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a b s t r a c t

This paper examines the problem of optimizing the charge pattern of a plug-in hybrid electric vehicle
(PHEV), defined as the timing and rate with which the PHEV obtains electricity from the power grid.
The optimization goal is to simultaneously minimize (i) the total cost of fuel and electricity and (ii)
vailable online xxx

eywords:
lug-in hybrid electric vehicles
harge pattern optimization
ithium-ion battery degradation

the total battery health degradation over a 24-h naturalistic drive cycle. The first objective is calculated
for a previously-developed stochastic optimal PHEV power management strategy, whereas the second
objective is evaluated through an electrochemistry-based model of anode-side resistive film formation
in lithium-ion batteries. The paper shows that these two objectives are conflicting, and trades them off
using a non-dominated sorting genetic algorithm. As a result, a Pareto front of optimal charge patterns
is obtained. The effects of electricity price and trip schedule on the optimal Pareto points and the PHEV

zed a
charge patterns are analy

. Introduction

This paper examines plug-in hybrid electric vehicles (PHEVs),
efined as vehicles that can use both fuel and electricity for propul-
ion, and can obtain the latter either through onboard generation
r by plugging into the grid. The paper’s overarching goal is to
ptimize the charge pattern of such PHEVs, defined as the timing
nd rate with which they obtain electric energy from the grid. We
erform this optimization with two objectives in mind, namely
i) minimizing the overall cost of daily PHEV energy consumption
nd (ii) minimizing the concurrent damage to PHEV batteries. Such
ptimization is an important step towards achieving the potential
conomic and environmental benefits of PHEVs envisioned by the
cientific community [1–5].

The literature has examined PHEV charge patterns from a num-
er of different perspectives. The most commonly studied charge
attern is overnight charging, where PHEVs start charging late at
ight, e.g., 10 pm or midnight [4–6]. Evening charging is another
cenario which has also been examined [5]. More sophisticated
rip- and price-dependent strategies such as “immediate end of
ravel” charging, “optimized to off-peak” charging, and “opportu-
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

ity charging” have also been assumed and used for the prediction
f total PHEV load [6]. This paper optimizes PHEV charging in
way that takes into account, for the first time, the combined

ffects of total energy cost, battery health, electricity pricing, and

∗ Corresponding author. Tel.: +1 734 330 5008; fax: +1 734 615 4891.
E-mail address: hfathy@umich.edu (H.K. Fathy).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.07.001
nd discussed.
© 2010 Elsevier B.V. All rights reserved.

PHEV driving patterns. The charge patterns obtained through this
optimization are substantially different from those optimized for
energy cost or battery health alone.

One of the key contributors to total PHEV acquisition cost
is battery storage capacity, which tends to degrade with time
and cycling [7–9]. This paper focuses specifically on PHEVs that
employ lithium-ion batteries for energy storage. The literature pro-
vides two distinct types of Li-ion battery models: (i) empirical
models that are built on experimental measurements of bat-
tery input–output behavior, such as equivalent circuit models
[10,11], and (ii) higher-fidelity models derived from the princi-
ples of battery electrochemistry [12,13]. The modeling of capacity
fade and life degradation has been more extensively pursued
under the second category. This paper adopts a first-principles
electrochemistry-based battery model developed by Doyle et al.
[12] and Fuller et al. [13], and later expanded by Ramadass et al. [14]
through the addition of a capacity fade component. In this model,
the primary mechanism for battery degradation is an assumed side
reaction within the negative electrode (anode), which causes the
irreversible growth of a solid–electrolyte interphase (SEI) layer on
the electrode, and the loss of cyclable lithium ions. Although there
are several other degradation mechanisms affecting Li-ion batter-
ies, such as overheating, overcharging, and deep discharging [15],
in this paper we only minimize SEI film growth as a key cause of
), doi:10.1016/j.jpowsour.2010.07.001

battery degradation. In doing so, we develop a generalizable PHEV
charge pattern optimization method that can be used for minimiz-
ing degradation through other mechanisms as well.

To the best of the authors’ knowledge, there are currently no
published articles in the PHEV literature that optimize the charge

dx.doi.org/10.1016/j.jpowsour.2010.07.001
dx.doi.org/10.1016/j.jpowsour.2010.07.001
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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 IN PRESSG

P

2 Power Sources xxx (2010) xxx–xxx

p
p
m
i
n
I
P
t
p
e
a
d
e
f
i
o
o
t

p
p
fi
S
l
c
c

2

a
o
P
c
o
m
k
a
a
a
t

2

s
t
T
t
S
o
b

t
m
a
c
t
e
m
d
P
c
d

ARTICLEModel

OWER-13322; No. of Pages 9

S. Bashash et al. / Journal of

attern of a PHEV for both energy cost and battery health. Thus, this
aper is the first to analyze this problem. Since we deal with opti-
izing two objectives which are conflicting (as will be explained

n the paper), we use a multiobjective optimization algorithm,
amely, the non-dominated sorting genetic algorithm II (NSGA-

