, (39)

where κ ∈ [0, κ∗
[ (κ∗ is given in the analysis) and

τc(t) =

2
cw

BTPX(t)

NL(t)

−
(K − γ̂ T )

 D
0 (1 + x)e(A0+Bγ̂ )xBw(x, t)dx

NL(t)
(40)
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with

NL(t) = 1 + X(t)TPX(t) + Ξ0(t)TPGΞ0(t) +

n
i=1

Ξ T
i PGΞi

+

 D

0
(1 + x)


cww(x, t)2 + c0ξX (x, t)T ξX (x, t)

+ cγ
n

i=1

ξ ai(x, t)T ξ ai(x, t)

dx (41)

where cw > 1
b2min

λmax{PBBTP} and

w(x, t) = ζ (x, t) − (K − γ̂ T )

 x

0
e(A0+Bγ̂ )(x−y)Bζ (y, t)dy

− (K − γ̂ T )e(A0+Bγ̂ )xX(t). (42)

Using Assumptions 1–4 and (20) with βu = bθ, βi = aiθ for i =

1, . . . , n. the sets of parameters are given by

Πb = {b ∈ R|bmax > |b| > bmin > 0} , (43)

Πγ =


γ = [ai, . . . , an]T ∈ Rn

|amax > ai > amin,

i = 1, . . . , n

, (44)

Πθ =

θ = [θ1, θ2]T ∈ R2

|θ i > θi > −θ i, i = 1, 2

, (45)

Πβi =


βi = [βi1, βi2]T ∈ R2

|aθ j > βij > −aθ j, j = 1, 2

, (46)

Πβu =


βu = [βu1, βu2]T ∈ R2

|bmaxθ i > βui > −bminθ i,

i = 1, 2

. (47)

The standard projection operators are given by

ProjΠb
{τb(t)} =

0, sign(b)b̂ = bmax and τb > 0
0, sign(b)b̂ = bmin and τb < 0
τb, else,

(48)

where τb(t) = u(0)τc(t) and

ProjΠk
{fkτc(t)} =

0, k̂ = k and fkτc(t) > 0
0, k̂ = k and fkτc(t) < 0
fkτc(t), else,

(49)

for fk = X(t), ξX (0), ξ ai(0), ξU(0), k = γ , θ, βi, βu, respectively
where k̂, represents the estimate of the parameter and k, k are the
maximum and minimum bounds of the parameter, respectively.

The inverse of the transformation (42) is given by

u(x, t) =
1

b̂


w(x, t) − θ̂ T ξX (x, t) −

n
i=1

β̂T
i ξ ai(x, t)

− β̂T
u ξU(x, t) + (K − γ̂ T )

 x

0
e(A0+B(K−γ̂ T ))(x−y)

× Bw(y, t)dy + (K − γ̂ T )e(A0+B(K−γ̂ T ))xX(t)

. (50)

Using (18), (24), (26) and (28), Eq. (50) is written as

u(x, t) = ζU(x, t) −
1

b̂
β̂T
u Z(t − x) +

eDx

b̂
β̂T
u δ(t), (51)

where

ζU(x, t) =
1

b̂


w(x, t) −


θ̂ T

−
1
b
β̂T
u


ξX (x, t)

−

n
i=1


β̂T
i −

ai
b

β̂T
u


ξ ai(x, t) + (K − γ̂ T )
× e(A0+B(K−γ̂ T ))xX(t) + (K − γ̂ T )

×

 x

0
e(A0+B(K−γ̂ T ))(x−y)Bw(y, t)dy


. (52)

Theorem 1. Let Assumptions 1–4 hold and consider the closed-loop
system consisting of (21)–(29), the control law (30) and the update
laws given by (35)–(39). There exists κ∗ > 0 such that for any
κ ∈ (0, κ∗

[, there exist positive constants R and ρ independent
of the initial conditions such that for all initial conditions satisfying
(X0, Ξ 0

