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a b s t r a c t

For linear systems with pointwise or distributed delay in the inputs which are stabilized through the
reduction approach, we propose a new technique of construction of Lyapunov–Krasovskii functionals.
These functionals allow us to establish the ISS property of the closed-loop systems relative to additive
disturbances.
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1. Introduction

Controlling dynamical systems including delays in the inputs
was a problem of recurring interest in the past fifty years since it
frequently arises in control applications, due to the transport and
measurement delays that naturally occur (for more details, see,
e.g., Michiels and Niculescu (2007)).

A number of approaches to deal with input delays have
been proposed in both frequency- and time-domains. Among
them, for linear systems, two of the most celebrated are the
Smith predictor and the reduction technique, also known as finite
spectrum assignment (FSA). To the best of the authors’ knowledge,
the reduction approach originates in Mayne (1968), with the well
known contributions that have followed in Kwon and Pearson
(1980), Manitius and Olbrot (1979) and Olbrot (1978), which have
been systematized and generalized in Artstein (1982), to which
we refer the reader for a pedagogical exposition. This technique
is popular and frequently used in practice for stabilizing linear
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systems with delay in the input, due to the fact that, under
an appropriate transformation, the system reduces to a finite-
dimensional one. However, the control applied to the original
dynamics is complicated. Alternatives to the popular reduction
approach include the general observer–predictor structure in
Mirkin and Raskin (2003) and the H∞ approach in Tadmor (2000).

The reduction approach applies to cases where the delays are
too large for being neglected, as done for instance in Mazenc,
Malisoff, and Lin (2008): the one-dimensional system

Ẋ(t) = X(t) + U(t − τ), (1)

where U is the input, can be exponentially stabilized through the
reduction approach for any constant delay τ ≥ 0 although, when τ
is larger than a certain value, there is no continuous functionϕ such
that the feedbackU(t−τ) = ϕ(X(t−τ)) asymptotically stabilizes
(1). Moreover, this technique applies to cases where the delays
are either pointwise or distributed, and significantly simplifies
stabilization problems for systems with delay by reducing them
to similar problems for ordinary differential equations (see, for
instance Fiagbedzi and Pearson (1986) and Wang, Lee, and Tan
(1998) for further discussions).

Although Lyapunov functionals are tools whose importance
is more and more recognized by the researchers who work in
delay area (see for instance (Bekiaris-Liberis & Krstic, 2011),
Karafyllis and Jiang (2011), Pepe and Verriest (2003) and Zhou,
Lin, and Duan (2010)), strict Lyapunov–Krasovskii functionals
for linear systems in closed-loop with feedbacks resulting from
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the reduction approach have been constructed only recently in
Bekiaris-Liberis and Krstic (2011) using a novel approach which
relies on the introduction of a hyperbolic PDE. This result is
motivated by the important benefits which can be derived from
the knowledge of a strict Lyapunov–Krasovskii functional. In
particular, strict Lyapunov–Krasovskii functionals are frequently
ISS or iISS Lyapunov–Krasovskii functionals as defined and
discussed in Pepe and Jiang (2006) for systems with disturbances,
which straightforwardly implies that the systems possess the
desirable ISS or iISS property with respect to these disturbances
(see Sontag (2007) for information on the celebrated ISS notion).

In the present work, we revisit the problem of constructing
Lyapunov–Krasovskii functionals for two main families of closed-
loop systems with additive disturbances: the first class is
associated with the classical reduction approach and the second
is employing dynamic feedback to overcome the instability that
arises in some implementations of control laws specific to the
classical reduction approach. The new construction we propose
shares some features with the one of Mazenc and Niculescu (2011)
which relies on the representation of a system with delay as
an ordinary differential equation interconnected with an integral
equation. However, the Lyapunov functionals we propose here
are by no means straightforwardly deduced from Mazenc and
Niculescu (2011). Indeed, by contrast with the feedbacks resulting
from the reduction approach, the control laws considered in
Mazenc and Niculescu (2011) do not have distributed terms.
Furthermore, our ISS Lyapunov–Krasovskii functionals do not
rely on the introduction of hyperbolic PDEs and therefore are
significantly different from those proposed in Bekiaris-Liberis and
Krstic (2011), Krstic (2008) and Krstic and Smyshlaev (2008).

