#### Automatica 48 (2012) 1317-1323

Contents lists available at SciVerse ScienceDirect

### Automatica

journal homepage: www.elsevier.com/locate/automatica

## Brief paper

# Lyapunov–Krasovskii functionals and application to input delay compensation for linear time-invariant systems\*

### Frédéric Mazenc<sup>a,1</sup>, Silviu-Iulian Niculescu<sup>b</sup>, Miroslav Krstic<sup>c</sup>

<sup>a</sup> Team INRIA DISCO, L2S CNRS-Supélec, 3 rue Joliot Curie, 91192, Gif-sur-Yvette, France

<sup>b</sup> L2S, team DISCO, CNRS-Supélec, 3 rue Joliot Curie, 91192, Gif-sur-Yvette, France

<sup>c</sup> Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

#### ARTICLE INFO

Article history: Received 17 May 2011 Received in revised form 10 November 2011 Accepted 14 November 2011 Available online 5 May 2012

Keywords: Distributed delay Reduction Stability Lyapunov functional

#### 1. Introduction

Controlling dynamical systems including delays in the inputs was a problem of recurring interest in the past fifty years since it frequently arises in control applications, due to the transport and measurement delays that naturally occur (for more details, see, e.g., Michiels and Niculescu (2007)).

A number of approaches to deal with input delays have been proposed in both frequency- and time-domains. Among them, for linear systems, two of the most celebrated are the *Smith predictor* and the *reduction* technique, also known as finite spectrum assignment (FSA). To the best of the authors' knowledge, the reduction approach originates in Mayne (1968), with the well known contributions that have followed in Kwon and Pearson (1980), Manitius and Olbrot (1979) and Olbrot (1978), which have been systematized and generalized in Artstein (1982), to which we refer the reader for a pedagogical exposition. This technique is popular and frequently used in practice for stabilizing linear

Silviu.Niculescu@lss.supelec.fr (S.-I. Niculescu), krstic@ucsd.edu (M. Krstic). <sup>1</sup> Tel.: +33 1 69851712; fax: +33 1 69851796.

#### ABSTRACT

For linear systems with pointwise or distributed delay in the inputs which are stabilized through the reduction approach, we propose a new technique of construction of Lyapunov–Krasovskii functionals. These functionals allow us to establish the ISS property of the closed-loop systems relative to additive disturbances.

© 2012 Elsevier Ltd. All rights reserved.

automatica

systems with delay in the input, due to the fact that, under an appropriate transformation, the system reduces to a finitedimensional one. However, the control applied to the original dynamics is complicated. Alternatives to the popular reduction approach include the general observer–predictor structure in Mirkin and Raskin (2003) and the  $H_{\infty}$  approach in Tadmor (2000).

The reduction approach applies to cases where the delays are too large for being neglected, as done for instance in Mazenc, Malisoff, and Lin (2008): the one-dimensional system

$$X(t) = X(t) + U(t - \tau),$$
 (1)

where *U* is the input, can be exponentially stabilized through the reduction approach for any constant delay  $\tau \ge 0$  although, when  $\tau$  is larger than a certain value, there is no continuous function  $\varphi$  such that the feedback  $U(t-\tau) = \varphi(X(t-\tau))$  asymptotically stabilizes (1). Moreover, this technique applies to cases where the delays are either pointwise or distributed, and significantly simplifies stabilization problems for systems with delay by reducing them to similar problems for ordinary differential equations (see, for instance Fiagbedzi and Pearson (1986) and Wang, Lee, and Tan (1998) for further discussions).

Although Lyapunov functionals are tools whose importance is more and more recognized by the researchers who work in delay area (see for instance (Bekiaris-Liberis & Krstic, 2011), Karafyllis and Jiang (2011), Pepe and Verriest (2003) and Zhou, Lin, and Duan (2010)), strict Lyapunov–Krasovskii functionals for linear systems in closed-loop with feedbacks resulting from



<sup>&</sup>lt;sup>†</sup> The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Maria Elena Valcher under the direction of Editor Roberto Tempo. The authors thank the associate editor and the anonymous reviewers for their comments, which helped us to improve the quality of the paper.

E-mail addresses: Frederic.MAZENC@lss.supelec.fr (F. Mazenc),

<sup>0005-1098/\$ -</sup> see front matter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.automatica.2012.04.002

the reduction approach have been constructed only recently in Bekiaris-Liberis and Krstic (2011) using a novel approach which relies on the introduction of a hyperbolic PDE. This result is motivated by the important benefits which can be derived from the knowledge of a strict Lyapunov–Krasovskii functional. In particular, strict Lyapunov–Krasovskii functionals are frequently ISS or iISS Lyapunov–Krasovskii functionals as defined and discussed in Pepe and Jiang (2006) for systems with disturbances, which straightforwardly implies that the systems possess the desirable ISS or iISS property with respect to these disturbances (see Sontag (2007) for information on the celebrated ISS notion).

In the present work, we revisit the problem of constructing Lyapunov-Krasovskii functionals for two main families of closedloop systems with additive disturbances: the first class is associated with the classical reduction approach and the second is employing dynamic feedback to overcome the instability that arises in some implementations of control laws specific to the classical reduction approach. The new construction we propose shares some features with the one of Mazenc and Niculescu (2011) which relies on the representation of a system with delay as an ordinary differential equation interconnected with an integral equation. However, the Lyapunov functionals we propose here are by no means straightforwardly deduced from Mazenc and Niculescu (2011). Indeed, by contrast with the feedbacks resulting from the reduction approach, the control laws considered in Mazenc and Niculescu (2011) do not have distributed terms. Furthermore, our ISS Lyapunov-Krasovskii functionals do not rely on the introduction of hyperbolic PDEs and therefore are significantly different from those proposed in Bekiaris-Liberis and Krstic (2011), Krstic (2008) and Krstic and Smyshlaev (2008).

The paper is organized as follows. In Section 2, a construction of functionals for a general family of systems is presented. From the latter result, Lyapunov–Krasovskii functionals for three families of systems stabilized via control laws provided by the reduction model approach are deduced in Section 3. Finally, some conclusions are drawn in Section 4.