X , Ξ 0
i , Ξ 0

U , δ0, u0, ξX 0
, ξ ai0, ξU 0

, b̂0, γ̂ 0, θ̂0, β̂0
i , β̂

T
u ) ∈ Rn

×

R2
× R2

× R2
× R2

× L2(0,D) × L2(0,D) × L2(0,D) × L2(0,D) ×

Πb × Πγ × Πθ × Πβi × Πβu , the following holds:

Υ (t) ≤ R

eρΥ (0)

− 1

, ∀t ≥ 0 (53)

where

Υ (t) = |X(t)|2 + |ΞX (t)|2 +

n
i=1

|Ξi(t)| +

 D

0


uβu(x, t)

2

+ ξX T
(x, t)ξX (x, t) +

n
i=1

ξ ai T (x, t)ξ ai(x, t)

dx

+b2(t) +γ T (t)γ (t) +θ T (t)θ(t) +

n
i=1

βi(t)Tβi(t)

+βu(t)Tβu(t). (54)

Furthermore,

lim
t→∞

X(t) = 0, lim
t→∞

b̂(t)U(t) + β̂T
u (t)ΞU(t) = 0. (55)

5. Stability proof

The transformed system is given by

Ẋ(t) = (A0 + BK) X + B
γ TX(t) +θ T ξX (0)

+

n
i=1

βT
i ξ ai(0) +βT

u ξU(0) +
1

b̂
w(0)

+bu(0) + θ T
δ δ(t)


, (56)

wt(x, t) = wx(x, t) +
˙̂bpb(x, t) + ˙̂γ pγ (x, t) +

˙̂
θ
T
pθ (x, t)

+

n
i=1

˙̂
β

T

i pβi(x, t) +
˙̂
β

T

upβu(x, t) −bqb(x, t)
−γ Tqγ (x, t) −θ Tqθ (x, t) −

n
i=1

βT
i qβi(x, t)

−βT
u qβu(x, t) − Ke(A0+Bγ̂ )xBθ T

δ δ(t), (57)

w(D, t) = 0, (58)

where

pb = u(x, t) − (K − γ̂ T )

 x

0
e(A0+Bγ̂ )(x−y)Bu(y, t)dy, (59)

pγ = −X(t)(K − γ̂ T )xe(A0+Bγ̂ )B

− B(K − γ̂ T )

 x

0
e(A0+Bγ̂ )(x−y)Bζ (y, t)dy, (60)

pθ = ξX (x, t) −

 x

0
ξX (y, t)BT e(A0+Bγ̂ )(x−y)(K − γ̂ T )Tdy, (61)

pβi = ξ ai(x, t) −

 x

0
ξ ai(y, t)BT e(A0+Bγ̂ )(x−y)(K − γ̂ T )Tdy, (62)
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pβu = ξU(x, t) −

 x

0
ξU(y, t)BT e(A0+Bγ̂ )(x−y)(K − γ̂ T )Tdy, (63)

qb = u(0)(K − γ̂ T )e(A0+Bγ̂ )xB, (64)

qγ = X(t)(K − γ̂ T )e(A0+Bγ̂ )xB, (65)

qθ = ξX (0)(K − γ̂ T )e(A0+Bγ̂ )xB, (66)

qβi = ξ ai(0)(K − γ̂ T )e(A0+Bγ̂ )xB, (67)

qβu = ξU(0)(K − γ̂ T )e(A0+Bγ̂ )xB. (68)

Before the main proof of theorem, we state the following
lemma.