I) developed by Deb et al. [16]. Our goal is to obtain an optimal
areto front that trades off these two objectives. To quantify the
otal daily energy cost, we use a mid-size sedan PHEV model with a
reviously-developed optimal on-road power management strat-
gy [17,18], and a naturalistic 24-h drive cycle with two (morning
nd afternoon) half-trips. Moreover, the measure of battery degra-
ation is obtained through a reduced-order representation of the
lectrochemistry-based battery model discussed above. To account
or daily variations in electricity prices, we use the pricing pol-
cy of the DTE Energy Company for electric vehicles in the State
f Michigan [19]. Putting all of these elements together, we finally
ptimize the PHEV charge pattern, and study various solutions from
he resulting Pareto front.

The remainder of the paper is organized as follows: Section 2
rovides a brief review of the PHEV model and its optimal on-road
ower management. Section 3 reviews the abovementioned high-
delity Li-ion battery model and its life degradation component.
ection 4 then formulates the charge pattern optimization prob-
em for PHEVs. Section 5 presents and discusses the optimal PHEV
harge patterns. Finally, Section 6 summarizes the paper’s main
onclusions.

. PHEV model and optimal power management

The two objectives optimized in this paper, namely, energy cost
nd battery health, depend not only on PHEV charging, but also
n how the given PHEV operates on the road. Therefore, modeling
HEV on-road power management is an important prerequisite to
harge pattern optimization. On-road power management can be
ptimized using a number of different methods, including deter-
inistic dynamic programming (DDP) when the drive cycle is

nown [20,21], and stochastic dynamic programming (SDP) when
statistical drive cycle description is available [17,18]. This paper

dopts a PHEV model used by the authors in a previous study [17]
s well as the on-road power management algorithm optimized for
hat PHEV using SDP. We describe both briefly below.

.1. PHEV model

The PHEV model examined in this paper is based on a power-
plit mid-size sedan, similar in configuration, dynamics, and design
o the 2002 Toyota Prius, but with an 8 kWh Li-ion battery pack.
he supervisory power management algorithm, which determines
he optimal split of engine and battery power, is developed using
DP techniques. We summarize the PHEV model and associated
ptimal supervisory control strategy here for comprehensiveness,
ut readers are encouraged to study [17,18] for more details.

Fig. 1 presents a conceptual map of the key interactions between
he PHEV, the drive cycle, and the supervisory power manage-

ent algorithm. The supervisory power management algorithm
ttempts to meet drive cycle power demand by adjusting three
ontrol inputs: engine torque, electric motor/generator 1 (M/G1)
orque, and M/G2 torque. These inputs are determined by a nonlin-
ar static feedback law, which depends functionally on the PHEV
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

odel states: engine speed, vehicle velocity, battery pack SOC, and
rive cycle power demand. The first three states are governed by
HEV dynamics, while power demand is governed by a Markov
hain which captures drive cycle dynamics, described in further
etail below.
Fig. 1. PHEV model components, supervisory controller, and signal flow. Note that
the signal flow forms a state feedback control architecture.

2.1.1. Mechanical subsystem
The planetary gearset is at the heart of the power-split con-

figuration. This three-port device couples the engine, M/G1, and
M/G2 crankshafts. The dynamic-algebraic equations that describe
this device are governed by Euler’s law and a kinematic constraint
relating component speeds:⎡
⎢⎣

Ie 0 0 R + S
0 IM/G1 0 −S
0 0 I′

M/G2 −R

R + S −S −R 0

⎤
⎥⎦

⎡
⎢⎣

ω̇e

ω̇M/G1
ω̇M/G2

F

⎤
⎥⎦ =

⎡
⎢⎣

Te

TM/G1
T ′

M/G2
0

⎤
⎥⎦ (1)

The terms I′
M/G2 and T ′

M/G2 are effective inertia and torques:

I′M/G2 = IM/G2 + Iw + mR2
tire

K2
(2)

T ′
M/G2 = TM/G2 + FroadRtire

K
(3)

Froad = 0.5�CdAfr�2 + �rollmg (4)

where Froad includes viscous aerodynamic drag and rolling friction
forces.

Through algebraic manipulations one may analytically solve for
the state variables without explicitly determining the gear force F
or inverting the matrix on the LHS of Eq. (1). This process results in
two degrees of freedom, since there exist three ordinary differential
equations and one algebraic constraint. Hence, the control inputs
include engine torque Te and TM/G1 M/G1 torque.

