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This  article  examines  the  problem  of  identifying  the  physical  parameters  of  fundamental
electrochemistry-based  battery  models  from  non-invasive  voltage/current  cycling  tests.  The  article  is
particularly  motivated  by  the  problem  of  fitting  the  Doyle–Fuller–Newman  (DFN)  battery  model  to
lithium-ion  battery  cycling  data.  Previous  research  in  the  literature  identifies  subsets  of  the  DFN model’s
parameter experimentally.  In  contrast,  this  article  makes  the  two  unique  contributions  of:  (i)  identifying
the  full  set  of DFN model  parameters  from  cycling  data  using  a genetic  algorithm  (GA),  and  (ii) assessing
arameter identification
lectrochemical battery modeling
i-ion batteries
enetic algorithms
isher information

the accuracy  and  identifiability  of  the  resulting  full  parameter  set  using  Fisher  information.  The  specific
battery  used  within  this  study  has  lithium  iron  phosphate  cathode  chemistry  and  is  intended  for  high-
power  applications  such  as  plug-in  hybrid  electric  vehicles  (PHEVs).  We  use seven experimental  cycling
data  sets  for  model  fitting  and  validation,  six  of them  derived  from  PHEV  drive  cycles.  This  makes  the
identified  parameter  values  appropriate  for  PHEV  battery  simulation  and  model-based  design  and  control
optimization.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

This article examines the problem of identifying the param-
ters of the electrochemical battery model developed by Doyle,
uller, and Newman (DFN) [1,2] using noninvasive voltage–current
ycling experiments. The article presents a framework for solving
his problem, consisting of a genetic algorithm (GA) for parameter
dentification combined with Fisher information-based estima-
ion of parameter identifiability and identification errors. We
pply this framework to LiFePO4 battery cells intended for plug-in
ybrid electric vehicles (PHEVs). The ultimate goal is to obtain an
xperimentally validated, electrochemistry-based model of these
atteries that can enable the optimization of PHEV design and con-
rol for objectives such as reducing PHEV fuel consumption and
reenhouse gas emissions [3].

The DFN model is well-suited for this study because it is a
rst-principles electrochemical model that can capture high-rate

ransient effects. In contrast to equivalent circuit models, first-
rinciples models make it easier to relate model parameters back
o physical quantities (such as diffusivity and porosity). This is

∗ Corresponding author. Tel.: +1 814 867 4442; fax: +1 814 865 7222.
E-mail addresses: jcforman@umich.edu (J.C. Forman), smoura@ucsd.edu

S.J. Moura), stein@umich.edu (J.L. Stein), hkf2@psu.edu (H.K. Fathy).

378-7753/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2012.03.009
important because one of our goals is to investigate the accuracy
with which one can estimate these physical quantities from non-
invasive voltage and current data. The DFN model also captures
high-rate transient effects typical of PHEV applications. In particu-
lar, a recent study by Santhanagopalan et al. shows that the DFN
model fits battery behavior above 1 C current rates better than
a single particle model (SPM) [4]. The DFN model achieves these
advantages over the SPM in part by modeling spatial distributions
of lithium across the width of the anode, separator, and cathode.
These effects are ignored in SPMs.

A significant body of literature already exists on battery parame-
ter identification using different models and identification methods
for different parameter sets. Here we focus exclusively on identi-
fication methods that, like our own work, are intended for offline
use. Santhanagopalan et al., for instance, successfully identify a sub-
set of five parameter values under constant charge and discharge
conditions for both the DFN and SPM models [4].  In both cases,
the Levenberg–Marquardt optimization algorithm is used to obtain
parameters that minimize model error. Speltino et al. success-
fully identify the parameters of a single-particle model of battery
dynamics using a two-step process: they first identify the cathode

equilibrium potential function from open circuit voltage measure-
ments, assuming a known anode equilibrium potential function
from the literature. They subsequently perform dynamic tests to
estimate the remaining model parameters [5].  Schmidt et al. also

dx.doi.org/10.1016/j.jpowsour.2012.03.009
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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uccessfully identify a single-particle battery model, with several
xtensions that incorporate temperature information and relate
olid diffusion to state of charge [6].  The study by Schmidt et al. also
xamines parameter uncertainty using Fisher information. Finally,
u et al. successfully identify the parameters of an equivalent cir-
uit battery model using a genetic algorithm [7].  They focus on two
ypes of batteries, one of which is the A123 Systems 26650 cell
xamined in this article. Their equivalent circuit formulation is a
et of n parallel resistor–capacitor pairs connected to each other in
eries.

The above literature provides a rich background for this article.
n contrast to that background, this work achieves a combina-
ion of five important goals never pursued simultaneously in the
revious literature – to the best of the authors’ knowledge. First,
e focus on identifying parameters of the DFN model: a choice

ustified by this model’s first-principles nature and suitability for
igh-rate transient battery operation. Second, we  identify the full
et of parameters (88 scalars and function control points) of the DFN
odel using a genetic algorithm, as opposed to a subset of these

arameters. Third, we perform this identification using multiple
attery cycles derived from vehicle drive cycles. (Note, altogether,
hese three choices of battery model, identification parameters,
nd cycling data represent an overarching goal of obtaining a DFN
arameter set suitable for PHEV simulation and design/control
ptimization.) Fourth, we use Fisher information to assess the
ccuracy of all 88 DFN model parameters, as opposed to com-
uting Fisher information for a subset of these parameters. This

s extremely important, because a parameter deemed identifiable
ased on Fisher information computation for a small parameter set
ay  lose identifiability when one computes Fisher information for

 larger parameter set. Finally, we qualitatively correlate the Fisher
nformation-based identifiability results to physical insights about
he dominant dynamics in the LiFePO4 battery for the test condi-
ions examined herein. These two final contributions distinguish
his article from an earlier paper by the authors that qualitatively
nvestigated DFN parameter uncertainty using the identifiability

atrix [8].  Results in this earlier paper suggest that while the DFN
odel can fit battery cycling data well, certain parameters remain

nidentifiable. This article enhances these results by quantifying
arameter uncertainty via Fisher information. Fisher information
rovides a minimum variance bound for the estimated parameters
ia the Cramér-Rao inequality [9–13]. In addition, this article pro-
ides original insights about the dominant dynamics in the LiFePO4
attery under the tests considered herein, and relates these insights
o parameter uncertainties.

