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a b s t r a c t

We develop an adaptive output-feedback controller for a wave PDE in one dimension with actuation
on one boundary and with an unknown anti-damping term on the opposite boundary. This model is
representative of a torsional stick–slip instability in drillstrings in deep oil drilling, as well as of various
acoustic instabilities. The key feature of the proposed controller is that it requires only themeasurements
of boundary values and not of the entire distributed state of the system. Our approach is based on
employing Riemann variables to convert thewave PDE into a cascade of two delay elements, with the first
of the two delay elements being fed by control and the same element in turn feeding into a scalar ODE.
This enables us to employ a prediction-based design for systems with input delays, suitably converted to
the adaptive output-feedback setting. The result’s relevance is illustrated with simulation example.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive control of distributed parameters systems is a chal-
lenging topic due to the infinite dimension of the state and some-
times also of the parameter. As underlined in Bohm, Demetriou,
Reich, and Rosen (1998), one of the most important drawbacks
of most of the existing adaptive schemes for partial differential
equations (PDEs) (see Bentsman & Orlov, 2001 and Duncan, Pasik-
Duncan, & Maslowski, 1992 for example) is that they require mea-
surement of the full distributed state, which is seldom the case
in applications. The same observation can be made for analo-
gous finite-dimensional approaches, often considered in practice
(Dochain, Babary, & Tali-Maamar, 1992; Evesque, Dowling, & An-
naswamy, 2001).

Over the past decade there has been a steady increase of in-
terest in adaptive boundary control. Design of adaptive bound-
ary regulation for Burgers’ equations has been reported in
Kobayashi (2001) and extended to the similar but higher order

I The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Hiroshi Ito under
the direction of Editor Andrew R. Teel.

E-mail addresses: delphine.bresch-pietri@gipsa-lab.fr (D. Bresch-Pietri),
krstic@ucsd.edu (M. Krstic).
1 Tel.: +33 4 76 82 64 04; fax: +33 4 76 82 63 88.

Kuramoto–Sivashinsky equation in Kobayashi (2002). Output-
feedback adaptive designs for parabolic PDEs have been developed
in Krstic and Smyshlyaev (2008a) and Smyshlyaev and Krstic
(2007a,b) via the backstepping approach.

In this paper, we consider an unstablewave equation controlled
from a boundary, and where the source of instability arises from
an anti-damping boundary condition which is not collocated with
control. This PDE has all of its infinitely many eigenvalues in the
right-half plane,with arbitrary positive real parts,which is a reason
why we refer to this PDE as ‘‘anti-stable’’.

Such a wave model with anti-damping phenomenon can be
used, for example, to model duct combustion dynamics. For such
a process, depicted in Fig. 1, the pressure field is subject to an
acoustic dynamics (De Queiroz & Rahn, 2002), disturbed by a
varying heat release produced by a flame anchored at a specific
location. This heat release varies according to the pressure rate,
which leads to combustion instabilities (Annaswamy & Ghoniem,
1995). These instabilities can be controlled thanks to a loudspeaker
which is placed as far as possible from the flame front for thermal
protection.2 A second application fitting into this framework is
the stick–slip phenomenon for drilling (Sagert, Di Meglio, Krstic, &
Rouchon, 2013; Saldivar, Mondié, Loiseau, & Rasvan, 2011), which

2 Nevertheless, note that the pressure at x = 0 is not measured in this set-
up. Therefore, the control law proposed in the sequel of this paper cannot be
immediately applied.

http://dx.doi.org/10.1016/j.automatica.2014.02.040
0005-1098/© 2014 Elsevier Ltd. All rights reserved.
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Fig. 1. A schematic of a premixed combustor with a sensor (microphone) and an
actuator (loudspeaker). The distributed pressure inside the duct is disturbed by the
heat release due to the combustion flame front at x = 0 and controlled with a
loudspeaker located at x = 1.

Fig. 2. Schematic view of a drilling system. A well is drilled with a rotating rock-
crushing device, called a bit, driven by a rotatory table at the surface, equippedwith
an electric motor (actuator). The top rotatory table position is measured, alongwith
the top andbottombit velocities. The lattermeasurement can be transmitted via the
mud system flowing back to the surface or via dedicated acoustic waves.

is an undesirable limit cycle of the drillstring velocity yielding
potentially significant damages on oil production facilities3 (see
Fig. 2). In this context, adaptive control of the (distributed) bit
velocity is of considerable interest, as the ‘‘drill bit on rock’’ friction
term involved in modeling is poorly known. This results into an
experimental set-up captured by the PDE dynamics addressed in
this paper.

Even in the non-adaptive case, the underlying anti-damping
wave PDE has been an open problem until the recent contribution
(Smyshlyaev & Krstic, 2009), in which a backstepping transforma-
tion has been proposed to design boundary control. This approach
has been pursued in Krstic (2010) to provide an adaptive controller
in the case of unknown anti-damping coefficient. Nevertheless, the
obtained controller suffers from the requirement of the measure-
ment of the entire distributed state of the system.