The paper is organized as follows. In Section 2, a construction
of functionals for a general family of systems is presented.
From the latter result, Lyapunov–Krasovskii functionals for three
families of systems stabilized via control laws provided by the
reduction model approach are deduced in Section 3. Finally, some
conclusions are drawn in Section 4.

Notation and definitions. • The notation will be simplified
whenever no confusion can arise from the context. • For any
integer p, we denote by Idp or simply Id the identitymatrix in Rp×p.
• We let | · | denote the Euclidean norm of matrices and vectors of
any dimension. • Given φ : I → Rp defined on an interval I,
let |φ|I denote its (essential) supremum over I. • For any integer
p, we let Cin = C([−τ , 0], Rp) denote the set of all continuous
Rp-valued functions defined on a given interval [−τ , 0]. • For a
function x : [−τ , +∞) → Rk, for all t ≥ 0, the function xt is
defined by xt(ℓ) = x(t + ℓ) for all ℓ ∈ [−τ , 0]. • Let K∞ denote
the set of all continuous functions ρ : [0, ∞) → [0, ∞) for which
(i) ρ(0) = 0 and (ii) ρ is strictly increasing and unbounded. •

We adopt a definition of ISS Lyapunov–Krasovskii functional for
coupled retarded functional differential equations and functional
equations, which is an adaptation to this family of systems of
the definitions given in Dashkovskiy and Naujok (2010) and Pepe,
Karafyllis, and Jiang (2008).

Definition 1. We consider a system composed by a retarded func-
tional differential equation coupled with a functional equation:ẋ1(t) = f1(x1t , x2t , u(t)),
x2(t) = f2(x1t , x2t),
(x1(r), x2(r)) = (x10(r), x20(r)), ∀r ∈ [−τ , 0],

(2)

where t ∈ [0, +∞), x1(t) ∈ RN1 , x2(t) ∈ RN2 , u(t) ∈ RN3 is
an essentially bounded measurable input and τ is the maximum
involved delay and the functionals f1 and f2 are locally Lipschitz
continuous on any bounded set such that all the solutions of (2)
with initial function inCin are defined andof classC1 over [0, +∞).
A locally Lipschitz continuous functional V : Cin → [0, +∞)
is called an ISS Lyapunov–Krasovskii functional for (2) if (i) there
are functions of class K∞, α1 and α2 such that, for all functions
(φ1, φ2) ∈ Cin the inequalities

α1(|(φ1(0), φ2(0))|) ≤ V (φ1, φ2) ≤ α2(|(φ1, φ2)|[−τ ,0]) (3)

are satisfied,
(ii) it is continuously differentiable along the trajectories of (2)

and satisfies:

V̇ (t) ≤ −α3(V (x1t , x2t)) + α4(|u(t)|), ∀t ∈ [0, +∞), (4)

where α3 and α4 are functions of class K∞.

2. Technical result

The result of this section is instrumental in establishing our
main results. However, it is of interest for its own sake.

2.1. System and assumptions

We consider the system

Σz,v :


ż(t) = f (z(t)) + δ(t), ∀t ≥ 0,
v(t) = Nz(t), ∀t ≥ 0, (5)

with z ∈ Rn, v ∈ Rm, where the initial conditions φz ∈ Cin and
φv ∈ Cin are such that φv(0) = Nφz(0), where N ∈ Rm×n is a
constantmatrix,N ≠ 0, where f is a function of class C1 andwhere
δ is a continuous function. Consider also the system

Σx : x(t) = g(xt , zt , vt), (6)

where g is a locally Lipschitz continuous functional.
We introduce two assumptions:

Assumption H1. There exists a function S of class C1, positive
definite and radially unbounded, a function κ1 of class K∞ and a
positive real number a1 such that

∂S
∂z

(z)[f (z) + δ] ≤ −a1S(z) + κ1(|δ|), (7)

for all z ∈ Rn and δ ∈ Rn.

Assumption H2. There exists a nonnegative function θ such that

θ(Nz) ≤
a1
2
S(z), (8)

for all z ∈ Rn, all the solutions (z(t), x(t)) of the system Σz,v − Σx
are defined and of class C1 over [0, +∞) and are such that, for all
t ≥ 0, the inequality

max{|x(t)|, |ẋ(t)|} ≤


a2


S(z(t)) + θ(vt) + κ2(|δ(t)|)


, (9)

where a2 is a positive real number, κ2 is a function of classK∞ and

θ(vt) = θ(v(t − τ)) +

 t

t−τ

θ(v(m))dm, (10)

is satisfied.