The remainder of this article is organized as follows. Section
 describes the experiments used for identifying the DFN model.
his includes a discussion of the experimental setup along with
he various PHEV drive cycle inputs. Section 3 summarizes the
FN model. Sections 4 and 5 describe the unknown parameter set
nd genetic optimization algorithm, respectively. Section 5 also
riefly describes model reduction methods used to simulate the
FN model, including quasi-linearization and modal decomposi-

ion [14,15]. Section 6 presents validation studies for the identified
odel. This includes voltage and power trajectories of validation

ata along with probability density plots summarizing the errors.
inally, Section 7 presents the Fisher information results on param-
ter accuracy analysis along with conjectures about dominant
ynamics based on parameter uncertainty. Section 8 summarizes
nd concludes the paper.
. Experimental setup

The battery cells examined in this article are A123 Systems
NR26650M1 cells with LiFePO4 cathodes. These cells have a
Fig. 1. Photograph of experimental battery tester.

2.3A-h nominal capacity when fresh, a nominal voltage of 3.3 V, and
a maximum continuous discharge current of 70 A (30.4 C-rate). The
cells are intended for transient high-power applications including
commercial PHEVs, PHEV conversion kits, and portable power tools.
Experimental cycling data sets have been collected for these cells
using a custom-built battery tester. This tester is capable of highly
transient current/voltage profiles and can switch quickly between
charging and discharging. These characteristics make it ideal for
testing batteries under conditions similar to those experienced in
PHEV battery packs. Additionally, this setup is capable of battery-
in-the-loop studies, which will be advantageous for future battery
control and estimation research [16].

The above battery tester combines three major hardware com-
ponents: an electric load (Sorenson SLH-60-120-1200), a power
supply (Sorenson DSC20-50E), and a Real-Time (RT) controller and
I/O board (dSpace DS1104). Fig. 1 is a photograph of the battery
tester, and Fig. 2 is a schematic of the setup where all signal lines
are connected to the I/O board. The power supply and electric load
handle battery charging and discharging, respectively. The RT I/O
board coordinates the electric load, power supply, and switching
board. In addition, the RT I/O board records sensor signals includ-
ing voltage and current. These signals are exchanged among the
setup’s various components in a variety of formats, including the
analog, digital, PWM,  SMBus, RS-232, and TTL formats. The switch
board swaps the setup between charging and discharging by swap-
ping the battery’s connection between the power supply and load.
The Schottky diode protects the power supply from absorbing bat-
tery energy. The battery sensor board measures battery voltage
through a voltage-isolating differential op-amp, and measures bat-
tery current via a bi-directional ±20 A Hall effect sensor (Allegro
Microsystems ACS714). Finally, all the battery interface electronics
are implemented on custom-build Printed Circuit Boards (PCBs) to
maximize overall setup reliability, which is critical for long-term
tests.

Seven battery cycling tests have been conducted using this
battery tester: two for model identification and five for valida-
tion. All of these tests initialize the battery SoC to 90% (3.35 V
relaxed), then subject the battery to a given current profile and
measure the resulting battery voltage. In the first identification
data set, the current profile consists of a Chirp sequence of three
CCCV charge/discharge patterns between 2.0 V and 3.6 V, with
charge/discharge rates of 5 C, 2.5 C, and 1 C. In the remaining tests,
the current profiles are generated by simulating a PHEV pow-
ertrain for a given vehicle drive cycle (i.e., velocity-versus-time
profile). Two  of these vehicle drive cycles correspond to the morn-

ing and evening commutes of a real human driver in a naturalistic
driving study conducted by the University of Michigan Transporta-
tion Research Institute (UMTRI) [17]. These drive cycles are exact



J.C. Forman et al. / Journal of Power Sources 210 (2012) 263– 275 265

xperim

r
s
T
r
p
b
w
e
m
o
d
t
k
m
a
2
b
F
t

3

d
t
i
t
c
i
m
a
a

t
a
a
i

The DFN model captures local Li-ion concentrations and poten-
tials using coupled partial differential equations (PDEs). These
PDEs account for the linear diffusion of Li-ions in the electrolyte,
Fig. 2. Schematic of e

ecordings of driver behavior using mid-sized sedans, these two
pecific cycles correspond to the same sedan on the same day.
hese battery tests are denoted as Naturalistic1 and Naturalistic2,
espectively. The four remaining battery tests correspond to multi-
le repetitions of standard vehicle certification drive cycles. These
attery tests are denoted by UDDSx2, US06x3, SC03x4,  and LA92x2,
here the number in “x#” refers to the number of drive cycle rep-

titions [18]. For each of these drive cycle-based battery tests, a
id-size power-split sedan PHEV is simulated with a previously

ptimized power management algorithm [19] to map  the vehicle
rive cycles to battery current profiles. This PHEV has a 5 kWh  bat-
ery pack consistent with existing Toyota Prius PHEV conversion
its. Due to sensor limitations, drive cycles that produce current
agnitudes greater than 20 A (namely, US06x3,  SC03x2,  and LA92x2)

re scaled down such that their maximum amplitude over time is
0 A [18]. Specifically, this scaling divides the current trajectory
y its maximum current and then multiplies the trajectory by 20.
inally, the resulting current profiles are applied to the battery cell
o obtain data sets for identification and validation.

. The Doyle–Fuller–Newman battery model

The DFN model is an electrochemical battery model that
escribes the dynamics of concentration and potential distribu-
ions across the width of the cell as well as concentration profiles
n the porous electrodes of the anode and cathode. Spatial distribu-
ions across the width of the cell play an important role in high-rate
harge and discharge dynamics, typical of PHEV cycles. The model
s described thoroughly in [1,2,20]. This section summarizes the

odel equations, which constitute a nonlinear partial differential
lgebraic equation system. Appendix contains the model’s bound-
ry conditions.