Notation and definitions. • The notation will be simplified whenever no confusion can arise from the context. • For any integer *p*, we denote by  $Id_p$  or simply *Id* the identity matrix in  $\mathbb{R}^{p \times p}$ . • We let | · | denote the Euclidean norm of matrices and vectors of any dimension. • Given  $\phi : \mathfrak{l} \to \mathbb{R}^p$  defined on an interval  $\mathfrak{l}$ , let  $|\phi|_{\ell}$  denote its (essential) supremum over  $\ell$ . • For any integer *p*, we let  $C_{in} = C([-\tau, 0], \mathbb{R}^p)$  denote the set of all continuous  $\mathbb{R}^p$ -valued functions defined on a given interval  $[-\tau, 0]$ . • For a function  $x : [-\tau, +\infty) \to \mathbb{R}^k$ , for all  $t \ge 0$ , the function  $x_t$  is defined by  $x_t(\ell) = x(t+\ell)$  for all  $\ell \in [-\tau, 0]$ . • Let  $\mathcal{K}_{\infty}$  denote the set of all continuous functions  $\rho : [0, \infty) \to [0, \infty)$  for which (i)  $\rho(0) = 0$  and (ii)  $\rho$  is strictly increasing and unbounded. We adopt a definition of ISS Lyapunov-Krasovskii functional for coupled retarded functional differential equations and functional equations, which is an adaptation to this family of systems of the definitions given in Dashkovskiy and Naujok (2010) and Pepe, Karafyllis, and Jiang (2008).

**Definition 1.** We consider a system composed by a retarded functional differential equation coupled with a functional equation:

$$\begin{cases} \dot{x}_1(t) = f_1(x_{1t}, x_{2t}, u(t)), \\ x_2(t) = f_2(x_{1t}, x_{2t}), \\ (x_1(r), x_2(r)) = (x_{10}(r), x_{20}(r)), \quad \forall r \in [-\tau, 0], \end{cases}$$
(2)

where  $t \in [0, +\infty)$ ,  $x_1(t) \in \mathbb{R}^{N_1}$ ,  $x_2(t) \in \mathbb{R}^{N_2}$ ,  $u(t) \in \mathbb{R}^{N_3}$  is an essentially bounded measurable input and  $\tau$  is the maximum involved delay and the functionals  $f_1$  and  $f_2$  are locally Lipschitz continuous on any bounded set such that all the solutions of (2) with initial function in  $C_{in}$  are defined and of class  $C^1$  over  $[0, +\infty)$ . A locally Lipschitz continuous functional  $V : C_{in} \rightarrow [0, +\infty)$ is called an ISS Lyapunov–Krasovskii functional for (2) if (i) there are functions of class  $\mathcal{K}_{\infty}$ ,  $\alpha_1$  and  $\alpha_2$  such that, for all functions  $(\phi_1, \phi_2) \in C_{in}$  the inequalities

$$\alpha_1(|(\phi_1(0),\phi_2(0))|) \le V(\phi_1,\phi_2) \le \alpha_2(|(\phi_1,\phi_2)|_{[-\tau,0]})$$
(3)

are satisfied,

(ii) it is continuously differentiable along the trajectories of (2) and satisfies:

$$V(t) \le -\alpha_3(V(x_{1t}, x_{2t})) + \alpha_4(|u(t)|), \quad \forall t \in [0, +\infty),$$
(4)

where  $\alpha_3$  and  $\alpha_4$  are functions of class  $\mathcal{K}_{\infty}$ .

#### 2. Technical result

The result of this section is instrumental in establishing our main results. However, it is of interest for its own sake.

#### 2.1. System and assumptions

We consider the system

$$\Sigma_{z,v}:\begin{cases} \dot{z}(t) = f(z(t)) + \delta(t), & \forall t \ge 0, \\ v(t) = Nz(t), & \forall t \ge 0, \end{cases}$$
(5)

with  $z \in \mathbb{R}^n$ ,  $v \in \mathbb{R}^m$ , where the initial conditions  $\phi_z \in C_{in}$  and  $\phi_v \in C_{in}$  are such that  $\phi_v(0) = N\phi_z(0)$ , where  $N \in \mathbb{R}^{m \times n}$  is a constant matrix,  $N \neq 0$ , where f is a function of class  $C^1$  and where  $\delta$  is a continuous function. Consider also the system

$$\Sigma_{x}: x(t) = g(x_t, z_t, v_t), \tag{6}$$

where *g* is a locally Lipschitz continuous functional. We introduce two assumptions:

**Assumption H1.** There exists a function *S* of class  $C^1$ , positive definite and radially unbounded, a function  $\kappa_1$  of class  $\mathcal{K}_{\infty}$  and a positive real number  $a_1$  such that

$$\frac{\partial S}{\partial z}(z)[f(z) + \delta] \le -a_1 S(z) + \kappa_1(|\delta|), \tag{7}$$

for all  $z \in \mathbb{R}^n$  and  $\delta \in \mathbb{R}^n$ .

**Assumption H2.** There exists a nonnegative function  $\theta$  such that

$$\theta(Nz) \le \frac{a_1}{2}S(z),\tag{8}$$

for all  $z \in \mathbb{R}^n$ , all the solutions (z(t), x(t)) of the system  $\Sigma_{z,v} - \Sigma_x$  are defined and of class  $C^1$  over  $[0, +\infty)$  and are such that, for all  $t \ge 0$ , the inequality

$$\max\{|x(t)|, |\dot{x}(t)|\} \le \sqrt{a_2\left(S(z(t)) + \overline{\theta}(v_t) + \kappa_2(|\delta(t)|)\right)}, \qquad (9)$$

where  $a_2$  is a positive real number,  $\kappa_2$  is a function of class  $\mathcal{K}_\infty$  and

$$\overline{\theta}(v_t) = \theta(v(t-\tau)) + \int_{t-\tau}^t \theta(v(m)) dm,$$
(10)

is satisfied.

