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Abstract— This paper optimizes the number of sensors and
their locations for estimating the 2-D spatio-temporal tempera-
ture dynamics in large battery packs. Monitoring temperature
in battery packs is crucial for safety, efficiency, and long-
term endurance. The temperature dynamics in large battery
packs evolve in space and time, whereas sensors only provide
pointwise data. Moreover, the number of sensors should be
minimized to reduce costs. The temperature dynamics are
modeled by a system of linear two-dimensional heat partial
differential equations (PDEs). In this paper we perform eigende-
composition of the PDEs to produce a finite-dimensional model.
Modal observability is defined from the magnitude of these
eigenmodes. The process of optimizing the number and location
of sensors involves two steps: First, a binary optimization min-
imizes the number of sensors. Second, a constrained nonlinear
programming problem is solved to optimize the previously
found sets with respect to a min-max-type objective function.
The optimization procedure is independent of the estimator
design.

I. INTRODUCTION

This paper presents a systematic method to optimally place
a minimally-sized sensor set for estimation of battery pack
thermal dynamics.

Monitoring and controlling battery pack temperature dy-
namics is a critically important problem. Large-scale devices,
such as electric vehicles and grid-scale energy storage,
require high energy and power. Consequently, battery packs
are often constructed with thousands of cells. One important
challenge with such battery packs is that an individual cell
may become thermally unstable. The heat generated from
this unstable cell can transfer to neighboring cells, thereby
causing a chain reaction commonly called thermal runaway.
Even when cells do not enter this unstable region, high
temperatures can accelerate degradation mechanisms and low
temperatures limit available power/energy [1]. Consequently,
accurately monitoring and regulating battery pack tempera-
ture is a crucial component of battery management systems
[2], [3], [4]. CFD modeling, model reduction, and analysis of
battery pack thermal dynamics is currently an active research
area [5], [6], [7], [8]. Intelligent sensor placement is the next
step towards advanced thermal management. Nonetheless,
sensor placement in distributed parameter systems bears
several challenges. First, placing multiple sensors is NP-
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hard [9]. The current work addresses this issue. Second, the
optimization problem is non-convex, in general.

The engineering literature on optimal sensor placement ex-
amines various optimization criteria. These can be classified
into open-loop and closed-loop considerations. Open-loop
methods often focus on observability metrics, e.g. the spatial
H2 norm [10], [11]. Closed-loop methods simultaneously
design the observer gains and sensor locations [12], [13],
and consider metrics such as estimation error regulation,
disturbance rejection, and robustness [14]. The survey paper
[15] provides an excellent analysis of various aspects of
actuator/sensor placement.

The current work focuses on placement of a minimally
sized sensor set, with respect to a particular observability
metric, inspired by eigenanalysis. We focus on a 2D PDE
model for battery pack thermal dynamics recently proposed
in [16]. Our main idea is to derive a finite-dimensional modal
model from the aforementioned PDE model via eigenanal-
ysis. The modal setting provides a natural definition for
an observability measure we use for sensor placement. In
addition, we focus on computing the minimal sensor set
to achieve a given observability criterion. This problem is
solved by capitalizing on a submodularity property [17],
which substantially reduces computational effort. Finally,
the sensor placement problem is mathematically cast as a
nonlinear optimization problem.

In Section II, the modal model is derived from the PDE
model. Next, a systematic method for optimal sensor place-
ment is presented in Section III, followed by some exemplary
results in Section IV. The paper’s main ideas are summarized
in Section V.

II. MODELLING

We use the PDE model developed in [16]. The two spatial
dimensions are denoted x and y, with pack boundaries at
x = ±Lx and y = ±Ly , so that the battery pack resembles
a rectangular shape within a rectangular domain

Ω = [−Lx, Lx]× [−Ly, Ly] . (1)

Time is assumed to run from t = 0 to t =∞.

A. PDE model

The model for temperature distribution in the battery
pack has three states, Θ, Th, Tc, which respectively represent
temperature in the pack material, cells, and cooling channels.



Fig. 1. Illustration of the PDE approximation for battery packs with a
large number of cells. Cells are illustrated in red, cooling channels in blue,
and pack material in white. Note that states Θ, Tc, Th exist over the entire
domain Ω in the final PDE model.