2.1.2. Electric subsystem
To solve the supervisory power management control problem,

the battery pack is modeled by an equivalent circuit. This sim-
plified system includes an open circuit voltage in series with an
internal resistance, both of which are parametric functions of bat-
tery SOC. Both M/G1 and M/G2 interface with the battery pack, as
shown in Fig. 1. These devices are modeled by power efficiency
maps supplied by ADVISOR 2004 [22]. The electrical power train
also consists of power electronics, whose dynamics are fast enough
to be modeled as instantaneous. Hence, the governing equations for
the electric subsystem are given by:√
), doi:10.1016/j.jpowsour.2010.07.001

SȮC = −VOC− V2
OC − 4PbattRbatt

2QbattRbatt
(5)

Pbatt = TM/G1ωM/G1�kM/G1
M/G1 + TM/G2ωM/G2�KM/G2

M/G2 (6)

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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i =
{

−1, Tiωi > 0
1, Tiωi ≤ 0

for i =
{

M/G1, M/G2
}

(7)

We compute the electric current flow through the battery pack
ccording to I = SȮCQbatt , which provides the input signal used for
imulating the high-fidelity battery model, described in Section 3,
or the charge pattern optimization problem.

.1.3. Drive cycle model
A stochastic model of drive cycle behavior is utilized to solve

he supervisory power management algorithm. This formulation
esults in a power management algorithm that is optimal with
espect to a statistical description of driving schedules, as opposed
o a single drive cycle. Mathematically, the stochastic drive cycle

odel is given by the following Markov chain.

ijm = Pr(Pdem(k + 1) = j
∣∣Pdem(k) = i, v(k) = m) (8)

hich maps power demand–velocity pairs to a probability distri-
ution over power demand in the next time step. These transition
robabilities are identified from certification cycles and real-world
icro-trip data [22].

.1.4. Optimal power management problem formulation
The objective of the supervisory on-road power management

lgorithm is to minimize the expected consumption cost of both
uel (from the gas pump) and electricity (from the grid) over

stochastic distribution of drive cycles. Mathematically, this is
ritten as a discounted infinite-horizon problem, where k is the
iscrete-time variable:

inimize : J = limN→∞EPdem

[∑N−1

k=0
�kg(x(k), u(k))

]
(9)

ubject to :
x(k + 1) = f (x(k), u(k))

x ∈ X
u ∈ U(x)

(10)

The cost function g(x(k), u(k)) represents the instantaneous cost
f fuel consumption and grid-provided electricity. The fuel and
lectricity prices are set to 3.44 USD/gallon and 0.08 USD (kWh)−1,
espectively, which are representative of the 2008 national aver-
ges in the USA. The optimization is also subject to the PHEV model
ynamics, limits on the PHEV state and control signals, and a power
onservation constraint that ensures the power sources continu-
usly meet drive cycle power demand, as described in Eq. (9). The
esult is that the supervisory control algorithm carefully blends
ngine and battery power when the battery pack SOC is greater
han 25% (the minimum allowable SOC). As the battery pack SOC
pproaches 25%, the algorithm enters a charge sustenance mode
hat maintains the SOC above 25% by operating similar to a con-
entional HEV. That is, the vehicle depletes battery energy when it
s advantageous (low speeds and power demands), but regenerates
OC during other periods to maintain a relatively constant charge
evel. It is important to note that the supervisory on-road power

anagement algorithm is explicitly designed to minimize an aver-
ge energy consumption cost, but does not take into account factors
hat cause battery pack degradation. These two factors, energy
onsumption cost and battery pack aging, are the subject of the
emainder of this paper.

.2. Simulations of PHEV with optimal power management
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

Fig. 2 depicts a sample 24-h suburban naturalistic drive cycle
ith two active parts. This drive cycle will be used throughout the
aper for simulating the PHEV model. Here, we examine the effects
f the initial battery SOC on the final energy costs when the PHEV
ollows the drive cycle.
Fig. 2. A sample suburban naturalistic drive cycle with two half trips, one in the
morning and one in the afternoon (vehicle velocity is zero during the rest of the
day).

Fig. 3 depicts the simulation results for only the first part of the
drive cycle (similar results are obtained for the second part). Two
battery sizes are considered: an 8 kWh and a 16 kWh battery pack.
For the smaller battery, as the initial battery SOC increases, the cost
of electricity over the course of the half-trip increases as well, but
the fuel and the total energy costs decrease. This is due to the fact
that electricity allows less expensive propulsion than fuel. For the
16 kWh battery, a similar trend is obtained, but only up to a certain
initial SOC (about 70% in this case). Further increase of the initial
SOC does not reduce the energy costs anymore, because the initial
battery charge exceeds the amount needed for the trip. Hence, we
can conclude that the higher the initial battery SOC before a given trip,
the smaller the total energy cost at the end of that trip, provided that
the trip consumes all the stored electricity. Note that this trend may
change if the electricity price substantially increases compared to
the fuel price.

