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ABSTRACT
Accurate battery health modeling allows one to make better

design decisions, enables health conscious control, and allows
for feed-forward State of Health estimation. However, experi-
ments are necessary in order to obtain and validate these models.
Unfortunately, battery health experiments are costly in terms of
time, person-hours, and equipment. This makes it extremely im-
portant to minimize the number of experimental iterations.

This paper aims to minimize time and expense of experi-
ments while maximizing information gathered by bridging an im-
portant gap between the Optimal Experimental Design (OED)
and the battery health experimental/modeling literature. We
demonstrate how to apply static OED methods to a battery aging
experiment. This allows us to select a set of Constant Current
Constant Voltage (CCCV) cycles that maximizes the amount of
information gathered - in turn allowing us to better identify the
health model parameters. The CCCV cycling is carried out in a
laboratory using 14 LiFePO4 cells (10 for fitting and 4 for vali-
dation). Each of these cells undergoes 429 days of battery health
cycling. Results from these experiments include: a model of bat-
tery capacity fade based on voltage and current, battery health
dependence on voltage, and a lack of power fade under the cy-
cling conditions. The use of OED to coordinate our model form
and experiment helped to ensure a fruitful model resulted when
processing the collected data. Based on this success we suggest a

∗Address all correspondence to this author.

generalized framework for Optimal Battery Health Model Exper-
iments (OBHME), which allows one to apply OED to a variety
of related problems.

NOMENCLATURE
F Fisher Information Matrix [Various]
H Battery Capacity [Various]
I Battery Current [Amp]
I+ CCCV Charge Current Limit [Amp]
I− CCCV Discharge Current Limit [Amp]
Itrickle CCCV Trickle Current Limit [Amp]
P Battery Power [Watt]
U Trial Matrix [Various]
V Battery Terminal Voltage [Volt]
Vmin CCCV Minimum Voltage [Volt]
Vmax CCCV Maximum Voltage [Volt]
f (·) Experiment Regressor Function [Various]
i Model Parameter Index [Index]
j Experiment Index [Index]
k Trial Index [Index]
m Number of Parameters [Unitless]
n Number of Trials [Unitless]
p Number of Possible Trials [Unitless]
q Number of Trials in Experiment [Unitless]
t f Duration of Repeated Cycle [Sec]
thold CCCV Float Hold Time [Sec]
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u Experiment Regressors [Various]
Ξ All Possible Experiments [Set]
α Optimized Trial Index [Index]
β Model Parameters [Various]
λ Trial Time Fraction [Unitless]
σ Standard Deviation of Measurement Noise [Various]

INTRODUCTION
In recent years there has been increasing interest in vehicle

electrification. Electrification has the potential to both decrease
green house gas production and improve energy independence.
However, to realize these benefits, Plug-in Hybrid Electric Ve-
hicle (PHEVs) must have battery packs that do not rapidly de-
grade. Accurate modeling of battery health can help both man-
age and mitigate battery degradation in a variety of ways. Bat-
tery health modeling allows for more intelligent PHEV design
decisions regarding battery size and drive train topology, helping
to minimize cost and improve reliability. Battery health model-
ing also enables health conscious control, which extends battery
life through judicious real-time management of battery and en-
gine utilization [1]. In addition, battery health modeling enables
feed-forward State of Health (SoH) estimation, improving online
estimates of available battery power and capacity. Clearly, accu-
rate battery health modeling is a critical tool for designing and
controlling PHEV battery packs. However, battery health mod-
eling for PHEVs is a challenge due to the aggressive nature of
battery pack use.

This challenge emphasizes the importance of experiments
for both obtaining and validating battery health models. How-
ever, conducting battery health experiments can be extremely
costly in terms of time, person-hours, and equipment; efficient
use of experimental resources is critical. This paper aims to
maximize information gained subject to constraints on experi-
ment time and expense by bridging an important gap between
the Optimal Experimental Design (OED) and battery experimen-
tal/modeling literatures.