It is mathematically given by

∂

∂t
Θ(x, y, t) = a4Θ(x, y, t) + b [Th(x, y, t)−Θ(x, y, t)]

+ c [Tc(x, y, t)−Θ(x, y, t)] , (2)
∂

∂t
Th(x, y, t) = d [Θ(x, y, t)− Th(x, y, t)] + eΦh(x, y, t),

(3)
∂

∂t
Tc(x, y, t) = f [Θ(x, y, t)− Tc(x, y, t)]− gΦc(x, y, t),

(4)

where 4 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator,

a, b, c, d, e, f, g ∈ R, (5)

are constant coefficients,

Θ(x, y, 0) , Th(x, y, 0), and Tc(x, y, 0), (6)

denote the initial conditions, and

∂

∂x
Θ(x, y, t)

∣∣∣∣
x=±Lx

= ∓ λ

kp
Θ(x, y, t)
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x=±Lx

(7)
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∂y
Θ(x, y, t)

∣∣∣∣
y=±Ly

= ∓ λ

kp
Θ(x, y, t)
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y=±Ly

(8)

denote the Robin-type boundary conditions. The variables
Φh and Φc denote the heat generated by the cells and the
heat taken by the cooling system, respectively.

The PDE model was derived in [16] by dividing the battery
pack domain into subdomains, each of which contained
either a cell, cooling channel, or the pack material. Then the
dimensions of these subdomains were taken to zero. This
represents a large number of cells (see Figure 1). Please
note that we have modified the model by subtracting the
ambient temperature from each state, thus maintaining the
structure of the PDE system. This positions us to perform
an eigenanalysis and derive the modal model, described next.

B. Modal model

We achieve the modal version of the PDEs by calculating
an orthonormal basis of eigenmodes over the domain Ω and
projecting the PDEs onto this basis. This process produces

an infinite set of ODEs, which we summarize next (for
more details please refer to [18]). Assuming Θ(x, y, t) =
µΘ(t)Z(x, y), the homogeneous part of (2) becomes

d
dtµΘ

aµΘ
+
b+ c

a
= −2k =

4Z
Z

(9)

with the separation constant −2k. We separate this into two
independent ODEs governing the temporal and spatial parts
of the solution as

d

dt
µΘ(t) = −(2ka+ b+ c)µΘ(t), (10)

4Z(x, y) = −2kZ(x, y). (11)

The solution of (10) is given by

µΘ(t) = µΘ(t)e−(2ka+b+c)t. (12)

For the spatial part, we assume Z(x, y) = X(x)Y (y) and
(11) can be arranged as

∂2

∂x2X

X
+ k = h = −

∂2

∂y2Y

Y
− k. (13)

which is separated into two Sturm-Liouville equations

X
′′

+ (k − h)X = 0, (14)

Y
′′

+ (k + h)Y = 0 (15)

with the boundary conditions

X
′
(±Lx) = ∓ λ

kp
X(±Lx), (16)

Y
′
(±Ly) = ∓ λ

kp
Y (±Ly), (17)

derived from (7) and (8). The solution of (14), (16) for X
is an infinite set (i ∈ N) of eigenfunctions

Xi(x) =

{
cos(γxix) for odd i
sin(γxix) for even i

(18)

where γx =
√
k − h solves

tan(γxLx) =
λ

kp

1

γx
(19)

for the cosine eigenfunctions and

tan(γxLx) = −kp
λ
γx (20)

for the sine eigenfunctions. We get a structurally identical
solution for Y and in combination, these sets form the eigen-
modes for (2), consisting of the mode shapes Zij(x, y) =
Xi(x)Yj(y), i, j = 1, ...,∞ with corresponding separation
constants kij = (γ2

xi + γ2
yj)/2.

Note from (12) that the eigenvalues, given by −(2kija+
b + c), are real, negative, and increase in an approximately
quadratic fashion towards −∞ as the indices i, j increase.

The eigenmodes are L2-orthogonal [18], [19] and are
normalized by pre-multiplying by the constant

Kij =
1√∫

Ω
Z2
ijdΩ

, (21)



forming an orthonormal basis KijZij , i, j = 1, ..,∞ for (2).
Equations (3) and (4) are ODEs in time, parameterized

over space. Since they are coupled with (2), their solutions
inherit the same spatial structure. For this reason, and the fact
that the eigenmodes provide an orthogonal basis, the whole
system of PDEs is projected onto the eigenmodes.