2.2. Discussion of the assumptions

1. The inequality (7) implies that the z-subsystem in (5) is ISS with
respect to δ.
2. The z-subsystem is written as an ordinary differential equation,
however, we regard it as a subsystem of the system with delay
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Σz,v − Σx and therefore this subsystem needs an initial condition
defined over [−τ , 0]. To extend the range of possible applications
of the forthcoming Theorem 2.1 and with a view to the results of
Section 3, we have introduced the v-subsystem.Σz,v is a particular
case of the coupled retarded functional differential equation and
functional difference equation considered in Karafyllis, Pepe, and
Jiang (2009), although the delay τ is not explicitly present in the
equations. In order to immediately recognize in (5) the equations
studied in Karafyllis et al. (2009), observe that (5) can bewritten as
ż(t) = f (z(t)) + δ(t),
v(t) = Mv(t − τ) + Nz(t),

withM = 0.
3. The property (9) implies that Σz,v − Σx behaves as a coupled
delay differential equation and integral equation. In contrast to
coupled delay differential and difference equations, which have
been studied in many works and in particular in Pepe, Jiang,
and Fridman (2008), Rasvan and Niculescu (2002) and Pepe and
Verriest (2003), only a few works, notably (Karafyllis et al., 2009),
are devoted to coupled delay differential and integral equations.

2.3. Lyapunov–Krasovskii functional

We introduce two functionals:

V1(φx) =
1
2
|φx(0)|2 +

 0

−τ

em|φx(m)|2dm, (11)

V2(φz, φv) = S(φz(0)) +

 0

−τ

e
a1
2 mθ(φv(m))dm (12)

and state and prove the following result:

Theorem 2.1. Consider the system Σz,v − Σx. Assume that it satis-
fies Assumptions H1 and H2. Then the derivative of functional V3 :

Cin → [0, +∞), defined by

V3(φx, φz, φv) = V1(φx) + a3V2(φz, φv), (13)

where a3 = 10 a2
a1
e

a1
2 τ and V1 and V2 are the functionals defined

in (11) and (12), along the trajectories of Σz,v − Σx satisfies, for all
t ≥ 0,

V̇3(t) ≤ −min
a1
4

, 1

V3(xt , zt , vt) + κ3(|δ(t)|), (14)

where κ3 is the function of class K∞ defined by

κ3(ℓ) = a3κ1(ℓ) +
5
2
a2κ2(ℓ). (15)

2.4. Discussion of Theorem 2.1

1. Theorem 2.1 presents an extension of the Lyapunov method-
ology to a special class of systems which behave as coupled
retarded functional differential equations and functional equa-
tions. To the best of our knowledge, no construction of strict
Lyapunov–Krasovskii functional for these systems is available in the
literature. Many extensions of Theorem 2.1 can be established. In
particular the case of multiple delays can be easily handled and
since Assumption H2 is independent of the features of the function
g , more general systemsΣx can be considered. Moreover, Assump-
tion H2 itself can be relaxed by allowing the right-hand side of (9)
to depend on xt . The latter extension is especially appealing, since
it would make it possible to analyze systems which, as explained
in Karafyllis et al. (2009), are of great relevance, but it is beyond
the scope of the present contribution and it will be considered in a
forthcoming work.
2. For the time being the advantage of having introduced
v-subsystem in Theorem 2.1 is not obvious. It will become clear
in the next sections why we did not replace v by Nz throughout
Theorem 2.1. It is crucial to note that we did not impose on the
initial conditions of the solutions (z(t), v(t)) a requirement that
φv(t) = Nφz(t) for all t ∈ [−τ , 0): only a ‘‘point’’ condition
φv(0) = Nφz(0) is required. Note also that, for the sake of
generality, we do not assume that N is a square matrix.
3. The system Σz,v can be interpreted as a comparison system for
the systemΣx in the sense that the stability properties of the latter
system are deduced from the system Σz,v . The idea of comparison
systems is not new (Halanay, 1966; Lakshmikantan & Leela, 1969;
Verriest, 2001), but the way |x(t)| and |ẋ(t)| are estimated in (9)
through functions which depend on pieces of the trajectories of
Σz,v and the Lyapunov functional (13) for the coupled system are
new.
4. If the delay τ in Theorem 2.1 is unknown, but is smaller than
a known constant τ ∗ > 0, one can still construct a functional of
the type of the functional U by replacing in the expression of U the
constant a3 by 10 a2

a1
e

a1
2 τ∗

.