To this end, we investigate a specific case of designing
and conducting a battery health modeling experiment using 14
LiFePO4 cells. This experiment is optimally designed to identify
model parameters under given experimental resource constraints.
Results include: a model of battery capacity fade based solely
on voltage and current data, demonstration of battery health de-
pendence on voltage, and a lack of power fade (at 100% State
of Charge, SoC) under the cycling conditions. The success of
this case suggests a generalization: the Optimal Battery Health
Model Experiment (OBHME) framework. This framework al-
lows one to apply static OED methods to a large class of battery
health modeling experiments. OBHME uses Fisher information
and the Cramér-Rao bound to optimally guide the selection of ex-
perimental trials. We believe this case and associated framework
show the broad applicability and utility of OED when consider-
ing battery health modeling.

The remainder of this paper is organized as follows. A liter-
ature review follows the introduction, giving a focused review of
both LiFePO4 battery health experiments and a general overview
of OED. This is followed by a section which applies OED to
health modeling for PHEV type batteries. This case involves
both a theoretical OED part regarding applying static OED to
dynamic health models and an experimental part in which the
batteries undergo laboratory cycling. Experimental results fol-
low, beginning with model fitting and continuing to general ob-
servations regarding the degradation of these battery cells. The
OBHME framework follows this, generalizing the procedure and
suggesting alternative design choices. A discussion section fol-
lows, focusing on specific experimental details we would modify
in future experiments based on experience gained. The final sec-
tion presents several conclusions drawn from this work.

LITERATURE REVIEW
LiFePO4 Battery Health Experiments

While many groups have conducted battery health experi-
ments, we focus on two that use the same LiFePO4 battery type
as in this paper’s case study [2, 3]. In [2] the batteries undergo
CCCV cycling with varying current rates, depths of discharge,
and temperatures. They fit a health model to the experimen-
tal data, dependent on charge processed, temperature, and max-
imum C-rate. This model provides useful insights (especially
regarding temperature effects), but is not control oriented due
to the inclusion of maximum C-rate as a parameter. A second
group cycles these batteries under conditions related to PHEV
drive cycles [3]. Five different cycles with drive and Vehicle-to-
Grid (V2G) portions are taken as a set of representative behav-
ior. Their analysis of the experiments results in a control oriented
model that is a function of energy processed and scalar that de-
pends on if the cell is undergoing driving or V2G. Our paper im-
proves on the existing experimental methods by demonstrating
the applicability of OED to battery health experiments.

Overview of Optimal Experimental Design
The OED literature is broadly divided into experiment de-

sign for static and dynamic models. This paper focuses on the
static case and here we introduce the reader to relevant litera-
ture. A classic OED text is that of Fedorov [4]. An excellent
first introduction to OED is presented by Atkinson, Donev, and
Tobias which covers nearly all that the practitioner would need
to design an experiment [5]. For a more in depth study of Fisher
information and the Cramér-Rao bound one can examine Cover
and Thomas, which does an excellent job presenting these math-
ematical concepts [6]. A thorough discussion of optimization of
the nonlinear case is presented by Walter and Pronzato [7]. OED
provides a variety of mathematical tools for improving results
and decreasing expense of model based experiments.
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BATTERY HEALTH MODELING EXPERIMENT
This section presents an optimal battery health modeling

experiment for LiFePO4 cells. A later section discusses the
OBHME framework - a generalization of this specific case. This
case and the general framework share the same major steps:
model selection, experiment design, and realization. In model se-
lection one chooses a health metric (output), input(s), and form.
This model guides the experiment design, which selects trials
based on optimizing information gathered regarding the model
parameters. Experiment design involves considering what trials
are possible, generating and regressing their input trajectories,
and using an optimization to select an experimental trial set. In
realization, the laboratory experiment collects data which is then
used to estimate the model parameters. The remainder of this
section discusses the experiment and introduces a variety of con-
cepts related to the OBHME framework.

Model Selection
Battery Health Metric For this experiment two different

battery health metrics are considered: capacity fade and power
fade. For PHEV applications capacity fade is related to how far
the vehicle can drive without charging and power fade is related
to maximum available electric power. In this paper’s experimen-
tal section we discuss measuring these metrics in a laboratory.
For the modeling work later in the paper we focus exclusively on
the capacity fade health metric as conclusive power fade has not
been observed in our experimental work.