Now that the effects of the initial battery SOC on the energy costs
are examined, we examine, next, the effects of initial battery SOC
on battery health degradation through an electrochemistry-based
Li-ion battery model.

3. High-fidelity Li-ion battery model

This section summarizes the model used in this paper for
predicting the cycling performance and SEI layer growth in a
lithium-ion battery. The model is pseudo-two dimensional, and
includes degradation effects [14,23], where the main cause of
degradation is assumed to be an irreversible side reaction in the
anode. As a result of this side reaction, a resistive film builds up
), doi:10.1016/j.jpowsour.2010.07.001

in the anode which increases the internal resistance of the bat-
tery and leads to capacity loss and self discharge. Simpler models
have been used to monitor battery state of charge and state of
health [24–27]. However, these models have been developed to
only observe battery degradation effects, not to predict them. The

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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ig. 3. Energy costs versus initial battery SOC for the optimal power management
trategy with two different battery sizes: an 8 kWh (top) and a 16 kWh battery
bottom).

odel we consider herein is attractive because it can both capture
attery health degradation effects and simulate battery dynamics
ver a very wide range of cycles (due to its predictive, 1st principles
ature). The following subsections present a brief overview of both
his model [12–14] as well as efforts to reduce its computational
omplexity [28–31] and validate it against experimental data.

.1. Battery model review

Lithium ion batteries store electric energy by shuffling lithium
ons between low and high potential energy states via a set of elec-
rochemical processes. Lithium ions have the lowest energy when
hey are in the positive electrode (cathode) and the highest energy
hen they are in the negative electrode (anode). During charging,

xternal current forces lithium ions to move from the cathode to
he anode. During discharge, ions naturally move from the anode
o the cathode, creating a useful current. Lithium ion movement is
overned by two diffusion processes, as well as two electrochemical
eactions driven by overpotentials. These electrochemical reactions
llow the lithium ions to transfer between solid and solution phases
ia intercalation currents.

Based on the model developed by Doyle et al. and Fuller et al.
12,13], and expanded by Ramadass et al. [14], the governing equa-
ions of solid phase and solution phase potentials (represented by
1 and �2, respectively) are given by Ohm’s law as follows1:
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

· (	eff
j

∇�1,j) − J = 0, j = n, p (11)

· (
eff ∇�2) + ∇ · (
D∇In(c2)) + J = 0 (12)

1 Lists of all parameter values and the boundary conditions for the partial differ-
ntial equations, i.e., Eqs. (11), (12), (18) and (19), can be found in Ref. [31].
 PRESS
Sources xxx (2010) xxx–xxx

where 	eff
j

is the effective conductivity of electrode j (where n
stands for the negative electrode and p for the positive electrode);

eff and 
D represent the concentration-dependent effective and
diffusional conductivities of the solution phase; J = J1 + Jsd is the total
intercalation current density calculated from the Butler–Volmer
expression for the main intercalation reaction current density given
by:

J1 = aji0,j

[
exp

(
˛a,jF

RT
�j

)
− exp

(
˛c,jF

RT
�j

)]
, j = n, p (13)

where

i0,j = kj

(
cmax

1,j − cS
1,j

)˛a,j
(

cs
1,j

)˛c,j (c2)˛a,j , j = n, p (14)

and a side intercalation reaction current density governed by:

Jsd = −i0,sdan exp
(

−˛c,nF

RT
�sd

)
(15)

In these equations, a and k are the specific area of the porous
electrode and the rate constant of electrochemical reaction, respec-
tively; ˛a and ˛c are the anodic and cathodic transfer coefficients
of the electrochemical reaction; F, R, and T respectively denote the
Faraday’s constant, universal gas constant and the temperature; c1
and cmax

1 represent the lithium concentration in the solid phase,
and its maximum limit; i0 and i0,sd are the exchange current densi-
ties for the main and the side reactions, respectively, and � and �sd
are the corresponding overpotentials, given by:

�j = �1 − �2 − Uref,j − J

an
Rfilm, j = n, p (16)

�sd = �1 − �2 − Uref,sd − J

an
Rfilm (17)

where Uref,j is the SOC-dependent local equilibrium potential of the
main reaction, Rfilm is the side film resistance in anode, and Uref,sd
is the equilibrium potential for the side reaction.

In the solution phase, lithium ions are governed by a diffusion
law combined with an intercalation current density term transfer-
ring ions between the solution and the solid:

ε2
∂c2

∂t
= ∇ ·

(
Deff

2 ∇c2

)
+ 1 − t+

F
J (18)

where ε2 represents the volume fraction of the solution phase, Deff
2

denotes the effective diffusion coefficient of lithium in the solution
phase, and t+ stands for the transference number.