In this paper, we revisit this problem via the introduction
of Riemann variables, reformulating the plant in the form of

3 However, the anti-damping wave equation is only an approximation of the
model commonly used to account for this phenomenon (Sagert et al., 2013), in
which a friction ODE is used as the boundary condition instead. The extension of
the proposed adaptive technique to this framework is a direction of future work.

an input-delay model cascaded with a stable transport equation
occurring in the direction opposite from the propagation delay.
This formulation allows one to use infinite-dimensional time-delay
control strategy, namely a prediction-based controller which has
recently been reinterpreted in the light of the PDE backstepping
technique (Krstic & Smyshlyaev, 2008b). Exploiting the transport
equation structure of the dynamics under consideration, we
present a global output-feedback adaptive controller.

Both the controller and the parameter estimator that we design
employ only boundary measurements. This is our paper’s main
achievement. While Krstic (2010) was the first result reporting
adaptive control of an unstable wave PDE with unmatched
parametric uncertainty, the present paper is the first result on
output-feedback adaptive control for the same class of systems.

Our paper’s other significant achievement is that, unlike (Krstic,
2010), where stability was achieved only in an energy-type norm
and regulation was achieved only in the sense of an essential
supremum (in time) of the system’s energy norm (in space) going
to zero, in this paper we prove both boundedness and regulation
pointwise in the spatial variable for both the displacement and
velocity components of the wave PDE’s state.

Contrary to previous prediction-based adaptive controllers
proposed in Bresch-Pietri, Chauvin, and Petit (2012) and Bresch-
Pietri and Krstic (2010) where the delay itself is considered as
uncertain and adaptation was designed to handle this lack of
knowledge, here we only consider a linear parametric uncertainty.
While delay adaptive output feedback cannot be solved globally
because of the non-linear parametrization of the delay, the
unknown parameter considered here appears in a linear manner
in the plant. Therefore, the stability result proposed in this paper
is global, in the sense that the initial parameter error can be
arbitrarily large without jeopardizing stabilization (see Bresch-
Pietri & Krstic, 2009 in which global prediction-based stabilization
is also obtained with parametric uncertainties).

The paper is organized as follows. In Section 2, we present and
reformulate the problem under consideration, before providing
the proposed adaptive control law in Section 3, along with
global stability statements. We illustrate these theorems through
numerical simulations in Section 4 before providing their proof in
Sections 5–7 and concluding with directions of future work.
Notations. In this paper, | · | is the Euclidean norm and ku(·)k is the
spatial L2-norm of a signal u(x, ·), x 2 [0, 1], which is denoted as

ku(t)k2 =
sZ 1

0
u(x, t)2dx. (1)

For a scalar x, we write the sign function as sgn(x) with sgn(x) = 1
if x > 0 and sgn(x) = �1 if x < 0. For (a, b) 2 R2 such that a < b,
we define the standard projector operator on the interval [a, b] as a
function of two scalar arguments f (denoting the parameter being
update) and g (denoting the nominal update law) in the following
manner:

Proj[a,b](f , g) = g

(0 if f = a and g < 0
0 if f = b and g > 0
1 otherwise.

2. Problem statement

Consider the system

uxx = utt (2)
ux(0, t) = �qut(0, t) (3)
ux(1, t) = U(t) (4)

in which U(t) is the input, appearing in the form of Neumann
actuation, and (u, ut) is the system state, with (u(·, 0), ut(·, 0))
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2 H1([0, 1]) ⇥ (L2([0, 1]) \ L1([0, 1])) and (ux(·, 0), uxx(·, 0),
uxt(·, 0)) 2 L1([0, 1])3.

Our objective is to provide a feedback law stabilizing the
anti-stable wave equation, despite large uncertainty in the anti-
damping coefficient q � 0. This point is dealtwith by employing an
adaptive controller, fed by an estimate q̂(t)which is updated based
on the system’s real-time measurements to guarantee closed-loop
stability.

As always in indirect adaptive control, certain a priori assump-
tions on the parameter values are needed in order to ensure sta-
bilizability under parameter estimates. For our system, this gives
rise to the following assumption.

Assumption 1. There exist known constants q and q such that q <

q and q 2 [q, q], with either q < 1 or q > 1.

As discussed in Krstic (2010), when q = 1, the real part of the
plant (infinite) eigenvalues is +1 while, for q 6= 1 and q � 0, the
real part is positive but finite.

Our second objective is to design a feedback lawwhich does not
employ the distributed state, but only boundary values measure-
ments. We assume that the signals u(0, ·), u(1, ·) and ut(1, ·) are
measured for all time.

As a first step in our development, we reformulate plant (2)–(4)
by introducing the following intermediate Riemann variables4 and
transformed control variable

⇣ = ut + ux (5)

! = 1 � q
1 + q

(ut � ux) (6)

W (t) = U(t) + ut(1, t) (7)

which lead to the following new dynamics

ut(0, t) = 1
1 � q

⇣ (0, t) (8)

⇣t = ⇣x (9)
⇣ (1, t) = W (t) (10)
!t = �!x (11)
!(0, t) = ⇣ (0, t). (12)

In this new framework, the wave phenomenon is represented as
the cascade of two transport PDEs, with one ODE (simple integra-
tor) being driven by the first of the two PDEs. The ODE (8) with
state u(0, ·) plays a central role and it has to be made asymptot-
ically stable by feedback, which is applied through the transport
equation (9) controlled at the boundary x = 1. A second trans-
port phenomenon (11) is also present, in the opposite direction,
accounting for the reflection of the wave at x = 0.

