
European Journal of Control 19 (2013) 399–407
Contents lists available at SciVerse ScienceDirect
European Journal of Control
0947-35
http://d

☆This
DOE, an

n Corr
E-m

basar1@
journal homepage: www.elsevier.com/locate/ejcon
Finite-horizon LQ control for unknown discrete-time linear systems
via extremum seeking$
Paul Frihauf a, Miroslav Krstic a,n, Tamer Başar b

a Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
b Coordinated Science Laboratory, University of Illinois, 1308 West Main Street, Urbana, IL 61801-2307, USA
a r t i c l e i n f o

Article history:
Received 14 May 2013
Accepted 14 May 2013

Recommended by Alessandro Astolfi

where not even the dimension of the system is known. This control sequence minimizes the finite-time
horizon cost function, which is quadratic in the measured output and in the input. We make no
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a b s t r a c t

We present a non-model based approach for asymptotic, locally exponentially stable attainment of the
optimal open-loop control sequence for unknown, discrete-time linear systems with a scalar input,

assumptions on the stability of the unknown system, but we do assume that the system is reachable. The
proposed algorithm employs the multi-variable discrete-time extremum seeking approach to minimize
the cost function, extending results established for the scalar discrete-time extremum seeking method.
Simulation results show that the Hessian's condition number, used as a measure of the optimization
problem's level of difficulty, increases with both the system's level of instability and the length of the
finite horizon for a scalar system. Thus, we suggest solving well-conditioned, shorter time horizon
optimal control problems to obtain good initial control estimates for longer time horizon problems if
possible. We also show that the algorithm accommodates input constraints by employing the projection
operator and introduce a Newton-based discrete-time extremum seeking controller, which removes the
convergence rate's dependence on the unknown Hessian.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The construction of optimal control signals for dynamical
systems is a much-studied area of control theory. For linear
systems, an optimal linear feedback law is obtained by solving
the well-known Riccati equation. When not all the states are
measured, the separation principle allows for the design of optimal
observers to obtain state estimates for use in this feedback law.
While the states may not be directly known, a model of the system
is assumed to be known precisely. In contrast, we study in this
paper the optimal control problem for a discrete-time linear
system that is entirely unknown—only the system's output is
known. Our approach utilizes extremum seeking control, which
has been the focus of much recent research both in theory
[29,7,1,26,25,12,13,24,15] and in applications [28,32,5,19,9,16,17,8].

Recent studies have been dedicated to the optimal control
problem for unknown systems, relying mainly on learning and
dynamic programming methods. In [21], an observer and neural
network are used to approximate a value function, which is used
trol Association. Published by Elsev
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in a policy iteration scheme to determine an optimal control
strategy for an unknown system whose relative degree is known.
Reinforcement learning is utilized in [18,31] to achieve optimal
control policy for unknown systems. In [11,27], neural networks
are used to approximate the unknown nonlinear discrete-time
systems so that the optimal control policy can be found offline
with approximate dynamic programming. Techniques similar to
those presented in this work are used to achieve desired plasma
current profiles in a magnetic fusion reactor in [22].

We solve a finite-time horizon, optimal control problem for a
completely unknown discrete-time linear system with a scalar
input by using a non-model based, extremum seeking controller to
attain the open-loop optimal control sequence. Since only the
output values of the system can be measured, an optimal feedback
control is not possible and the considered cost functions are
restricted to quadratic functions in the input and the output,
rather than the state. The control values for each step in the time
horizon are determined by the extremum seeking controller,
which is driven by the value of the cost function. After each
iteration of the unknown system, the cost is computed and used to
iterate the extremum seeking controller, updating the control
sequence. On the average, the controller is driven by the gradient
of the cost function, which is driven to zero, causing the control
sequence to converge to the optimal open-loop control sequence.
While optimal state feedback control would be preferred, its
ier Ltd. All rights reserved.
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design requires knowledge of the system model, which we assume
is not available.

Our results follow closely and extend those found in [7] to
establish convergence for multi-variable, discrete-time extremum
seeking controllers. The algorithm is gradient-based so its con-
vergence rate is dependent on the Hessian of the cost function.
Convergence of multi-variable, discrete-time extremum seeking
schemes with noisy measurements has been shown in [24], but
the proof relies on diminishing gains that effectively turn off the
algorithm over time. We utilize the two-time scale averaging
theory for discrete time systems [2] to prove convergence for a
multi-parameter scheme with constant gains, albeit with noise-
free measurements, so that the scheme continually seeks to
optimize the measured cost, tracking changes in the system. While
we prove a local result, non-local results for extremum seeking
controllers have been established in [26].

We also introduce and demonstrate in simulation a Newton-
based discrete-time extremum seeking controller, whose
continuous-time counterpart is derived and analyzed in [15]. The
Newton-based scheme allows the algorithm's convergence rate to
be user assigned by removing its dependence on the unknown
Hessian. Both the gradient-based and Newton-based designs can
accommodate input constraints by utilizing a projection operator
to solve input constrained optimization problems.

Systems that are amenable to this framework, i.e., unknown or
uncertain systems that are highly repeatable with constant initial
conditions, have been the focus of a large body of research known as
iterative learning control [20,6,30]. Pulsed laser systems, for example,
fit the above description. For unknown systems, iterative learning
control utilizes finite-time, repetitive experiments to achieve the
tracking of a given reference, whereas in this work, our scheme
optimizes the system's output according to the computed cost
function. Stability of the unknown system is not required (since we
consider a finite-horizon problem); however, the optimization pro-
blem becomes more difficult as the level of instability of the
unknown system increases or as the time horizon increases, which
is shown in Section 6.1 with a scalar system example.