The solid phase concentration is governed by a radially symmet-
ric spherical diffusion:

∂c1,j

∂t
= D1,j

r2

∂

∂r

(
r2 ∂c1,j

∂r

)
(19)

where D1 is the diffusion coefficient of lithium in the solid phase,
and r is the sphere radius. This solid diffusion process occurs at
every point in anode and cathode, and is connected to the solution
via the intercalation current density.

Finally, a resistive film builds up in anode as a result of side
reaction:

∂ıfilm

∂t
= JsdMp

˛n�pF
(20)

with ıfilm being the thickness of the resistive film, and Mp and �p

representing the molecular weight and density of the side reaction
), doi:10.1016/j.jpowsour.2010.07.001

product, respectively. This results in the resistance increase of the
side film as follows:

Rfilm = RSEI + ıfilm

Kp
(21)

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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Fig. 4. Custom-built experimental battery test system used for parameter identifi-
cation and validation of the high-fidelity battery model.

battery cell and the corresponding voltage trajectory. The simu-
lated response of the battery model to this current profile is plotted
against the experimental voltage response for comparison. We fit-
ted this simulated response to experimental data using a genetic
ARTICLEModel
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here RSEI denotes the initial solid/electrolyte interphase resis-
ance, and Kp represents the conductivity of the side reaction
roduct, respectively. The growth of the resistive film corresponds
o the loss of cyclable lithium ions and therefore battery capacity
ade.

Before moving to the next section, i.e., battery model reduction,
t is remarked that in the simulations of the battery model in this
aper battery voltage corresponds to the solid phase potential at the
ightmost point of the cathode (right collector); SOC represents the
patial average of lithium ions concentration in the anode divided
y its maximum value, and the resistive film growth rate corresponds
o its the spatial average in the anode.

.2. Battery model reduction

Eqs. (11)–(21) form a set of differential algebraic equations that
ust be solved numerically to simulate the battery model. There

re two major numerical difficulties associated with this model: (i)
he existence of a large number of state variables (reasonable dis-
retizations of the model’s partial differential equations can easily
ield several thousands of state variables), and (ii) the presence
f a large set of nonlinear algebraic constrains, i.e., Eqs. (11)–(17),
hat must be solved at every point along the electrodes in every
nstant of time. These equations control the intercalation current
nd potentials at each point within the electrodes.

Due to the model’s large dimension, several model reduction
ethods have been proposed in the literature to improve its com-

utational efficiency [28–31]. This paper improves the model’s
omputational speed by adopting a model reduction approach pro-
osed in a previous work by the authors [31]. In this approach, a
uasi-linearization strategy is adopted for the nonlinear algebraic
onstraints, and a family of analytic Padé approximations is used
o reduce the number of state variables associated with the spher-
cal diffusion process. The main advantage of the approach is that
t maintains the fidelity of the model within a frequency range of
nterest, making it suitable for effective on-road PHEV discharge
imulation, which often includes both high-frequency and low-
requency components. Interested readers are encouraged to study
31] for more details of the approach.

Reducing the battery model’s computational complexity makes
t possible to identify its parameters based on experimental cycling
ata. The following section describes an experimental setup used to
xamine the SOC dynamics of sample battery cells, and the results
f fitting the above model to these SOC dynamics.

.3. Experimental setup and parameter identification of
igh-fidelity battery model

A custom-built battery test system, shown in Fig. 4, has been
eveloped to identify and validate the high-fidelity battery model
escribed in Section 3.1. The system is hardware-in-the-loop capa-
le via a dSPACE DS1104 R&D controller board. The charging and
ischarging power is provided, respectively, by a Sorenson DCS
0-20E programmable power supply and Sorenson SLH-60-120-
200 DC programmable electronic load. Sensor electronics have
lso been developed to record terminal voltage, current, and sur-
ace temperature of the battery cell canister. The batteries under
xamination are commercial 2.3 Ah 3.3 V nominal voltage Li-ion
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

ells containing LiFePO4 cathode chemistries [A123] in a 26650 for-
at. These cells are designed for high power operations, and are

herefore well-suited for PHEV applications.
With this setup, we run a series of constant current, constant

oltage (CC–CV) “chirp” cycles to obtain data used for offline param-
ter identification. Specifically, these load profiles cycle between
Fig. 5. Experimental battery parameter identification results: (a) applied current
profile and (b) experimental and model voltage responses.

2.6 V and 3.6 V, for current rates of 5C, 2.5C, 1C, 0.75C, and 0.25C.2

These input profiles contains a wide range of frequency content,
which is important for identifying parameters ranging from the
equilibrium potentials to diffusion coefficients. Moreover, the use
of these profiles is also commensurate with the frequency con-
tent that high-power/energy batteries typically experience in PHEV
applications.

