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Introduction & Motivation
Vision – Vehicle to Grid (V2G)
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Use plug-in hybrid electric vehicles (PHEV) to 
provide ancillary services to autonomous electric 
microgrid systems (e.g. hospital backup power, 
military bases)

Obstacles 
Current PHEVs do not 
capitalize on V2G technology

Proposed Solution 
Develop an optimization approach for the design and 
control of a PHEV powertrain for microgrid power 
generation to minimize fuel consumption
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1. What is the optimal design and control?
2. Does an optimal system provide significant benefits?
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Outline
• Introduction & Motivation

• Powertrain System Modeling

• Optimization Study

• Constraint Tightening

• Discussion of Results

• Conclusions
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Grid Power Demand Cycle Modeling
Representative grid power demand cycle
• Adapted from CAISO daily demand forecast data [1]
• Applied cubic spline curve fit
• Augmented with white Gaussian noise – models stochastic behavior
• Scaled for medium size office or apartment complex

[1] California ISO: System Status. http://www.caiso.com/outlook/outlook.html
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FCS model adapted from [2]
Battery model from ADVISOR library

[2] J. T. Pukrushpan, A. G. Stefanopoulou and H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and 
Feedback Design. , vol. XVII, Springer, 2004, pp. 161.
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Case Study: Fuel Cell System
Inspired by Lawrence Burns                                    
GM Vice-President                                         
Research & Development and Strategic Planning                   
Keynote Address, ARC Conference 2004
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Outline
• Introduction & Motivation

• Powertrain System Modeling

• Optimization Study

• Constraint Tightening

• Discussion of Results

• Conclusions
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Optimization Problem Formulation
Minimize hydrogen fuel consumption 

with respect to
6 Design Variables
• Number of fuel cells in stack, nfc

• Number of battery modules, nbatt

• Compressor size, λcp

• Power Assist (PA) mode 
threshold, Ppa

• Battery mode threshold, Pbatt

• Controller Gain, Kch

subject to
10 Constraints
• Fuel cell stack length
• Battery weight
• Stack heat generation
• Parasitic losses
• Fuel cell efficiency
• Oxygen excess ratio
• Max/Min SOC
• Start/End SOC deviation

( ) ( )chbattpacpfcfcH KPPnnmf ,,,,,min
2

λ=x

Component 
Sizes

Control 
Parameters
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Optimization Algorithm
1. Run multiple experiments to collect 

data on physical model

2. Perform monotonicity analysis to 
determine trends, optima, and 
reduce the problem

3. Use data to develop a surrogate 
model (e.g. LSM, ANN, Kriging)

4. Optimize with Sequential Quadratic 
Programming (SQP)

5. Cross-check solution feasibility with 
physical model

6. Analyze tradeoff between battery 
cost and fuel consumption by 
performing a parametric study
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Optimization Algorithm
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Steps1 & 2: DOE & Monotonicity Analysis
Model Reduction
Number of Fuel Cells

Identifying Trends
Power Threshold Values

nfc
* = 422 fuel cells

Several constraints may bound 
Ppa and Pbatt

MINIMUM

MINIMUM

Fuel Cell Stack 
Length Constraint

Problem reduces to 5 design variables

nfc
* = 422 fuel cells

At least two constraints must be active



Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation
Automated Modeling Laboratory Slide 13 of 28

Optimization Algorithm
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Surrogate Modeling Methods
• Least Squares 

Method – 4th order 
Taylor Polynomial

• Feedforward ANN

• Radial Based ANN

Which surrogate 
model is best?
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Mean Square Error
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Step 3: Surrogate Model Evaluation

Surrogate Model 
used for the 

remainder of the 
study
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Optimization Algorithm
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Step 4: Feasibility Analysis

3.33 x 10-160.01Max SOC Deviation

6.6740.666Min SOC

0.70.7Max SOC

3.0463.00Oxygen Excess Ratio

58.7 %57.7 %Fuel Cell Efficiency

1.94 %2.69 %Parasitic Losses

6102 W6094 WStack Heat Generation

55 lbs56 lbsBattery Weight

SimulationSurrogateConstraints

ACTIVE 
CONSTRAINTFEASIBLE INFEASIBLE

Determine if the surrogate model solution is feasible for the actual simulation

Recall that 2 constraints need to be active to properly bound Ppa and Pbatt
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Outline
• Introduction & Motivation

• Powertrain System Modeling

• Optimization Study

• Constraint Tightening

• Discussion of Results

• Conclusions
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Constraint Tightening

Case 1: Oxygen Excess Ratio

Case 2: Max SOC Deviation

Boundary Optimum

Surrogate Model Physical Model

Infeasible in 
Physical Space

Transform to 
Physical Space

Tighten 
Constraints on 

Surrogate Model

Physical Model

Boundary 
Optimum

Surrogate Model Physical Model
Transform to 

Physical Space

Feasible in 
Physical Space

STOP

Feasible in 
Physical Space

Proposed Solution: Make violated constraints more aggressive for the surrogate 
model to compensate for modeling error

[4] A. Parkinson, "Robust mechanical design using engineering models," Journal of Mechanical Design, vol. 117B, pp. 48-54, 1995. 
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START

Perform DOE on 
physical model

Develop 
surrogate model

Optimize with SQP

Check if 
solution is feasible for 

physical model

END

Tighten 
violated 

constraints

FEASIBLE

INFEASIBLE

Reduce problem 
using monotonicity 

analysis

Parametric Study

Optimization Algorithm with Constraint Tension
1. Run multiple experiments to collect data on 

physical model

2. Perform monotonicity analysis to determine 
trends, optima, and reduce the problem

3. Use data to develop a surrogate model         
(e.g. LSM, ANN, Kriging)

4. Optimize with Sequential Quadratic 
Programming (SQP)

5. Cross-check solution feasibility with physical 
model

6. If solution is not feasible, tighten the violated 
constraints and go to Step 4

7. Analyze tradeoff between battery cost and fuel 
consumption by performing a parametric study
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Outline
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• Powertrain System Modeling

• Optimization Study
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Nominal vs. Optimal Designs

Change in Component Size 
for Optimal Design
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• Combined design/control 
optimization significantly 
increases fuel efficiency 

• All components increase 
in size

• Number of fuel cells is 
constrained only by total 
stack length

• Battery size increases the 
most

55% decrease in fuel
consumption per month
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Fuel Consumption vs. Battery Size

Parametric Study on Battery Size

Formulate Multi-objective Optimization Problem
• Parameterize the number of battery modules

What is the optimal solution that also minimizes battery size?

FEASIBLE

INFEASIBLE

Observations
• Decreasing battery size sacrifices 

fuel economy

• 20% reduction in battery size            
11% increase in fuel consumption

• Tradeoff between battery cost 
and fuel consumption

nbatt
*nbatt

Nominal

Optimal
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Conclusions

What is the optimal control & design?
• Increase component sizes
• Maximize battery participation

Note: component costs are not considered

Does an optimal system provide significant benefits?
• 55% decrease in fuel consumption per month
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Summary & Future Work

• Developed combined design/control optimization algorithm for 
PHEV powertrain supplying microgrid power generation

• Applied constraint tightening concept to ensure solution 
feasibility

• Analyzed tradeoff between fuel consumption and battery cost

Summary

Future Work
• Include component cost metrics
• Integrate optimal control algorithm to replace rule-based 

construction
• Generalize case study for any powertrain type and load 

demand
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