
  

  

Abstract—This paper examines the impact of battery sizing 
on the performance and efficiency of power management 
algorithms in plug-in hybrid electric vehicles (PHEVs).  
Existing studies examine this impact for power management 
algorithms derived using either rule-based or deterministic 
dynamic programming methods.  This paper extends the above 
investigations to power management algorithms optimized 
using stochastic dynamic programming (SDP).   The paper 
treats both PHEV trip duration and PHEV power demand over 
the course of a given trip as stochastic.  Furthermore, the paper 
examines two power management optimization objectives: one 
emphasizing fuel consumption only, and one that emphasizes 
the total cost of the blended use of fuel and electricity.  The 
paper shows that blending provides significant benefits for 
small batteries, but this effect diminishes with increasing 
battery size. 

I. INTRODUCTION 
HIS paper examines plug-in hybrid electric vehicles 
(PHEVs), which typically utilize onboard battery 

storage to at least partially displace liquid fuels with less 
expensive grid electricity.  Battery sizing and design plays a 
key role in the cost, reliability, and ability of such PHEVs to 
effectively manage different power demand levels over the 
course of a diverse set of trip durations [1].  The goal of this 
paper is examine the interplay between battery sizing and 
PHEV power management, specifically by quantifying the 
extent to which different PHEV power management 
algorithms enable the use of smaller batteries without 
compromising performance and efficiency.  This 
quantification focuses on two power management 
algorithms: one that minimizes fuel consumption, and one 
that optimally blends fuel and electricity usage.  The 
performance and efficiency characteristics of these 
algorithms are compared for different battery sizes over 
stochastic distributions of drive cycle trajectories and trip 
durations. 

Previous work has investigated PHEV battery sizing from 
several different perspectives, including drive cycle 
requirements [2]-[4] and control design [4]-[6].  The results 
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of this previous research show that existing battery 
technologies possess the power-to-energy characteristics 
necessary to achieve all-electric ranges of up to 60km, at 
least for certain federally mandated drive cycle trajectories 
(e.g., FTP-72, HWFET, US06) [2], [3].  However, the 
literature also shows that operating PHEVs in an all-electric 
depletion mode often requires batteries with both high 
energy and high power characteristics, thus resulting in 
more expensive components [2], [4], [5].  This motivates the 
use of smaller batteries in combination with “blending” 
control strategies that utilize engine power throughout the 
depletion process to ration battery energy.  The potential of 
such blending is evident from research by O’Keefe and 
Markel in which PHEV power management was explicitly 
optimized for fuel consumption over some known drive 
cycle using deterministic dynamic programming (DDP).  
This optimization furnished a control trajectory that blends 
battery and fuel usage such that the minimum battery energy 
level is achieved exactly when the trip terminates [6].  To 
summarize, the literature demonstrates the potential of 
applying blending control algorithms to reduce battery size 
requirements and thus PHEV acquisition costs, using both 
rule-based and DDP-based control methods. 

In the survey provided above, the authors generally 
evaluate battery performance characteristics for specific 
drive cycles and trip durations.  This paper provides two 
new contributions to this body of literature.  First, it builds 
on previous work by the authors [7] to establish a 
framework for assessing PHEV performance using 
stochastic drive cycle models operated over a distribution of 
trip durations derived from real-world survey data.  
Secondly, it explicitly uses the monetary costs of fuel and 
electricity as objective functions in PHEV power 
management optimization, thereby establishing the 
machinery for a rigorous study on the tradeoffs between 
battery, fuel, and electricity costs in PHEVs.  The paper’s 
results indicate that a blending strategy enables the use of 
smaller battery sizes, thus supporting the claims previously 
made in the literature. 

The remainder of the paper is organized as follows:  
Section II introduces the vehicle configuration and models 
for the PHEV, daily travel time distributions, and drive 
cycles.  Section III describes the paper’s simulation 
approach, and Section IV presents the main results and 
discusses the impact of battery size and control strategy on 
expected trip cost, expected efficiency, and state-of-charge 
range. The paper's conclusions are provided in Section V.  
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II. PHEV MODEL AND POWER MANAGEMENT ALGORITHM 

This paper analyzes a hybrid vehicle model based upon 
the single mode power-split (a.k.a. parallel/series or 
combined) hybrid architecture in Fig. 1. The key benefit of 
the power-split design is that it possesses energy flow 
characteristics of both parallel and series configurations. The 
parallel flow paths include engine-to-wheels and battery-to-
wheels (blue arrows), while the series flow path is from the 
engine-to-battery-to-wheels (red arrows). The role of the 
planetary gear set is to manage energy flow between these 
paths by transferring mechanical power between the engine, 
two motor/generators (identified as M/G1 and M/G2), and 
the wheels. An interesting result of this arrangement is that, 
with the appropriate control strategy, power can be split 
amongst the three paths to optimize energy consumption. 