Thus, we obtain an infinite set of systems of ODEs (n =
1, ...,∞),

d

dt
µΘn = − (2akn + b+ c)µΘn + bµThn + cµTcn (22)

d

dt
µThn = −dµThn + dµΘn + eKn

∫
Ω

ΦhZndΩ (23)

d

dt
µTcn = −fµTcn + fµΘn + gKn

∫
Ω

ΦcZndΩ (24)

where n indexes the Cartesian product of i = 1, ...,∞ and
j = 1, ...,∞. The modal coefficients µΘn, µThn and µTcn

characterize the temporal part of the solution.
A finite-dimensional ODE model is obtained by taking

a finite subset of (22) - (24), containing only the first N
eigenmodes. This truncation is justified by the fact that the
model is stable and the eigenvalues increase approximately
quadratically towards −∞, as the index number increases.

III. SENSOR PALCEMENT

Next we investigate optimal in-domain placement of tem-
perature sensors for a modal model-based estimator. Sensor
placement, in general, has many different aspects, which
include, but are not limited to observability, robustness, and
noise/disturbance rejection. We choose one of these aspects
to explicitly account for in our optimization: the modal ob-
servability. In view of this requirement, the task is two-fold.
First, determine the minimal number of sensors. Second,
place the sensors over the domain in some optimal sense.
This problem is, in general, an NP-hard, constrained, mixed-
integer, nonlinear program. For the approach presented here,
the problem is split into two steps: First, we define a fixed
minimum threshold for the observability and a grid on the
domain. On the grid points, we perform a binary integer
search, minimizing the number of sensors and finding sets
that satisfy the minimum observability requirement. In the
second step, we take all sensor sets from the first step and
optimize their location, now with respect to maximizing the
observability in a constrained nonlinear optimization.

A. Modal observability measure
Modal observability is a well known concept for spatially

distributed systems. It can be defined according to open-loop
specifications (e.g. the spatialH2 norm [10], [11]), or closed-
loop specifications (e.g. LQG metrics [14]). We investigate
the following definition of modal observability for the nth

eigenmode at location (xp, yp),

M(n, xp, yp) :=
|KnZn(xp, yp)|

max
(x,y)∈Ω|KnZn(x, y)|

, (25)

where M : N× [−Lx, Lx]× [−Ly, Ly]→ R. Equation (25)
can be simplified to

M(n, xp, yp) = |Zn(xp, yp)|. (26)

Fig. 2. Sample visualization of Sx(xs) for two sensors. The global optima
are denoted by black circles.

using (18) and (21). Note that M(n, xp, yp) ∈ [0, 1],
where M(n, xp, yp) = 0 signifies no observability and
M(n, xp, yp) = 1 signifies best case observability. Con-
ceptually, the model observability for an eigenmode at a
particular spatial location is given by the magnitude of the
corresponding eigenfunction. This definition is novel, and is
motivated by the idea that one should place sensors where
the eigenfunction magnitude is large.

B. Optimization scheme

1) Separation and Symmetry: The structure of the modal
model contains the separation property, which consequently
reduces the complexity of the optimization. We decompose
the mode shapes of the N eigenmodes into their constituting
eigenfunctions Zn(x, y) = Xi(x)Yj(y) and from this point
on, we work on the x dimension only. The procedure for the
y dimension involves identical steps. At the end, the results
are recombined. The modal observability measure (26) also
separates in two parts

Mx(i, xp) := |Xi(xp)| and My(j, yp) := |Yj(yp)| , (27)

since M(n, xp, yp) =Mx(i, xp)My(j, yp).
Additionally, we reduce the optimization to the positive

half of the x subdomain (the interval (0, Lx)) to avoid
multiple isomorphic solutions since the mode shapes are
symmetric with respect to the origin, in terms of modal
observability.

2) Objective Function Analysis: The nonlinear program,
described in Section III-B.4, optimizes the set, xs, of sensor
locations on the continuous interval (0, Lx) with respect to
maximizing the lowest modal observability over all eigen-
functions. Mathematically, the objective function is defined
as

Sx(xs) = min
i∈{1,...,N}

{
max
xp∈xs

Mx(i, xp)

}
. (28)



Conceptually, each mode is assigned the sensor which is
located at the greatest eigenfunction magnitude. Then the
objective function value, Sx(xs), gives us the lowest model
observability over the set of modes. Our goal is to maximize
the worst case modal observability. Figure 2 provides a
sample visualization of Sx for two sensors in the x sub-
domain. This problem is riddled with multiple local optima.
Multiple global optima exist (denoted by circles), and we
wish to identify these sensor locations - for two or more
sensors. This motivates the following method for selecting
optimization starting points. First, we seek to determine the
minimal number of sensors required to achieve a given level
of observability. Second, we optimize the location of this
minimal set of sensors.