Lemma 3. There exists a constant Mc such that the following bounds
hold

˙̂b(t)
 D

0
(1 + x)w(x, t)pb(x, t)dx ≤ κbcwMc


|X(t)|2 + |ξX (0)|2

+

n
i=1

|ξ ai(0)|2 + ∥w(t)∥2
+ |δ(t)|2


, (69)

˙̂γ (t)
 D

0
(1 + x)w(x, t)pb(x, t)dx ≤ κγ cwMc


|X(t)|2 + ∥w(t)∥2

+ ∥ξX (t)∥2
+

n
i=1

∥ξ ai(t)∥2

, (70)


˙̂
θ
T
(t)
 D

0
(1 + x)w(x, t)pθ (x, t)dx +

n
i=1

˙̂
β

T

i (t)

×

 D

0
(1 + x)w(x, t)pβi(x, t)dx +

˙̂
β

T

u(t)

×

 D

0
(1 + x)w(x, t)pβu(x, t)dx


≤ 3max{κθ , κβi , κβu}cwMc

×


|X(t)|2 + |ξX (0)|2 +

n
i=1

|ξ ai(0)|2 + ∥w(t)∥2

+ ∥ξX (t)∥2
+

n
i=1

∥ξ ai(t)∥2
+ |δ(t)|2


, (71)

where

Mc =
3MD

MNL

max


1
bmin


θ +

1
bmin

β

T 
θ +

1
bmin

β


,

1
bmin


β +

a
bmin

β

T 
θ +

1
bmin

β


, λmax{PBBTP},

(KMγ BD)2 + (γ TMγ BD)2, (|KMγ BD|) + (|γMγ BD|)Z
T
Z

, (72)

with

Mγ = max
γ∈Πγ

e(A+Bγ )D, (73)

MD = max
γ∈Πγ


1 + D,D


1 + D(1 + 2(KMγ B)2)


,

((K − γ T )Mγ BD)Z
T
Z, λmax{PBBTP}


, (74)

MNL = min{1, λmin{P}, λmin{PG}, λmin{PG}, cw, c0, cγ }, (75)

and using Assumptions 1 and 2, the fact that Z(t) = MW (t) and the
parametric solution of M, the bound for Z(t) is given by

|Z(t)|2 < Z
T
Z = 2g2

max max
ω∈[ωmin,ωmax]

λmax{MTM}. (76)
Proof. It is possible to show the bounds by using the Cauchy–
Schwarz andYoung’s inequalities, the change of coordinates for the
double integrals, and (18), (51). �

Proof of Theorem. Consider the following Lyapunov function

V (t) = ln(N(t)) +
cw
κb

b2 +
cw
κγ

γ Tγ +
cw
κθ

θ Tθ
+ cw

n
i=1

1
κβ i

βT
i
βi +

cw
κβu

βT
u
βu + ϵδδ

TPGδ (77)

where ϵδ > 1
λmin{QG}


4max{κb, κγ , κθ , κβi , κβu}cwMc + λmax{PBθ T

δ

θδBTP} + (KMγ BD)2λmax{θδθ
T
δ }


. Substituting (35)–(39), using

Lemma 3 and Young’s inequality for cross terms, the time
derivative of (77) is given by

V̇ ≤ −
(Md − 5cwκ∗Mc)

NL(t)


|X(t)|2 + |Ξ0(t)|2 +

n
i=1

|Ξi(t)|2

+ |ξX (0, t)|2 +

n
i=1

|ξ ai(0, t)|2 + |w(0, t)|2 + ∥ξX (t)∥2

+

n
i=1

∥ξ ai(t)∥2
+ ∥w(t)∥2


− Mδ|δ(t)| (78)

where

Mδ = ϵδλmin{QG} − 4cwκ∗Mc − λmax{PBθ T
δ θδBTP}, (79)

Md = min

λmin{Q } − 2 − λmax{PGGNNTGTPG}

− nλmax{PGllTPG} − 2c0λmax{NTN}, λmin{QG}

− 1 − 2c0, λmin{QG} − 1 − 2cγ , c0, cγ ,

cw − λmax{PBBTP}


. (80)

By choosing

κ∗
=

Md

5cwMc
(81)

and

κb, κγ , κβ , κθ , κβu


∈ [0; κ∗

[
5, we obtain V̇ (t) ≤ 0 and

V (t) ≤ V (0). (82)

From the transformation (42) and its inverse (50), by using (18) and
(34), the inequalities between the states are written as