As seen in Fig. 3, a Li-ion battery cell consists of an anode, separa-

or, and cathode sandwiched between current collectors. Both the
node and cathode are made of porous solid material immersed in
n electrolyte solution. When the battery is fully charged, lithium
ons occupy interstitial sites in the anode-side solid material. As the
ental battery tester.

battery discharges, the Li-ions leave these interstitial sites, entering
the electrolyte solution. The Li-ions then migrate through the solu-
tion from the anode to the separator, and eventually the cathode.
The discharging process concludes with the lithium ions coming
to rest at interstitial sites in the cathode-side solid material. When
a Li-ion leaves its interstitial site in the anode an electron is freed
to flow through the external circuit, producing useful work. When
this electron reaches the cathode it causes a Li-ion to bond with a
cathode interstitial site. Charging the battery is the same process in
reverse, with the external circuit providing rather than consuming
energy.
Fig. 3. Li-ion cell schematic.
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Table  1
Unknown parameters.

Name Unit Description

Ln m Anode thickness
Ls m Separator thickness
Lp m Cathode thickness
Rn m Anode particle radius
Rp m Cathode particle radius
t+ – Transference number
b  – Brugman number
d2 m2 s−1 Solution diffusivity
ε2n – Anode solution volume fraction
ε2s – Separator solution volume fraction
ε2p – Cathode solution volume fraction
d1n m2 s−1 Anode solid diffusivity
d1p m2 s−1 Cathode solid diffusivity
kn (A m−2) (mol m−3)1+˛ Anode reaction rate
kp (A m−2) (mol m−3)1+˛ Cathode reaction rate
RSEI � m2 Anode film thickness
c2 mol  m−3 Initial solution concentration

unrefi V Anode equilibrium potential
function: control point i

uprefi V Cathode equilibrium potential
function: control point i
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interpolate between these points [30]. The third function is �eff(c ),
�i � m Solution conductivity function:
control point i

pherical diffusion of Li-ions in the solid, and the spatially
istributed electrochemical reactions driving them to transfer
etween the solution and the solid. The remainder of this section
riefly outlines these equations. The parameters of these equations
re summarized in Table 1 and all of the boundary conditions for
hese equations are summarized in Appendix.

The concentration of Li-ions within the electrolyte c2(x, t) is
overned by Fick’s law of linear diffusion combined with an inter-
alation current density term, J, transferring Li-ions between the
olution and solid:

2
∂c2

∂t
(x, t) = ∂

∂x

(
deff

2
∂c2

∂t
(x, t)

)
+ 1 − t+

F
J(x, t) (1)

The above intercalation reaction current density, J, also acts as
n input to the dynamics of Li-ion diffusion within the solid. This
iffusion occurs at every point in the anode and cathode and can
e modeled using a spherical, radially symmetric diffusion law as
ollows:

∂c1,j

∂t
(r, t) = d1,j

r2

∂

∂r

(
r2 ∂c1,j

∂r
(r, t)

)
(2)

here we note that while radial spherical diffusion is an appropri-
te model for the anode, it is only an approximation for the cathode.
e refer the interested reader to papers on both understanding

he behavior of the LiFePO4 cathode [21–23] and agglomerate type
odels that capture various aspects of the electrode’s behavior

24–29].
The intercalation reaction current density, J, is driven by poten-

ial differences between the solid and electrolyte solution, as
overned by the Butler–Volmer equation:

(x, t) = aji0,j

[
exp

(
˛a,jF

R̄T
�j(x, t)

)
− exp

(
−˛c,jF

R̄T
�j(x, t)

)]
(3)

0,j = kj(c
max
1,j − cS

1,j)
˛a,j (cS

1,j)
˛c,j (c2)˛a,j , j = n, p (4)
The overpotentials in the above equations, �j, equal the dif-
erences between the solid and solution potentials minus the
eference potentials for the main intercalation reaction, which in
ources 210 (2012) 263– 275

turn depend on the local states of charge. Mathematically the over-
potentials are given by:

�p(x, t) = �1(x, t) − �2(x, t) − upref (x, t) (5)

�n(x, t) = �1(x, t) − �2(x, t) − unref (x, t) − J(x, t)
an

RSEI (6)

Since potentials and overpotentials described above have
dynamics orders of magnitude faster than the Li-ion concentra-
tions, they are assumed to respond instantaneously. The solid
potential is governed by Ohm’s law with a source term governing
the charge transfer due to intercalation:

∂

∂x

(
�eff

j

∂�1,j

∂x
(x, t)

)
− J(x, t) = 0 (7)

Similarly, the solution potential is governed by Ohm’s  law, inter-
calation current density, and the charge carried by the ions in
solution:

∂

∂x

(
�eff ∂�2

∂x
(x, t)

)
+ J(x, t) + ∂

∂x

(
�D

∂

∂x
ln(c2(x, t))

)
= 0 (8)

The above system of equations are the DFN model that repre-
sent the dynamics of charging and discharging in the Li-ion cell. The
boundary conditions for this model are given in Appendix. When
the DFN model is discretized it becomes a system of Differential
Algebraic Equations (DAEs), where the differential equations gov-
ern the diffusion dynamics and the algebraic equations constrain
the potentials and intercalation current accordingly.