 
A. PHEV Model 
The vehicle model used in this paper was developed in 

previous work by the authors [7] and is largely based upon 
existing research on conventional hybrid electric vehicles 
(HEVs). The planetary gear set model utilizes Euler’s Law 
to describe the inertial dynamics of the engine and 
motor/generators [8]. The engine and motor/generator 
models are steady-state maps, which relate speed and torque 
to fuel consumption and power efficiency [9].  

Each nickel-metal hydride (NiMH) cell within the battery 
pack is modeled by an equivalent circuit comprising an ideal 
voltage source Voc,cell in series with an Ohmic resistor Rcell 
[8], [10], where each cell has a charge capacity of Qcell. Both 
the open circuit voltage and internal resistance are functions 
of battery state of charge (SOC). These equivalent circuits 
are assembled in a series-parallel combination to model the 
entire battery pack, where ns denotes the number of cells in 
series per parallel string, np denotes the number of parallel 
strings, and the total number of cells in the pack is nsnp. The 
open circuit voltage Voc, internal resistance R, and charge 
capacity Q for the entire battery pack are given by: 
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The battery pack dynamics are associated with SOC, which 
intuitively describes a battery “fuel gauge”. Here, we define 
SOC as the ratio of charge to maximum charge. As a result, 
the derivative of SOC is the ratio of current through the 
circuit I to an estimated maximum charge capacity Q. 
 
 SOC I Q= −  (2) 
 
Through applying power conservation on the equivalent 
circuit, we obtain an expression for battery power at the 
terminals in (3). This expression may be written in terms of 
SOC and solved using the quadratic formula to obtain the 
equation for SOC in (4). 
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Note that the battery model is scalable with respect to the 

number of NiMH cells. Although this formulation explicitly 
accounts for series-parallel cell architectures, it can be 
mathematically shown that, holding nsnp constant, the SOC 
dynamics are invariant to ns and np individually. We will use 
this fact to avoid the need to specify the cell architecture. In 
practice, of course, pack voltage, inverter efficiency, heat 
generation, charge equalization, and state of health must all 
be considered in the battery design process [11], [12]. 

Although lithium-ion batteries are quite promising for 
PHEV applications, this paper’s focus on NiMH batteries is 
still relevant, since many researchers currently build PHEVs 
by upgrading HEVs that utilize NiMH batteries.  We will 
address the performance implications of Li-ion batteries in 
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Fig. 1.  The single mode power-split hybrid architecture uses a planetary 
gear set to split power amongst the engine, M/G1, and M/G2. 

TABLE I 
PARAMETERS FOR PHEV MODEL 

Parameter Specifications 

Vehicle Class Midsize sedan 

Vehicle Configuration Single mode power-split 

IC Engine Type 1.5L I4, Gasoline 

Maximum Engine Power 43 kW 

Maximum Engine Torque 102 N-m 

M/G Type Permanent Magnet AC 

M/G1 Maximum Power 15 kW 

M/G2 Maximum Power 35 kW 

Battery Pack Chemistry NiMH 

Nominal Voltage 1.2 V per cell 

Nominal Capacity 6.0 A-h per cell 

 



  

future work. 
The states for the assembled PHEV plant model include 

engine crankshaft speed ωe,  longitudinal vehicle velocity v, 
battery state of charge SOC, and driver power demand Pdem. 
The controlled inputs to the plant include engine torque Te, 
M/G1 torque TM/G1, and M/G2 torque TM/G2. Figure 2 shows 
that the state and control signals form a state feedback 
control loop around the PHEV model components.  