∥w(t)∥2
≤ r1∥uβu(t)∥

2
+ r2∥ξX (t)∥2

+ r3
n

i=1

∥ξ ai∥2
+ r4|X(t)|2, (83)

∥uβu(t)∥
2

≤ s1∥w(t)∥2
+ s2∥ξX (t)∥2

+ s3
n

i=1

∥ξ ai∥2
+ s4|X(t)|2, (84)

where r1, r2, s1, s2 are sufficiently large positive constants. From
(77) and (84), it follows that

b2 +γ Tγ +θ Tθ +

n
i=1

βT
i
βi +βT

u
βu + δT (t)δ(t)

≤


(n + 4)κ∗

cw
+

ϵδ

λmin{PG}


V (t), (85)
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|X(t)|2 ≤
1

λmin{P}


eV (t)

− 1


(86)

|Ξ0(t)|2 ≤
1

λmin{PG}


eV (t)

− 1

, (87)

|Ξi(t)|2 ≤
1

λmin{PG}


eV (t)

− 1

, i = 1, . . . , n (88)

∥ξX (t)∥2
≤

1
c0


eV (t)

− 1

, (89)

∥ξ ai(t)∥2
≤

1
cγ


eV (t)

− 1

, i = 1, . . . , n (90)

∥uβu(t)∥
2

≤


s1
cw

+
s2
c0

+
ns3
cγ

+
s4

λmin{P}

 
eV (t)

− 1

. (91)

From the definition Υ (t), it follows that

Υ (t) ≤ R

eV (t)

− 1

, (92)

where R =


s1
cw

+
s2+1
c0

+
n(s3+1)

cγ
+

s4+1
λmin{P}

+
n+1

λmin{PG}


and using

the fact ln(1 + cc) ≤ cc for cc > −1 and (83), we obtain

V (0) ≤ ρΥ (0) (93)

with ρ =


cw

r1 + r2 + nr3 + r4 +

1
κb

+
1
κa

+
1
κθ

+
n

κβi
+

1
κβu


+ c0 + ncγ + λmax{P} + (n + 1)λmax{PG}


. Therefore we ob-

tain the stability result in theorem.We nowprove the convergence
of the state X(t). From (82), we obtain the uniform boundedness
of |X(t)|, ∥ξX (t)∥, ∥ξ ai(t)∥, ∥w(t)∥, |b̂(t)|, |γ̂ (t)|, |θ̂ (t)|, |β̂i(t)|,
|β̂u(t)|, |Ξ0(t)|, |Ξi(t)| and |δ(t)|. From (6), (16), (18), it follows
that |ΞX (t)| and |ΞU(t)| are bounded. From (84), it is obtained
that ∥uβu(t)∥ is also bounded in time. From (30), we get uni-
formly boundedness of U(t). Thus we get that u(0, t) is uniformly
bounded for t ≥ D. Finally, with (56), we obtain that dX(t)2/dt
is uniformly bounded for t ≥ D. Since |X(t)| is square integrable,
from (82), we conclude from Barbalat’s lemma (Liu & Krstic, 2001)
that X → 0 as t → ∞. Moreover, from (82) it follows that
∥w(t)∥, ∥ξX (t)∥, ∥ξ ai(t)∥ are square integrable. From (84), we ob-
tain the square integrability of ∥uβu(t)∥. In addition to this, from
(16) and (82), it follows that |ΞX (t)| and |Ξi| are also square inte-
grable. Therefore, using (30), the square integrability of b̂(t)U(t)+

β̂T
u (t)Ξu(t) is obtained. Furthermore,

d

b̂(t)U(t) + β̂T

u Ξu(t)
2

dt
=


b̂(t)U(t) + β̂T

u Ξu(t)


×


−

˙̂
θ(t)TΞX (t) − θ̂ T (t)Ξ̇X (t) −

n
i=1

 ˙̂
β i(t)

TΞi(t)

+ β̂T
i (t)Ξ̇i(t)