2.5. Proof of Theorem 2.1

To evaluate the time derivative of V3 along the trajectories of
Σz,v − Σx, first we observe that, for all t ≥ 0, the derivative of

V1(xt) =
1
2
|x(t)|2 +

 t

t−τ

em−t
|x(m)|2dm (16)

satisfies

V̇1(t) = x(t)⊤ẋ(t) −

 t

t−τ

em−t
|x(m)|2dm

+ |x(t)|2 − e−τ
|x(t − τ)|2

≤ −V1(xt) + x(t)⊤ẋ(t) +
3
2
|x(t)|2.

Using (9), we obtain that

V̇1(t) ≤ −V1(xt) +
5
2
a2


S(z(t)) + θ(vt) + κ2(|δ(t)|)


, (17)

for all t ≥ 0. Now we observe that, for all t ≥ 0, the derivative of

V2(zt , vt) = S(z(t)) +

 t

t−τ

e
a1
2 (m−t)θ(v(m))dm (18)

is given by

V̇2(t) =
∂S
∂z

(z(t))[f (z(t)) + δ(t)]

−
a1
2

 t

t−τ

e
a1
2 (m−t)θ(v(m))dm + θ(v(t))

− e−
a1
2 τ θ(v(t − τ)).

From (7) and the equality v(t) = Nz(t) for all t ≥ 0, it follows that,
for all t ≥ 0,
V̇2(t) ≤ −a1S(z(t)) + θ(Nz(t))

−
a1
2

 t

t−τ

e
a1
2 (m−t)θ(v(m))dm

− e−
a1
2 τ θ(v(t − τ)) + κ1(|δ(t)|).

From the inequality (8), it follows that, for all t ≥ 0,

V̇2(t) ≤ −
a1
2
S(z(t)) −

a1
2

 t

t−τ

e
a1
2 (m−t)θ(v(m))dm

− e−
a1
2 τ θ(v(t − τ)) + κ1(|δ(t)|).

This inequality and the definition of V2 in (18) imply that, for all
t ≥ 0,
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V̇2(t) ≤ −
a1
4
S(z(t)) − e−

a1
2 τ θ(v(t − τ))

−
a1e−

a1
2 τ

4

 t

t−τ

θ(v(m))dm

−
a1
4
V2(zt , vt) + κ1(|δ(t)|). (19)

From the definition of V3, (17) and (19), we conclude that

V̇3(t) ≤ −V1(xt) +
5
2
a2


S(z(t)) + θ(vt)


− a3

a1
4
S(z(t)) − a3e−

a1
2 τ θ(v(t − τ))

− a3
a1e−

a1
2 τ

4

 t

t−τ

θ(v(m))dm

−
a3a1
4

V2(zt , vt) + κ3(|δ(t)|),

with κ3 defined in (15). Using the explicit value of a3 in
Theorem 2.1, we obtain

V̇3(t) ≤ −V1(xt) −
a3a1
4

V2(zt , vt) + κ3(|δ(t)|),

for all t ≥ 0, which implies that (14) is satisfied.

3. Linear systems with delay in the inputs

Asmentioned in the introduction, we consider three families of
systems in closed-loopwith control lawsprovided by the reduction
technique. In each case, we construct ISS Lyapunov–Krasovskii
functionals.

3.1. Systems with pointwise delay in the inputs

In this section, we consider the closed-loop system studied in
Krstic (2009, Section 2.6):Ẋ(t) = AX(t) + BU(t − τ) + λ(t),

U(t) = K

eAτX(t) +

 t

t−τ

eA(t−ℓ)BU(ℓ)dℓ


,
(20)

with X ∈ Rn,U ∈ Rm, where τ > 0, the matrices A, B, K
are constant and λ is a continuous disturbance and introduce the
assumption:

Assumption H3. There exists a symmetric and positive definite
matrix Q such that

Q ≥ Id, QH + H⊤Q ≤ −2Id, (21)

where H = A + BK .