Choice of Model Inputs Battery health can depend on a
wide variety of factors. However, for this work our goal is to cre-
ate a control oriented battery health model. Thus, we focus solely
on two factors readily accessible to battery management systems:
voltage and current. This choice of inputs ensures that the model
will be applicable to many real-time control applications. Our in-
terest in voltage is largely due to it being a proxy for battery SoC.
We would have used SoC directly, however, it is difficult to accu-
rately and robustly regulate battery SoC during long term health
experiments. As an alternative we use voltage as an input and
add longer time holds (1800 sec) to the float charge/discharge
segments of the CCCV cycles. These time holds allow the bat-
tery to better equilibrate towards the relaxed open circuit voltage,
which is closely related to SoC. As will be shown later, the use
of voltage and current as inputs allows one to make reasonable
predictions about battery degradation.

Battery Health Model Form The inputs and output are
connected by the model form. An effective model form consid-
ers a priori knowledge (if available) in addition to the model’s
intended application. In this work a black box model is used
due to uncertainty in the underlying degradation process, lead-
ing to a model form based on regression. This regression form is
based on our specific interest in the battery health dependence on
voltage and current polarity. This potential voltage dependence

is interesting because it affects optimal PHEV charge schedul-
ing (scheduling charging at different times changes the PHEV
battery rest voltage). The effect of current polarity is important
because the battery degradation rate may change during charging
and discharging.

Based on these interests and a desire to keep the number of
model parameters small we arrived at the following model form,
referred to as the “Asymmetric” model:

ḣ(I+, I−,V ) =β1 +β2I++β3I−+β4V +β5I2
++β6I2

−

+β7V 2 +β8I+V +β9I−V +β10V 3.
(1)

Where I+ is the current charging the cell, I− is the current dis-
charging the cell, V is the cell terminal voltage, and h is the bat-
tery health. This model has different behavior in charging versus
discharging, a cubic dependence on voltage, and can age under
zero current conditions.

To keep our exposition more abstract we focus on a general-
ized form of the model in Eq. 1:

ḣ(~x) =
m

∑
i=1

βi fi (~x) . (2)

Where fi maps the model inputs ~x to real numbers. This model
form is Linear in its Parameters (LP) and has no autoregressive
component. An additional model of this form, referred to as the
“Symmetric” model, is:

ḣ(I,V ) =β1 +β2‖I‖+β3V +β4‖I‖2 +β5V 2

+β6‖I‖V +β7V 3,
(3)

Where, unlike Eq. 1, this model does not distinguish between
current polarities. With the model in Eq. 1 selected, the experi-
ment is now ready to be optimized.

Experiment Design
Possible Trial Set Trial selection is the key to optimiz-

ing experiments. This selection begins with the set of all possible
trials, Ξ. For battery health experiments members of Ξ are typi-
cally rules for cycling an individual battery for a period of time.
We use CCCV cycling to generate a wide variety of robust inputs
for long term cycling. These CCCV cycles are described by the
archetype cycling in Alg. 1. Three tunable parameters are used
to construct Ξ: Vmin, Vmax, and Imax, with values:

Vmin ∈ {2.0V,2.1V, · · · ,3.5V} (4a)
Vmax ∈ {2.1V,2.2V, · · · ,3.6V} (4b)
Imax ∈ {0.5C,1.0C, · · · ,2.5C} . (4c)
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Algorithm 1 CONSTANT CURRENT CONSTANT VOLTAGE
CYCLE
Require: Vmin, Vmax, Imax, Itrickle, thold

loop
while (V <Vmax) do

Constant Current Charge at Imax
end while
t = Time
while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmax
end while
while (V >Vmin) do

Constant Current Discharge at Imax
end while
T = Time
while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmin
end while

end loop

This results in a total of 680 unique cycles. The next step of ex-
periment design uses these rules to generate (approximate) input
trajectories.

Input Trajectory Generation Input trajectories are
generated using electrochemical battery simulation. Specifically,
we simulate voltage and current trajectories with the Doyle-
Fuller-Newman (DFN) cell model [8–10]. The parameter val-
ues of this model are obtained from a previous study that fit the
DFN model to a LiFePO4 battery [11]. To better approximate
quasi steady-state conditions, the third cycle simulated is used.
In spite of identical charge and discharge current limits, the bat-
tery exhibits asymmetric behavior in charging and discharging,
due to its electrochemical nature. Next, we regress these input
trajectories, encapsulating their data for the optimization algo-
rithm.