This paper is organized as follows: We introduce the problem
statement in Section 2 and the gradient-based discrete-time
extremum seeking controller in Section 3. The error system is
derived in Section 4 and our convergence result is proved in
Section 5. In Section 6, simulations for both unconstrained and
input constrained optimizations are presented using the gradient-
based and Newton-based schemes. We conclude with Section 7.
2. Problem statement

Consider the single-input linear discrete-time system

xkþ1 ¼ Akxk þ Bkuk; ð1Þ

yk ¼ Ckxk; ð2Þ

where xk∈Rn, uk∈R, yk∈R
p, and Ak, Bk, Ck denote unknown matrices

of appropriate dimensions at discrete time k. Only the input uk and
the output yk are treated as known values. Hence, even the state
dimension is unknown.

Despite these significant uncertainties, we wish to find the
optimal, open-loop control sequence fun

kg
N−1
k ¼ 0 that minimizes the

cost function

JðuÞ ¼ 1
2
yTNQ

˘

NyN þ 1
2

∑
N−1

k ¼ 0
yTkQ

˘

kyk þ Rku
2
k ; ð3Þ

where u¼ ½u0;…;uN−1�T and Q
˘

k;Q
˘

N≥ 0, Rk40 for all k∈f0;…; N−1g.
Namely, we want to solve the discrete-time, finite-time horizon
optimal control problem

min
u

JðuÞ; subject to ð1Þ–ð2Þ ð4Þ

with initial condition x0. We seek an open-loop solution instead of
an optimal state feedback policy since the system is unknown and
state information is not available. The cost function (3) can be
written in terms of the state xk as

JðuÞ ¼ 1
2
xTNQNxN þ ∑

N−1

k ¼ 0
xTkQkxk þ Rku

2
k ; ð5Þ

where Qk ¼ CT
k ˘ Q kCk, k∈f0;…;Ng, which is the stan-

dard cost function for the LQ optimal control problem with a
positive weight on control at each stage. By substituting the
system's state trajectory

xk ¼Φk;0x0 þ ∑
k−1

l ¼ 0
Φk;lþ1Blul; ð6Þ

Φi;j ¼
Ai−1Ai−2⋯Aj; i4 j

I; i¼ j;

(
ð7Þ

the cost function (5) can be written in terms of only the initial
state x0 and the control uk. In vector form, we have

JðuÞ ¼ 1
2 x

T
0Fx0 þ xT0Guþ 1

2u
THu; ð8Þ

where

F ¼Q0 þ ΘTQΘ; ð9Þ

G¼ΘTQΛ; ð10Þ

H¼ ΛTQΛþ R; ð11Þ

Θ¼ ½Φ1;0;Φ2;0;…;ΦN;0�T ; ð12Þ

Q ¼ diag½Q1;…;QN�; ð13Þ

Λ¼

B0 0 0 ⋯ 0
Φ2;1B0 B1 0
Φ3;1B0 Φ3;2B1 B2

⋮ ⋱
ΦN;1B0 ΦN;2B1 ΦN;3B2 BN−1

2
6666664

3
7777775
; ð14Þ

R ¼ diag½R0;…;RN−1�; ð15Þ
and diag½�� denotes a block diagonal matrix. The Hessian H is
positive definite symmetric since it equals the sum of ΛTQΛ≥0 and
R40. If the system model were known, the optimal open-loop
control values could be found directly by solving the correspond-
ing quadratic program [10,4].

We now make the following assumption for (1):

Assumption 1. The reachability Gramian [23],

WN ¼ ∑
N−1

l ¼ 0
ΦN;lþ1BlB

T
l Φ

T
N;lþ1; ð16Þ

is positive definite symmetric.

This assumption is a necessary and sufficient condition for the
existence of a control sequence to take the system from any initial
state x0 to any final state xN, provided there are no hard constraints
on the control. Hence, the optimal control sequence is not the
trivial solution.

3. Optimal control via extremum seeking

The non-model based optimization strategy known as extre-
mum seeking uses sinusoidal perturbations to estimate, and drive
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to zero, the gradient of an unknown function. In this case, the
unknown function is the cost function (3) and the minimizer is the
optimal sequence fun

kg
N−1
k ¼ 0. This minimizer is found by driving the

unknown system (1)–(2) with a control sequence fukðlÞgN−1k ¼ 0 to
obtain the cost value J(l) and then iterating the discrete-time
extremum seeking controller to produce the sequence
fukðlþ 1ÞgN−1k ¼ 0, where l denotes the l-th iteration of the algorithm.

The extremum seeking controller is given in vector form by

ûðlÞ ¼−
ϵK
z−1

½ξðlÞ�; ð17Þ

ξðlÞ ¼MðlÞ z−1
zþ h

½JðlÞ�; ð18Þ

uðlÞ ¼ ûðlÞ þ SðlÞ; ð19Þ
where û ¼ ½û0;…; ûN−1�T , ϵ is a small, positive parameter, K is a
positive diagonal matrix, and h∈ð0;1Þ. The notation PðzÞ½qðlÞ� is
used to denote the signal in the iteration domain that is the output
of the transfer function P(z) driven by q(l), where P(z) operates
with respect to the iteration domain. The perturbation signals M(l)
and S(l), whose notation is chosen to be consistent with [15], are
given by

MðlÞ ¼ 2
a0

cos ðω0l−φ0Þ;…;
2

aN−1
cos ðωN−1l−φN−1Þ

� �T
; ð20Þ

SðlÞ ¼ ½a0 cos ðω0lÞ;…; aN−1 cos ðωN−1lÞ�T ; ð21Þ
with ak40 and the modulation frequencies given by ωk ¼ bkπ for
all k∈f0;…;N−1g, where jbkj∈ð0;1Þ is a rational number and ωk≠ωi

for all distinct i; k∈f0;…;N−1g. A block diagram of the controller is
shown in Fig. 1.