We recall that Assumption H3 is satisfied if and only if H is a
Hurwitz matrix. Now, we state and prove the following result:

Theorem 3.1. Assume that the system (20) satisfies Assumption H3.
Then there exist three constants c1 > 0, c2 > 0, c3 > 0 such that
W : Cin → [0, +∞), defined by

W (ΦX,U) =
1
2
|φX (0)|2 + c1|φU(0)|2 +

 0

−τ

em|φX (m)|2dm

+ c2ζ (ΦX,U)⊤Q ζ (ΦX,U)

+ c3

 0

−τ

e
1

2|Q |
m
|φU(m)|2dm, (22)

with ΦX,U = (φX , φU), with

ζ (ΦX,U) = eAτφX (0) +

 0

−τ

e−AmBφU(m)dm (23)
is an ISS Lyapunov–Krasovskii functional for (20). Moreover, there are
two positive constants c4, c5 such that the inequalities

c4β(ΦX,U) ≤ W (ΦX,U) ≤ c5β(ΦX,U), (24)

with

β(ΦX,U) = |ΦX,U(0)|2 +

 0

−τ

|ΦX,U(m)|2dm, (25)

hold for all ΦX,U ∈ Cin.

Remark 2. The inequalities (24) imply that W satisfies the
conditions of the Lyapunov–Krasovskii theorem (see, for instance,
Hale and Verduyn Lunel (1993)). However, it is worth mentioning
that, according to the type of problem which is investigated, other
types of Lyapunov–Krasovskii functionalsmay bemore convenient
and they may be provided by variants of our construction. For
instance, we will see in the forthcoming proof that asymptotic
stability can be established via a functionalW with c1 = 0.

Proof. To begin with, one can easily prove that there are positive
constants c4, c5 such that (24) is satisfied. Let

Z(t) = ζ (Xt ,Ut), (26)

for all t ≥ 0, where ζ is the functional defined in (23). Then some
elementary calculations lead to

Ż(t) = eAτAX(t) + eAτBU(t − τ)

+ A
 t

t−τ

eA(t−m)BU(m)dm + BU(t)

− eAτBU(t − τ) + eAτλ(t)
= AZ(t) + BU(t) + eAτλ(t).

Since the definition of Z and (20) imply, for all t ≥ 0,

U(t) = KZ(t), (27)

we obtain, for all t ≥ 0,
Ż(t) = HZ(t) + δ(t),
U(t) = KZ(t),

X(t) = e−AτZ(t) −

 t

t−τ

eA(t−m−τ)BU(m)dm,

(28)

with δ(t) = eAτλ(t), which are equations of the form of the system
Σz,v − Σx introduced in Section 2, with Z playing the role of
z,U(X) playing the role of v(x) and K playing the role of N . Let
us check now that Assumptions H1 and H2 are satisfied. Let b2 =

|e−Aτ
|
2, b3 =

 τ

0 |e−AmB|2dm, b4 =
1

2|Q ||K |
. Then (21) implies that

Assumption H1 is satisfied with S(Z) = Z⊤QZ, a1 =
1

|Q |
, κ1(m) =

|Q |m2.
Now, taking θ(ℓ) = b4|ℓ|2 and θ(Ut) defined as in (10) and one

can prove that, for all t ≥ 0,

|X(t)| ≤


b2|Z(t)| +


b3

 t

t−τ

|U(m)|2dm

≤


2max


b2,

b3
b4


(S(Z(t)) + θ(Ut))

and

|Ẋ(t)| ≤ |A∥X(t)| + |B∥U(t − τ)| + |λ(t)|

≤


3|A|2|X(t)|2 + 3|B|2|U(t − τ)|2 + 3b2|δ(t)|2

≤


a2[S(Z(t)) + θ(Ut) + |δ(t)|2],
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with a2 = 2max

2b2, 2

b3
b4

, 6|A|
2 max


b2,

b3
b4


+ 3 |B|2

b4


. Bearing

the definition of Z(t) in (26) in mind, we deduce from Theorem 2.1
that there is a nonnegative real number b5 such that the functional

V (ΦX,U) =
1
2
|φX (0)|2 +

 0

−τ

em|φX (m)|2dm

+ b5

ζ (ΦX,U)⊤Q ζ (ΦX,U) + ϖ(φU)


,

withϖ(φU) = b4
 0
−τ

e
1

2|Q |
m
|φU(m)|2dm, admits a derivative along

the trajectories of (28) which satisfies

V̇ (t) ≤ −
1

4|Q |
V (Xt ,Ut) + b6|λ(t)|2,

for all t ≥ 0, where b6 is a positive real number.
Now, using again (26) and the inequality Q ≥ Id in Assump-

tion H3, we deduce that, for all t ≥ 0,

V (Xt ,Ut) ≥ b5Z(t)⊤QZ(t)

≥
b5

|K |2 + 1
|KZ(t)|2 =

b5
|K |2 + 1

|U(t)|2.