Input Trajectory Regression Regressor vectors en-
capsulate how trial input trajectories affect the estimation in-
formation gathered. This encapsulation converts the dynamic
form of the model into a static form appropriate for optimiza-
tion. Since the health measurements happen intermittently we
only collect discrete measurements of change in health over a
time interval. Consider integrating the model over the time pe-
riod between health tests:

∫ t f

0
ḣ(~x)dt =

∫ t f

0

m

∑
i=1

βi fi (~x)dt (5a)

∆h =
m

∑
i=1

βiui, (5b)

where:

∆h≡
∫ t f

0
ḣ(~x)dt (6a)

ui ≡
∫ t f

0
fi (~x)dt. (6b)

Here ∆h is the change in battery health and each ui is a regressor
associated with the function fi. Unique trials can be indexed with
j and the model can be rewritten as follows:

∆h j =
m

∑
i=1

βiui j =~β ·~u j. (7)

This specific form will be important for the optimization algo-
rithm. For now it provides a formula to compute the~u j regressor
vectors:

~u j =
(∫ t f

0 f1(~x(t))dt, · · · ,
∫ t f

0 fm(~x(t))dt
)T

/t f . (8)

These regressor vectors will form the rows of the Fisher infor-
mation matrix which will be optimized through the selection of
experimental trials.

Experiment Optimization Let us consider a natural
way to compile the experimental data. One can create a matrix
equation by stacking each ∆h j into a vector of health measure-
ments and stacking each~uT

j into a corresponding matrix row:


∆h1
∆h2

...
∆hn

=


u11 u12 · · · u1m

u21 u22
. . .

...
...

. . . . . .
...

un1 · · · · · · unm

~β. (9)

This can be rewritten as:

H =U~β, (10)

where H and U are the appropriate matrices.
The Fisher information matrix F is then defined as:

F =
UTU

σ2 , (11)

where the measurement error of experiment is assumed be a nor-
mal distribution with zero mean and variance σ2. The inverse of
F is the best possible covariance one can achieve when estimat-
ing ~β due to the Cramér-Rao bound [6]. Furthermore by using
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least squares, an unbiased estimator, this bound is achieved. Thus
the covariance in estimating~β is:

covar
(
~β
)
= σ

2(UTU)−1. (12)

The importance of Eq. 12 is twofold. Firstly it shows that the
response of the trials does not affect the covariance for estimat-
ing ~β so it can be ignored for the experimental design (this oc-
curs because of the LP assumption). Second one can influence
the covariance directly through the selection of experimental tri-
als. For our work we assume that σ2 is fixed, but in practice
one can influence this value as well, by using better sensors or
testing methods. We now describe the DETerminant MAXimiz-
ing algorithm (DETMAX), an optimization method for selecting
experimental trials.

The objective of OED is to select trials that allow one to
estimate ~β with minimum covariance (by a given metric). D-
optimum is a very common metric in OED and is based on max-
imizing the determinant of the Fisher information matrix. This
in turn, minimizes the determinant of its inverse, the covariance
matrix. Minimizing the determinant of the covariance matrix
minimizes the product of its eigenvalues. Geometrically if one
investigates the confidence region of the~β estimate this results in
the smallest possible (by content) hyper ellipsoid [5].

DETMAX attempts to find a subset of fixed size q contained
in Ξ that maximizes the value of det(F). It does this by select-
ing regressor vectors from Ξ to create the experiment matrix U .
Mathematically DETMAX attempts to:

max
~α

det
UTU

σ2 (13a)

U =
[
~uα1 ~uα2 · · · ~uαq

]T
, (13b)

subject to:

αi ∈ {1, · · · , p} (14a)
i 6= j⇒ αi 6= α j (14b)
~ui ∈ Ξ. (14c)

DETMAX attempts to select locally D-optimum trial subsets
contained in Ξ from the set of all possible experiments. Here
local optimality is in the sense of swapping - one cannot swap
any of the experiments in the set with any other possible experi-
ment and increase det(F). In practice we initialize this algorithm
with many random sets to help ensure that the resulting set is
closer to the global optimal. DETMAX has a few variations, the
version we use is as follows. First DETMAX computes det(F)
for the current set. Then it iterates over all possible swaps of
trials between this set and the set of all possible experiments.
For each swap a new det(F) is computed and stored. The swap

Table 1. EXPERIMENTAL TRIALS AS DETERMINED BY DETMAX

Batch Vmin Vmax I

1 3.0V 3.3V 2.5C

1 2.6V 3.6V 1.5C

1 2.0V 3.5V 0.5C

1 3.0V 3.1V 2.5C

1 3.2V 3.5V 2.5C

1 2.0V 2.1V 0.5C

1 2.4V 2.5V 0.5C

1 2.2V 3.5V 2.5C

1 2.0V 3.2V 2.0C

1 3.5V 3.6V 0.5C

2 3.4V 3.6V 2.5C

2 3.0V 3.4V 2.5C

2 2.0V 3.1V 2.5C

2 2.0V 3.6V 1.5C

which improves det(F) the most is then performed and the pro-
cess repeats. DETMAX concludes when no swaps improve on
det(F) [5, 7].