From (18), we see that each scalar control uk(l) is driven by the
scalar input WðzÞ½JðlÞ� multiplied by the sinusoidal perturbation
ð2=akÞ cos ðωkl−φkÞ, where W(z) denotes the washout filter
ðz−1Þ=ðz þ hÞ. On the average, this formulation approximates a
gradient-based scheme since the distinct modulation frequencies
allow each scalar control uk(l) to estimate its individual contribu-
tion to the cost value J(l), which is a function of
uðlÞ ¼ ½u0ðlÞ;u1ðlÞ;…;uN−1ðlÞ�, i.e., at a fixed l, each scalar control is
updated by its estimate of the partial derivative ∂J=∂ukðuðlÞÞ.
4. Error system

To analyze the convergence of the system, we formulate its
error dynamics. First, we rewrite the cost function (8) using its
Taylor series expansion about the optimum un ¼ ½un

0;…;un

N−1�T ,
JðuÞ ¼ JðunÞ þ 1

2ðu−unÞTHðu−unÞ; ð22Þ
Fig. 1. Discrete-time multi-variable extremum seeking scheme that operates in the
iteration domain, indexed by l, to find the optimal control sequence un ¼ fun

kg
N−1
k ¼ 0

that minimizes the cost function J(u), where k is the discrete-time index of the
unknown system. The depicted discrete-time filters operate with respect to the
iteration domain.
and we note that ∇JðunÞ, the gradient of J at un, is zero. Next, denote
the error relative to the optimal control sequence as

~uðlÞ ¼ uðlÞ−SðlÞ−un

k ; ð23Þ
and substitute into (22) to obtain

Jð ~uÞ ¼ JðunÞ þ 1
2
~uTH ~u þ SðlÞTH ~u þ 1

2SðlÞTHSðlÞ: ð24Þ
Substituting (23) into (17) yields

~uðlÞ ¼−
ϵK
z−1

½ξðlÞ�−un; ð25Þ

which, after noting (18) and (24), can be expressed as the
difference equation

~uðlþ 1Þ ¼ ~uðlÞ−ϵKMðlÞWðzÞ½JðunÞ�
−1
2ϵKMðlÞWðzÞ½ ~uTH ~u þ SðlÞTHSðlÞ�

−ϵKMðlÞWðzÞ½SðlÞTH ~u�: ð26Þ
Applying Lemmas 3–5 from the Appendix to the last term of

(26) yields, after some algebra

MðlÞWðzÞ½SðlÞTH ~u� ¼ C−ðlÞRefΩðz; ejωÞ½H ~u�g
−S−ðlÞImfΩðz; ejωÞ½H ~u�g
þCþðlÞRefΩðz; ejωÞ½H ~u�g
−SþðlÞImfΩðz; ejωÞ½H ~u�g; ð27Þ

where, with some notational abuse

Ωðz; ejωÞ≜diag½Wðejω0zÞ;…;WðejωN−1zÞ�; ð28Þ
and C−, S−, Cþ, and S− are N � N matrices whose kth rows are given
by

C−
k ðlÞ≜

a0
ak

cos ððω0−ωkÞlþ φkÞ;…;
aN−1
ak

cos ððωN−1−ωkÞlþ φkÞ
� �

ð29Þ

S−k ðlÞ≜
a0
ak

sin ððω0−ωkÞlþ φkÞ;…;
aN−1
ak

sin ððωN−1−ωkÞlþ φkÞ
� �

ð30Þ

Cþ
k ðlÞ≜

a0
ak

cos ððω0 þ ωkÞl−φkÞ;…;
aN−1
ak

cos ððωN−1 þ ωkÞl−φkÞ
� �

ð31Þ

Sþk ðlÞ≜
a0
ak

sin ððω0 þ ωkÞl−φkÞ;…;
aN−1
ak

sin ððωN−1 þ ωkÞl−φkÞ
� �

: ð32Þ

Note that the diagonal elements of C− and S− are time invariant
( cos ðφkÞ and sin ðφkÞ, respectively), which will be important for
our convergence analysis in Section 5.

To highlight these time invariant terms (27), let C−
D and S−D

denote diagonal matrices containing the diagonal elements of C−

and S−. Then, (27) can be rewritten as

MðlÞWðzÞ½SðlÞTH ~u� ¼ RefΩðejφÞΩðz; ejωÞ½H ~u�g
þðC−ðlÞ−C−

DÞRefΩðz; ejωÞ½H ~u�g
−ðS−ðlÞ−S−DÞImfΩðz; ejωÞ½H ~u�g
þCþðlÞRefΩðz; ejωÞ½H ~u�g
−SþðlÞImfΩðz; ejωÞ½H ~u�g; ð33Þ

where, again abusing notation, ΩðejφÞ ¼ diag½ejφ0 ;…; ejφN−1 �. Substi-
tuting (33) into (26) allows the error dynamics to be expressed as
follows:

~uðlþ 1Þ− ~uðlÞ ¼ ϵðLðzÞ½H ~u� þ Ψ−
1 ðlÞ þ Ψþ

1 ðlÞ þ Ψ2ðlÞÞ þ δðlÞ; ð34Þ

LðzÞ ¼ −
K
2
ðΩðejφÞΩðz; ejωÞ þΩðe−jφÞΩðz; e−jωÞÞ; ð35Þ

Ψ−
1 ðlÞ ¼ KðS−ðlÞ−S−DÞImfΩðz; ejωÞ½H ~u�g
−KðC−ðlÞ−C−

DÞRefΩðz; ejωÞ½H ~u�g; ð36Þ

Ψþ
1 ðlÞ ¼ KSþðlÞImfΩðz; ejωÞ½H ~u�g−KCþðlÞRefΩðz; ejωÞ½H ~u�g; ð37Þ
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Ψ2ðlÞ ¼−1
2KMðlÞWðzÞ½ ~uTH ~u�; ð38Þ

δðlÞ ¼−ϵKMðlÞðWðzÞ½JðunÞ� þ 1
2WðzÞ½SðlÞTHSðlÞ�Þ: ð39Þ

In the above formulation, one sees that the error dynamics evolve
according to a sum of a linear time-invariant term, LðzÞ½H ~u�; linear
time-varying functions, Ψ−

1ðlÞ and Ψþ
1 ðlÞ; a nonlinear time-varying

function Ψ 2ðlÞ; and a time-varying function δðlÞ that does not
depend on the control error ~u.
5. Convergence result

To establish the convergence result for the multi-variable,
discrete-time extremum seeking scheme, we extend the results
found in [7]. First, we prove our main result – local exponential
convergence of the homogeneous error system (34) – by employ-
ing the two-time scale averaging theory for discrete-time systems
[2], and then we consider the full system including the δðlÞ term
and establish its convergence.