3) Minimal Number of Sensors: The first part is for-
mulated as a combinatorial problem. Thus, we establish
a binary integer approximation by imposing a grid of Q
points on (0, Lx). For every eigenfunction Xi, we define
a binary observability criterion for a hypothetical sensor at
the gridpoint xq , q ∈ {1, ..., Q} with respect to a modal
observability threshold τ intx :

Bx(i, q) :=

{
1 for Mx(i, xq) ≥ τ intx

0 else
. (29)

The value for τ intx is chosen a priori. Since this value
depends on the structure of the involved eigenfunctions, it
must be chosen appropriately.

The grid structure requires careful consideration to trade
off accuracy with complexity. Specifically, the eigenfunction
with the greatest spatial frequency provides the appropriate
indicator for the grid dimensions. It has feasible regions
where its observability is above the threshold τ intx . We use an
equal-distanced grid with a distance small enough to cover
each of its feasible regions by at least two grid points. This
is a rather conservative choice, but in our tests turned out to
be a good balance between coverage and problem size. One
reason is that the optimal sensor locations tend to be at the
boundaries of the feasible regions. With this setting, there is
at least one grid point less than half of the region away from
every boundary for all eigenfunctions.

The binary observability information can be organized in
matrix form

B = [Bx(i, q)]i,q i = 1, ..., N q = 1, ..., Q, (30)

and this matrix is the input to the search algorithm.
Our immediate goal is to select a set of sensor locations

with minimal cardinality, such that for each mode i, there
exists at least one sensor location q in this set where
Bx(i, q) = 1. The brute-force method to solve this problem is
full enumeration. This method would find a complete set (i.e.
a set of sensors covering all eigenfunctions), establishing the
minimal number of sensors. Since there are likely multiple
locations that satisfy the minimum observability criterion,
all combinations must be evaluated. However, this method
is computationally expensive and does not take advantage
of the problem’s submodularity, a critical property for our
method.

TABLE I
COMPARISON OF ITERATIONS PERFORMED BY FULL ENUMERATION

AND MODIFIED GREEDY ALGORITHM

τ int
x Full Enumeration Modified Greedy Reduction Factor

0.30 820 245 3.3
0.65 32567 1796 18.1
0.82 4912381 15843 310

A problem is submodular, if it has a diminishing return
property. In our case we choose one grid point after another
to build a set of sensor locations. Each grid point xq, q ∈
1, ..., Q satisfies (29) for a fixed number of eigenfunctions
that it can contribute to the set of covered eigenfuntions.
The later we add a grid point to a sensor location set,
the less additional eigenfunctions it will contribute. This is
because more and more eigenfunctions are already covered
by previously chosen sensor locations.

Based on submodularity, we have designed a modified
greedy algorithm (for details please refer to [18]) that spans
a much smaller tree than the complete combinatorial tree,
while still covering all branches of interest. This is crucial for
achieving a practical algorithm for placing multiple sensors.

Full enumeration and the modified greedy algorithm both
return the minimal number of sensors P , and the correspond-
ing sets of grid points that satisfy the binary observability
criterion.

4) Sensor Location Optimization: In the second step,
the sets of sensors from the first part are used as start-
ing points xs0 for the constrained nonlinear programming
problem (NLP) we describe next. The NLP optimizes the
sensor locations xs on the continuous interval (0, Lx) with
respect to maximizing the lowest modal observability over
all eigenfunctions, Sx(xs) defined in (28). The optimization
problem is thus formulated as

max
xs∈(0,Lx)P

S(xs), (31)

s. to
xs,1 ≤ xs,2 ≤ · · · ≤ xs,P , (32)

for every set of starting points xs0. Constraint (32) prevents
permutations in the sensor order. Note that multiple starting
points may converge to identical optima. This optimization
problem can be solved with gradient-based algorithms, such
as sequential quadratic programming.