− ˙̂γ

T
(t)pγ (D, t) + Ke(A0+Bγ̂ (t))xẊ(t)

+ K ˙̂
θ(t)T

 D

0
ξX (y, t)e(A0+Bγ̂ (t))(D−y)Bdy

+

n
i=1

K ˙̂
β i(t)

T
 D

0
ξ ai(y, t)e(A0+Bγ̂ (t))(D−y)Bdy

+ K ˙̂
βu(t)

T
 D

0
ξU(y, t)e(A0+Bγ̂ (t))(D−y)Bdy

+ ḃ(t)
 D

0
u(y, t)e(A0+Bγ̂ (t))(D−y)Bdy + KBζ (D, t)
Time (sec)

Fig. 1. System’s response for the simulation example.

− Ke(A0+Bγ̂ T (t))DBζ (0, t)

+ K
 D

0
(A0 + Bγ̂ T (t))e(A0+Bγ̂ T (t))(D−y)ζ (y, t)dy


. (94)

The signals ḃ(t), γ̇ (t), θ̇ (t), β̇i(t), β̇u(t) are uniformly bounded
over t ≥ 0 according to (35)–(39). From (18), it follows that
∥ξU(t)∥ is bounded. Consequently, from (50), the boundedness of
∥u(t)∥ is obtained. Moreover, by using the uniform boundedness
of X(t), Ẋ(t), ∥ζ (t)∥,U(t), ΞU(t) and the parameter estimations,
we obtain the uniformboundedness of d


b̂(t)U(t)+β̂T

u Ξu(t)
2

/dt .
Then, from Barbalat’s lemma (Liu & Krstic, 2001) that


b̂(t)U(t) +

β̂T
u (t)Ξu(t)


→ 0 as t → ∞.

By using (14), (13), (17) and (24)–(27) and the fact that X → 0
as t → ∞ and G is Hurwitz, it is concluded that ΞX (t), Ξi(t),
δ(t) → 0 as t → ∞. Therefore, considering (21) and the fact
that


b̂(t)U(t) + β̂T

u Ξu(t)


→ 0 as t → ∞, it is obtained that
1

b̂(t−D)
β̂u(t − D)TΞU(t − D) →

1
bν(t) as t → ∞. �

6. Simulation results

We illustrate the performance of our controller with a second-
order system with γ T

=

0.5 −0.5


, b = 1, the unknown

disturbance ν(t) = 0.3 sin(2t + π/5), the known delay D = 1.8,
and initial conditions x(0) =


0 0

T . It is assumed that amax =

1, amin = −1, bmax = 2, bmin = 0.2, |g|max = 0.6, ωmax = 1 and
ωmin = 0.001. According to the considered bounds on parameters,
κ∗ is calculated as 0.0013. The control gain K is chosen such that
the eigenvalues of A0 +BK are −4, −5 and c0 = cγ = 0.01. We set
all the update gains to 0.00125. Finally, the controllable pair (G, l)
is chosen as l =


0, 1

T
,G =


0 1
0 0


+ l


−1.5 −2.5


. From

Figs. 1 and 2, one can observe that x(t) and 1
b̂(t−D)

β̂T (t −D)ΞU(t −

D) −
1
bν(t) converge to zero as Theorem 1 predicts.

7. Conclusions

The problem of disturbance cancellation for unknown linear
systems with input delay is considered. The problem is converted
to an adaptive control problem by representing the disturbance as
a constant unknown vector multiplied by a known regressor plus
an exponentially decaying disturbance. The delay is represented as
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Time (sec)

Fig. 2. The disturbance estimation error for the simulation example.

a transport PDE. Using the certainty equivalence principle and the
backstepping boundary control procedure for PDEs, an adaptive
controller is designed and it is shown that the equilibrium of
the closed loop system is stable. Moreover, it is proven that the
state X(t) converges to zero as t → ∞ with perfect disturbance
estimation. The effectiveness of the controller is demonstrated
with a numerical example.
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