5.1. Convergence of homogeneous error system

The following theorem states a sufficient condition for locally
exponential convergence of the error system (34) without the δðlÞ
term. Namely, we have the homogeneous error system that is
periodic in time l

~uðlþ 1Þ− ~uðlÞ ¼ ϵðLðzÞ½H ~u� þ Ψ−
1 ðlÞ þ Ψþ

1 ðlÞ þ Ψ2ðlÞÞ: ð40Þ

Theorem 1. Consider the homogeneous error system (40) with
modulation frequencies that satisfy ωk≠ωi for all distinct
i; k∈f0;…;N−1g and phase values φk selected such that
RefejφkWðejωk Þg40 for all k∈f0;…;N−1g. There exists a positive
constant ϵn such that for all ϵ∈ð0; ϵnÞ, the state-space realization of
(40) is locally exponentially stable at the origin.

Proof. Let ðA1;B1;C1;D1Þ be a minimal state space realization of L
(z). Since the terms Ψ−

1ðlÞ, Ψþ
1 ðlÞ, and Ψ 2ðlÞ have the same structure

as the signal in Lemma 6, they can be represented by the minimal
state space realizations ðA2;B2;C2ðlÞ;D2ðlÞÞ, ðA3;B3;C3ðlÞ;D3ðlÞÞ, and
ðA4;B4;C4ðlÞ;D4ðlÞÞ, respectively. These realizations allow (40) to be
written in state-space form as

ζ′ðlþ 1Þ ¼ Aζ′ðlÞ þ hðl; ~uðlÞÞ; ð41Þ

~uðlþ 1Þ ¼ ~uðlÞ þ ϵf ′ðl; ~uðlÞ; ζ′ðlÞÞ; ð42Þ
where A ¼ diag½A1;A2;A3;A4�,

hðl; ~uðlÞÞ ¼ ½ ~uTHB
T
1j ~uTHB

T
2j ~uTHB

T
3jð ~uTH ~uÞBT

4�T ; ð43Þ

f ′ðl; ~uðlÞ; ζ′ðlÞÞ ¼D1H ~u þ D2ðlÞH ~u þ D3ðlÞH ~u þ D4ðlÞð ~uTH ~uÞ
þ½C1jC2ðlÞjC3ðlÞjC4ðlÞ�ζ′ðlÞ: ð44Þ

The mixed time scale system (41)–(42), with the exponentially
stable matrix A, can be transformed to permit the application of
the two-time scale averaging theory [2]. Let

ζðlÞ ¼ ζ′ðlÞ−wðl; ~uÞ; ð45Þ

wðl; ~uÞ ¼ ∑
l−1

i ¼ 0
A
l−i−1

hði; ~uÞ; ð46Þ

with hðl; ~uÞ shown in (43). The transformed system is then

ζðlþ 1Þ ¼ AζðlÞ þ ϵgðl; ~u; ζÞ; ð47Þ

~uðlþ 1Þ ¼ ~uðlÞ þ ϵf ðl; ~u; ζÞ; ð48Þ
where

ϵgðl; ~u; ζÞ ¼ Awðl; ~uðlÞÞ þ hðl; ~uðlÞÞ−wðlþ 1; ~uðlþ 1ÞÞ;

¼−
Z 1

0

∂w
∂ ~u

ðlþ 1; s ~uðlþ 1Þ þ ð1−sÞ ~uðlÞÞds
 !

ϵf ′ðl; ~u; ζ þwðl; ~uÞÞ; ð49Þ

f ðl; ~u; ζÞ ¼ f ′ðl; ~uðlÞ; ζ þwðl; ~uÞÞ: ð50Þ
To prove convergence, we analyze the averaged system of (48),
given by

~uaveðlþ 1Þ ¼ ~uaveðlÞ þ ϵf aveð ~uaveðlÞÞ; ð51Þ

where f ave is computed using the operator Af�g [2],

f aveð ~uÞ ¼Aff ðl; ~u;0Þg ¼ lim
T-∞

1
T

∑
sþT

l ¼ sþ1
f ðl; ~u;0Þ: ð52Þ

Rather than attempting to compute f aveð ~uÞ directly from (52), we
use (44)–(46), and (50) to obtain

f ðl; ~u;0Þ ¼ f ′ðl; ~u;wðl; ~uÞÞ;
¼D1H ~u þ D2ðlÞH ~u þ D3ðlÞH ~u þ D4ðlÞð ~uTH ~uÞ
þ½C1jC2ðlÞjC3ðlÞjC3ðlÞ�

� ∑
l−1

i ¼ 0
Al−i−1½ ~uTHB

T
1j ~uTHB

T
2j ~uTHB

T
3jð ~uTH ~uÞBT

4�T ;

¼ LðzÞ½H ~u� þ Ψ−
1 ðlÞ þ Ψþ

1 ðlÞ þ Ψ 2ðlÞ; ð53Þ

where ~u is considered a constant, and thus,

f aveð ~uÞ ¼AfLðzÞ½H ~u� þ Ψ−
1 ðlÞ þ Ψþ

1 ðlÞ þ Ψ 2ðlÞg: ð54Þ

Computing the individual terms yields

AfΨ−
1 ðlÞg ¼AfKðS−ðlÞ−S−DÞImfΩðz; ejωÞ½H ~u�g

−KðC−ðlÞ−C−
DÞRefΩðz; ejωÞ½H ~u�gg;