 
B. Power Management Algorithm 
In previous work, we developed optimal power 

management algorithms that minimize the combined 
consumption costs of fuel and electricity and can be 
implemented without prior knowledge of the trip 
characteristics, other than a stochastic power demand model 
[7]. Mathematically, the optimal control problem is 
summarized in the following infinite horizon formulation: 
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where g(x(k),u(k)) is the energy consumption cost per time 
step k and γ is the discount factor. The optimization is 
subject to both deterministic (6) and stochastic (7) model 
dynamics. The stochastic dynamics (7) take the form of a 
first order Markov chain in which Pdem is the Markov state 
variable. The constraint (8) ensures power demand is always 
met by the power sources. In (9) and (10), X is the set of 
admissible state values x, and U is the set of admissible 
control values u. The time step is one second. We use this 
framework to develop two separate control strategies, 
“blended” and “charge-depletion, charge sustenance” 
(CDCS): 

1) Blended: The blended approach minimizes a weighted 
sum of fuel consumption and electric energy consumption 
 
 ( ) 1, fuel fuel elec batt

grid

g x u W Pβα α
η

= +  (11) 

 
The parameter β, which we refer to as the “energy price 
ratio,” represents the price of gasoline per megajoule (MJ) 
relative to the price of electricity per MJ. The conversion 
factors αfuel and αelec are selected to convert energy 
consumption from each source to common units of MJ per 
time step. Wfuel is the fuel consumption rate in terms of 
grams per time step, and Pbatt is power flow through the 
battery, which can be calculated from the battery pack open-
circuit voltage, charge capacity and SOC . 
 
 batt ocP V QSOC= −  (12) 
 

Note that Pbatt is positive for discharge events and 
negative for regeneration events. We estimate the electric 
energy consumed from the grid during the recharge process 
by dividing  Pbatt by a constant charging efficiency ηgrid = 
0.98. For the main result in this paper we assume a fuel price 
ratio of β = 0.8, which is consistent with the average energy 
prices in the year 2006: $2.64 USD per gallon of gasoline 
and $0.089 USD per kWh of electricity [13]. However, we 
will also briefly report on results for other price ratios, and 
leave a more detailed analysis for a future publication. 

2) CDCS: A common current practice for power 
management in PHEVs is to define two distinct modes, 
which this paper identifies as charge depletion and charge 
sustenance (CDCS) [5], [14], [15]. This method operates 
under the assumption that, in all power demand scenarios, 
fuel consumption operating costs dominate electricity 
consumption operating costs. Hence, CDCS depletes battery 
charge as fast as possible (engine power may be required to 
meet drivability requirements), and then uses the engine to 
regulate battery charge after reaching the minimum battery 
SOC. Here, we implement CDCS in the SDP framework, as 
suggested by [8], [16]-[19] by setting αelec in (10) equal to 
zero. 

 
Fig. 2.  PHEV model components and signal flow. Note that the 
signal flow forms a state feedback control architecture. 



  

C. Trip Duration Model 
We model trip duration as a random variable T, whose 

distribution gives the total travel time for a vehicle during a 
single day, which we treat as the travel time between PHEV 
charging events. This model is based on data from the 2001 
National Household Travel Survey (NHTS) conducted by 
the Department of Transportation (DOT) Federal Highway 
Administration (FHWA) [20]. Figure 3 shows the 
distribution of surveyed daily vehicle travel times, which has 
a mean of approximately 35 minutes and 75 percent of daily 
travel occurs in 32 minutes or less.  The likely cause of the 
data’s multi-modality is a tendency among survey 
participants to report trip duration in 5 minute increments.  
Since our intent is to randomly generate trip durations by 
inverting the trip duration cumulative distribution function 
(CDF), we compute the CDF and attenuate the modes with a 
five minute, uniformly weighted moving average in Fig. 4. 

 

 
D. Drive Cycle Model 
Drive cycle trajectories are modeled via a first order 

Markov chain, where power demand Pdem is the Markov 
state variable. This approach to modeling drive cycle 
trajectories is used widely in the hybrid vehicle power 
management literature [7], [8], [16], [17]. The transition 
probabilities for the Markov chain given by (7) are 
determined using a maximum-likelihood estimator [21] from 
observation data collected from federal drive cycles (FTP-

72, HWFET, US06) and real-world micro-trips 
(WVUCITY, WVUSUB, WVUINTER) in the ADVISOR 
database [9]. A sample randomly generated drive cycle is 
shown in Fig. 5. The Markov model assumes that the current 
state is conditioned only on the state immediately preceding 
it. We validated this assumption by computing the model 
residuals and confirming that their autocorrelation exceeds 
the 95 percent confidence interval for no more than 5 
percent of all possible lag values – as is the case for a white 
noise process [22]. 