DETMAX is ideal because we have a low number of battery
cells and do not want to complicate the experiment by switching
cycles after each health test. We decided to batch the experiment
using 10 cells for the first batch and 4 cells for the second batch
(DETMAX can be used to optimize batched experiments) [5, 7].
The second batch is used solely for validation and is not included
in the model fitting exercise. With the experimental trials se-
lected our attention now turns to laboratory experiments.

Realization
Laboratory Experiment The batteries are repeatedly

cycled based on the optimized set of trails (see Tab. 1). Thus far,
the experiment has been carried out for 429 days with health data
being collected approximately every two weeks. For health, we
measure capacity fade as discharge capacity in Amp-Hours dur-
ing 0.5C CCCV cycling. These cycles repeat four times during
each health test and the first value is removed to avoid memory
(hysteresis) effects. Power fade is measured by a 2.5C constant
current draw for 15 seconds when the batteries are fully charged.
All of the tests are conducted at ambient room temperature. We
set the cycle parameters Itrickle to 50mA and thold to 1800 sec-
onds. The cycling and health measurements are conducted using
an Arbin BT-2000 battery cycler.
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This version of the cycler has 32 independent channels that
can each source or sink up to 15A. Each of these channels can
operate from 0V to 10V (but not negative). 14 of the 32 chan-
nels were dedicated to this experiment. All of the cycling was
conducted at room temperature.

The cells cycled are manufactured by A123 Systems; the
model number is ANR18650M1A. These cells are interesting
because they are scaled down versions of those intended for use
in PHEVs and are able to continuously discharge at 30C giving
them excellent rate capability. They have a rated capacity of 1.1
Amp-Hours, a nominal voltage of 3.3V, and a voltage range from
2.0V to 3.6V.

Equipment down time is addressed by back filling voltage
data with constant values (current is taken as zero during these
periods). This is an approximation, but since there was a limited
amount of downtime and the batteries relax within a few hours
this was considered appropriate.

As the battery experiment is conducted the model input tra-
jectories (voltage and current) are recorded for each battery. This
data is mapped to the regressor vectors associated with changes
in battery health. These, along with the health data, are then used
to calculate the parameters for the battery health model. In the
next section we discuss the specifics of parameter estimation.

Parameter Estimation With all of the experimental
data recorded estimating ~β is straightforward. One begins by
compiling the recorded the health measurements and associated
regressor vectors. These can then be arranged to form the ma-
trix equation in Eq. 9. This, in turn, can be rewritten as Eq. 10,
leading to the least squares solution of~β as follows:

~β =
(
UTU

)−1
UT H. (15)

The next section discusses the specific results of this model fit-
ting work.

EXPERIMENTAL RESULTS
Model Fitting Results

Our plan for this model fitting work was to use both power
and capacity fade as health metrics. However, as is discussed in
the next subsection, power fade was negligible during the exper-
iment (at least for our method of measurement). Thus, we only
consider the capacity health metric. As mentioned before this
experiment divides the cells into two batches, the first for identi-
fication and the second for validation (the batches are conducted
concurrently). Only data collected from the first batch is used in
the estimation of~β.