IV. EXAMPLE RESULTS

To illustrate some results, we assume a battery pack with
dimensions defined by Lx = Ly = 10. We set the ratio
between the thermal conductivity inside the pack material
and the heat transfer rate from pack material to surrounding
air to

λ

kp
= 20 , (33)

corresponding to moderate heat conductivity inside the pack
in combination with high heat transfer over the boundaries.



Fig. 3. Example: The first 31 eigenfunctions Xi, for the x dimension.
Green and blue correspond to sine and cosine eigenfunctions, respectively.
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Fig. 4. Optimal locations for (a) two, (b) three, and (c.1) four sensors. For
each number of sensors, multiple optima with identical objectives Sx(x∗

s)
exist. The sensor locations in (c.2) are suboptimal, yet exhibit more equally
distanced spacing after reflecting two sensors onto the left-half of the
subdomain.

The finite subset of eigenmodes is defined by selecting
the bandwidth of interest. Since the eigenvalues decrease
quadratically towards −∞, we truncate the high frequency
modes and retain the dominant low frequency modes. In this
example, 185 eigenmodes are retained. This example set of
eigenmodes is decomposed into the eigenfunctions. Figure 3
shows the first 31 eigenfunctions for the x dimension.

Table I shows a comparison of the required iterations for
the modified greedy algorithm and full enumeration. In this
example, capitalizing on the submodularity property provides
a reduction of up to two orders of magnitude.

Figure 4(a)-(c) shows the resulting optimal sensor sets. In
each case, multiple sensor sets are shown because multiple
equivalent optima were identified. The sets of two sensors
in Figure 4(a) where obtained by setting τ intx = 0.3 for the
integer optimization. The maximum observability following
the nonlinear optimization is Sx(x∗s) = 0.5. One may see
that the NLP successfully identifies the global optimaIn
shown in Fig. 2,.

Setting τ intx = 0.65 requires one additional sensor. The op-
timal locations for several sets of three sensors are provided
in Figure 4(b). These sensor sets achieve Sx(x∗s) = 0.77.
Further increasing the initial τ intx = 0.82 provokes a fourth
sensor and increases the observability objective to Sx(x∗s) =
0.88, as shown in Figure 4(c.1).

Note that the total observability for the eigenmodes is
S(x∗s,y

∗
s) = Sx(x∗s)Sy(y∗s). Therefore, S(x∗s,y

∗
s) = 0.25

if Sx(x∗s) = Sy(y∗s) = 0.5, and S(x∗s,y
∗
s) = 0.76 for

Sx(x∗s) = Sy(y∗s) = 0.87.

A. Implementation Issues
Choosing one of the optimal sensor sets from Fig. 4 is

based on the requirements of the application. For estimating
temperatures in large battery packs, one critical aspect is
the worst case time delay between a local failure and a
sensor, due to thermal conductivity limits. To minimize this
effect, we would prefer sets with the most equally spaced
distribution. Another aspect is the way the sensor set is
modified to cover the right half of the x subdomain. One
choice is to duplicate a sensor set by mirroring at the origin,
providing two redundant sensors for each eigenmode while
accepting a lower minimal modal observability. For example,
a total of four sensors would be achieved by mirroring
the first location set from Figure 4(a). The other option
is to take a sensor set from the results with more sensors
and a higher minimal modal observability and completely
move half of the sensors to corresponding locations on the
other half of the subdomain. Figure 4(c.2) illustrates such
an example. This set has a slightly lower minimal modal
observability (0.87 vs. Sx(x∗s) = 0.88), but is the most
equally distanced set for the case of moving two sensors
to the left half of the x subdomain. The key difference is the
former design choice provides sensor redundancy whereas
the latter provides higher minimal modal observability.

V. CONCLUSION

This paper examines sensor placement for estimation of
battery pack thermal dynamics. Specifically, we seek the



location of a minimal set of sensors that optimize a particular
observability criterion. The critical ideas can be summa-
rized into four points. First, we derive a finite-dimensional
modal model via eigenanalysis. Second, we quantify the
observability of an eigenmode at a given spatial location
by the eigenmode’s value. Third, we determine the minimal
set of sensors which all satisfy a particular observability
criterion. This procedure capitalizes on the submodularity
property of the optimization problem. Finally, we optimize
the locations of this minimal sensor set via a nonlinear
program. This paper provides a systematic methodology
for placing temperature sensors in large battery packs for
estimating thermal dynamics.
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