Plug-in Hybrid Powertrain Modeling

Scott J. Moura Hosam K. Fathy Duncan S. Callaway Jeffrey L. Stein

Graduate Student Symposium 2007 System Analysis and Control

November 2, 2007

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Why Plug-in?

Fuel Efficiency

More active participation of electric drive allows IC engine to operate near peak efficiency.

Greenhouse Gas Emissions

Increased drivetrain efficiency results in lower emissions. On average, a 15% reduction in CO_2 vs. conventional hybrids [1].

Operating Costs

The low cost of electricity (especially at off-peak hours) decreases the cost per gallon of gasoline equivalent.

Vehicle-to-Grid (V2G)

Recharge battery during off-peak hours 50.000 Excess battery capacity to load balance grid Electrical capacitance for intermittent renewable energy

Chevrolet Volt Concept Car at 2007 NAIAS

Source: Santini *et al, "*Energy and Petroluem Attribues of Plug-in Hybrids," Sept 2007.

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Problem Statement

Research Question

What is the optimal power management strategy to minimize fuel consumption and emissions?

Literature Review

Current PHEV power management strategies adopt the conventional hybrid methodology: charge depletion & sustenance. Can improved performance be achieved with "blending"?

Problem Statement

Develop a control-oriented model of sufficient fidelity and minimal complexity for power management control synthesis

Outline

- Why Plug-in?
- Engine, Battery, Electric Machine Models
- Vehicle Dynamics & Power-Split Device Models
- Rule-Based Power Management Strategy
- Dynamic Simulation & Analysis
- Summary & Future Work

Engine

Experimental maps and regression models

$$W_{fuel} = f_{fuel} \left(\omega_e, \tau_e, T_e \right)$$
$$W_{HC} = f_{HC} \left(\omega_e, \tau_e, T_e \right)$$
$$W_{CO} = f_{CO} \left(\omega_e, \tau_e, T_e \right)$$
$$W_{NO_x} = f_{NO_x} \left(\omega_e, \tau_e, T_e \right)$$
$$W_{PM} = f_{PM} \left(\omega_e, \tau_e, T_e \right)$$

NOTE: The model contains NO dynamics (i.e. manifold filling, induction to power delays, boost lag, etc.)

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 5 of 15

Battery

First order nonlinear ordinary differential equation

Electric Machines

Assume the electric machine time constant is faster than other system dynamics

Modeled by efficiency tables, given in ADVISOR 2004

$$\eta_{m/g1} = f_1(\omega_{m/g1}, \tau_{m/g1})$$

$$\eta_{m/g2} = f_2(\omega_{m/g2}, \tau_{m/g2})$$

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 7 of 15

Vehicle Dynamics

- Model the vehicle as a point mass
- Assume no slip

Rolling Friction $F_{roll} = \mu_{roll} mg$ Viscous Air Drag $F_{drag} = \frac{1}{2} \rho A C_d \|v_x\|^2 = \frac{1}{2} \rho A C_d \|R_{tire} \omega_w\|^2$

Euler's Equation about the contact point in the k-direction

$$-J\dot{\omega}_{w} = -\tau_{w} + \mu_{roll} mgR_{tire} + \frac{1}{2}\rho AC_{d} \left\|R_{tire}\omega_{w}\right\|^{2} R_{tire} + T_{fb} + C_{w}\omega_{w}$$

Power-Split Device

$$\frac{\omega_r}{\omega_w} = K = \frac{\tau_w}{\tau_r} \quad \Longrightarrow \quad \left(I_{M/G2} + I_r\right)\dot{\omega}_r = \tau_{M/G2} + FR - \frac{F_{road}}{K}R_{tire} - \frac{\tau_{fb}}{K} - \frac{C_w\omega_r}{K}$$

Adapted from Liu et al [3]

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 9 of 15

System Level Block Diagram

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 10 of 15

Rule-Based Power Management

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 11 of 15

Dynamic Simulation

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 12 of 15

Summary & Future Work

Summary

Developed:

- 1. Dynamic powertrain models for higher fidelity simulations
- 2. Rule-based power management strategy
- 3. Dynamic simulation analysis to verify model operation

Future Work

- Incorporate a stochastic driver model
- Apply stochastic dynamic programming to find the optimal "blended-mode" operation
- Utilize optimal design techniques to balance performance and battery size (i.e. cost)

Key References

- [1] Kliesch, J. and Langer, T. "Plug-In Hybrids: an Environmental and Economic Performance Outlook" American Council for an Energy-Efficient Economy, Sept 2006.
- [2] O'Keefe, M. P., and Markel, T., 2006, "Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-In HEV," 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, (EVS-22), Anonymous Yokohama, Japan.
- [3] Liu, J., Peng, H., and Filipi, Z., 2005, "Modeling and analysis of the Toyota hybrid system," 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Anonymous IEEE, Monterey, CA, USA, OL. 1, pp. 134-9.
- [4] Liu, J., and Peng, H., 2006, "Control optimization for a power-split hybrid vehicle," 2006 American Control Conference, Anonymous IEEE, Minneapolis, MN, USA, pp. 6.

QUESTIONS?

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein

Slide 15 of 15