Remark 1. From the transport equations (9) and (11),wehave that
⇣ (x, t) = ⇣ (y, t+x�y) and!(x, t) = !(y, t�x+y) = ⇣ (x, t�2x)
for any 0  y  x  1 and any t � 0. In particular, ⇣ (x, t) =
W (t � 1 + x) and !(x, t) = W (t � 1 � x) for any x 2 [0, 1] and
t � 0.

Following Krstic (2008), (8)–(10) can also be interpreted as an
input-delay ordinary differential equation, delayed by 1 unit of
time, followed by a stable transport phenomenon (11)–(12). This
motivates the control design.

4 The choice of these asymmetric variables (⇣ unweighted and ! weighted) is
made so that they can be directly computed from past values of the input, as
explained below in Remark 1.

3. Control design

Consider the following control law

U(t) = �ut(1, t) � c0
✓

(1 � q̂)u(0, t) +
Z t

t�1
U(⌧ )d⌧

+ u(1, t) � u(1, t � 1)
◆

(13)

in which c0 > 0 is a constant and q̂ is an estimate of the unknown
parameter q. We choose the parameter estimate update law as

˙̂q(t) = � c0
1 + N(t)

Proj[q,q]
⇢
q̂(t), sgn(1 � q)

✓
b1(U(t � 1)

+ ut(1, t � 1))
Z t

t�1
e1+⌧�tw(⌧ , t)d⌧ � u(0, t)2

◆�
(14)

N(t) = u(0, t)2 + b1
Z t

t�1
e1+⌧�tw(⌧ , t)2d⌧

+ b2
Z t�1

t�2
e2+⌧�t(U(⌧ ) + ut(1, ⌧ ))2d⌧ (15)

in which the bounds q, q are defined in Assumption 1, Proj is the
standard projection operator, the normalization constants b1, b2 >
0 and the update gain � > 0 are tuning parameters and, for t � 0
and t � 1  ⌧  t ,

w(⌧ , t) = U(⌧ ) + ut(1, ⌧ ) + c0
✓

(1 � q̂)u(0, t) + u(1, ⌧ )

� u(1, t � 1) +
Z ⌧

t�1
U(� )d�

◆
. (16)

In order to properly interpret this adaptive control law, we provide
several comments next.

The choice of the control law (13) originates from the interpre-
tation of (8)–(10) as an input delay system. Indeed, if qwas known,
the following predictor-based control law (Artstein, 1982; Kwon
& Pearson, 1980; Manitius & Olbrot, 1979) would compensate ex-
actly the delay

W (t) = �c0
✓

(1 � q)u(0, t) +
Z 1

0
⇣ (x, t)dx

◆
(17)

i.e., after 1 unit of time, it would result into the closed-loop dy-
namics ut(0, t) = �c0u(0, t) which is exponentially stable for any
c0 > 0. Noticing that ⇣ (x, t) = U(t + x � 1) + ut(t + x � 1) and
employing a simple change of variable and integration, the control
law (13) follows applying the certainty equivalent principle.

The choice of the update law is based on Lyapunov design, as
detailed in the following section. As common in adaptive con-
trol (Ioannou & Fidan, 2006; Ioannou & Sun, 1996; Krstic, Kanel-
lakopoulos, & Kokotovic, 1995), a projector operator is used in (14).
In addition, normalization (15) is employed in order to limit the
rate of change of the parameter estimate, which could otherwise
act as a destabilizing disturbance. The role of projection is subtle—
keeping the parameter estimate within a priori known bounds en-
ables us to chose the normalization coefficients so that the update
rate, in its role as a disturbance, is dominated by the stabilizing
terms in the analysis.

As a final remark, we would like to stress the fact that the
proposed controller (13)–(16) is entirely computable with only the
measurement of the boundary values u(0, ·), u(1, ·) and ut(1, ·).
This is the main advantage of this control law compared to ones
previously obtained, like e.g. in Krstic (2010) which requires the
measurement of the entire distributed state.
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Theorem 1. Consider the closed-loop system consisting of the plant
(2)–(4), the control law (13) and the parameter update law (14)–(15).
Define the functional

� (t) = u(0, t)2 +
Z 1

0
ux(x, t)2dx +

Z 1

0
ut(x, t)2dx

+ (q � q̂(t))2. (18)

For any c0 > 0 and any

b2 < b⇤
2 = 1

2ec0 max
�
(1 � q)2, (1 � q)2

 (19)

there exists � ⇤(b2, c0) > 0 such that for any � 2 (0, � ⇤), the
following hold:

(1) there exist R, ⇢ > 0 such that

� (t)  R(e⇢� (0) � 1) (20)

(2) (u(·, t), ut(·, t)) 2 L1([0, 1])2 for all t � 0;
(3) and the regulation in maximum norm follows, i.e.,

lim
t!1 max

x2[0,1]
|u(x, t)| = lim

t!1 max
x2[0,1]

|ux(x, t)|
= lim

t!1 max
x2[0,1]

|ut(x, t)| = 0. (21)