¼ 0; ð55Þ

AfΨþ
1 ðlÞg ¼AfKSþðlÞImfΩðz; ejωÞ½H ~u�g

−KCþðlÞRefΩðz; ejωÞ½H ~u�gg;
¼ 0; ð56Þ

AfΨ2ðlÞg ¼Af−KMðlÞWðzÞ½ ~uTH ~u�g;
¼ 0; ð57Þ

where, again, ~uðlÞ is considered a constant sequence and we have
noted that ωk≠ωi for all i≠k. The final term, which yields the
averaged system, is

f aveð ~uÞ ¼AfLðzÞ½H ~u�g;
¼Af−1

2KðΩðejφÞΩðz; ejωÞ þΩðe−jφÞΩðz; e−jωÞÞ½H ~u�g;
¼−KΣH ~u; ð58Þ

where Σ40 is a diagonal matrix with elements
sk ¼ RefejφkWðejωk Þg ¼ jWðejωk Þj � cos ðψk þ φkÞ, ψk ¼ ∠Wðejωk Þ, and
Wðejωk Þ ¼ ðejωk−1Þ=ðejωk þ hÞ. Hence, from (51) and (58), the aver-
aged system is

~uaveðlþ 1Þ ¼ ðI−ϵKΣHÞ ~uaveðlÞ; ð59Þ
where I denotes the N � N identity matrix.
Let V ð ~uaveÞ ¼ ð ~uaveÞTK −1

~uave be a Lyapunov function where
K ¼ KΣ. Then, computing the difference ΔVð ~uaveÞ ¼ Vð ~uaveðlþ
1ÞÞ−Vð ~uaveðlÞÞ yields

ΔVð ~uaveÞ ¼ ð ~uaveÞT ðI−ϵKHÞTK−1ðI−ϵKHÞ ~uave−ð ~uaveÞTK−1
~uave;

¼ ð ~uaveÞT ð−2ϵH þ ϵ2 HKHÞ ~uave;

≤−2ϵλminðHÞj ~uavej2 þ ϵ2λmaxðHKHÞj ~uavej2; ð60Þ
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where j � j denotes the Euclidean norm. Selecting ϵ¼ λminðHÞ=
λmaxðHKHÞ results in

ΔVð ~uaveÞ≤−
ðλminðHÞÞ2
λmaxðHKHÞ

~uavej2:
�� ð61Þ

For all ϵ∈ð0;2λminðHÞ=λmaxðHKHÞÞ, the averaged system is exponen-
tially stable, completing the proof [2, Theorem 2.4]. □

The eigenvalues of H, denoted by λðHÞ, play a prominent role in
the convergence rate of the extremum seeking controller, and
since H equals the sum of a positive semidefinite symmetric
matrix and a positive definite symmetric matrix – a topic that
has been the focus of much research [3,14] – we can develop
bounds on λðHÞ.

Lemma 1. Let β1≥β2≥⋯≥βN be the ordered eigenvalues of H.
Similarly, let λ1≥λ2≥⋯≥λN and ρ1≥ρ2≥⋯≥ρN be the ordered eigenva-
lues of ΛTQΛ and R, respectively. Then,

max
iþj ¼ Nþl

fλi þ ρjg≤βl ≤ min
iþj ¼ lþ1

fλi þ ρjg: ð62Þ

If the input penalty is constant, i.e., Rk≡R, then

βl ¼ λl þ R: ð63Þ

Proof. Since H ¼ ΛTQΛþ R, where ΛTQΛ≥0 and R40, (62) is
immediate [3,14]. If the input penalty is constant, then ρj ¼ R for
all j and

max
iþj ¼ Nþl

fλi þ Rg ¼ λl þ R≤βl; ð64Þ

min
iþj ¼ lþ1

fλi þ Rg ¼ λl þ R≥βl; ð65Þ

which proves (63). □

It is important to note that λðHÞ is bounded below by the
smallest input weight mink Rk, which is a strictly positive value.
Since our system is unknown and possibly high dimensional, the
matrix ΛTQΛ is likely to have some, if not many, zero eigenvalues
due to the sparsity of Q , which means a subset of fβlgNl ¼ 1 will be
precisely equal to R when the input penalty is constant.

If the gain K and phase values φi are chosen so that the
elements of KΣ in (59) all equal ν40, we can rewrite (59) as

~uaveðlþ 1Þ ¼ ϒ ~uaveðlÞ ð66Þ
where ϒ ¼ ðI−ϵνHÞ, and characterize the eigenvalues of ϒ .

Corollary 1. Consider the system (66) with ϒ ¼ ðI−ϵνHÞ, H40, and
scalars ϵ; ν40. The eigenvalues of ϒ are given by

λiðϒ Þ ¼ 1−ϵνλiðHÞ; i∈f1;…;Ng; ð67Þ
with bounds on λðHÞ given in Lemma 1.

Proof. Let H¼ UTUT be the Schur decomposition of H, where T is
upper triangular and U is unitary. Then

UTϒU ¼UT ðI−ϵνHÞU;
¼ I−ϵνT ; ð68Þ

which is upper triangular with diagonal elements equal to (67). □

5.2. Convergence of full error system

With the exponential stability of the averaged homogeneous
error system established, we now consider the full system (34).
First, we state the convergence properties of δðlÞ in the following
lemma:
Lemma 2. The time-varying function δðlÞ exponentially converges to
an OðϵjajÞ�neighborhood of zero:

jδðlÞj≤ε−l þ c1ϵjaj; ð69Þ
where c1 is a constant and a¼ ½a0;…; aN−1�.