Fig. 5 depicts the described chirp current profile applied to the
), doi:10.1016/j.jpowsour.2010.07.001

2 C-rate is a standard unit for battery charge and discharge, representing the ratio
of the applied current (in Amp) to the rated capacity of battery (in Amp-h). For
instance, at the charge rate of 1C the battery can be fully charged in 1 h, whereas at
2C it only takes half hour to charge the battery for a full SOC range.

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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This paper pursues two PHEV charge pattern optimization
objectives. One objective is to minimize the total energy cost for
a PHEV over a given daily drive cycle, and the other objective is to
reduce the amount of resistive film buildup in the battery, and thus
ig. 6. Comparison between the battery model and the experimental manufacturer
ata in (a) CC–CV cycling and (b) full-charge storage modes.

ptimizer that adjusted the entire parameter set of the battery
odel, except for the degradation sub-model parameters (these
ill be addressed in the following section). The optimizer attempts

o minimize the error between the voltage response of the actual
attery cell and the voltage response of the high-fidelity battery
odel for the given chirp cycle. Optimization is only performed

ver part of the chirp cycle, and the remainder of the cycle is used
olely for validation. We can see a good agreement being achieved
etween the model and the experiment through this optimization
rocess. However, it should be remarked that these battery opti-
ization efforts are ongoing, and will be discussed further in a

uture publication.

.4. Battery degradation analysis

The previous section validated the SOC dynamics of the
lectrochemistry-based battery model against short-term experi-
ental battery cycling data. This section examines the degradation

omponent of the battery model using longer-term Li-ion battery
egradation test results. Optimization of the degradation compo-
ent’s parameters to experimental data is ongoing, and will be the

ocus of a future publication. This paper examines a representative
et of degradation parameters, manually tuned to fit experimen-
al battery degradation trends in both cycling and storage modes,
ssuming that the anode-side resistive film formation process
esponsible for battery degradation is active in both modes. The
xperimental degradation trends used in this section are obtained
rom the battery manufacturer’s electronic resources and publica-
ions [32,33].

Fig. 6(a) compares the model’s degradation response versus
xperimental manufacturer data [32] for a CC–CV charge/discharge

◦

Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

ycling test lasting 1000 cycles at room temperature, i.e., 25 C. Fur-
hermore, Fig. 6(b) compares the model’s degradation response to
xperimental manufacturer data [33] for storage at full charge over
time span of 6 months. The high-fidelity battery model matches

he degradation measurements very well for the cycling case, and
Fig. 7. Battery degradation map.

is also successful in capturing the degradation trend during storage.
This justifies the use of the model for the charge pattern optimiza-
tion study in this paper, especially considering the fact that the
paper’s methods are broadly applicable to other battery models
that may capture the degradation trends above even better.

To further analyze the battery degradation characteristics, we
simulate the battery model to obtain a useful map, qualitatively
describing the battery degradation behavior. To obtain such a map,
we first initialize the model at different SOC levels through initial-
izing the concentration of lithium ions in the electrodes, and then
apply input current at different rates to charge and discharge the
battery. We monitor the average resistance growth rate in the anode
at the first step of the simulation, and then plot it as a function of
SOC and the charge rate.

Fig. 7 depicts the obtained map for an SOC range of 10–90% and
a charging rate of −2C to 2C, with negative sign indicating dis-
charge. From the degradation map we can see that at the low and
high SOC ends the battery tends to degrade faster, especially when
it is subject to high-rate charging. Moreover, battery degradation
takes place at a slower pace during charge depletion, compared
to charging or storage. To examine battery capacity fade during
energy storage, we plot a sub-trajectory of the map corresponding
to zero charge rate, as shown in Fig. 8. The sub-trajectory shows
that battery degradation is faster at higher storage states of charge.
Thus, energy storage at high SOCs can play a key role in battery
degradation.

In the next section, we will use the PHEV model together with
the battery model in a multiobjective genetic optimization algo-
rithm to obtain the optimal PHEV charge patterns.

4. PHEV charge pattern optimization
), doi:10.1016/j.jpowsour.2010.07.001

Fig. 8. Battery degradation response in energy storage.

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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Fig. 9. Schematic diagram of the PH

mprove its longevity. We use the non-dominated sorting genetic
lgorithm II (NSGA-II) developed by Deb et al. [16] for this multiob-
ective optimization problem. Our use of NSGA-II makes it possible
o obtain the entire Pareto front of optimal charge patterns in a
ingle optimization run. This is beneficial not only from the com-
utational standpoint, but also from the perspective of picturing
nd understanding the tradeoffs between energy cost and battery
egradation.