Remark 2. It is possible to obtain explicit bound on u and ut .
Namely, under the conditions of Theorem 1, the following point-
wise bounds on the state (u, ut) hold for all x 2 [0, 1] and t � 0:

u(x, t)2  eV0 � 1 + 2
✓✓

2 + 4
✓

1
b2

✓
1 + q

min{1 � q, 1 � q}
◆2

+ r1 + r2
b1

◆◆
(eV0 � 1)

◆ 1
2
✓✓

1
b2

✓
1 + q

min
�
1 � q, 1 � q

 
◆2

+ r1 + r2
b1

◆
(eV0 � 1)

◆ 1
2

(22)

ut(x, t)2  1
2

✓
3
✓
2

s
eV0 � 1

b1

✓
2e
✓
c20

✓
r1 + r2

b1

◆
(eV0 � 1)

+ kuxt(0)k2 + kuxx(0)k2
◆

+ 3ec20
⌘

eV0V0

⇥
✓

� V0

min{1 � q, 1 � q} + c20 max{1 � q, 1 � q}2

+ � c0
b1c20 max

�
1 � q, 1 � q

 2 b1 + 1
2

◆◆ 1
2

+ c20

✓
max{1 � q, 1 � q}2 + 1

b1

◆✓
eV0 � 1

◆◆

+
✓

1 + q̄
min{1 � q, 1 � q}

◆2

R0

◆
(23)

where

⌘ = min
�
c0 � 2eb2c20 max

�
(1 � q)2, (1 � q)2

 
,

b1 � c0� � 2eb2 � 1
c0 min

�
(1 � q)2, (1 � q)2

 ,

1 � � c20b
2
1e

2 �1 + c20
�
1 � max

�
(1 � q)2, (1 � q)2

 �� 

V0 = log
✓
1 + (1 + b1r1e)u(0, 0)2 + b1er2

Z 1

0
(U(x � 1)

+ ut(x � 1))dx + b2
Z 1

0
(U(�x � 1)

+ ut(�x � 1))dx
◆

+ (q � q̂(0))2

� min
�|1 � q|, |1 � q| (24)

R0 = max
x2[0,1]

ut(x, 0)2 + ux(x, 0)2

2
+ c20

✓
max{1 � q, 1 � q}2

+ r1 + r2
b1

◆
(eV0 � 1) + 2

s
eV0 � 1

b2

⇥
✓kuxt(0)k2 + kuxx(0)k2

2
+ max

x2[0,1]
uxx(x, 0)2 + uxt(x, 0)2

2

◆

+ 3c20

✓
� V0

min{1 � q, 1 � q} + c20 max{1 � q, 1 � q}2

+ � c0
b1c20 max{1 � q, 1 � q}2 + b1 + 1

2

◆
1
⌘
eV0V0

+ 3
✓
c20 max{1 � q, 1 � q}2(eV0 � 1) + 2

s
eV0 � 1

b1

⇥
✓
2ec20

✓
r1 + r2

b1

◆
(eV0 � 1) + kuxt(0)k2 + kuxx(0)k2

+ 3ec20

✓
� V0

min{1 � q, 1 � q} + c20 max{1 � q, 1 � q}2 + � c0

⇥ b1c20 max{1 � q, 1 � q}2 + b1 + 1
2

◆
eV0V0

⌘

◆ 1
2
◆ 1

2

(25)

b1 = 1 + c0� + 2eb2 + 1
c0 min

�
(1 � q)2, (1 � q)2

 (26)

and in which the positive constants r1 and r2 can be chosen as

r1 = 3c20 max
�
1 � q, 1 � q

 2
, r2 = 3(1 + c20 ). (27)

Theorem 1 states a stability result (20) jointly with pointwise
boundedness and asymptotic convergence properties (21). Possi-
ble expressions of the pointwise bounds are provided in Remark 2.
These conservative bounds cannot be made arbitrarily small with
the choice of the adaptive controller’s parameters but it is remark-
able that explicit bounds on the system’s states can be derived.

Before providing the proofs of this theorem,we illustrate it with
a simulation example.

4. Illustrative example

We now present numerical simulation on a toy example il-
lustrating the merits of the controller (13)–(15). The unknown
anti-damping coefficient is chosen as q = 3 (with q = 2 and
q = 4) and two sets of initial conditions are considered, respec-
tively u(·, 0) = 1 which is an unstable equilibrium point and
u(x, 0) = 0.1 sin(x). Corresponding simulation results are pic-
tured respectively in Figs. 3 and 4. For both cases, the controller
is turned on after 2 s and the controller parameters are chosen as
c0 = 2, � = 5e � 4 and b2 = 1e � 2.

The internal behavior of the proposed controller is particularly
clear in Fig. 3(a). At t = 2 s, the control law starts acting and
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(a) System state evolution. The adaptive controller is turned on after 2 s. (b) Control input and parameter estimate evolutions. The adaptive controller
is turned on after 2 s.

Fig. 3. Stabilization of plant (2)–(4) starting from the (unstable) equilibrium state u(·, 0) = 1.

(a) System state evolution. The adaptive controller is turned on after 2 s. (b) Control input and parameter estimate evolutions. The adaptive controller
is turned on after 2 s.