#### 2.2. Discussion of the assumptions

1. The inequality (7) implies that the *z*-subsystem in (5) is ISS with respect to  $\delta$ .

2. The *z*-subsystem is written as an ordinary differential equation, however, we regard it as a subsystem of the system with delay

 $\Sigma_{z,v} - \Sigma_x$  and therefore this subsystem needs an initial condition defined over  $[-\tau, 0]$ . To extend the range of possible applications of the forthcoming Theorem 2.1 and with a view to the results of Section 3, we have introduced the *v*-subsystem.  $\Sigma_{z,v}$  is a particular case of the coupled retarded functional differential equation and functional difference equation considered in Karafyllis, Pepe, and Jiang (2009), although the delay  $\tau$  is not explicitly present in the equations. In order to immediately recognize in (5) the equations studied in Karafyllis et al. (2009), observe that (5) can be written as

$$\begin{cases} \dot{z}(t) = f(z(t)) + \delta(t), \\ v(t) = Mv(t - \tau) + Nz(t), \end{cases}$$

#### with M = 0.

3. The property (9) implies that  $\Sigma_{z,v} - \Sigma_x$  behaves as a coupled delay differential equation and integral equation. In contrast to coupled delay differential and difference equations, which have been studied in many works and in particular in Pepe, Jiang, and Fridman (2008), Rasvan and Niculescu (2002) and Pepe and Verriest (2003), only a few works, notably (Karafyllis et al., 2009), are devoted to coupled delay differential and integral equations.

#### 2.3. Lyapunov-Krasovskii functional

We introduce two functionals:

$$V_1(\phi_x) = \frac{1}{2} |\phi_x(0)|^2 + \int_{-\tau}^0 e^m |\phi_x(m)|^2 dm,$$
(11)

$$V_2(\phi_z, \phi_v) = S(\phi_z(0)) + \int_{-\tau}^0 e^{\frac{a_1}{2}m} \theta(\phi_v(m)) dm$$
(12)

and state and prove the following result:

**Theorem 2.1.** Consider the system  $\Sigma_{z,v} - \Sigma_x$ . Assume that it satisfies Assumptions H1 and H2. Then the derivative of functional  $V_3$ :  $C_{in} \rightarrow [0, +\infty)$ , defined by

$$V_3(\phi_x, \phi_z, \phi_v) = V_1(\phi_x) + a_3 V_2(\phi_z, \phi_v),$$
(13)

where  $a_3 = 10 \frac{a_2}{a_1} e^{\frac{a_1}{2}\tau}$  and  $V_1$  and  $V_2$  are the functionals defined in (11) and (12), along the trajectories of  $\Sigma_{z,v} - \Sigma_x$  satisfies, for all  $t \ge 0$ ,

$$\dot{V}_{3}(t) \leq -\min\left\{\frac{a_{1}}{4}, 1\right\} V_{3}(x_{t}, z_{t}, v_{t}) + \kappa_{3}(|\delta(t)|),$$
(14)

where  $\kappa_3$  is the function of class  $\mathcal{K}_\infty$  defined by

$$\kappa_3(\ell) = a_3 \kappa_1(\ell) + \frac{5}{2} a_2 \kappa_2(\ell).$$
(15)

#### 2.4. Discussion of Theorem 2.1

1. Theorem 2.1 presents an extension of the Lyapunov methodology to a special class of systems which behave as coupled retarded functional differential equations and functional equations. To the best of our knowledge, no construction of *strict Lyapunov–Krasovskii functional* for these systems is available in the literature. Many extensions of Theorem 2.1 can be established. In particular the case of multiple delays can be easily handled and since Assumption H2 is independent of the features of the function *g*, more general systems  $\Sigma_x$  can be considered. Moreover, Assumption H2 itself can be relaxed by allowing the right-hand side of (9) to depend on  $x_t$ . The latter extension is especially appealing, since it would make it possible to analyze systems which, as explained in Karafyllis et al. (2009), are of great relevance, but it is beyond the scope of the present contribution and it will be considered in a forthcoming work. 2. For the time being the advantage of having introduced *v*-subsystem in Theorem 2.1 is not obvious. It will become clear in the next sections why we did not replace *v* by *Nz* throughout Theorem 2.1. It is crucial to note that we *did not* impose on the initial conditions of the solutions (z(t), v(t)) a requirement that  $\phi_v(t) = N\phi_z(t)$  for all  $t \in [-\tau, 0)$ : only a "point" condition  $\phi_v(0) = N\phi_z(0)$  is required. Note also that, for the sake of generality, we do not assume that *N* is a square matrix.

3. The system  $\Sigma_{z,v}$  can be interpreted as a *comparison system* for the system  $\Sigma_x$  in the sense that the stability properties of the latter system are deduced from the system  $\Sigma_{z,v}$ . The idea of comparison systems is not new (Halanay, 1966; Lakshmikantan & Leela, 1969; Verriest, 2001), but the way |x(t)| and  $|\dot{x}(t)|$  are estimated in (9) through functions which depend on pieces of the trajectories of  $\Sigma_{z,v}$  and the Lyapunov functional (13) for the coupled system are new.

4. If the delay  $\tau$  in Theorem 2.1 is unknown, but is smaller than a known constant  $\tau^* > 0$ , one can still construct a functional of the type of the functional *U* by replacing in the expression of *U* the constant  $a_3$  by  $10\frac{a_2}{a_1}e^{\frac{a_1}{2}\tau^*}$ .