4. Parameter set

This section describes the DFN model parameters identified
in this paper, and explains some of the constraints placed on
these parameters during identification. The parameters are sum-
marized in Table 1. Altogether, 88 parameters are optimized by the
genetic algorithm. Five of these parameters pertain to cell geome-
try, namely, the anode thickness Ln, separator thickness Ls, cathode
thickness Lp, anode particle radius Rn, and cathode particle radius
Rp. One may  directly measure these quantities by disassembling
the cell. However, our aim is to use non-destructive methods for
identifying the parameters. Three parameters characterize ion dif-
fusion rates. They include the solid diffusivity d1n in the anode,
solid diffusivity d1p in the cathode, and solution diffusivity d2. One
parameter governs the fraction of the intercalation current carried
by Li-ions, namely, the transference number t+. Two parameters
govern rate kinetics, namely, the k-rates kn in the anode and kp

in the cathode. These multiplicatively affect the current densities
generated by the electrochemical reactions. One parameter scales
the solution conductivity and diffusivity to their effective values,
namely, the Brugman number b. Three parameters summarize the
cell’s porosity, namely, the solution volume fractions ε2n for the
anode, ε2s for the separator and ε2p for the cathode. One parameter
captures the effective impedance of the anode-side solid electrolyte
interphase layer, namely, RSEI. The last scalar parameter is the initial
concentration of the solution, c2, which we  assume to be uniformly
constant in space. This variable reflects the amount by which the
battery electrolyte is initially lithiated.

In addition to the above 17 scalar parameters, the GA also opti-
mizes three parametric functions in the DFN model. Two of these
functions are the equilibrium potential functions, unref and upref, of
the anode and cathode, respectively. We  parameterize these func-
tions using 33 control points each, and use monotonic splines to
2
which determines the effective conductivity of the solution as a
function of solution concentration. We  parameterize this func-
tion using five control points spaced linearly from 0 mol  m−3 to
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000 mol  m−3, and interpolate between these control points using
onventional cubic splines with natural end conditions [31].

Several constraints are placed on the above parameters in the
enetic algorithm. All of these constraints are related to underlying
dentifiability issues within the model – each of them improves
arameter identifiability by first removing parameters from the
ptimization problem and then algebraically relating them to
arameters remaining within the optimization problem. First, we
onstrain the capacity of each electrode to equal exactly 2.7 Ah. This
onstraint provides two key benefits. It creates two 0.2 A-h buffers
n each electrode, which improves the numerical stability of the
FN model. These buffers add 0.2 A-h of capacity to the maximum
nd minimum values of the electrodes. This allows the GA to tol-
rate minor local over and under filling of electrodes as it searches
or the correct parameter values. Finally, it eliminates the inter-
lay between changes in electrode charge capacity and changes in
quilibrium potential functions versus capacity. The second opti-
ization constraint forces the three electrode widths (Ln, Ls, Lp) and

he area of the sheet rolled up inside the battery to collectively fit
ithin the volume of the battery cell. Constraining the sheet area is
articularly important because it acts as a multiplicative scale fac-
or relating applied current to internal current density. The third
onstraint sets the volume fractions ε1 and ε2 in the anode and
athode to sum to exactly one. The final constraint sets the solid
onductivities �1n and �1p to equal 100, consistent with [20]. This
s justified since both conductivities have absolutely zero effect on
he voltage trajectory (so long as they are both positive). Not all
f these constraints are fully physically justified: a fact that reflects
he presence of underlying identifiability issues. This motivates the
isher information study in Section 7.

. Parameter optimization scheme

To identify the DFN model’s parameters, we  first choose: (i)
n optimization objective representing the model’s accuracy, and
ii) experimental data sets for which this metric is optimized. The
arameter identification objective we use in this paper is to min-

mize the L2 error between the experimentally measured voltage
(t) and DFN-simulated voltage trajectories V̂(t; �	), for a given bat-
ery current trajectory, with respect to the DFN model parameter
ector �	, i.e.,

in
�	

∫ T

0

(V(t) − V̂(t; �	))
2
dt (9)

We optimize the above objective using only two  of the seven
ycles previously mentioned, Chirp and Naturalistic1, leaving the
emaining 5 cycles for model validation. The Chirp cycle makes
oC-dependent and rate-dependent parameters easier to identify
y sweeping through the full range of battery states of charge at dif-
erent charge/discharge rates. Furthermore, the Naturalistic1 cycle

akes parameters associated with battery transients easier to iden-
ify due to rich frequency content resulting from PHEV drive cycle
ynamics.

The genetic algorithm optimizes the above L2 error over the
ourse of the Chirp and Naturalistic1 cycles by varying 88 of the
FN model’s parameters. Genetic algorithms are well-suited for

uch large-scale optimization, especially when gradient informa-
ion is difficult to obtain analytically or numerically. Fig. 4 provides

 high-level snapshot of this article’s GA-based DFN parameter
dentification scheme. The optimization process starts with the
election of inputs to the DFN model, in this case the Chirp and

aturalistic1 current profiles versus time. We  apply these current
rofiles experimentally to the battery, and measure the resulting
oltage output. Next, we initialize the GA to a randomized popu-
ation, where each population member is a DFN model parameter
Fig. 4. Optimizing model parameters via a genetic algorithm.

set. The DFN model is simulated for each population member, and a
comparison of the resulting simulated voltage versus experimental
data furnishes a “fitness” value based on the inverse of the L2 volt-
age fitting error. Population members are selected for removal at
random by a fitness-weighted roulette game. This selection process
is elitist, in the sense that the fittest population member is excluded
from removal. Once the fitness-based selection is complete, we  use
binary mutation and crossover operators to create new popula-
tion members. Parents are chosen randomly for mutation, with a
selection probability weighted by their fitness. Mutations occur in
a purely random manner, and are not weighted by fitness. The DFN
model is then used once more to assign fitness values to the new
population members, and the process repeats until convergence
to a minimal model fitting error level. The final parameter values
are obtained from the fittest member of the population. For fur-
ther background on GA-based optimization, the reader is referred
to [32].

To ensure the convergence of the GA an additional optimization
was conducted (henceforth we will refer to this as the “tuning” opti-
mization and the first optimization as the “base” optimization). The
tuning optimization started with a population centered about the
base optimization’s fittest population member. Additionally only
parameters that were in the identifiable set were taken as variables
in this optimization. Recall that to determine this set one needs to
already be close to the optimum as the identifiable set is based on
local identifiability properties (which is why  it could not be com-
puted a priori for the base optimization). The tuning optimization
converged and slightly improved on the base optimization’s result.