Fig. 4. Stabilization of plant (2)–(4) initialized at time t = 0 with u(x, 0) = 0.1 sin(x).

kicks in the dynamics of u(0, ·) at t = 3 s, consistently with the
interpretation of the wave equation as delay systems with 1 unit
of time delay. From there, the boundary value u(0, ·) exponentially
converges to zero and,while propagating back to x = 1, the control
acts now in a stabilizing manner on the system state: u(x, t) starts
to converge exponentially at t = 3+x, corresponding to the stable
transport dynamics (11). Note that this exponential behavior is
only observed here and that only asymptotic stability is stated in
Theorem 1. This behavior is consistent with the evolution of the
control law pictured in Fig. 3(b), which is turned on at t = 2 and
is finally ‘‘updated’’ after a wave round-trip, in the sense that the
control peak observed at t = 4 s is due to the change of sign and of
scale of ut(1, t) at this instant.

A similar behavior can be observed in Fig. 4 (the control starts
acting at t = 2 s corresponding to the minimal value of u(1, ·),
kicks in at t = 3 s corresponding to the maximum value of u(0, ·)
and propagates backward from there) for which the initial condi-
tion is not an equilibriumpoint and the beginning of the simulation
consequently exhibits diverging performance.

Finally, in both cases, the parameter update law does not pro-
vide the convergence of the parameter estimate to the unknown
parameter value, even if stabilization is achieved, as it is usually
the case in adaptive control (Ioannou& Fidan, 2006; Ioannou& Sun,
1996).

5. Stability—proof of (20)

5.1. Backstepping transformation and target system

Consider the backstepping transformation of the distributed
variable ⇣ ,

z(x, t) = ⇣ (x, t) + c0
✓

(1 � q̂)u(0, t) +
Z x

0
⇣ (y, t)dy

◆
. (28)

Following Remark 1 with a suitable change of variable and direct
integration, this backstepping transformation is closely related to
(16) with

z(x, t) = w(t � 1 + x, t), x 2 [0, 1], t � 0. (29)

Further, using the exact same steps, one can rewrite (13) as

W (t) = �c0
✓

(1 � q̂)u(0, t) +
Z 1

0
⇣ (x, t)dx

◆
(30)

and, jointly with (28), the plant (8)–(12) can then be reformulated
as the following target system

ut(0, t) = �c0u(0, t) + 1
1 � q

�
z(0, t) � q̃c0u(0, t)

�
(31)

zt = zx + c0
✓

q̃
1 � q

(z(0, t) � c0(1 � q̂)u(0, t)) � ˙̂qu(0, t)
◆

(32)

z(1, t) = 0 (33)
!t = �!x (34)

!(0, t) = z(0, t) � c0(1 � q̂)u(0, t) (35)

in which q̃(t) = q � q̂(t) is the parameter estimation error.
This target system is the one which is exploited in the Lyapunov
analysis, as it presents the advantage of having a boundary
condition z(1, t) = 0.

5.2. Lyapunov analysis

We are now ready to start the Lyapunov analysis. Define the
Lyapunov–Krasovskii functional candidate

V (t) = log(1 + N(t)) + q̃(t)2

� |1 � q| (36)
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in which, using (29), suitable change of variable and direct inte-
gration jointly with Remark 1, the normalization factor originally
defined in (15) can be expressed as

N(t) = u(0, t)2 + b1
Z 1

0
exz(x, t)2dx

+ b2
Z 1

0
e1�x!(x, t)2dx. (37)

Note that, similarly, (14) can be reformulated as

˙̂q(t) = � c0
1 + N(t)

Proj[q,q]

(

q̂(t), sgn(1 � q)
✓
b1(z(0, t)

� c0(1 � q̂)u(0, t))
Z 1

0
exz(x, t)dx � u(0, t)2

◆)

(38)

observing that sgn(1 � q) = sgn(1 � q) is known according to
Assumption 1. Taking a time-derivative of (36), one gets

V̇ (t)  1
1 + N(t)

✓
�2c0u(0, t)2 + 2u(0, t)

1 � q
(z(0, t) � c0u(0, t)

⇥ q̃(t)) � b1z(0, t)2 � b1 kz(t)k2 + 2b1c0
Z 1

0
exz(x, t)dx

⇥
✓

q̃
1 � q

(z(0, t) � c0(1 � q̂)u(0, t)) � ˙̂q(t)u(0, t)
◆

+ b2
✓
e!(0, t)2 � k!(t)k2

◆◆
� 2q̃(t) ˙̂q(t)

� |1 � q| . (39)

Using projection operator properties and (14)–(15) (or equiva-
lently but with a more suitable set of variables (38)–(37)), one ob-
tains

V̇ (t) = 1
1 + N(t)

✓
�2c0u(0, t)2 + 2u(0, t)

1 � q
z(0, t) � b1z(0, t)2

� b1 kz(t)k2 + b2
✓
e!(0, t)2 � k!(t)k2

◆

� 2b1c0 ˙̂q(t)u(0, t)
Z 1

0
exz(x, t)dx

◆
. (40)

Observing that, if b1 > 1,
����
2u(0, t)
1 + N(t)

Z 1

0
exz(x, t)dx

����  1

it follows with (38) that
����2 ˙̂q(t)u(0, t)

Z 1

0
exz(x, t)dx

����

 � c0(b21e
2(1 + c20 (1 � q̂)2) kz(t)k2 + z(0, t)2) (41)

and therefore

V̇ (t)  1
1 + N(t)