In the simulation method described below, we will assume 
that trip duration and the Markov model are independent.  
Although this is clearly an important assumption, there is 
limited data to test its validity, and we will leave it to future 
work to address the sensitivity of our results to the presence 
of drive cycle / trip duration dependence (e.g. longer trips 
tend to take place on the highway). 

 

III. SIMULATION METHOD  
Distributions for the PHEV performance characteristics 

are calculated by simulating each control strategy (Blended 
and CDCS) and battery size (Table II) configuration over 
the entire distributions of trip duration and drive cycles. For 
each battery size option, we identify both a blended and 
CDCS control law (as explained in Seciton II-B and [7]).  
We then evaluate the performance of the control law / 
battery size combination by the following approach: 

 
1) Sample a trip duration from the CDF in Figure 4. 

2) Generate a power demand time series from the Markov 
chain model (7) with duration found in step 1.  

3) Simulate the PHEV model on this randomly generated 
drive cycle and record the performance characteristics. 

4) Check the stopping criterion (Appendix). If satisfied, 
stop simulations. If not satisfied, return to step 1. 
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Fig. 5.  A randomly generated drive cycle from the Markov chain model. 
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Fig. 4.  Cumulative distribution of daily vehicle travel times. 
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Fig. 3.  Distribution of daily vehicle travel times from 2001 NHTS.

TABLE II 
NO. OF BATTERY MODULES AND ENERGY CAPACITIES 

No. of  
Modulesa  

Battery Pack  
Energy Capacity 

No. of  
Modulesa 

Battery Pack 
Energy Capacity 

40 1.9 kWh 200 9.4 kWh 

80 3.7 kWh 240 11.2 kWh 

120 5.6 kWh 280 13.1 kWh 

160 7.5 kWh 320 15.0 kWh 
aEach module contains six (6) NiMH cells. 



  

IV. RESULTS AND DISCUSSION 

A. Operating Costs & Energy Efficiency 
Figures 6 and 7 show the distribution of operating costs 

(in USD per km) and energy efficiency (in MJ per km) for 
each battery size and control strategy configuration we 
examined. For batteries with fewer than 160 modules, the 
blended strategy is consistently superior to CDCS. In fact, 
we see that the distribution of operating costs and energy 
efficiency for the blended strategy is approximately the same 
as the distributions for CDCS, but with a larger battery size. 
For example, a blended strategy with a 120-module battery 
has roughly the same performance characteristics as a CDCS 
strategy with a 160-module battery. These results are in 
agreement with prior claims that a blended strategy should 
enable the use of smaller batteries [2], [4], [5]. 

It is important to note that the results shown here are for 
an energy price ratio of β = 0.8.  As demonstrated in our 
previous work [7], the blended strategy converges to CDCS 
for very high price ratios.  We re-ran the simulations shown 
in Fig. 6 and 7 for β = 2.0 and found that the two strategies 
begin to converge, even for small battery sizes.  Yet we 
observe no penalty for using the blended strategy, indicating 
that it remains appropriate for all β.  However, its benefit 
cannot be fully quantified without knowledge of future β 
values. 

The relative differences in median operating cost and 
energy efficiency between blending and CDCS become 
negligible as battery size increases. This relationship is 
related to the fact that neither control strategy enters charge 
sustenance mode for the vast majority of travel durations as 
battery size becomes sufficiently large. Instead, the power 
management algorithm remains in charge depletion mode, 
where blending and CDCS achieve nearly equal operating 
costs, as demonstrated in our previous research [7]. For 
extremely long travel durations, however, CDCS enters 
charge sustenance mode before the blending strategy and 
quickly accumulates elevated operating costs. This is the 
reason why the largest observations (upper whiskers in Fig. 
6 & 7) for CDCS are consistently larger than the largest 
observations for blending. 

As battery size increases, the operating costs and energy 
efficiency reach an asymptotic value. This result appears to 
imply that the daily payoff for purchasing PHEVs with very 
large batteries does not justify the higher acquisition cost at 
the time of purchase. Another way of interpreting this result 
is that for very large battery sizes (greater than 200 
modules), it is very unlikely that the battery will fully 
deplete its charge because the bulk (75%) of daily trip 
durations are less than 35 minutes. However, batteries 
generally need to be oversized to minimize performance 
degradation over the lifetime of the vehicle. Although a 
smaller battery might reduce the purchase price of a PHEV, 
it may incur higher maintenance costs because it undergoes 
deeper discharge cycles that can accelerate power and 

capacity fade [12]. 