Initially we attempted to fit the Asymmetric model, given in
Eq. 1. We then considered the Symmetric model, given in Eq.
3, which differs from the Asymmetric model only by not dis-
tinguishing between positive and negative current. It was found

Table 2. ESTIMATED PARAMETERS FOR THE SYMMETRIC MODEL

Parameter Value Units

β1 1.2126×10−7 Amp×Hour×Sec−1

β2 −3.1430×10−8 Hour×Sec−1

β3 −1.3861×10−7 Amp×Hour×Sec−1×Volt−1

β4 2.5287×10−10 Amp×Hour×Sec−1×Amp−1

β5 5.2377×10−8 Amp×Hour×Sec−1×Volt−2

β6 8.2662×10−9 Hour×Sec−1×Volt−1

β7 −6.5166×10−9 Amp×Hour×Sec−1×Volt−3

that the Symmetric model predicts the validation slightly better
than the Asymmetric model, which indicates that not all of the
parameters in the Asymmetric model are needed for prediction.
Figure 1 presents the Symmetric model prediction results for the
validation cycles. These predictions are initialized with the first
set of collected health data and then simulated open-loop. Fig-
ure 2 summarizes the prediction errors for the validation cycles
with a histogram and percentile plot. Next we consider addi-
tional experimental observations that are not directly related to
model fitting.

0 100 200 300 400
0.85

0.9

0.95

1

1.05

Time [Days]

C
ap

ac
ity

 [A
m

p−
H

ou
r]

0 100 200 300 400
0.85

0.9

0.95

1

1.05

Time [Days]

C
ap

ac
ity

 [A
m

p−
H

ou
r]

0 100 200 300 400
0.85

0.9

0.95

1

1.05

Time [Days]

C
ap

ac
ity

 [A
m

p−
H

ou
r]

0 100 200 300 400
0.85

0.9

0.95

1

1.05

Time [Days]

C
ap

ac
ity

 [A
m

p−
H

ou
r]

Figure 1. SYMMETRIC MODEL PREDICTIONS OF VALIDATION CY-
CLES. CURVE IS THE SYMMETRIC MODEL AND CIRCLES REPRE-
SENT EXPERIMENTAL HEALTH MEASUREMENTS.
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Figure 2. AGGREGATED ERRORS OF VALIDATION DATA WHEN US-
ING THE SYMMETRIC MODEL FOR PREDICITON. ASYMMETRIC IN
BLACK, SYMMETRIC IN BLUE.

Results Independent of Model Fitting
This section presents two experimental results that are inde-

pendent of model fitting. The first is the dependency of battery
aging on voltage, in contrast to [3], where battery degradation is
found to be entirely a function of energy processed. Specifically
batteries that undergo light duty cycling at voltages at or above
3.4V age much more quickly than those cycled with voltages at
3.1V or below. For the group of batteries that underwent more
moderate cycling there is an approximately linear fit between
battery health and energy processed - in agreement with [3]. Ca-
pacity results for these three groups are in presented Fig. 3.
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Figure 3. ∆ CAPACITY AS A FUNCTION OF CHARGE PROCESSED

The second major result is that power fade is negligible in
all of the batteries, see Fig. 4. This could perhaps be an artifact
of either our measurement method or simply not driving the bat-
teries aggressively enough. The batteries are rated for 30C dis-
charge whereas they were tested at 2.5C. The power test was a 15
second constant current draw, starting with the battery at 100%
SoC (based on float charging at 3.6V). The recorded voltages and
currents during this period were used to compute average power.
Experimental design methods likely facilitated the appearance
of the voltage dependence related to battery health. In the next
section we discuss a generalization of this experimental work:
OBHME.
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Figure 4. AVERAGE DISCHARGE POWER AS A FUNCTION OF EX-
PERIMENTAL TIME

THE OBHME FRAMEWORK

The work in this paper suggests a generalized framework for
conducting optimal battery health modeling experiments. The
OBHME framework has three main steps: model selection, ex-
periment design, and realization; see Fig. 5. The first step, model
selection, chooses health metrics, model inputs, and an appropri-
ate model form. The second step, experiment design, creates the
possible trial set, generates and regresses the associated trials,
and optimizes the trial set to maximize Fisher information. The
final step, realization, conducts the battery experiment and then
estimates the model parameters. The remainder of this section
highlights how OBHME provides a method appropriate for opti-
mizing a wide variety of battery health experiments.

7 Copyright © 2012 by ASME
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Figure 5. THE OBHME FRAMEWORK

Model Selection
The goal of OBHME is to efficiently produce an accurate

model of observed physical phenomena. Typically, this model
is intended for design, control, and/or optimization applications.
When selecting a model one must consider the physical phe-
nomena being investigated and the intended use of said model.
The model selection step is critical because the optimal experi-
ment depends directly on the selected model. The remainder of
this section focuses on the individual parts of the battery health
model: health metric (output), input(s), and model form.