✓
�2c0u(0, t)2 + 2u(0, t)

1 � q
z(0, t)

� (b1 � c0� )z(0, t)2 � b1(1 � � c20b
2
1e

2(1 + c20

⇥ (1 � q̂)2))kz(t)k2 + b2
✓
e!(0, t)2 � k!(t)k2

◆◆
. (42)

Finally, one gets

!(0, t)2  2(z(0, t)2 + c20 (1 � q̂)2u(0, t)2) (43)

and therefore, applying Young’s inequality,

V̇ (t) = 1
1 + N(t)

✓
�(c0 � 2eb2c20 (1 � q̂)2)u(0, t)2

�
✓
b1 � c0� � 2eb2 � 1

c0(1 � q)2

◆
z(0, t)2

� b1(1 � � c20b
2
1e

2(1 + c20 (1 � q̂)2))kz(t)k2

� b2k!(t)k2
◆

. (44)

Consequently, by choosing b2 according to (19), b1 as (26) and the
update gain � 2 (0, � ⇤) with � ⇤ such that

� ⇤
✓
1 + c0� ⇤ + 2eb2 + 1

c0 min
�
(1 � q)2, (1 � q)2

 
◆2

⇥ c20e
2(1 + c20 max{(1 � q)2, (1 � q̄)2}) < 1 (45)

one obtains that there exists a constant ⌘ > 0 such that

V̇ (t)  � ⌘

1 + N(t)

✓
u(0, t)2 + z(0, t)2

+ kz(t)k2 + k!(t)k2
◆

(46)

and finally that

V (t)  V (0), 8t � 0. (47)

5.3. Stability in terms of the functional �

Finally, we need to establish the stability in terms of � . First,
from the definition of the Riemann variables (5)–(6), one gets

ut(x, t) = 1
2

✓
⇣ (x, t) + 1 + q

1 � q
!(t)

◆
(48)

ux(x, t) = 1
2

✓
⇣ (x, t) � 1 + q

1 � q
!(t)

◆
. (49)

Second, from the backstepping transformation (28) and its inverse

⇣ (x, t) = z(x, t) � c0
✓

(1 � q̂)e�c0xu(0, t)

+
Z x

0
e�c0(x�y)z(y, t)dy

◆
(50)

using Cauchy–Schwarz’s and Young’s inequalities, one obtains the
existence of strictly positive constants r1 and r2 such that

k⇣ (t)k2  r1u(0, t)2 + r2 kz(t)k2 (51)

kz(t)k2  r1u(0, t)2 + r2 k⇣ (t)k2 . (52)

A constructive choice of such constants is given in (27) for example.
With these inequalities and Young’s inequality, it follows that

kut(t)k2 + kux(t)k2  k⇣ (t)k2 +
✓
1 + q
1 � q

◆2

k!(t)k2


✓
1 + q
1 � q

◆2

k!(t)k2 + r1u(0, t)2 + r2 kz(t)k2


✓

1
b2

✓
1 + q

min{1 � q, 1 � q}
◆2

+ r1 + r2
b1

◆
(eV (t) � 1) (53)
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and also that

u(0, t)2  V (t)  eV (t) � 1 (54)
q̃(t)  � |1 � q|V (t). (55)

Consequently, we have that

� (t) 
✓
1 + 1

b2

✓
1 + q

min{1 � q, 1 � q}
◆2

+ r1 + r2
b1

+ � max{|1 � q|, |1 � q|}
◆

(eV (t) � 1). (56)

Finally, with (52) one gets

V (t) 
✓
1 + b1e(r1 + 2r2) + 2eb2 + 1

� |1 � q|
◆

� (t). (57)

Matching the previous inequalities gives the stability result stated
in the theorem with

R = 1 + 1
b2

✓
1 + q

min{1 � q, 1 � q}
◆2

+ r1 + r2
b1

+ � max{|1 � q|, |1 � q|} (58)

⇢ = 1 + b1e(r1 + 2r2) + 2eb2 + 1
� min{|1 � q|, |1 � q|} . (59)

6. Proof of the convergence in the L
2

-norm

Lemma 1. Consider the closed-loop system consisting of the plant
(2)–(4), the control law (13) and the parameter update law (14)–(15).
Consider also the corresponding Riemann variables (5)–(6) and the
backstepping transformation (28). Then, under the conditions stated
in Theorem 1,

lim
t!1 u(0, t) = lim

t!1 kz(t)k = lim
t!1 k!(t)k = 0. (60)

Proof. From (47), one easily gets that q̃ and N(t) are uniformly
bounded for t � 0, and therefore u(0, t), kz(t)k and k!(t)k are
also uniformly bounded for t � 0. Consequently, from (51), k⇣ (t)k
is uniformly bounded for t � 0.