Consequently,

V̇ (t) ≤ −
1

8|Q |
V (Xt ,Ut) − b7|U(t)|2 + b6|λ(t)|2, (29)

with b7 =
b5

8|Q |(|K |2+1)
, for all t ≥ 0.

Moreover, we have, for all t ≥ 0,

U(t)⊤U̇(t) = Z(t)⊤K⊤KHZ(t) + Z(t)⊤K⊤KeAτλ(t)

≤
|K |

2(2|H| + 1)
2b5

V (Xt ,Ut) +
1
2
|K |

2
|eAτ

|
2
|λ(t)|2, (30)

for all t ≥ 0. The inequalities (29) and (30) allow us to
conclude. �

3.2. Systems with distributed delay in the inputs

In this section, we consider the closed-loop system studied in
Bekiaris-Liberis and Krstic (2011):

Ẋ(t) = AX(t) +

 t

t−τ

B(t − s)U(s)ds + λ(t),

U(t) =


eτAX(t)

+

 t

t−τ

e(t−ℓ)A
 t

ℓ

B(ℓ + τ − s)U(s)dsdℓ


,

(31)

with X ∈ Rn,U ∈ Rm, where τ > 0, the matrices A and K
are constant, B is a continuous function and λ is a continuous
disturbance and introduce the assumption:

Assumption H4. There exists a symmetric and positive definite
matrix Q such that

Q ≥ Id, QH + H⊤Q ≤ −2Id, (32)

where

H = A +

 τ

0
e(τ−ℓ)AB(ℓ)dℓ


K .

We state and prove the following result:

Theorem 3.2. Assume that the system (31) satisfies Assumption H4.
Then there exist three constants e1 > 0, e2 > 0, e3 > 0 such that
W : Cin → [0, +∞), defined by
W (ΦX,U) =
1
2
|φX (0)|2 + e1|φU(0)|2 +

 0

−τ

em|φX (m)|2dm

+ e2ζ (ΦX,U)⊤Q ζ (ΦX,U)

+ e3

 0

−τ

e
m

2|Q | |φU(m)|2dm, (33)

with ΦX,U = (φX , φU), where

ζ (ΦX,U) = eτAφX (0)

+

 0

−τ

e−mA
 0

m
B(m + τ − s)φU(s)dsdm, (34)

is an ISS Lyapunov–Krasovskii functional for (31). Moreover, there are
two positive constants e4, e5 such that the inequalities

e4β(ΦX,U) ≤ W (ΦX,U) ≤ e5β(ΦX,U), (35)

with

β(ΦX,U) = |ΦX,U(0)|2 +

 0

−τ

|ΦX,U(m)|2dm, (36)

hold for all (φX , φU) ∈ Cin.

Proof. Similarly to the previous case studied, we observe that it is
easy to prove that there are positive constants e4, e5 such that (35)
is satisfied. Let

Z(t) = ζ (Xt ,Ut), (37)

for all t ≥ 0, where ζ is the functional defined in (34). Then
elementary calculations give

Ż(t) = AeτAX(t) + A
 t

t−τ

e(t−m)A
 t

m
B(m + τ − s)U(s)dsdm

+

 τ

0
e(τ−ℓ)AB(ℓ)dℓ


U(t) + eAτλ(t)

= AZ(t) +

 τ

0
e(τ−ℓ)AB(ℓ)dℓ


U(t) + eAτλ(t).

Since, for all t ≥ 0,

U(t) = KZ(t), (38)

we obtain, for all t ≥ 0,

Ż(t) = AZ(t) +

 τ

0
e(τ−ℓ)AB(ℓ)dℓ


KZ(t) + eAτλ(t)

= HZ(t) + eAτλ(t).