The base (tuning) optimization process occurs in the R88

(R43) Euclidean space, with each parameter quantized at 16 bits.
This is a very large optimization space, comprising 7.083 × 10423

(1.284 × 10207) possible parameter sets. We  employ two main tools
to render these optimizations numerically tractable. First, we use
model reduction to accelerate the speed with which the DFN model
is simulated, with minimal loss of accuracy. Specifically, we  use a
Legendre modal coordinate expansion similar to [14], together with
algebraic constraint quasi-linearization similar to [8],  to improve
the DFN model’s simulation speed. We  apply quasi-linearization
directly to the Legendre modal coordinates, allowing for efficient
solution of the algebraic constraints imposed by the coupled �1
and �2 boundary values problems. This improves computational
speed to the point where we are able to simulate the DFN model
for each new set of parameters in up to 63 s of computation time.
Second, we parallelize the GA at the level of simulation function
calls, with one server program coordinating multiple quad-core
computers, which is a typical Master-Slave arrangement. Custom
Java computer code handles Master-Slave information exchange

over a TCP/IP network within a MATLAB implementation of the GA
and DFN model. Altogether, this use of model reduction in conjunc-
tion with parallel processing makes it possible for five quad-core
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Fig. 5. Probability density plot of voltage error and the perce

omputers (Intel Q8200) to complete the optimization in approxi-
ately three weeks.

. Validation results

One of the major results of this paper is a set of GA-fitted param-
ter values that match all five validation cycles; see Fig. 5 and
able 2. These parameters are based on the tuning optimization
hich offers slight improvements over a related set of values iden-

ified previously [8],  which have already been used in two  studies
f PHEVs: one on power management and one on charge pat-
ern optimization [33,34].  The values of the fitted parameters are
iven in Tables 3 and 4. Additional parameters necessary to run
he DFN model but not explicitly optimized are listed in Table 5.
hese parameters are implicitly related to the optimization pro-
ess, in the sense that they are functions of the optimally identified
arameters; see Section 5 for details. Relative error in voltage and

 consequently – power never exceeds 5% for any of the validation
ycles. As shown in Table 2, the 50th percentile of voltage error is
5.8 mV  and the 90th percentile of voltage error is still only 50.5 mV.

To examine the accuracy of the optimal parameter fit further,

onsider the results for the Naturalistic2 and LA92x2 validation
ycles, which are representative of the set of five cycles. Natu-
alistic2 is based on recorded data from a real driver’s evening
ommute, as opposed to Naturalistic1, which is used for fitting and

able 2
ercentile errors of voltage [mV].

Drive cycle Percentile of error [mV]

25% 50% 75% 100%

Naturalistic2 9.8 12.5 13.6 118.9
LA92x2 11.7 28.0 41.0 150.3
US06x3 10.6 23.4 41.5 140.0
SC03x4 9.7  21.0 32.7 146.3
UDDSx2 12.0 28.3 33.2 140.9
All  val cycles 10.4 15.8 31.9 150.3
Percentile

 of absolute voltage error for all five of the validation cycles.

represents a morning commute. Fig. 6 shows traces of voltage error
and Fig. 7 shows traces of power error for Naturalistic2. The voltage
error never exceeds 118.9 mV  and the 50th percentile of voltage
error is 12.5 mV.  Fig. 8 presents a probability density plot and a
percentile plot of this error.

The results for LA92x2 are similar to those for Naturalistic2.
Figs. 9 and 10 give the voltage and power trajectories along with
their relative and absolute errors. Voltage error never exceeds
150.3 mV  and the 50th percentile of voltage error is 28.0 mV. Fig. 11
presents probability density and percentile plots of this error.

As a final validation check, we  examine whether the voltage
errors for the five validation cycles are correlated with either input
current or state of charge (SoC). Such correlation would suggest
failure to accurately represent internal battery resistance or open-
circuit potential as a function of SoC, respectively. Table 6 presents
the R2 correlation values between voltage error on the one hand
and battery current and SoC on the other hand, for each of the val-
idation cycles. None of the validation cycles have voltage errors
linearly correlated with input current, which implies that the iden-
tified model captures at least internal battery resistance very well.
The upper bound on the correlation between model error and SoC
is R2 = 0.433 which is the case for the Naturalistic2 drive cycle. As a
point of comparison the correlation between predicted and mea-
sured voltage for Naturalistic2 is R2 of 0.871, implying that the
identified model captures the dependence of battery dynamics on
SoC quite well. This SoC is the “system” SoC (as opposed to the
“chemical” SoC which would be calculated based on the quantity
of Li in the anode) and is calculated for the battery by integrating
and scaling current, knowing that each experiment was initialized
at 90% SoC, i.e.,

SoCSystem =
∫ t

0
I(
)d


Name Plate Capacity
+ 0.9 (10)
In summary, this section shows that the DFN model, together
with the parameter values identified in this paper, accurately sim-
ulates battery cells under the loading characteristics of PHEVs. This
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Table  3
First half of optimized parameters.

Name Value Unit Variance 95% Confidence interval

Min  Max  Rel%

Ln 2.880E−05 m 1.30E−15 2.87E−05 2.89E−05 0.25%
Ls 1.697E−05 m U U U U
Lp 6.508E−05 m 3.45E−14 6.47E−05 6.54E−05 0.57%
Rn 3.600E−06 m 2.98E−18 3.60E−06 3.60E−06 0.10%
Rp 1.637E−07 m U U U U
t+ 2.495E−01 – U U U U
b  1.439E+00 – 1.11E−02 1.23E+00 1.65E+00 14.63%
d2 6.930E−10 m2 s−1 9.55E−19 −1.26E−09 2.65E−09 281.98%
ε2n 6.188E−01 – 2.62E−02 2.95E−01 9.43E−01 52.33%
ε2s 3.041E−01 – U U U U
ε2p 5.206E−01 – 4.49E−03 3.87E−01 6.55E−01 25.73%
d1n 8.275E−14 m2 s−1 1.44E−26 −1.57E−13 3.23E−13 289.99%
d1p 1.736E−14 m2 s−1 U U U U
kn 8.692E−07 (A m−2) (mol m−3)1+˛ 6.38E−20 8.69E−07 8.70E−07 0.06%
kp 1.127E−07 (A m−2) (mol m−3)1+˛ U U U U
RSEI 3.697E−03 � m2 6.49E−10 3.65E−03 3.75E−03 1.38%
c2 1.040E+03 mol  m−3 8.42E+00 1.03E+03 1.05E+03 0.56%