From there, applying Cauchy–Schwarz’s inequality to (30), one
obtains that W (t) = ⇣ (1, t) is uniformly bounded for t � 0.
Further, as ⇣ (x, t) = ⇣ (1, t � 1 + x), ⇣ (x, t) is also uniformly
bounded for t � 1 � x and in particular ⇣ (x, t) is for t � 1. From
(28),

z(0, t) = ⇣ (0, t) + c0(1 � q̂)u(0, t) (61)

and, consequently, z(0, t) is also uniformly bounded for t � 1.
From there, applying Young’s inequality to (38), one obtains that
˙̂q is uniformly bounded for t � 1. Further, from (31)–(35),

d
dt

u(0, t)2 = 2u(0, t)
✓

�c0u(0, t) + 1
1 � q

⇥ (z(0, t) � q̃c0u(0, t))
◆

(62)

d
dt

kz(t)k2 = 2 kz(t)k
✓

�1
2
z(0, t)2 +

Z 1

0
z(x, t)dx

⇥
✓
c0
✓

q̃
1 � q

(z(0, t) � c0(1 � q̂)u(0, t)) � ˙̂qu(0, t)
◆◆◆

(63)

d
dt

k!(t)k2 = k!(t)k (!(0, t)2 � !(0, t � 1)2) (64)

in which !(0, t) = ⇣ (0, t). Applying Cauchy–Schwarz’s inequality
and the previous considerations, it is straightforward that the
right-hand terms in the previous equations are all uniformly
bounded for t � 2.

Finally, integrating (46) from 0 to 1, it follows that u(0, t),
kz(t)k and k!(t)k are square integrable. Following Barbalat’s
Lemma, u(0, t), kz(t)k and k!(t)k tend to zero as t tends
to 1. ⌅

7. Proof of pointwise bounds (22)–(25) and convergence

7.1. Pointwise boundedness

In this section, we prove Remark 2. Following Agmon’s
inequality, one obtains for x 2 [0, 1] and t � 0

u(x, t)2  u(0, t)2 + 2 ku(t)k kux(t)k (65)

or, using now Poincare’s inequality,

u(x, t)2  u(0, t)2 + 2
q
2u(0, t)2 + 4 kux(t)k2 kux(t)k . (66)

From (47) and (53), it follows that

u(0, t)2  eV (0) � 1 (67)
kux(t)k2


✓

1
b2

✓
1 + q

min
�
1 � q, 1 � q

 
◆2

+ r1 + r2
b1

◆
(eV (0) � 1). (68)

Observing, from (52), that

V (t)  log(1 + (1 + b1r1e)u(0, t)2 + b1er2 k⇣ (t)k2

+ b2 k!(t)k2) + q̃(t)2

� |1 � q| (69)

the bound (22) follows, matching the previous inequalities.
Now, with (48) and (51) and applying Cauchy–Schwarz’s and

Young’s inequalities, one can observe that

ut(x, t)2  1
2

✓
⇣ (x, t)2 +

✓
1 + q
1 � q

◆2

!(x, t)2
◆

 1
2

✓
3(z(x, t)2 + c20 (1 � q̂)2u(0, t)2 + c20 kz(t)k2)

+
✓
1 + q
1 � q

◆2

!(x, t)2
◆

 1
2

✓
3
✓
z(x, t)2 +

✓
c20 (1 � q̂)2 + 1

b1

◆
(eV (0) � 1)

◆

+
✓
1 + q
1 � q

◆2

!(x, t)2
◆

(70)

in which we have used (67) and a similar inequality for kz(t)k2.
Now, to bound z(x, t)2 and !(x, t)2 appearing in this expression,
we employ Agmon’s inequality. Taking into account the fact that
z(1, t) = 0, one gets

max
x2[0,1]

|z(x, t)|2  2 kz(t)k kzx(t)k (71)

in which, from (47),

kz(t)k 
s

eV (0) � 1
b1

. (72)
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Further, from (32)–(33), the spatial-derivative of the backstepping
transformation zx satisfies the following equations

zxt = zxx (73)

zx(1, t) = �c0
✓

q̃
1 � q

(z(0, t)

� c0(1 � q̂)u(0, t)) � ˙̂qu(0, t)
◆

. (74)

Consequently, one deduces that

d
dt

Z 1

0
exzx(x, t)2dx

�
= ezx(1, t)2 � zx(0, t)2

�
Z 1

0
exzx(x, t)2dx (75)

and, solving this equation,

kzx(t)k2 
Z 1

0
exzx(x, t)2dx

 e1�t
��zx(0)2

�� +
Z t

0
e�(t�s)ezx(1, s)2ds. (76)

Following (74), one further obtains that

kzx(t)k2  e1�t kzx(0)k2 + 3ec20

Z t

0

✓✓
q̃

1 � q

◆2

(z(0, s)2

+ c20 (1 � q̂)2u(0, s)2) + ˙̂q(s)2u(0, s)2
◆
ds (77)

in which, integrating (46) and as 1 + N(t)  eV (t), t � 0,
Z t

0

z(0, s)2

1 + N(t)
ds  V (0)

⌘
(78)

Z t

0
(z(0, s)2 + u(0, s)2)ds  1

⌘
eV (0)V (0) (79)

and, from (38) and taking a spatial-derivative of (28) and using
Young’s inequality,

|˙̂q(t)|  � c0
✓

b1z(0, t)2

2(1 + N(t))
+ b1c20 (1 � q̂)2 + 1

2

◆
(80)

kzx(0)k2  2(k⇣x(0)k2 + c20 k⇣ (0)k2)

 2
✓
c20

✓
r1 + r2

b1

◆
(eV (0) � 1)