Health Metric The battery health metric’s importance is
two-fold; it both measures battery health and quantifies the health
model’s output. Capacity and power fade are typical choices for
health metrics, although a variety of additional metrics exist. For
example, in destructive testing, one may consider looking at spe-
cific internal features of the battery such as the solid electrolyte
interface layer’s thickness. One may also use Electric Impedance
Spectroscopy (EIS) to investigate the frequency response char-
acteristics related to battery aging. While many features of bat-
tery health are of interest, a good metric considers the following
factors: intended model application, physical phenomena, and
measurement cost. Health metrics play key roles in both measur-
ing aging phenomena and interpreting the battery health model’s
output.

Model Inputs Similar to model outputs, choice of model
inputs is tremendously important for both observing phenomena
and ensuring the model’s later applicability. One may choose

from a variety of inputs, including: voltage, current, SoC, and
temperature. Use of dynamic modeling and/or in situ measure-
ments allows one to include various internal battery states as in-
puts. For example, local inputs such as current density, over po-
tential and SoC can be used as inputs by using the DFN model to
simulate them. Internal temperature can be included through the
use of in situ temperature measurement [12]. The input and out-
put of the battery health model are connected by its mathematical
form.

Model Form The model form is selected based on a pri-
ori information if available, or an appropriate regression form
otherwise. Models that can be cast in the form of Eq. 2 can
be used without further mathematical complications. However,
model’s with autoregressive components or that are nonlinear in
their parameters can still be accommodated in principle, but the
mathematical complication will increase [7]. In the next step
OBHME optimizes the experiment’s trial set to gather the maxi-
mum parameter estimation information.

Experiment Design
The key to OBHME is deciding on a model before conduct-

ing the experiment and optimizing the selected experimental tri-
als. The experiment design step breaks down into four steps.
First one must decide on what set of experimental trials they are
willing to consider - the possible trial set. Second one most gen-
erate their associated trajectories - the ones that will be input into
the battery health model. These trajectories are then regressed
into a form that makes them appropriate for parameter estima-
tion. Finally an optimization method is used on these regressed
forms to either select a subset or duty cycle fraction. The remain-
der of this section discusses alternative choices one can make
when design these experiments.

Possible Trial Set The possible trial set Ξ is the set of
all trials one wishes to consider and can actually conduct for an
experiment. Typically this is limited by available equipment and
conditions desired for the battery modeling. Earlier we focused
entirely on a set of CCCV cycles described by an archetype cy-
cle. Here we present an alternative archetype cycle which would
be based on PHEV drive cycles, the Drive Charge Cycle (DCC).
The Ξs generated by DCC is interesting because they mimic what
PHEV batteries would experience in the field. For driving the
battery undergoes a current trajectory (that may involve charging
and discharging) mimicking PHEV battery pack behavior with
appropriate scaling. One can imagine a probabilistic type cycle
parameterized by driver aggressiveness and trip length. Addi-
tionally the vehicle battery may be parameterized by size and
weight when converting the drive cycles into current trajectories
for the battery. After each drive (or several drives) the battery
will need to be charged. This can be done using the charge por-
tion of a CCCV cycle or one could use a Constant Power Con-
stant Voltage (CPCV) cycle in order to better emulate battery

8 Copyright © 2012 by ASME



pack charging. Additionally one can choose to emulate charg-
ing the vehicle with the various classes of PHEV home charging
units. Algorithm 2 outlines how one would implement the DCC
type cycles in a laboratory environment.

Algorithm 2 DRIVE CHARGE CYCLE
Require: I(t); P, Vmax, Itrickle

loop
Track Current Trajectory I(t)
while (V <Vmax) do

Constant Power Charge at P
end while
t = Time
while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmax
end while

end loop

Of course, DCC is just one of the many possibilities. The
possible trial set can be customized for cycles based on cell
phones, laptops, and satellites. In the next section we consider
how to convert these cycle rule sets into these input trajectories
for the battery health model.

Trajectory Generation and Regression With a set of
possible trials decided upon the trials must now be converted
from rule sets to input trajectories for the health model. To
achieve this one can generate quasi steady-state cycling trajec-
tories through a variety of methods (these are cycles that repeat
almost identically). The assumption here is that the input trajec-
tories are not going to change substantially throughout the ex-
periment, so all of the cycling behavior can be approximated in
this behavior (alternative methods are needed for models with
autoregressive components).