Proof. Rewrite (39) as δðlÞ ¼ δ1ðlÞ þ δ2ðlÞ, where

δ1ðlÞ ¼ −ϵKMðlÞWðzÞ½JðunÞ�; ð70Þ

δ2ðlÞ ¼ −
ϵ

2
KMðlÞWðzÞ½SðlÞTHSðlÞ�: ð71Þ

The washout filter W(z) has zero DC gain, so δ1ðlÞ has only
exponentially decaying terms. The remainder of the proof consists
of bounding δ2ðlÞ, which requires bounding M(l) and
WðzÞ½SðlÞTHSðlÞ�.
The norm of the perturbation signals M(l) can be bounded as

follows:

jMðlÞj2 ¼ ∑
N−1

i ¼ 0

4
a2i

cos 2ðωil−φiÞ≤ ∑
N−1

i ¼ 0

4
a2i

≤
4N

min
i

fa2i g
: ð72Þ

For WðzÞ½SðlÞTHSðlÞ�, we begin by rewriting SðlÞTHSðlÞ as a double
summation

jWðzÞ½SðlÞTHSðlÞ�j2 ¼
���WðzÞ ∑

N

i ¼ 1
∑
N

j ¼ 1
hijaiaj cos ðωilÞ cos ðωjlÞ

" #���2; ð73Þ

where hij denotes the i,j-th element of H. Applying the linearity of
W(z) and the trigonometric identity cos ðθÞ cos ðψ Þ ¼ ð1=2Þ
cos ðθ−ψ Þ þ ð1=2Þ cos ðθ þ ψÞ yields
WðzÞ½SðlÞTHSðlÞ�j2
��

¼ 1
4

��� ∑N
i ¼ 1

∑
N

j ¼ 1
hijaiajWðzÞ½ cos ððωi−ωjÞlÞ þ cos ððωi þ ωjÞlÞ�

���2;
¼ 1

4

��� ∑N
i ¼ 1

∑
N

j ¼ 1
hijaiajð Wðejðωi−ωjÞÞ cos ððωi−ωjÞlþ ψ−

ij Þ
������

þjWðejðωiþωjÞÞj cos ððωi þ ωjÞlþ ψþ
ij ÞÞ
���2; ð74Þ

where ψ−
ij ¼ ∠Wðejðωi−ωjÞÞ and ψþ

ij ¼ ∠WðejðωiþωjÞÞ. Let W ¼ fωi−ωj;

ωi þ ωjg for all distinct i; j∈f0;…;N−1g, then (74) has the bound

WðzÞ½SðlÞTHSðlÞ�j2 ≤ 1
4
max
ω∈W

����
����WðejωÞj2

��� ∑N
i ¼ 1

∑
N

j ¼ 1
hijaiajð cos ððωi−ωjÞlþ ψ−

ij Þ

þ cos ððωi þ ωjÞlþ ψþ
ij ÞÞ
���2;

≤max
ω∈W

jWðejωÞj2jaTHaj2;

≤max
ω∈W

jWðejωÞj2λmaxðHÞjaj2: ð75Þ

From (71), (72), and (75), we have

jδ2ðlÞj2 ≤NλmaxðKÞλmaxðHÞmax
ω∈W

jWðejωÞj2ϵ2 jaj2
minifa2i g

; ð76Þ

which completes the proof. □

From the perturbed averaged system

~uaveðlþ 1Þ ¼ ðI−ϵKHÞ ~uaveðlÞ þ δðlÞ; ð77Þ
and Lemma 2, we see that ~uaveðlÞ converges exponentially to an
OðjajÞ�neighborhood of the origin since jδkðlÞj≤ε−l þ c1ϵjaj. From
[2], the exponential convergence rate of ~u in (34) tends to the rate
of ~uave in the average system as ϵ goes to zero. We can now state
the convergence result for the overall ~u�system.
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Theorem 2. Consider the full system (34) with the conditions of
Theorem 1 satisfied. For sufficiently small ak, k∈f0;…;N−1g, there
exists ϵn1∈ð0; ϵn�, such that for all ϵ∈ð0; ϵn1�, the error variable ~u locally
exponentially converges to an OðjajÞ�neighborhood of the origin.

Corollary 2. With the conditions of Theorem 2 satisfied, the cost
value J locally exponentially converges to an Oðjaj2Þ�neighborhood of
the optimal cost JðunÞ.

Proof. Define ~JðuÞ ¼ JðuÞ−JðunÞ. Then, from (22) and (24), we have

~JðuÞ ¼ 1
2ðu−unÞTHðu−unÞ;

¼ 1
2
~uTH ~u þ SðlÞTH ~u þ 1

2SðlÞTHSðlÞ: ð78Þ
From Theorem 2, ~u locally exponentially converges to an
OðjajÞ�neighborhood of the origin. Thus, ~J ðuÞ locally exponentially
converges to an Oðjaj2Þ�neighborhood of the origin. □

6. Simulation results

We first present a scalar example to explore how the instability
of the discrete-time system affects the optimization problem's
structure before demonstrating the extremum seeking controller
in simulation with an unstable third-order system. The example
solves both an unconstrained and an input-constrained optimal
control problem. Lastly, a Newton-based discrete-time extremum
seeking design is introduced and simulated.

6.1. Scalar system example

Consider the scalar system

xkþ1 ¼ αxk þ uk; ð79Þ
with initial condition x0 ¼ 1 and the cost function J ¼ 1

2 x
2
N þ 1

2
∑N−1

k ¼ 0x
2
k þ u2

k , where QN ¼Qk ¼ Rk ¼ 1. To study how the stability
of (79) affects the eigenvalues of H, we will vary the parameter α in
the interval ½0;3� for intervals N∈f2;3;5;8;10g.