#### 2.5. Proof of Theorem 2.1

To evaluate the time derivative of  $V_3$  along the trajectories of  $\Sigma_{z,v} - \Sigma_x$ , first we observe that, for all  $t \ge 0$ , the derivative of

$$V_1(x_t) = \frac{1}{2} |x(t)|^2 + \int_{t-\tau}^t e^{m-t} |x(m)|^2 dm$$
(16)

satisfies

$$\dot{V}_{1}(t) = x(t)^{\top} \dot{x}(t) - \int_{t-\tau}^{t} e^{m-t} |x(m)|^{2} dm + |x(t)|^{2} - e^{-\tau} |x(t-\tau)|^{2} \leq -V_{1}(x_{t}) + x(t)^{\top} \dot{x}(t) + \frac{3}{2} |x(t)|^{2}.$$

Using (9), we obtain that

$$\dot{V}_1(t) \le -V_1(x_t) + \frac{5}{2}a_2\left[S(z(t)) + \overline{\theta}(v_t) + \kappa_2(|\delta(t)|)\right], \tag{17}$$

for all  $t \ge 0$ . Now we observe that, for all  $t \ge 0$ , the derivative of

$$V_2(z_t, v_t) = S(z(t)) + \int_{t-\tau}^t e^{\frac{a_1}{2}(m-t)} \theta(v(m)) dm$$
(18)

is given by

$$\dot{V}_{2}(t) = \frac{\partial S}{\partial z}(z(t))[f(z(t)) + \delta(t)] - \frac{a_{1}}{2} \int_{t-\tau}^{t} e^{\frac{a_{1}}{2}(m-t)} \theta(v(m)) dm + \theta(v(t)) - e^{-\frac{a_{1}}{2}\tau} \theta(v(t-\tau)).$$

From (7) and the equality v(t) = Nz(t) for all  $t \ge 0$ , it follows that, for all  $t \ge 0$ ,  $\dot{V}(t) \le -z \cdot S(z(t)) + O(Nz(t))$ 

$$\begin{split} \dot{V}_{2}(t) &\leq -a_{1}S(z(t)) + \theta(Nz(t)) \\ &- \frac{a_{1}}{2} \int_{t-\tau}^{t} e^{\frac{a_{1}}{2}(m-t)} \theta(v(m)) dm \\ &- e^{-\frac{a_{1}}{2}\tau} \theta(v(t-\tau)) + \kappa_{1}(|\delta(t)|). \end{split}$$

From the inequality (8), it follows that, for all  $t \ge 0$ ,

$$\dot{V}_{2}(t) \leq -\frac{a_{1}}{2}S(z(t)) - \frac{a_{1}}{2}\int_{t-\tau}^{t} e^{\frac{a_{1}}{2}(m-t)}\theta(v(m))dm$$
$$-e^{-\frac{a_{1}}{2}\tau}\theta(v(t-\tau)) + \kappa_{1}(|\delta(t)|).$$

This inequality and the definition of  $V_2$  in (18) imply that, for all  $t \ge 0$ ,

$$\dot{V}_{2}(t) \leq -\frac{a_{1}}{4}S(z(t)) - e^{-\frac{a_{1}}{2}\tau}\theta(v(t-\tau)) -\frac{a_{1}e^{-\frac{a_{1}}{2}\tau}}{4}\int_{t-\tau}^{t}\theta(v(m))dm -\frac{a_{1}}{4}V_{2}(z_{t},v_{t}) + \kappa_{1}(|\delta(t)|).$$
(19)

From the definition of  $V_{3}$ , (17) and (19), we conclude that

$$\begin{split} \dot{V}_{3}(t) &\leq -V_{1}(x_{t}) + \frac{5}{2}a_{2}\left[S(z(t)) + \overline{\theta}(v_{t})\right] \\ &- a_{3}\frac{a_{1}}{4}S(z(t)) - a_{3}e^{-\frac{a_{1}}{2}\tau}\theta(v(t-\tau)) \\ &- a_{3}\frac{a_{1}e^{-\frac{a_{1}}{2}\tau}}{4}\int_{t-\tau}^{t}\theta(v(m))dm \\ &- \frac{a_{3}a_{1}}{4}V_{2}(z_{t},v_{t}) + \kappa_{3}(|\delta(t)|), \end{split}$$

with  $\kappa_3$  defined in (15). Using the explicit value of  $a_3$  in Theorem 2.1, we obtain

$$\dot{V}_3(t) \leq -V_1(x_t) - \frac{a_3a_1}{4}V_2(z_t, v_t) + \kappa_3(|\delta(t)|),$$

for all  $t \ge 0$ , which implies that (14) is satisfied.

#### 3. Linear systems with delay in the inputs

As mentioned in the introduction, we consider three families of systems in closed-loop with control laws provided by the reduction technique. In each case, we construct ISS Lyapunov-Krasovskii functionals.

#### 3.1. Systems with pointwise delay in the inputs

In this section, we consider the closed-loop system studied in Krstic (2009, Section 2.6):

$$\begin{cases} \dot{X}(t) = AX(t) + BU(t-\tau) + \lambda(t), \\ U(t) = K \left[ e^{A\tau} X(t) + \int_{t-\tau}^{t} e^{A(t-\ell)} BU(\ell) d\ell \right], \end{cases}$$
(20)

with  $X \in \mathbb{R}^n, U \in \mathbb{R}^m$ , where  $\tau > 0$ , the matrices A, B, Kare constant and  $\lambda$  is a continuous disturbance and introduce the assumption:

Assumption H3. There exists a symmetric and positive definite matrix Q such that

$$Q \ge Id, \qquad QH + H^{\top}Q \le -2Id, \tag{21}$$

where H = A + BK.

We recall that Assumption H3 is satisfied if and only if H is a Hurwitz matrix. Now, we state and prove the following result:

Theorem 3.1. Assume that the system (20) satisfies Assumption H3. Then there exist three constants  $c_1 > 0$ ,  $c_2 > 0$ ,  $c_3 > 0$  such that  $W: C_{\text{in}} \rightarrow [0, +\infty)$ , defined by

$$W(\Phi_{X,U}) = \frac{1}{2} |\phi_X(0)|^2 + c_1 |\phi_U(0)|^2 + \int_{-\tau}^0 e^m |\phi_X(m)|^2 dm + c_2 \zeta(\Phi_{X,U})^\top Q \zeta(\Phi_{X,U}) + c_3 \int_{-\tau}^0 e^{\frac{1}{2|Q|}m} |\phi_U(m)|^2 dm,$$
(22)

with  $\Phi_{X,U} = (\phi_X, \phi_U)$ , with

$$\zeta(\Phi_{X,U}) = e^{A\tau} \phi_X(0) + \int_{-\tau}^0 e^{-Am} B \phi_U(m) dm$$
(23)

is an ISS Lyapunov–Krasovskii functional for (20). Moreover, there are two positive constants  $c_4$ ,  $c_5$  such that the inequalities

$$c_4\beta(\Phi_{X,U}) \le W(\Phi_{X,U}) \le c_5\beta(\Phi_{X,U}),\tag{24}$$

with

$$\beta(\Phi_{X,U}) = |\Phi_{X,U}(0)|^2 + \int_{-\tau}^0 |\Phi_{X,U}(m)|^2 dm,$$
(25)

hold for all  $\Phi_{X,U} \in C_{in}$ .