These quasi steady-state input trajectories are obtained in
two main ways, both with tradeoffs. The first method is to use
simulation. This requires that one has models that generate accu-
rate trajectories of the variables to be used as inputs. An alterna-
tive method is to use laboratory equipment and directly measure
the quasi steady-state cycles. One advantage of this method is
it may result in highly accurate cycles as it eliminates model er-
ror. The results of both methods are the same, namely they both
produce input trajectories from steady-state cycles based on trial
rule sets. The choice between these methods is largely dependent
on the size of Ξ and available resources.

The input trajectories for each trial are then mapped to a trial
regressor vector, to create a encapsulated version of the input
trajectory’s effects on the battery health model. The regression
vectors are then collected into a set that describes the information
available from various combinations of each of the trials. The
procedure is the same as demonstrated earlier, see Eq. 8. Now we

have a form amenable to optimizing the choice of experimental
trials.

Experiment Optimization OBHME allows for the di-
rect use of either the DETMAX algorithm or a Linear Matrix In-
equality Interior Point algorithm (LMIIP) both of which provide
optimal experimental designs given slightly differing experimen-
tal structures [7, 13]. DETMAX was discussed in detail earlier
so we will focus on LMIIP here.

Instead of selecting a small subset of trials for the experi-
ment, as DETMAX does, LMIIP allows one to incorporate all
the possible trials. Specifically LMIIP finds the global optimum
of the following problem:

max
~λ

det
UTU

σ2 (16a)

UTU =
p

∑
k=1

(
λk~uk~uT

k
)
, (16b)

subject to:

p

∑
k=1

λk = 1 (17a)

λk ≥ 0, i = 1, · · · , p. (17b)

Where here there are two interpretations. The first is that there
are a large number of cycles conducted and the λis determine
the portion of time that each cycle is being conducted. Alterna-
tively, one can treat this as a probability mass function and use
it to generate randomized subset of cycles [13]. This is espe-
cially nice for stochastic type cycles (such as the aforementioned
DCC) because it allows the incorporation of stochasticity into the
experiment. With the trials/time fractions selected we continue
onwards to the laboratory experiment.

Realization
The battery experiment is carried out by repeatedly running

the cycles associated with the optimized set of trials. This cy-
cling is interrupted at various times to conduct battery health
measurements as related to the previously selected metric. For
experiments generated with LMIIP there must be a mechanism
to change the cycles after every health measurement. The regres-
sors associated with these health measurements are computed by
mapping the recorded input trajectories in accordance with the
model form (see Eq. 8). This data can then be directly compiled
into a form amenable for the linear least squares estimation of
~β (see Eq. 15). At the conclusion of the method one may wish
to design a new experiment based on the results, perhaps to fine
tune the modeling efforts further.
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DISCUSSION
Based on experience gained from this experiment, we sug-

gest several opportunities for improving future iterations. First,
duplicating trials would help to better elucidate underlying sta-
tistical properties of the batteries. Second, for reasons mentioned
earlier, future modeling efforts may be further improved through
nonidentical current limits, increasing the charge and discharge
asymmetry. Additionally, there are several areas where increas-
ing experimental scope is also desirable. For example, temper-
ature can become an additional input by using several thermal
chambers to regulate multiple ambient temperatures. Also, more
aggressive cycling is possible by increasing the current limits,
leading to a health model with broader applicability (although
internal temperature may need to be considered). Further, replac-
ing SoC as an input for voltage could provide additional insights
into battery degradation, at the expense of requiring a robust im-
plementation strategy. Finally, power testing could be augmented
by conducting it at different SoCs, higher rates, and/or incorpo-
rating EIS. Clearly, the experience gained from this experiment
suggests several advantageous improvements and extensions.

CONCLUSIONS
This paper demonstrates how to apply OED to a specific

battery case and then introduces a general framework for han-
dling a wide variety of battery health experiments. This spe-
cific case designs and conducts a battery health modeling experi-
ment for LiFePO4 battery cells. The experiment results in a con-
trol oriented model useful for design, control, and optimization
of PHEVs. This initial work suggests the OBHME framework,
which bridges an important gap between the OED literature and
the battery health experimental/modeling literature. It is hoped
that the OBHME framework case study in this paper provides a
guide for making battery health experiments less costly in terms
of time, effort, and equipment and more profitable in terms of
information and model accuracy.
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