.1. Optimization procedure

Fig. 9 depicts the schematic diagram of the PHEV charge pat-
ern optimization process. We have parameterized the problem
uch that the optimization variables are “the time”, “the maxi-
um amount”, and “the rate” with which the PHEV receives charge

efore each trip. The “charge rate” is assigned as a mutual vari-
ble between all trips. During the charging phase, a CC–CV charging
trategy is implemented on the battery model, based on the spec-
fied optimization variables. The electricity price consists of two
ifferent rates: during the on-peak hours (10.00 am to 7.00 pm)
he electricity rate is 0.099 USD (kWh)−1, while during the off-peak
ours this rate reduces to 0.035 USD (kWh)−1. This pricing profile

s adopted from the DTE Energy company’s policy for electric vehi-
les in the State of Michigan, within the period of June to September
009.

During the discharge phase, the vehicle model is initially
imulated for the given drive cycle and the available battery
harge. Then, the electric current signal absorbed by the electric
rive train system during the trip is recorded and passed to the
lectrochemistry-based battery model to evaluate the extent of
attery degradation while driving. During the dwelling intervals,
attery degradation is evaluated from the battery model solely, at
he stored SOC level. The total energy cost and battery degradation
t the end of the drive cycle are calculated by accumulating the
eparate pieces, and are then sent back to the optimizer to proceed
o the next optimization step.

.2. Optimization formulation

For a drive cycle with N separate trips the optimization objective
s to:

Minimize

{(
f1(x) =

∫
Jfuel(x, t)dt +

∫
Jelec(x, t)dt

)
&

(
f2(x)
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

24 h 24 h
x = [x1, x2, x3, . . . x2N+1]
x1 : charge rate for all trips (between 0 and 1C)
x2i, i = 1, 2, . . . , N(i.e., x2, x4, . . . , x2N) : start time of charging for trip i
x2i+1, i = 1, 2, . . . , N(i.e., x3, x5, . . . , x2N+1) : charge amount for trip i (u
arge pattern optimization process.

4 h
ilm

(x)
)}

where Jfuel and Jelec are the instantaneous fuel and electricity dol-
lar costs per unit time, R̄24 h

film
is the final resistance growth of the

anode-side film at the end of the 24-h simulation, and x is the vector
of optimization variables defining the charge patterns. The upper
bound of battery SOC is set to 90% to avoid excessive degradation
due to overcharging. The upper bound of charging rate is set to 1C
which is within the approximate range of fast charging schemes
envisioned for PHEVs with average battery size. Finally, the upper
and lower bounds of the variables associated with the charge times
are set to cover the entire time span between the trips.

As stated earlier, this optimization problem deals with two con-
flicting objectives; while minimizing the total energy cost requires
high SOC at the beginning of the trips, the battery tends to degrade
faster at higher SOCs. Therefore, a single optimal point does not
exist; instead, a family of optimal solutions in the form of a Pareto
front can be obtained, as presented next.

5. Optimal PHEV charge patterns

In this section, we apply NSGA-II to the PHEV model to obtain
its optimal charge patterns. According to the optimization formu-
lation, Eq. (22), two independent optimization variables and one
communal variable, i.e., the charging rate, are required for each
active segment of a given drive cycle. Therefore, five optimization
variables are required in total for the drive cycle studied in this
paper.

5.1. Optimal PHEV Pareto front

The results of PEHV charge pattern optimization are shown in
Fig. 10, where after 50 generations of a population of 80 mem-
bers, a Pareto front of optimal solutions is formed. The total daily
energy cost in the Pareto front ranges between $1.4 and $2.8 for the
given drive cycle, while the added film resistance varies from 0.77
to 1.07 milliohms (per battery cell). To examine and compare the
obtained optimal solutions, their added charge amount and charge
rate are plotted in Figs. 11 and 12, respectively.

Fig. 11 demonstrates the total amount of added charge before
the trips as well the portions of charge added before each trip.
), doi:10.1016/j.jpowsour.2010.07.001

p to 90% SOC)

(22)

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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Fig. 11. The total amount of added charge and the portion of each trip for the optimal
Pareto front solutions.

F

ig. 10. Optimal Pareto front for the PHEV charge pattern obtained using NSGA-II.

ecause the PHEV battery cycles between 25 and 90% SOC, the
mount of added charge before each trip does not exceed 65%. From
he figure, we see that the total amount of added charge increases as
e move from the left to right end of the Pareto front, the direction

long which the total energy cost decreases. Moreover, the added
harge before the first trip dominates that before the second trip.
hat is, for a given amount of total daily charge, the portion of the
harge added before the first trip is larger than that before the sec-
nd trip, for the majority of the solutions. This trend is due to the
act that the first trip takes place during off-peak hours, whereas
he second trip takes place during on-peak hours. Pulling the second
harge time to the morning off-peak hours will result in further bat-
ery degradation which is not preferred. This trend will be further
larified in the next section.