**Remark 2.** The inequalities (24) imply that W satisfies the conditions of the Lyapunov-Krasovskii theorem (see, for instance, Hale and Verduvn Lunel (1993)). However, it is worth mentioning that, according to the type of problem which is investigated, other types of Lyapunov-Krasovskii functionals may be more convenient and they may be provided by variants of our construction. For instance, we will see in the forthcoming proof that asymptotic stability can be established via a functional W with  $c_1 = 0$ .

**Proof.** To begin with, one can easily prove that there are positive constants  $c_4$ ,  $c_5$  such that (24) is satisfied. Let

$$Z(t) = \zeta(X_t, U_t), \tag{26}$$

for all t > 0, where  $\zeta$  is the functional defined in (23). Then some elementary calculations lead to

$$\dot{Z}(t) = e^{A\tau}AX(t) + e^{A\tau}BU(t-\tau) + A \int_{t-\tau}^{t} e^{A(t-m)}BU(m)dm + BU(t) - e^{A\tau}BU(t-\tau) + e^{A\tau}\lambda(t) = AZ(t) + BU(t) + e^{A\tau}\lambda(t).$$

.

Since the definition of *Z* and (20) imply, for all  $t \ge 0$ ,

$$U(t) = KZ(t), \tag{27}$$

we obtain, for all  $t \ge 0$ ,

$$\begin{cases} \dot{Z}(t) = HZ(t) + \delta(t), \\ U(t) = KZ(t), \\ X(t) = e^{-A\tau}Z(t) - \int_{t-\tau}^{t} e^{A(t-m-\tau)}BU(m)dm, \end{cases}$$
(28)

with  $\delta(t) = e^{A\tau} \lambda(t)$ , which are equations of the form of the system  $\Sigma_{z,v} - \Sigma_x$  introduced in Section 2, with Z playing the role of z, U(X) playing the role of v(x) and K playing the role of N. Let us check now that Assumptions H1 and H2 are satisfied. Let  $b_2 = |e^{-A\tau}|^2$ ,  $b_3 = \int_0^{\tau} |e^{-Am}B|^2 dm$ ,  $b_4 = \frac{1}{2|Q||K|}$ . Then (21) implies that Assumption H1 is satisfied with  $S(Z) = Z^{\top}QZ$ ,  $a_1 = \frac{1}{|Q|}$ ,  $\kappa_1(m) =$  $|0|m^2$ .

Now, taking  $\theta(\ell) = b_4 |\ell|^2$  and  $\overline{\theta}(U_t)$  defined as in (10) and one can prove that, for all  $t \ge 0$ ,

$$|X(t)| \leq \sqrt{b_2}|Z(t)| + \sqrt{b_3 \int_{t-\tau}^t |U(m)|^2 dm}$$
$$\leq \sqrt{2 \max\left\{b_2, \frac{b_3}{b_4}\right\} (S(Z(t)) + \overline{\theta}(U_t))}$$

and

$$\begin{aligned} |\dot{X}(t)| &\leq |A||X(t)| + |B||U(t-\tau)| + |\lambda(t)| \\ &\leq \sqrt{3|A|^2|X(t)|^2 + 3|B|^2|U(t-\tau)|^2 + 3b_2|\delta(t)|^2} \\ &\leq \sqrt{a_2[S(Z(t)) + \overline{\theta}(U_t) + |\delta(t)|^2]}, \end{aligned}$$

with  $a_2 = 2 \max \left\{ 2b_2, 2\frac{b_3}{b_4}, 6|A|^2 \max \left\{ b_2, \frac{b_3}{b_4} \right\} + 3\frac{|B|^2}{b_4} \right\}$ . Bearing the definition of Z(t) in (26) in mind, we deduce from Theorem 2.1 that there is a nonnegative real number  $b_5$  such that the functional

$$V(\Phi_{X,U}) = \frac{1}{2} |\phi_X(0)|^2 + \int_{-\tau}^0 e^m |\phi_X(m)|^2 dm + b_5 \left[ \zeta (\Phi_{X,U})^\top Q \zeta (\Phi_{X,U}) + \varpi(\phi_U) \right],$$

with  $\varpi(\phi_U) = b_4 \int_{-\tau}^0 e^{\frac{1}{2|Q|}m} |\phi_U(m)|^2 dm$ , admits a derivative along the trajectories of (28) which satisfies

$$\dot{V}(t) \leq -\frac{1}{4|Q|}V(X_t, U_t) + b_6|\lambda(t)|^2,$$

for all  $t \ge 0$ , where  $b_6$  is a positive real number.

Now, using again (26) and the inequality  $Q \ge Id$  in Assumption H3, we deduce that, for all  $t \ge 0$ ,

$$V(X_t, U_t) \ge b_5 Z(t)^{\top} QZ(t)$$
  
$$\ge \frac{b_5}{|K|^2 + 1} |KZ(t)|^2 = \frac{b_5}{|K|^2 + 1} |U(t)|^2.$$

Consequently,

$$\dot{V}(t) \le -\frac{1}{8|Q|} V(X_t, U_t) - b_7 |U(t)|^2 + b_6 |\lambda(t)|^2,$$
(29)

with  $b_7 = \frac{b_5}{8|Q|(|K|^2+1)}$ , for all  $t \ge 0$ . Moreover, we have, for all  $t \ge 0$ ,

$$U(t)^{\top} \dot{U}(t) = Z(t)^{\top} K^{\top} K H Z(t) + Z(t)^{\top} K^{\top} K e^{A\tau} \lambda(t)$$
  
$$\leq \frac{|K|^2 (2|H|+1)}{2b_5} V(X_t, U_t) + \frac{1}{2} |K|^2 |e^{A\tau}|^2 |\lambda(t)|^2, \quad (30)$$

for all  $t \geq 0$ . The inequalities (29) and (30) allow us to conclude.  $\Box$ 