unref1 3.959E+00 V U U U U
unref2 3.400E+00 V U U U U
unref3 1.874E+00 V U U U U
unref4 9.233E−01 V 5.15E−02 4.70E−01 1.38E+00 49.14%
unref5 9.074E−01 V 2.54E−05 8.97E−01 9.17E−01 1.11%
unref6 6.693E−01 V 3.27E−04 6.33E−01 7.06E−01 5.40%
unref7 2.481E−03 V U U U U
unref8 1.050E−03 V U U U U
unref9 1.025E−03 V U U U U
unref10 8.051E−04 V U U U U
unref11 5.813E−04 V U U U U
unref12 2.567E−04 V U U U U
unref13 2.196E−04 V U U U U
unref14 1.104E−04 V U U U U
unref15 3.133E−06 V U U U U
unref16 1.662E−06 V U U U U
unref17 9.867E−07 V U U U U
unref18 3.307E−07 V U U U U
unref19 1.570E−07 V U U U U
unref20 9.715E−08 V U U U U
unref21 5.274E−09 V U U U U
unref22 2.459E−09 V U U U U
unref23 7.563E−11 V U U U U
unref24 2.165E−12 V U U U U
unref25 1.609E−12 V U U U U
unref26 1.594E−12 V U U U U
unref27 1.109E−12 V U U U U

GA optimized parameter values for the DFN model. Variances are computed using Fisher information. U indicates an unidentifiable parameter.
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ccuracy is evident from the small errors in the voltage – and
onsequently, power – traces of the DFN model compared to exper-
mental data. The parameter values in this paper make it possible to
ccurately simulate the ANR26650M1A cell for PHEV applications.

. Fisher information and parameter variance

Section 6 of this article assesses the degree to which the iden-
ified DFN model is able to replicate input–output voltage/current
attery cycling behavior. The overarching goal of this section, in
ontrast, is to evaluate the quality of the model parameter esti-
ates. Previous work by the authors pursues this goal using the

dentifiability matrix, and shows that while the identified DFN
odel fits input–output voltage/current data very well, certain
odel parameters are unidentifiable [8].  This article enhances

his analysis by quantifying the parameter estimation variance

ia Fisher information techniques. Fisher information provides the
inimum variance for parameter estimation via the Cramér-Rao

nequality [9,10].  The Cramér-Rao inequality applies to the GA
lgorithm used herein since we use this algorithm as a maximum
likelihood estimator (the GA chooses parameters values to mini-
mize L2). Thus the inverse of the Fisher information matrix is the
covariance of estimating the model parameters. Since there is only
one output, Fisher information can be calculated by multiplying
the identifiability matrix by the voltage sensor’s variance. This vari-
ance was computed from the voltage error between simulation and
experiment for the fitting data sets.

The variance of the estimated parameters is presented in
Tables 3 and 4 along with 95% (two standard deviations) confidence
bounds and relative error. For each parameter, this relative error is
the upper 95% confidence bound minus the parameter’s estimated
value, divided by this estimated value. Not all of the parame-
ters are identifiable, and those that are unidentifiable are marked
with a ‘U’. Unidentifiability was  determined using the method in
[8] where the minimum condition number for the identifiability
matrix was  taken as 10−10. Lower condition numbers caused unrea-

sonable numerical errors in the inversion of the Fisher information
matrix.

The process of partitioning a given parameter set into identifi-
able versus unidentifiable parameters makes it possible to make
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Table  4
Second half of optimized parameters.

Name Value Unit Variance 95% Confidence interval

Min  Max  Rel%

unref28 4.499E−13 V U U U U
unref29 2.250E−14 V U U U U
unref30 1.335E−14 V U U U U
unref31 1.019E−14 V U U U U
unref32 2.548E−16 V U U U U
unref33 1.654E−16 V U U U U

upref1 5.502E+00 V U U U U
upref2 4.353E+00 V 1.79E−02 4.09E+00 4.62E+00 6.15%
upref3 3.683E+00 V 1.36E−05 3.68E+00 3.69E+00 0.20%
upref4 3.554E+00 V 1.64E−06 3.55E+00 3.56E+00 0.07%
upref5 3.493E+00 V 9.58E−06 3.49E+00 3.50E+00 0.18%
upref6 3.400E+00 V 8.66E−06 3.39E+00 3.41E+00 0.17%
upref7 3.377E+00 V 8.03E−06 3.37E+00 3.38E+00 0.17%
upref8 3.364E+00 V 8.51E−06 3.36E+00 3.37E+00 0.17%
upref9 3.363E+00 V 1.28E−05 3.36E+00 3.37E+00 0.21%
upref10 3.326E+00 V 1.09E−05 3.32E+00 3.33E+00 0.20%
upref11 3.324E+00 V 1.27E−05 3.32E+00 3.33E+00 0.21%
upref12 3.322E+00 V 1.13E−05 3.32E+00 3.33E+00 0.20%
upref13 3.321E+00 V 1.57E−05 3.31E+00 3.33E+00 0.24%
upref14 3.316E+00 V 1.54E−05 3.31E+00 3.32E+00 0.24%
upref15 3.313E+00 V 1.40E−05 3.31E+00 3.32E+00 0.23%
upref16 3.304E+00 V 1.64E−05 3.30E+00 3.31E+00 0.25%
upref17 3.295E+00 V 1.20E−05 3.29E+00 3.30E+00 0.21%
upref18 3.293E+00 V 6.76E−06 3.29E+00 3.30E+00 0.16%
upref19 3.290E+00 V 1.11E−05 3.28E+00 3.30E+00 0.20%
upref20 3.279E+00 V 1.22E−05 3.27E+00 3.29E+00 0.21%
upref21 3.264E+00 V 1.19E−05 3.26E+00 3.27E+00 0.21%
upref22 3.261E+00 V 1.04E−05 3.25E+00 3.27E+00 0.20%
upref23 3.253E+00 V 6.13E−06 3.25E+00 3.26E+00 0.15%
upref24 3.245E+00 V 7.85E−06 3.24E+00 3.25E+00 0.17%
upref25 3.238E+00 V 1.59E−05 3.23E+00 3.25E+00 0.25%
upref26 3.225E+00 V 1.09E−05 3.22E+00 3.23E+00 0.20%
upref27 3.207E+00 V 5.81E−05 3.19E+00 3.22E+00 0.48%
upref28 2.937E+00 V 1.64E−04 2.91E+00 2.96E+00 0.87%
upref29 2.855E+00 V 1.09E−04 2.83E+00 2.88E+00 0.73%
upref30 2.852E+00 V 1.13E−04 2.83E+00 2.87E+00 0.74%
upref31 1.026E+00 V U U U U
upref32 −1.120E+00 V U U U U
upref33 −1.742E+00 V U U U U