Using again (38), we obtain, for all t ≥ 0,
Ż(t) = HZ(t) + δ(t),
U(t) = KZ(t),
X(t) = e−AτZ(t)

−

 t

t−τ

e(t−m−τ)A
 t

m
B(m + τ − s)U(s)dsdm,

with δ(t) = eAτλ(t), which are equations of the form of the system
Σz,v −Σx. Next we can conclude by arguing as we did from (28) to
the end of the proof of Theorem 3.1. �

3.3. Systems with pointwise delay in the inputs endowed with a
dynamic extension

The closed-loop system considered in this section comes from
the stabilization approach by dynamic extension used in Mondié
and Michiels (2003). More precisely, we consider the system
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
Ẋ(t) = AX(t) + BU(t − τ) + λ(t),
U̇(t) = AfU(t)

+Bf


eAτX(t) +

 t

t−τ

e(t−ℓ)ABU(ℓ)dℓ


,

(39)

with X ∈ Rn,U ∈ Rm, where τ > 0, the matrices A, B, Af , Bf
are constant and λ is a continuous disturbance and introduce the
assumption:

Assumption H5. There exists a symmetric and positive definite
matrix Q such that

Q ≥ Id, QH + H⊤Q ≤ −2Id, (40)

where

H =


A B
Bf Af


. (41)

We state and prove the following result:

Theorem 3.3. Assume that the system (39) satisfies Assumption H5.
Then there exist three constants g1 > 0, g2 > 0, g3 > 0 such that
W : Cin → [0, +∞), defined by

W (ΦX,U) =
1
2
|φX (0)|2 + g1|φU(0)|2 +

 0

−τ

em|φX (m)|2dm

+ g2ζ (ΦX,U)⊤Q ζ (ΦX,U)

+ g3

 0

−τ

e
m

2|Q | |φU(m)|2dm, (42)

with ΦX,U = (φX , φU), with

ζ (ΦX,U) =

eAτφX (0) +

 0

−τ

e−mABφU(m)dm

φU(0)

 (43)

is an ISS Lyapunov–Krasovskii functional for (39). Moreover, there are
two positive constants g4, g5 such that the inequalities

g4β(ΦX,U) ≤ W (ΦX,U) ≤ g5β(ΦX,U), (44)

with

β(ΦX,U) = |ΦX,U(0)|2 +

 0

−τ

|ΦX,U(m)|2dm, (45)

hold for all ΦX,U ∈ Cin.

Proof. To begin with, we observe that it is easy to prove that there
are positive constants g4, g5 such that (44) is satisfied. Let

r(t) = eAτX(t) +

 t

t−τ

e(t−m)ABU(m)dm, (46)

for all t ≥ 0. Then simple algebraic manipulations lead to

ṙ(t) = AeAτX(t) + eAτBU(t − τ)

+ A
 t

t−τ

e(t−m)ABU(m)dm + BU(t)

− eτABU(t − τ) + eAτλ(t)
= Ar(t) + BU(t) + eAτλ(t).

Therefore we have, for all t ≥ 0,
ṙ(t) = Ar(t) + BU(t) + eAτλ(t),
U̇(t) = AfU(t) + Bf r(t),

r(t) = eAτX(t) +

 t

t−τ

e(t−m)ABU(m)dm.

Let Z(t) = (r(t)⊤,U(t)⊤)⊤. Then, we obtain, for all t ≥ 0,

Ż(t) = HZ(t) + δ(t),
U(t) = P2Z(t),
X(t) = e−AτP1Z(t)

−

 t

t−τ

e(t−m−τ)ABU(m)dm,

(47)

where P1 = [Idn 0m] ∈ Rn× (m+n) and P2 = [0n Idm] ∈

Rm× (m+n), where Idk denotes the identity matrix of dimension k
and0k denotes thematrix of dimension kwhose entries are all zero,
and

δ(t) = P1


eAτλ(t)

0


.

Eqs. (47) are of the form of the system Σz,v − Σx. Next we can
conclude by using similar arguments to the ones proposed for
Theorem 3.1. �

4. Conclusion

For linear time-invariant systems with delay and additive
disturbances, we have shown how ISS Lyapunov–Krasovskii
functionals can be constructed. Much remains to be done. Other
types of robustness properties (for instance robustness with
respect to unknown small terms with a linear growth) can be
derived from our ISS Lyapunov–Krasovskii functionals and our
design of Lyapunov–Krasovskii functionals may be extended to
more complicated families of systems, which include nonlinear
systems and time-varying systems.
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