#### 3.2. Systems with distributed delay in the inputs

In this section, we consider the closed-loop system studied in Bekiaris-Liberis and Krstic (2011):

$$\begin{cases} \dot{X}(t) = AX(t) + \int_{t-\tau}^{t} B(t-s)U(s)ds + \lambda(t), \\ U(t) = \left[ e^{\tau A}X(t) + \int_{t-\tau}^{t} e^{(t-\ell)A} \int_{\ell}^{t} B(\ell+\tau-s)U(s)dsd\ell \right], \end{cases}$$
(31)

with  $X \in \mathbb{R}^n$ ,  $U \in \mathbb{R}^m$ , where  $\tau > 0$ , the matrices *A* and *K* are constant, *B* is a continuous function and  $\lambda$  is a continuous disturbance and introduce the assumption:

**Assumption H4.** There exists a symmetric and positive definite matrix Q such that

$$Q \ge Id, \qquad QH + H^{\top}Q \le -2Id,$$
 (32)

where

$$H = A + \left(\int_0^\tau e^{(\tau-\ell)A} B(\ell) d\ell\right) K$$

We state and prove the following result:

**Theorem 3.2.** Assume that the system (31) satisfies Assumption H4. Then there exist three constants  $e_1 > 0$ ,  $e_2 > 0$ ,  $e_3 > 0$  such that  $W : C_{in} \rightarrow [0, +\infty)$ , defined by

$$W(\Phi_{X,U}) = \frac{1}{2} |\phi_X(0)|^2 + e_1 |\phi_U(0)|^2 + \int_{-\tau}^0 e^m |\phi_X(m)|^2 dm + e_2 \zeta (\Phi_{X,U})^\top Q \zeta (\Phi_{X,U}) + e_3 \int_{-\tau}^0 e^{\frac{m}{2|Q|}} |\phi_U(m)|^2 dm,$$
(33)

with  $\Phi_{X,U} = (\phi_X, \phi_U)$ , where

$$\zeta(\Phi_{X,U}) = e^{\tau A} \phi_X(0) + \int_{-\tau}^0 e^{-mA} \int_m^0 B(m+\tau-s) \phi_U(s) ds dm,$$
(34)

is an ISS Lyapunov–Krasovskii functional for (31). Moreover, there are two positive constants  $e_4$ ,  $e_5$  such that the inequalities

$$e_4\beta(\Phi_{X,U}) \le W(\Phi_{X,U}) \le e_5\beta(\Phi_{X,U}),\tag{35}$$

with

$$\beta(\Phi_{X,U}) = |\Phi_{X,U}(0)|^2 + \int_{-\tau}^0 |\Phi_{X,U}(m)|^2 dm, \qquad (36)$$

hold for all  $(\phi_X, \phi_U) \in C_{\text{in}}$ .

**Proof.** Similarly to the previous case studied, we observe that it is easy to prove that there are positive constants  $e_4$ ,  $e_5$  such that (35) is satisfied. Let

$$Z(t) = \zeta(X_t, U_t), \tag{37}$$

for all  $t \ge 0$ , where  $\zeta$  is the functional defined in (34). Then elementary calculations give

$$\dot{Z}(t) = Ae^{\tau A}X(t) + A \int_{t-\tau}^{t} e^{(t-m)A} \int_{m}^{t} B(m+\tau-s)U(s)dsdm$$
$$+ \left(\int_{0}^{\tau} e^{(\tau-\ell)A}B(\ell)d\ell\right)U(t) + e^{A\tau}\lambda(t)$$
$$= AZ(t) + \left(\int_{0}^{\tau} e^{(\tau-\ell)A}B(\ell)d\ell\right)U(t) + e^{A\tau}\lambda(t).$$

Since, for all  $t \ge 0$ ,

$$U(t) = KZ(t),$$

we obtain, for all  $t \ge 0$ ,

$$\dot{Z}(t) = AZ(t) + \left(\int_0^\tau e^{(\tau-\ell)A}B(\ell)d\ell\right)KZ(t) + e^{A\tau}\lambda(t)$$
$$= HZ(t) + e^{A\tau}\lambda(t).$$

Using again (38), we obtain, for all  $t \ge 0$ ,

$$\begin{aligned} \dot{Z}(t) &= HZ(t) + \delta(t), \\ U(t) &= KZ(t), \\ X(t) &= e^{-A\tau}Z(t) \\ -\int_{t-\tau}^{t} e^{(t-m-\tau)A} \int_{m}^{t} B(m+\tau-s)U(s) ds dm, \end{aligned}$$

with  $\delta(t) = e^{A\tau}\lambda(t)$ , which are equations of the form of the system  $\Sigma_{z,v} - \Sigma_x$ . Next we can conclude by arguing as we did from (28) to the end of the proof of Theorem 3.1.  $\Box$ 

3.3. Systems with pointwise delay in the inputs endowed with a dynamic extension

The closed-loop system considered in this section comes from the stabilization approach by dynamic extension used in Mondié and Michiels (2003). More precisely, we consider the system

(38)

.

$$\begin{cases} \dot{X}(t) = AX(t) + BU(t - \tau) + \lambda(t), \\ \dot{U}(t) = A_f U(t) \\ + B_f \left[ e^{A\tau} X(t) + \int_{t-\tau}^t e^{(t-\ell)A} BU(\ell) d\ell \right], \end{cases}$$
(39)

with  $X \in \mathbb{R}^n$ ,  $U \in \mathbb{R}^m$ , where  $\tau > 0$ , the matrices  $A, B, A_f, B_f$  are constant and  $\lambda$  is a continuous disturbance and introduce the assumption:

**Assumption H5.** There exists a symmetric and positive definite matrix Q such that

$$Q \ge Id, \qquad QH + H^{\top}Q \le -2Id, \tag{40}$$

where

$$H = \begin{bmatrix} A & B \\ B_f & A_f \end{bmatrix}.$$
 (41)

We state and prove the following result:

**Theorem 3.3.** Assume that the system (39) satisfies Assumption H5. Then there exist three constants  $g_1 > 0, g_2 > 0, g_3 > 0$  such that  $W : C_{in} \rightarrow [0, +\infty)$ , defined by

$$W(\Phi_{X,U}) = \frac{1}{2} |\phi_X(0)|^2 + g_1 |\phi_U(0)|^2 + \int_{-\tau}^0 e^m |\phi_X(m)|^2 dm + g_2 \zeta(\Phi_{X,U})^\top Q \zeta(\Phi_{X,U}) + g_3 \int_{-\tau}^0 e^{\frac{m}{2|Q|}} |\phi_U(m)|^2 dm,$$
(42)

with  $\Phi_{X,U} = (\phi_X, \phi_U)$ , with

$$\zeta(\Phi_{X,U}) = \begin{pmatrix} e^{A\tau}\phi_X(0) + \int_{-\tau}^0 e^{-mA}B\phi_U(m)dm \\ \phi_U(0) \end{pmatrix}$$
(43)

is an ISS Lyapunov–Krasovskii functional for (39). Moreover, there are two positive constants  $g_4$ ,  $g_5$  such that the inequalities

$$g_4\beta(\Phi_{X,U}) \le W(\Phi_{X,U}) \le g_5\beta(\Phi_{X,U}),\tag{44}$$

with

$$\beta(\Phi_{X,U}) = |\Phi_{X,U}(0)|^2 + \int_{-\tau}^0 |\Phi_{X,U}(m)|^2 dm,$$
(45)

hold for all  $\Phi_{X,U} \in C_{\text{in}}$ .

**Proof.** To begin with, we observe that it is easy to prove that there are positive constants  $g_4$ ,  $g_5$  such that (44) is satisfied. Let

$$r(t) = e^{A\tau}X(t) + \int_{t-\tau}^{t} e^{(t-m)A}BU(m)dm,$$
(46)

for all  $t \ge 0$ . Then simple algebraic manipulations lead to

$$\dot{r}(t) = Ae^{A\tau}X(t) + e^{A\tau}BU(t-\tau) + A \int_{t-\tau}^{t} e^{(t-m)A}BU(m)dm + BU(t) - e^{\tau A}BU(t-\tau) + e^{A\tau}\lambda(t) = Ar(t) + BU(t) + e^{A\tau}\lambda(t).$$

Therefore we have, for all  $t \ge 0$ ,

$$\begin{cases} \dot{r}(t) = Ar(t) + BU(t) + e^{A\tau}\lambda(t), \\ \dot{U}(t) = A_fU(t) + B_fr(t), \\ r(t) = e^{A\tau}X(t) + \int_{t-\tau}^t e^{(t-m)A}BU(m)dm. \end{cases}$$

Let  $Z(t) = (r(t)^{\top}, U(t)^{\top})^{\top}$ . Then, we obtain, for all  $t \ge 0$ ,

$$\begin{cases} Z(t) = HZ(t) + \delta(t), \\ U(t) = P_2 Z(t), \\ X(t) = e^{-A\tau} P_1 Z(t) \\ - \int_{t-\tau}^t e^{(t-m-\tau)A} BU(m) dm, \end{cases}$$
(47)

where  $P_1 = [Id_n \ 0_m] \in \mathbb{R}^{n \times (m+n)}$  and  $P_2 = [0_n \ Id_m] \in \mathbb{R}^{m \times (m+n)}$ , where  $Id_k$  denotes the identity matrix of dimension k and  $0_k$  denotes the matrix of dimension k whose entries are all zero, and

$$\delta(t) = P_1 \begin{pmatrix} e^{A\tau} \lambda(t) \\ 0 \end{pmatrix}.$$

Eqs. (47) are of the form of the system  $\Sigma_{z,v} - \Sigma_x$ . Next we can conclude by using similar arguments to the ones proposed for Theorem 3.1.  $\Box$ 

#### 4. Conclusion

For linear time-invariant systems with delay and additive disturbances, we have shown how ISS Lyapunov–Krasovskii functionals can be constructed. Much remains to be done. Other types of robustness properties (for instance robustness with respect to unknown small terms with a linear growth) can be derived from our ISS Lyapunov–Krasovskii functionals and our design of Lyapunov–Krasovskii functionals may be extended to more complicated families of systems, which include nonlinear systems and time-varying systems.

#### References

- Artstein, Z. (1982). Linear systems with delayed controls: a reduction. IEEE Transactions on Automatic Control, 27, 869–879.
- Bekiaris-Liberis, N., & Krstic, M. (2011). Lyapunov stability of linear predictor feedback for distributed input delay. *IEEE Transactions on Automatic Control*, 56, 655–660.
- Dashkovskiy, S., & Naujok, L. (2010). Lyapunov–Razumikhin and Lyapunov–Krasovskii theorems for interconnected ISS time-delay systems. In proceedings of the 19th international symposium on mathematical theory of networks and systems MTNS 2010. 5–9 July. Budapest. Hungary.
- Fiagbedzi, Y., & Pearson, A. (1986). Feedback stabilization of linear autonomous time lag systems. IEEE Transactions on Automatic Control, 31(9), 847–855.
- Halanay, A. (1966). Differential equations: stability, oscillations, time lags. New York: Academic Press.
- Hale, J. K., & Verduyn Lunel, S. M. (1993). AMS: Vol. 99. Introduction to functional differential equations. New York: Springer.
- Karafyllis, I., & Jiang, Z.-P. (2011). Stability and stabilization of nonlinear systems. In Communications and control engineering series. London, UK: Springer-Verlag London Ltd.
- Karafyllis, I., Pepe, P., & Jiang, Z.-P. (2009). Stability results for systems described by coupled retarded functional differential equations and functional difference equations. *Nonlinear Analysis*, 71, 3339–3362.
- Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. *Automatica*, 44, 2930–2935.
- Krstic, M. (2009). Delay compensation for nonlinear, adaptive, and pde systems. Boston: Birkhäuser.
- Krstic, M., & Smyshlaev, A. (2008). Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. *Systems & Control Letters*, 57, 750–758.
- Kwon, W. H., & Pearson, A. E. (1980). Feedback stabilization of linear systems with delayed control. *IEEE Transactions on Automatic Control*, AC-25(2), 266–269.
- Lakshmikantan, V., & Leela, S. (1969). Differential and integral inequalities, Vol. II. New York: Academic Press.
- Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24, 541–553.
- Mayne, D. Q. (1968). Control of linear systems with time delay. *Electronics Letters*, 4(20).
- Mazenc, F., Malisoff, M., & Lin, Z. (2008). Further results on input-to-state stability for nonlinear systems with delayed feedbacks. *Automatica*, 44(9), 2415–2421.
- Mazenc, F., & Niculescu, S. I. (2011). Generating positive and stable solutions through delayed state feedback. *Automatica*, 47(3), 525–533.
- Michiels, W., & Niculescu, S. I. (2007). Stability and stabilization of time-delay systems. In Advances in design and control, An eigenvalue-based approach. SIAM.
- Mirkin, L., & Raskin, N. (2003). Every stabilizing dead-time controller has an observer? predictor-based structure. *Automatica*, 39(10), 1747–1754.