Fig. 2(a) depicts how the condition number of the Hessian, κðHÞ,
varies with α for each time horizon N. The curves indicate that the
optimization problem becomes more difficult as the instability of
the discrete-time system increases and this difficulty is more acute
for longer time horizons. In fact, κðHÞ appears to grow almost
exponentially with α with a rate of increase dependent on the time
horizon N. Fig. 2(b) shows how, for this example, the eigenvalues
appear to grow and spread apart as α increases from 0 to 1. For
α41 the maximal eigenvalue continues to increase while the
other eigenvalues converge to λ¼ 1, and consequently, the condi-
tion number also increases since for the symmetric matrix H,
κðHÞ ¼ λmaxðHÞ=λminðHÞ.
Fig. 2. (a) Condition number of κðHÞ versus α for various time horizons N with a log scale
N¼5 (top) and N¼10 (bottom). The maximum eigenvalue is approximately the conditi
One should note that these structural changes to the Hessian
are due to the inherent challenges of this optimization problem;
they are not caused by the extremum seeking algorithm. Thus, if
possible, one should consider attaining the optimal sequence
fun

kg
N−1
k ¼ 0 recursively to find better initial control sequences for

longer time horizons since κðHÞ grows with N. Specifically, first
obtain fun

kg
M−1
k ¼ 0 and use fun

0;u
n

1;…;un

M−1;uMg as the initial control
sequence for the M þ 1 finite horizon, where two possible values
for uM are uM¼0 or uM ¼ un

M−1. Repeat this process until the
desired N intervals have been optimized. In practice, the current
non-optimal control sequence may be a good initial control
sequence for the optimization scheme as well.

6.2. Unstable third-order system example

Consider

xkþ1 ¼
0:5 0:5 0:3
0:6 0:5 −0:2
0:5 0 0:5

2
64

3
75xk þ

−0:15
0:5
0:75

2
64

3
75uk; ð80Þ

yk ¼
1 0:5 0

0:15 −1:5 0

� �
xk; ð81Þ

with initial condition x0 ¼ ½−1;−0:5;0:1�T . The system's eigenvalues
are −0.22, 1.11, and 0.61. Also note that the third state does not
directly appear in the system's output.

We want to minimize the cost function, J ¼ 1
2 γNy

2
Nþ

1
2∑

N−1
k ¼ 0γky

2
k þ 5u2

k , with penalty weights γk, when uk is uncon-
strained and when we have input constraints uk ≤uk ≤uk. We
denote the lower and upper control limits in vector form as u
and u. For the unconstrained case, we implement the scheme (17)–
(19), with ak¼0.2, K ¼ −diag½1:0;1:25;1:67;2:5;5:0� � 10−4, ωk

drawn from a uniform distribution such that ωk∈ð0; πÞ, and
φk ¼ −∠Wðejωk Þ. For the constrained case, we use the same para-
meters but modify the extremum seeking controller to accom-
modate the input constraints. Specifically, the k-th control loop is
implemented as ûkðlþ 1Þ ¼ ûkðlÞ−ProjfϵKkξðlÞ;uk;ukg, where

Projfϕ;uk;ukg ¼
0 if ûk ≤uk þ ϕ;

0 if ûk≥uk þ ϕ;

ϕ otherwise;

8><
>: ð82Þ

is the projection operator used to constrain ûk according to the
input constraints and Kk is the k-th diagonal element of the gain
matrix K. (The input value uk is allowed to violate the constraints
by the perturbation magnitude ak.) In this example, we study the
input bounds jukj≤1.
(top) and a linear scale (bottom) for the y-axis, and (b) eigenvalues of H versus α for
on number κðHÞ ¼ λmaxðHÞ=λminðHÞ.
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For both the unconstrained and constrained scenarios, the
system is simulated with a zero initial control sequence for the
finite horizon N¼5 and penalty weights γ0 ¼ 3, γ1 ¼ 5, γ2 ¼ 7,
γ3 ¼ 9, γ4 ¼ 11, γ5 ¼ 1. Fig. 3 depicts the planar trajectories of û0

and û1 for both cases with the level sets of J(u) and the input
constraints (dashed lines) superimposed. The constrained trajec-
tory hits the upper limit of û0 and climbs along the boundary until
reaching the constrained optimum denoted by the cyan square.
The optimal control values for the constrained problem are
obtained by formulating a quadratic program [10] and minimizing
J(u) subject to the input constraints. Fig. 4 depicts the time history
of û for both cases. Note how the trajectory of û1 is affected by the
û0 hitting its constraint in Fig. 4(b).
Fig. 5. Newton-based discrete-time extremum seeking scheme to find the optimal
n n N−1
6.3. Newton-based discrete-time extremum seeking

The extremum seeking scheme introduced in Section 3 and
subsequently analyzed is a gradient-based design, and conse-
quently, its convergence rate is governed by the unknown Hessian
as seen in (59). The Newton-based discrete-time extremum seek-
ing design, depicted in Fig. 5, utilizes a perturbation matrix N(l) to
generate an estimate Ĥ of the Hessian on the average and a
Fig. 3. Trajectory of u0 and u1 for unconstrained (blue) and constrained (red)
control cases for the unstable third-order system. The cost level sets are shown
with the unconstrained minimum (green circle). Dashed lines denote the input
constrained set with the optimum value on the boundary (cyan square). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

Fig. 4. Time history of û for (a) unconstrained
discrete-time Riccati equation to generate an estimate of the
Hessian's inverse, which avoids invertibility issues that may arise
by attempting to directly invert Ĥ since it may be singular or ill-
conditioned. (See [15] for derivation and thorough analysis of the
continuous-time Newton-based design.)

The Newton-based controller is constructed as follows:

ûðlÞ ¼−
ϵKΓ
z−1

½ξðlÞ�; ð83Þ
and (b) input constrained optimizations.

control sequence u ¼ fukgk ¼ 0 that minimizes the cost function J(u). The terms ξ

and Ĥ are estimates of the gradient and the Hessian, respectively.

Fig. 6. Trajectory of u0 and u1 for unconstrained (blue) and constrained (red)
control cases for the unstable third-order system using the Newton-based con-
troller. The cost level sets are shown with the unconstrained minimum (green
circle). Dashed lines denote the input constrained set with the optimum value on
the boundary (cyan square). For reference, the trajectory generated by the gradient-
based controller is also shown (black dashed). (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
article.)