+ kuxt(0)k2 + kuxx(0)k2
◆

(81)

in which we have used (51), (36) and a spatial derivative of (5)
to obtain the last inequality. Matching (80) and (81) into (77) and
using (78)–(79), one finally obtains

kzx(t)k2  2e
✓
c20

✓
r1 + r2

b1

◆
(eV (0) � 1) + kuxt(0)k2 + kuxx(0)k2

◆

+ 3ec20

✓
� V (0)
1 � q

+ c20 (1 � q̂)2

+ � c0
b1c20 (1 � q̂)2 + b1 + 1

2

◆
1
⌘
eV (0)V (0). (82)

Consequently, matching (72) and this last inequality into (71), one
obtains

z(x, t)2  2

s
eV (0) � 1

b1

✓
2e
✓
c20

✓
r1 + r2

b1

◆
(eV (0) � 1) + kuxt(0)k2

+ kuxx(0)k2
◆

+ 3ec20

✓
� V (0)
1 � q

+ c20 (1 � q̂)2

+ � c0
b1c20 (1 � q̂)2 + b1 + 1

2

◆
1
⌘
eV (0)V (0)

◆1/2

. (83)

Now, applying Agmon’s inequality and using (12), one gets

!(x, t)2  ⇣ (0, t)2 + 2 k!(t)k k!x(t)k (84)

where, from (47),

k!(t)k2  eV (0) � 1
b2

. (85)

With arguments similar to those used to obtain (76), one also gets

k!x(t)k2  e�t k!x(0)k2 +
Z t

0
e�(t�s)!x(0, s)2ds (86)

in which, using a spatial derivative of (50) with Young’s inequality
and the fact that both zx and ⇣x satisfy the transport PDE (73),

!x(0, t)2 = ⇣x(0, t)2



8
><

>:

max
x2[0,1]

⇣x(x, 0)2 if t  1

3(zx(1, t � 1)2 + c20 ((1 � q̂)2u(0, t)2

+z(0, t)2)) otherwise.
(87)

Consequently, using (74) jointly with (36) and (46) to bound the
second expression in (87) and following (86), one obtains

k!x(t)k2  k!x(0)k2 + max
x2[0,1]

⇣x(x, 0)2 + 3c20

✓
� V (0)
1 � q

+ c20 (1 � q̂)2 + � c0
b1c20 (1 � q̂)2 + b1 + 1

2

◆

⇥ eV (0)V (0)
⌘

+ 3(c20 (1 � q̂)2

⇥ (eV (0) � 1) + z(0, t)2) (88)

in which z(0, t)2 can be bounded following (83) which holds for
any x 2 [0, 1]. Finally,

⇣ (0, t)2 
(

max
x2[0,1]

⇣ (x, 0)2 if t � 1

⇣ (1, t � 1)2 otherwise



8
>><

>>:

max
x2[0,1]

ut(x, 0)2 + ux(x, 0)2

2
if t � 1

c20

✓
(1 � q̂)2u(0, t)2 + k⇣ (t)k2

◆
otherwise



8
>><

>>:

max
x2[0,1]

ut(x, 0)2 + ux(x, 0)2

2
if t � 1

c20

✓
(1 � q̂)2 + r1 + r2

b1

◆
(eV (0) � 1) otherwise.

(89)

Plugging (85), (88) with (83) and (89) into (84), one finally obtains
(23), using (70) with (83).

7.2. Pointwise convergence property (21)

Consider Agmon’s inequality (71). From (82), kzx(t)k is uni-
formly bounded for (uxx(·, 0), uxt(·, 0)) 2 L1([0, 1])2 and from
Lemma 1 kz(t)k tends to zero as t tends to 1. Therefore, it fol-
lows from (71) that maxx2[0,1] |z(x, t)| tends to 0 as t tends to 1.
Therefore, from (50) and as u(0, t) asymptotically converges from
Lemma 1, maxx2[0,1] |⇣ (x, t)| also tends to 0 as t tends to 1.
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Besides, consider (84). From (88) and (89) respectively, k!x(t)k
and ⇣ (0, t) are uniformly bounded for (u(·, 0), ut(·, 0)) 2 H1
([0, 1])⇥L2([0, 1]) and (uxx(·, 0), uxt(·, 0)) 2 L1([0, 1])2. Further,
from Lemma 1, k!(t)k tends to zero as t tends to1. Consequently,
maxx2[0,1] |!(x, t)| tends to zero as t tends to 1.

Finally, from the inverse transformations (48)–(49), applying
the triangle inequality, one obtains that maxx2[0,1] |ux(x, t)| and
maxx2[0,1] |ut(x, t)| tend to zero asymptotically. The convergence
to zero of maxx2[0,1] |u(x, t)| follows from (65) and the fact that
both u(0, t) and kux(t)k tend to zerowhile t tends to1 and ku(t)k
remains bounded.

8. Conclusion

In this paper, we considered a wave PDE subject to anti-
damping with unknown coefficient and have proposed an output-
feedback adaptive controller. The main advantage of this new
control strategy is that it does not require the measurements of
the entire system state but only of boundary values. The extension
of this technique to other types of boundary conditions, such as an
ODE of order two or higher for u(0, ·)which is usually employed in
drillstringmodeling (Saldivar et al., 2011), is a topic of futurework.
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