�1  1.050E−01 �−1 m−1 U U U U
�2  1.760E−01 �−1 m−1 U U U U
�3  2.190E−01 �−1 m−1 U U U U
�4 8.166E−02 �−1 m−1 U U U U

 

G isher 

q
U
m
r
l

T
P

N
m

�5  3.014E−02 �−1 m−1 U

A optimized parameter values for the DFN model. Variances are computed using F

uantitative statements regarding these parameters’ accuracy.
nidentifiable parameters cannot be estimated from experimental

easurements. One can only, therefore, estimate their accu-

acy by comparing their estimated values with the published
iterature. Identifiable parameters can, in contrast, be estimated

able 5
arameters not directly involved in GA.

Name Value Unit

c1n 2.479E+04 mol  m−3

c1p 1.649E+03 mol  m−3

c1nmax 2.948E+04 mol  m−3

c1pmax 1.035E+04 mol m−3

T 2.982E+02 K
˛  5.000E−01 –
ε1n 3.812E−01 –
ε1p 4.794E−01 –
�n 1.000E+02 m−1 �−1

�p 1.000E+02 m−1 �−1

Area 3.108E−01 m2

ote: all of these parameters are either fixed or algebraically related to the opti-
ization variables.
U U U

information. U indicates an unidentifiable parameters.

from experimental data. Furthermore, the accuracy of these iden-
tifiable parameters can itself be methodically estimated from the
Fisher information matrix, provided one can associate a priori
assumed levels of error with the unidentifiable parameters. The
remainder of this article demonstrates the process of methodically
calculating the estimation errors associated with the identifiable
parameters, under the optimistic assumption that the uniden-
tifiable parameters are known a priori. Our goal, here, is to

demonstrate the value of identifiability analysis for the DFN model,
rather than to quantify DFN parameter estimation errors exactly. It
is very important to note, here, that the choice of which parameters

Table 6
R2 coefficients of correlation with voltage estimation error.

Drive cycle Iapp SoC

Naturalistic2 0.023 0.433
LA92x2 0.127 0.190
US06x3 0.153 0.151
SC03x4 0.179 0.204
UDDSx2 0.100 0.246
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re identifiable versus unidentifiable has a significant impact on the
dentification errors computed by this process. One must therefore
e very vigilant when making this choice/partitioning.

Of the eleven identifiable scalar parameters six are estimated
ith good accuracy (relative error <2%). These are associated with

eometry: Ln the anode width, Lp the cathode width, Rn the spher-
cal radius in the anode, kn the k-rate in the anode, RSEI the solid
lectrolyte interface resistance, and c2 the initial concentration of
i in solution. The remaining five scalar parameters all have rel-
tive errors greater than 25%. It is important to note that these
ariances correspond to the case where one attempts to identify all

odel parameters simultaneously, with the unidentifiable values

xed. If one knows some parameters with certainty and can there-
ore estimate a smaller subset of the DFN model parameters, the
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 for Naturalistic2.

variance in these parameters will be lower (or at least the same).
For example, if one is designing a state of health estimator whose
sole goal is to estimate RSEI assuming all other DFN model parame-
ters to be known, the variance in estimation would be 4.387E−014,
and the relative error in estimating RSEI would decrease from 1.38%
to 0.0113%. These results are important, because they: (i) quan-
tify the errors in the parameters identified herein, (ii) highlight the
difficulties in estimating specific parameters solely through volt-
age and current time traces, and (iii) underscore the importance of
examining the identifiability of all DFN model parameters, not just
a subset of those parameters.
To provide further insights into the DFN  model’s parameter
identifiability, Figs. 12 and 13 present the estimates of the cathode-
and anode-side equilibrium potentials versus SoC, along with their
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 for Naturalistic2.
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Fig. 8. Probability density plot of voltage error and 

5% confidence bounds. For plotting purposes, the unidentifiable
arameters have confidence bounds at −∞ and ∞.  In the model
hese equilibrium potential functions are represented by mono-
onic cubic splines in terms of SoC. Here we plot these functions
s piecewise linear since the confidence bounds are only for the
ontrol points. Between the two equilibrium potential functions,
pref has much less variance than unref. Specifically, the estimation
f upref exhibits low variance, where the confidence bounds corre-

pond to relative errors less than 1% for 0% SoC to 95% SoC (where
his SoC does not include the buffers). In contrast, most of unref is
nidentifiable, and even the identifiable control points still have
ery high variances. The equilibrium potential functions provide
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a good example of the effects of assuming that the unidentifiable
values are correct. Since upref is very dependent on unref, and unref is
largely incorrect, upref is mostly identifiable – but to make the upref
values accurate one needs to plug in accurate values for the unref

first. The conductivity function �eff
2 (c2) is completely unidentifiable

– indicating that the interplay between solution concentration and
conductivity could not be determined through these experiments.