Fig. 7. Time history of û for (a) unconstrained and (b) input constrained optimizations when using the Newton-based extremum seeking controller.
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zΓðlÞ ¼ ðI þ αÞΓ−αΓðNðlÞWðzÞ½JðlÞ�ÞΓ; ð84Þ

ξðlÞ ¼MðlÞWðzÞ½JðlÞ�; ð85Þ

uðlÞ ¼ ûðlÞ þ SðlÞ; ð86Þ
where α is a positive real number, and as in (17)–(19), ϵ is a small,
positive parameter, K is a positive diagonal matrix, h∈ð0;1Þ, and M
(l) and S(l) are defined by (20) and (21). The N�N symmetric
matrix N(l) consists of the elements

Ni;iðlÞ ¼
16
a2i

cos 2ðωilÞ−
1
2

� �
ð87Þ

Ni;jðlÞ ¼
4
aiaj

cos ðωilÞ cos ðωjlÞ; i≠j; ð88Þ

whose derivation imposes the frequency requirements

ωi∉fωj;
1
2ðωj þ ωkÞ;ωj þ 2ωk;ωj þ ωk7ωlg ð89Þ

for all distinct i; j; k; l∈f0;…;N−1g. On the average, NðlÞWðzÞ½JðlÞ�
estimates the Hessian H, which allows Γ to converge to H−1.

Following the derivation of the average error system (59), the
homogeneous average error system for the Newton-based design
can be shown to be

~u ¼ ðI−ϵKΣÞ ~u−ϵKΣ ~ΓH ~u; ð90Þ

~Γ ¼ ð1−αÞ ~Γ−α ~ΓΣH ~Γ ; ð91Þ
where ~Γ ¼ Γ−H−1. The linearization of this system has its eigenva-
lues at ðI−ϵKΣÞ and ð1−αÞ, which are user assigned and thus, the
convergence rate dependence on H has been removed. However,
convergence is still local and an initial estimate Ĥ that is sufficiently
close to H is required, which may be difficult for unstable systems
and/or long time horizons based on the example in Section 6.1.

For comparison with the gradient-based simulations, we repeat
the optimization problem in Section 6.2 with the Newton-based
controller (83)–(86) using the same common parameter values
and the new parameters as follows: α¼ 0:005, the elements of K to
all be equal to −0.0005, and Γð0Þ ¼ diag½0:2;0:25;0:33;0:5;1:0�. The
selection of K and Γ was done such that the initial gain KΓð0Þ is the
same as the gain K used in the gradient-based design.

Fig. 6 depicts the planar trajectories of û0 and û1 for the
unconstrained and input constrained cases with the level sets of
J(u) and the input constraints (dashed lines) superimposed. Also
shown is the trajectory generated by the gradient-based controller,
which highlights how the Newton-based method moves directly
toward the optimal point. Fig. 7 depicts the time history of û for
both cases. Note how the rise time for û0 is faster with the
Newton-based scheme, compared to the trajectories in Fig. 4. Also
of interest is how in the constrained case û1 does not reach its
optimal value, possibly due to the influence of a constrained
control value on the estimate of the Hessian.

7. Conclusions

We have introduced a non-model based approach to solve the
finite-time horizon optimal control problem for unknown discrete-
time systems and established its convergence to the open-loop
control sequence fun

kg
N−1
k ¼ 0 that minimizes a cost function that is

quadratic in the input and output. This result extends the con-
vergence results found in [7]. Such a framework may be a natural
tool for the real-time optimization of highly repetitive systems
that are unknown and potentially high-dimensional.

Convergence does not depend on the time horizon length N or
on the stability of the unknown system (because the time horizon
is finite). However, the optimization problem, independent of the
solver, becomes more difficult as N increases and as the instability
of the system increases. If possible, sequences for shorter time
horizons could be found to obtain better initial estimates for
solving more difficult longer time horizon optimization problems.

We have also introduced a Newton-based discrete-time extre-
mum seeking controller, whose continuous-time counterpart is
developed in [15]. A simulation example shows how the Newton-
based scheme takes a more direct trajectory to the optimal point
than does the gradient-based scheme. Extending this work to
nonlinear systems is of interest.
Appendix A

Lemma 3. For the transfer function G(z) the following is true for any
real φ:

GðzÞ½ cos ðωk−φÞvðkÞ� ¼ Refejðωk−φÞGðejωzÞ½vðkÞ�g: ð92Þ

Lemma 4. For any two rational functions Að�Þ and Bð�; �Þ, the
following is true:

Refejðω1k−φ1ÞAðejω1ÞgRefejðω2k−φ2ÞBðz; ejω2 Þ½vðkÞ�g
¼ 1

2Refejððω2−ω1Þkþφ1−φ2ÞAðe−jω1 ÞBðz; ejω2 Þ½vðkÞ�g
þ1

2Refejððω1þω2Þk−φ1−φ2ÞAðejω1 ÞBðz; ejω2 Þ½vðkÞ�g: ð93Þ

Lemma 5. For any rational function Bð�; �Þ, the following is true:

Refejðωk−φÞBðz; ejωÞ½vðkÞ�g ¼ cos ðωk−φÞRefBðz; ejωÞ½vðkÞ�g
− sin ðωk−φÞImfBðz; ejωÞ½vðkÞ�g: ð94Þ
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Lemma 6. Given a transfer function H(z) with its poles inside the
unit circle, the signal

cos ðωk−φÞHðzÞ½vðkÞ� ð95Þ
can be represented in state space form as ðA;B;CðkÞ;DðkÞÞ where A is
exponentially stable.

Proof. Let ðA;B;C;DÞ be the minimal state space realization of H(z)
where A is exponentially stable since the poles of H(z) are inside
the unit circle. Then, let x(k) be the state vector of H(z) to express
cos ðωk−φÞHðzÞ½vðkÞ� in state space form as

xðkþ 1Þ ¼ AxðkÞ þ BvðkÞ; ð96Þ

yðkÞ ¼ cos ðωk−φÞCxðkÞ þ cos ðωk−φÞDvðkÞ;
¼ CðkÞxðkÞ þ DðkÞvðkÞ: □ ð97Þ
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