Fig. 12 shows that the optimal charging rate for the entire
areto set is close the maximum rate of 1C. At the first glance, this
eems counterintuitive, because from the battery degradation map
shown in Fig. 7) the battery degradation rate is higher at higher
harge rates. However, it is also evident that by increasing the
harge rate we decrease the charging duration. Thus, the high-rate
attery degradation process due to fast charging takes place for a
horter period of time. Hence, the resultant damage can be smaller if
educing the total battery degradation due to reducing the charging
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

uration dominates the increase of degradation due to fast charg-
ng. The obtained optimal results indicate that this condition holds
rue, at least within the range of 0–1C charging, according to the
dopted battery model.

ig. 13. Four sample optimal PHEV charge patterns corresponding to: (a) Sol. #1 (least ba
Fig. 12. Charge rate distribution within the optimal Pareto front solutions.

5.2. Sample optimal charge patterns

In this section, we present and compare the charge patterns
corresponding to four sample solutions selected from the optimal
Pareto front shown in Fig. 10. These solutions include the charge
patterns associated with least battery degradation, i.e., Sol. #1, and
least energy cost, i.e., Sol. #80, as well as two middle solutions,
i.e., #27 and #53, which represent different tradeoffs between the
), doi:10.1016/j.jpowsour.2010.07.001

two optimization objectives. The corresponding charge patterns are
plotted in Fig. 13(a–d) along with the drive cycle and the electricity
pricing policy.

ttery degradation), (b) Sol. #27, (c) Sol. #53, and (d) Sol. #80 (least energy cost).

dx.doi.org/10.1016/j.jpowsour.2010.07.001
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The first choice (Sol. #1) corresponds to the least battery degra-
dation solution. There is no charge added to the battery, and thus,
the SOC remains at the lowest limit for all time. This is essential
to keep the battery degradation minimal based on the analysis
provided in Sec. 3.4. The battery receives no external charge, and
the PHEV operates as a conventional HEV.
The second selected solution, i.e., Sol. #27, trades off the energy
cost and battery health objectives with more preference towards
battery health. As depicted in Fig. 13(b), a charge amount of about
50% is added to the battery before the first trip only, and the charg-
ing is delayed until before the start of the trip. The reason for this
delayed charging is to avoid the unnecessary degradation due to
storage at high SOCs, and the best way to achieve this is to deplete
the battery soon after charging.
Solution #53 also trades off the optimization objectives, but with
more weight on energy cost. As seen from Fig. 13(c), both trips
include charging, with the first trip receiving full charge (65%)
while the second one receiving about 30% added charge. The
first charging is delayed until the first trip departure time, while
the second charging is delayed until the time of transitioning to
on-peak electricity pricing. Therefore, PHEV charging takes place
during off-peak hours only.
The last solution, i.e., Sol. #80, corresponds to the charge pattern
that results in the least energy cost. The only difference between
this solution and Sol. #53 is that the PHEV receives full charge
before both trips.

The charge patterns shown in Fig. 13(d) exhibit a slow increase
n the input power profile, followed by a rapid drop towards the
nd of charging. This input power profile results from the CC–CV
harging strategy. During the CC phase, battery voltage increases
lightly, resulting in a commensurate increase in battery power.
uring the CV phase, however, the applied current drops in a con-

rolled way to keep the voltage constant. This is the reason for the
harp drop within the last minutes of charging in Fig. 13.

Future work by the authors will extend the above optimization
nd analysis of PHEV charge patterns for different battery sizes,
rive cycles, and electricity pricing policies. One key goal will be
o use the charge pattern optimization approach presented in this
aper to predict the aggregate load imposed by a number of PHEVs
n the power grid.

. Summary and conclusions

This paper investigates the problem of optimizing PHEV charge
attern for simultaneous reduction of energy cost and battery life
egradation. A PHEV model, a battery degradation model, and a
ultiobjective genetic algorithm are used to optimize the PHEV

harge pattern for a 24-h naturalistic drive cycle. This optimization
esults in the formation of a Pareto front on which the objectives
re traded off optimally. Comparing different solutions from the
areto front indicates that to effectively minimize battery degra-
ation and energy costs, one should ideally charge a PHEV rapidly,
ff-peak, and shortly before the onset of road travel. These results
Please cite this article in press as: S. Bashash, et al., J. Power Sources (2010

re obtained specifically using an electrochemistry-based model
f anode-side SEI growth in lithium-ion batteries, and assuming
hat such SEI growth is a key factor governing battery degrada-
ion and that it occurs during all phases of battery operation. The
aper provides preliminary validation results for this model ver-

[

[
[

 PRESS
Sources xxx (2010) xxx–xxx 9

sus experimental data, and the methods presented in the paper are
broad and generalizable to other battery degradation models as
well. The paper’s uniqueness stems from the fact that it optimizes
PHEV charge patterns for both battery longevity and energy cost,
for the first time.
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