 

 
B. SOC Range 
To investigate the relationship between battery size and 

discharge depth, consider the distribution of SOC ranges 
shown in Fig. 8 for the two most extreme battery sizes. Here 
we define SOC range as the difference between the 
maximum and minimum SOC values achieved during the 
drive cycle. The asymptote at 0.65 occurs because the 
control strategy limits SOC between 0.25 and 0.9 using 
exterior point penalty functions (see [7]). The 40-module 
battery reaches full discharge depth in between 10 and 20 
minutes, whereas the 320-module battery reaches full 
discharge depth in between 55 and 75 minutes. Within 10 to 
20 minutes, only 35-60% of trips in one day have 
terminated. Therefore, in 40-65% of daily trips, a 40-module 
battery will reach full depletion. On the other hand, within 
55 to 80 minutes, 84-90% of trips have terminated, meaning 
only 10-16% of PHEV daily trips will result in full depletion 
of a 320-module battery. Since this percentage is relatively 
small in comparison to the remainder of the population, the 
benefits of large battery sizes diminish as the number of 
modules increases. 

Another way to interpret Fig. 8 is from a battery sizing 
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Fig. 7.  Box and whisker plots of energy efficiency (MJ per km) for each 
battery size and control strategy configuration. Whisker lengths are 
limited to 1.5 times the interquartile range. 
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perspective. For example, suppose we wish to determine the 
battery size which achieves no more than a 0.5 SOC range 
during the first 75% of daily travel times. Reading off the 
cumulative probability curve, the first 75% of daily travel 
times corresponds to 32 minutes or less. Then we could 
populate Fig. 8 with the SOC range distribution for several 
battery sizes and determine which size achieves 0.5 SOC 
range or less for the first 32 minutes. 

Eventually, it may make the most sense to treat PHEV 
battery size as an option on a vehicle, with smaller batteries 
standard (for those in the majority of the population with 
relatively low daily travel needs) and larger batteries 
available at a premium to those with greater travel 
requirements.   

 

V. CONCLUSION 
In this paper we have introduced a method for evaluating 

power management strategies and battery energy capacity in 
PHEVs. Through this framework, we have   demonstrated 
that a blended control strategy facilitates the use of smaller 
batteries for a given operating cost or energy efficiency, 
with respect to a distribution of both daily travel time and 
drive cycles. We have also shown that expected operating 
cost and energy efficiency approach asymptotic values as 
battery size increases, since a very small population of 
drivers will fully deplete large batteries in one day. Because 
it is still not fully understood how the fundamental 
electrochemical properties of batteries affect PHEV 
performance and power management strategies, this paper 
has focused exclusively on optimizing energy cost.  As 
scientific knowledge of PHEV battery performance and 
durability improve, it will be important to take these 
considerations into account. 

APPENDIX 
The foundation for the stopping or convergence 

criterion is the central limit theorem (CLT) [23]. In this 
paper we seek convergence for the trip cost distribution.  
Suppose Ci is a random variable representing the trip cost 

for the ith simulation. Futhermore, suppose that the Ci’s are 
independently and identically distributed with mean E[C] 
and variance σ2 for the true population. The CLT allows us 
to approximate how many iterations n we must simulate the 
study in order that the sample mean is within a percentage a 
of the population mean with probability of at least b, 
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Approximating the left-hand side of (2) using the CLT, one 
can show that this criterion is satisfied for 
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where Φ-1 is the inverse of the zero-mean, unit variance 
normal cumulative distribution function. The exact 
derivation of (14) requires knowledge of the population’s 
mean m and standard deviation σ, however we approximate 
these values by the sample mean ms and sample standard 
deviation σs. In practice, we run a minimum of 100 
simulations before computing the stopping condition (14) in 
order to obtain a reasonably accurate estimate and avoid 
premature termination. The stopping criterion parameters 
used in this study are a = 0.05 and b = 0.95. 
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The solid line is the cumulative distribution of daily travel time (Fig. 4). 
CDCS has a similar distribution and is therefore omitted for brevity. 
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