Parameter identifiability and variance in estimation are the

function of several important factors. First, they are a func-
tion of which parameters are being identified and which are
already assumed known. This leads to cases where parameter
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stimation errors can be improved dramatically by changing the
umber of known parameters versus unknown ones (as shown
reviously in the case of RSEI). Parameter identifiability also
epends on the values of the parameters after they have been
t to the data. This is due to Fisher information being a local
uantity in the parameter space. In general, this makes it impos-
ible to determine which parameters will be identifiable a priori.

inally we note that the experiments themselves can greatly affect
arameter identifiability. Both the structure of the battery exper-

ment (including placement of sensors and actuators) and the
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Fig. 11. Probability density plot of voltage error and the
nse for LA92x2.

experiment’s trajectory can affect parameter identifiability. As an
example of structure, if our cell had a third electrode then we would
have been able to measure two voltages – likely improving our
ability to identify unref and upref simultaneously. As an example of
the experimental trajectory’s impact, the Natuarlistic2 and Chirp
cycles are different in terms of the battery dynamics they excite,
and therefore different in their impact on parameter identifiability.

All of these factors underscore that matching input–output data
is not enough to guarantee that the model parameter values are
physically accurate.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Percentile

A
bs

ol
ut

e 
E

rr
or

 V
ol

ta
ge

 [V
]

 percentiles of absolute voltage error for LA92x2.



274 J.C. Forman et al. / Journal of Power S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Electrode SoC

A
no

de
 E

qu
ili

br
iu

m
 P

ot
en

tia
l [

V
]

Estimated Potetntial
95% Confidence Bound

Fig. 12. Estimated anode equilibrium potential unref with 95% confidence bounds.
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. Summary and conclusion

This article uses a genetic algorithm to match the
oyle–Fuller–Newman battery model’s voltage predictions to
xperimental measurements, for given input current profiles. We
ptimize 88 parameters of the DFN model, including parameteri-
ations of the anode and cathode equilibrium potential functions
nd the solution conductivity function. The end result is a set of
arameter values for the DFN model that predicts cell voltage and
ower with 5% relative error for all of the validation data sets
xamined in this work. All of these validation data sets are based
n simulated plug-in hybrid electric vehicle battery pack currents
hat exhibit high charge/discharge rates and are highly transient
n nature. For all of the validation cycles aggregated together, the
0th percentile of voltage error 15.8 mV,  and the 90th percentile
f voltage error is still only 50.5 mV.  This high level of accuracy
ustifies the use of the DFN model for the lithium-iron-phosphate
LiFePO4) cathode chemistry examined in this work. In fact, the
arameter values identified herein have already been used in two

tudies involving PHEVs [33,34]. Additionally, this paper presents
ome of the computational logistics involved in using a GA for
arameter identification.
ources 210 (2012) 263– 275

The identification procedure used herein makes it possible to
find a set of parameter values for the DFN model noninvasively.
Unfortunately, this noninvasiveness causes some parameters to be
unidentifiable or have a large estimation uncertainty. While this
does not affect the accuracy of the model response, it does mean
that one must be careful when using these parameters in other
contexts.

Acknowledgments

This work was  supported by the National Science Foundation
EFRI-RESIN Grant 0835995, and the Michigan Public Service Com-
mission.

Appendix A. Boundary conditions

This appendix summarizes the boundary conditions present in
the DFN model. The effective values of various quantities are related
to the volume fraction and the Brugman number as follows:

d2eff = d2εb
2j ∀j ∈ {n, s, p} (A.1)

�jeff = �ε1j ∀j ∈ {n, p} (A.2)

�eff (c2) = �(c2)εb
2j ∀j ∈ {n, s, p} (A.3)

�D(c2) = �eff (c2)

(
2RT(1 − t+)

F

)
(A.4)

For solid concentration c1:

∂

∂r
c1(r) = 0, @r = 0 (A.5)

∂

∂r
c1(r) = − Jj(r)

d1jajF
, @r = R, ∀j ∈ {n, p} (A.6)

For solution concentration c2:

∂

∂x
c2(x) = 0 @x = 0, x = Ln + Ls + Lp (A.7)

d2eff

∣∣
anode

∂

∂x
c2(x) = d2eff

∣∣
separator

∂

∂x
c2(x) @x = Ln (A.8)

d2eff

∣∣
separator

∂

∂x
c2(x) = d2eff

∣∣
cathode

∂

∂x
c2(x) @x = Ln + Ls (A.9)

In addition c2 is equated at the anode/separator interface and the
separator/cathode interface.

For solid potential �1:

∂

∂x
�1(x) = 0 @x = Ln, x = Ln + Ls (A.10)

�1(x) = 0 @x = 0 (A.11)

This places the ground at the negative electrode. At the positive
electrode one can choose between a current and voltage input. For
the current input:

∂

∂x
�1(x) = iapp

Area × �neff
@x = Ln + Ls + Lp (A.12)

where Area converts from current density to absolute current.
For the voltage input:

�1(x) = Voltapplied @x = Ln + Ls + Lp (A.13)
∂

∂x
�2(x) = 0 @x = 0, x = Ln + Ls + Lp (A.14)
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�eff (c2)
∣∣
anode

∂

∂x
�2(x) + �D(c2)

∣∣
anode

∂

∂x
ln(c2(x))

= �eff (c2)
∣∣
separator

∂

∂x
�2(x) + �D(c2)

∣∣
separator

∂

∂x
ln(c2(x)) @x = Ln

(A.15)

�eff (c2)
∣∣
separator

∂

∂x
�2(x) + �D(c2)

∣∣
separator

∂

∂x
ln(c2(x))

= �eff (c2)
∣∣
cathode

∂

∂x
�2(x) + �D(c2)

∣∣
cathode

∂

∂x
ln(c2(x)) @x

= Ln + Ls (A.16)

n addition �2 is equated at the anode/separator interface and the
eparator/cathode interface.
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