1322

- Mondié, S., & Michiels, W. (2003). Finite spectrum assignment of unstable timedelay system with a safe implementation. *IEEE Transactions on Automatic Control*, 48(12), 2207–2212.
- Olbrot, A. (1978). Stabilizability, detectability and spectrum assignment for linear autonomous systems with general time delays. *IEEE Transactions on Automatic Control*, 23, 605–618.
- Pepe, P., & Jiang, Z.-P. (2006). A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Systems & Control Letters, 55, 1006–1014.
- Pepe, P., Jiang, Z.-P., & Fridman, E. (2008). A new Lyapunov-Krasovskii methodology for coupled delay differential and difference equations. *International Journal of Control*, 81(1), 107–115.
- Pepe, P., Karafyllis, I. & Jiang, Z.-P. (2008). On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled differential and difference equations. Automatica, 44(9), 2266–2273.
- Pepe, P., & Verriest, E. I. (2003). On the stability of coupled delay differential and continuous time difference equations. *IEEE Transactions on Automatic Control*, 48(8), 1422–1427.
- Rasvan, V., & Niculescu, S. I. (2002). Oscillations in lossless propagation models: a Liapunov-Krasovskii approach. IMA Journal of Mathematical Control and Information, 19(1 and 2), 157–172.
- Sontag, E. D. (2007). Input to state stability: basic concepts and results. In Nonlinear and optimal control theory (pp. 163–220). Berlin: Springer-Verlag.
- Tadmor, G. (2000). The standard  $H_{\infty}$  problem in systems with a single input delay. IEEE Transactions on Automatic Control, 45, 382–397.
- Verriest, E. I. (2001). New qualitative methods for stability of delay systems. *Kybernetica*, 37(3), 229–238.
- Wang, Q. G., Lee, T. H., & Tan, K. K. (1998). LNCIS: Vol. 239. Finite spectrum assignment for time-delay systems. London: Springer-Verlag.
- Zhou, B., Lin, Z., & Duan, G. (2010). Stabilization of linear systems with input delay and saturation—a parametric Lyapunov equation approach. International Journal of Robust and Nonlinear Control, 20(13), 1502–1519.



**Frédéric Mazenc** was born in Cannes, France in 1969. He received his Ph.D. in Automatic Control and Mathematics from the CAS at Ecole des Mines de Paris in 1996. He was a Postdoctoral Fellow at CESAME at the University of Louvain in 1997. From 1998 to 1999, he was a Postdoctoral Fellow at the Centre for Process Systems Engineering at Imperial College. He was a CR at INRIA Lorraine from October 1999 to January 2004. From 2004 to 2009, he was a CR1 at INRIA Sophia–Antipolis. From 2010, he was a CR1 at INRIA Sophia–Antipolis. From 2010, he was a the IEEE Transactions on Control Systems Technology at

the 2006 IEEE Conference on Decision and Control. His current research interests include nonlinear control theory, differential equations with delay, robust control, and microbial ecology. He has more than 100 peer reviewed publications. Together with Michael Malisoff, he authored a research monograph entitled Constructions of Strict Lyapunov Functions in the Springer Communications and Control Engineering Series.



Silviu-Iulian Niculescu received the B.S. degree from the Polytechnical Institute of Bucharest, Romania, the M.Sc., and Ph.D. degrees from the Institut National Polytechnique de Grenoble, France, and the French Habilitation (HDR) from Université de Technologie de Compiègne, all in Automatic Control, in 1992, 1993, 1996, and 2003, respectively. He is currently Research Director at the CNRS (French National Center for Scientific Research) and the head of L2S (Laboratory of Signals and Systems). He is also the responsible of the IFAC Research Group on "Time-delay systems" since its creation in October 2007. He has been a

member of IFAC Technical Committee on Linear Systems (since 2002) and of the IPC of 33 International Conferences.

He served as an Associate Editor of the IEEE Transactions on Automatic Control (2003–2005). Since 2011, he has been an Associate Editor of European Journal of Control and IMA Journal of Mathematical Control and Information. Author/co-author of 3 books and of more than 325 scientific peer reviewed papers, his research interests include delay systems, robust control, operator theory, and numerical methods in optimization, and their applications to the design of engineering systems. He was awarded the French CNRS bronze and silver medals for scientific research in 2001 and 2011, respectively.



**Miroslav Krstic** holds the Alspach endowed chair and is the founding Director of the Cymer Center for Control Systems and Dynamics at University of California, San Diego. He is a co-author of eight books on nonlinear control, adaptive control, control of PDE and delay systems, control of turbulent fluid flows, stochastic nonlinear systems, and extremum seeking. Krstic has held the Springer Distinguished Visiting Professorship at UC Berkeley and is a recipient of the PECASE, NSF Career, and ONR Young Investigator Awards, as well as the Axelby and Schuck Paper Prizes. Krstic was the first recipient of the

UCSD Research Award in the area of engineering. He is a Fellow of IEEE and IFAC and serves as Senior Editor in Automatica and IEEE Transactions on Automatic Control.