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Introduction & Motivation
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Proposed Solution | ,
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generation to minimize fuel consumption MICROGRID LOAD
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Outline

e Powertrain System Modeling
e Optimization Study

e Constraint Tightening

e Discussion of Results

e Conclusions
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Grid Power Demand Cycle Modeling

Representative grid power demand cycle

« Adapted from CAISO daily demand forecast data [1]

» Applied cubic spline curve fit

» Augmented with white Gaussian noise — models stochastic behavior
« Scaled for medium size office or apartment complex
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[1] California ISO: System Status. http://www.caiso.com/outlook/outlook.html
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Powertrain System Model

Case Study: Fuel Cell System No. of Battery Modules ] —
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[2] J. T. Pukrushpan, A. G. Stefanopoulou and H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and
Feedback Design. , vol. XVII, Springer, 2004, pp. 161.
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Rule-Based Supervisory Controller

Concept: Use battery to minimize fuel cell ! BATTERY ONLY MODE
operation, yet ensure desirable efficiency : P 5
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Outline

e Optimization Study

e Constraint Tightening

e Discussion of Results

e Conclusions
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Optimization Problem Formulation

Minimize hydrogen fuel consumption

minf(x):mHz(nfC,nfc,/l P Pbatt’KCh)

cp? " pa!

with respect to subject to
6 Design Variables 10 Constraints
Number of fuel cells in stack, n,, ) ——Euel cell stack length

* Number of battery modules, n,, > Corgip;cérslent eight

«  Compressor size, A, ) t generation
« Parasitic losses
e Power Assist (PA) mode Y\ ¢ Fuel cell efficiency
threshold, P, c excess ratio
\ ontrol
« Battery mode threshold, P Parameters | SOC
« Controller Gain, K,  Start/End SOC deviation
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Optimization Algorithm

Run multiple experiments to collect
data on physical model

Perform monotonicity analysis to
determine trends, optima, and
reduce the problem

Use data to develop a surrogate
model (e.g. LSM, ANN, Kriging)

Optimize with Sequential Quadratic
Programming (SQP)

Cross-check solution feasibility with
physical model

Analyze tradeoff between battery
cost and fuel consumption by
performing a parametric study
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Optimization Algorithm

Perform DOE on
physical model

Reduce problem
using monotonicity
analysis

Develop
surrogate model

Optimize with SQP

Check if
solution is feasible for
physical model

FEASIBLE

Parametric Study
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Stepsl & 2: DOE & Monotonicity Analysis
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Optimization Algorithm

Perform DOE on
physical model

Reduce problem
using monotonicity
analysis

Develop
surrogate model

Optimize with SQP

Check if
solution is feasible for
physical model

FEASIBLE

Parametric Study
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Surrogate Modeling Methods

Surrogate Model Approximation

LSM
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Step 3: Surrogate Model Evaluation

Mean Square Error
2.50E-03 -
2.00E-03 -
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Optimization Algorithm

Perform DOE on
physical model

Reduce problem
using monotonicity
analysis

Develop
surrogate model

FEASIBLE

Parametric Study
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Step 4: Feasibility Analysis

Determine if the surrogate model solution is feasible for the actual simulation

Constraints Surrogate

Battery Weight

Stack Heat Generation

Parasitic Losses

Fuel Cell Efficiency

T d
Oxygen Excess Ratfc\>

Max SOC
Min SOC
rg N
Max SOC Deviation! 0.01 )
N _ -

—~— -
e o ==

ACTIVE
FEASIBLE CONSTRAINT INFEASIBLE
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Outline

e Constraint Tightening

e Discussion of Results

e Conclusions
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Constraint Tightening

Proposed Solution: Make violated constraints more aggressive for the surrogate
model to compensate for modeling error

Case 1: Oxygen Excess Ratio

Infeasible in o
Boundary Optimum Physical Space Feasible in
[ Physical Space

s N

~_—-

_____

Physical Model /,:

\

Surrogate Model

Transform to Tighten “~<e----___-
Physical Space T~ T Constraints on
Surrogate Model

— @

[4] A. Parkinson, "Robust mechanical design using engineering models," Journal of Mechanical Design, vol. 117B, pp. 48-54, 1995.

Case 2: Max SOC Deviation
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Optimization Algorithm with Constraint Tension

1. Run multiple experiments to collect data on
physical model

Perform DOE on
physical model

2. Perform monotonicity analysis to determine
trends, optima, and reduce the problem

Reduce problem
using monotonicity
analysis

3. Use data to develop a surrogate model
(e.g. LSM, ANN, Kriging)

Develop
surrogate model

4. Optimize with Sequential Quadratic
Programming (SQP) -
Tighten |

r==—== violated |

5. Cross-check solution feasibility with physical
model

Check if
solution is feasible for
physical model

INFEASIBLE

6. If solution is not feasible, tighten the violated

constraints and go to Step4 L _ __ - _-_-_ !

FEASIBLE

7. Analyze tradeoff between battery cost and fuel SISy
consumption by performing a parametric study
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Outline

e Discussion of Results

e Conclusions
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Nominal vs. Optimal Designs

55% decrease in fuel Combined design/control
consumption per month optimization significantly
Increases fuel efficiency

Change in Component Size
for Optimal Design ]
e All components increase

° In size
 Number of fuel cells is
3 constrained only by total
stack length

X e Battery size increases the
" No. of Fuel Cells ‘l' No. of Battery\ | Compressor Scale mOSt
\ Modules
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Parametric Study on Battery Size

What is the optimal solution that also minimizes battery size?

Formulate Multi-objective Optimization Problem
« Parameterize the number of battery modules

Fuel Consumption vs. Battery Size
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and fuel consumption
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Outline

e Conclusions
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Conclusions

What is the optimal control & design?

* |Increase component sizes
 Maximize battery participation

Note: component costs are not considered

Does an optimal system provide significant benefits?
 55% decrease in fuel consumption per month
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Summary & Future Work

Summary
« Developed combined design/control optimization algorithm for

PHEV powertrain supplying microgrid power generation

* Applied constraint tightening concept to ensure solution
feasibility

* Analyzed tradeoff between fuel consumption and battery cost

Future Work

e |nclude component cost metrics
« Integrate optimal control algorithm to replace rule-based
construction

* Generalize case study for any powertrain type and load
demand
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