Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation

Scott J. Moura Dongsuk Kum Hosam K. Fathy Jeffrey L. Stein

May 16, 2007

Introduction & Motivation

Vision – Vehicle to Grid (V2G) HYBRID ELECTRIC POWERPLANT **IC ENGINE** Use plug-in hybrid electric vehicles (PHEV) to ÷ 42 FUEL CELL provide ancillary services to autonomous electric POWERPLANT BATTERY MOTOR microgrid systems (e.g. hospital backup power, military bases) PLUG-IN HYBRID **Obstacles** ELECTRIC VEHICLE IC ENGINE Current PHEVs do not CONTROL SYSTEM FUEL CELL capitalize on V2G technology **BI-DIRECTIONAL** POWERPLANT BATTERY CONTROL POWER FLOW SIZE SIZE ARCHITECHTURE FOR LOAD LEVELING What is the optimal design and control? POWER DISTRIBUTION GRID BUS Does an optimal system provide significant benefits? BASELOAD POWER FLOW **Proposed Solution** Develop an optimization approach for the design and control of a PHEV powertrain for microgrid power

generation to minimize fuel consumption

MICROGRID LOAD

Outline

- Introduction & Motivation
- Powertrain System Modeling
- Optimization Study
- Constraint Tightening
- Discussion of Results
- Conclusions

System Level Block Diagram

Grid Power Demand Cycle Modeling

Representative grid power demand cycle

- Adapted from CAISO daily demand forecast data [1]
- Applied cubic spline curve fit
- Augmented with white Gaussian noise models stochastic behavior
- Scaled for medium size office or apartment complex

[1] California ISO: System Status. http://www.caiso.com/outlook/outlook.html

Powertrain System Model

[2] J. T. Pukrushpan, A. G. Stefanopoulou and H. Peng, *Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design.*, vol. XVII, Springer, 2004, pp. 161.

Rule-Based Supervisory Controller

Concept: Use battery to minimize fuel cell operation, yet ensure desirable efficiency

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory

BATTERY ONLY MODE

Outline

- Introduction & Motivation
- Powertrain System Modeling
- Optimization Study
- Constraint Tightening
- Discussion of Results
- Conclusions

Optimization Problem Formulation

Minimize hydrogen fuel consumption

 $\min f(\mathbf{x}) = m_{H_2}(n_{fc}, n_{fc}, \lambda_{cp}, P_{pa}, P_{batt}, K_{ch})$

with respect to

- 6 Design Variables
- Number of fuel cells in stack, n_{fc}
- Number of battery modules, *n*_{batt}
- Compressor size, λ_{cp}
- Power Assist (PA) mode threshold, P_{pa}
- Battery mode threshold, P_{batt}
- Controller Gain, K_{ch}

subject to 10 Constraints • Euel cell stack length component Sizes • Component Sizes • Parasitic losses • Fuel cell efficiency • Ruel cell efficiency excess ratio SOC

• Start/End SOC deviation

Optimization Algorithm

- 1. Run multiple experiments to collect data on physical model
- 2. Perform monotonicity analysis to determine trends, optima, and reduce the problem
- 3. Use data to develop a surrogate model (e.g. LSM, ANN, Kriging)
- 4. Optimize with Sequential Quadratic Programming (SQP)
- 5. Cross-check solution feasibility with physical model
- 6. Analyze tradeoff between battery cost and fuel consumption by performing a parametric study

Optimization Algorithm

Steps1 & 2: DOE & Monotonicity Analysis

Optimization Algorithm

Surrogate Modeling Methods

Automated Modeling Laboratory

Step 3: Surrogate Model Evaluation

Optimization Algorithm

Step 4: Feasibility Analysis

Determine if the surrogate model solution is feasible for the actual simulation

Constraints	Surrogate		
Battery Weight	56 lbs		
Stack Heat Generation	6094 W		
Parasitic Losses	2.69 %		
Fuel Cell Efficiency	<u>57.7 %</u>		
Oxygen Excess Ratio	3.00		
Max SOC	0.7	-	
Min SOC	0.666		
Max SOC Deviation	0.01		
		-	
FEASIBLE	ACTIVE CONSTRAINT	NFEASIBLE	

Recall that 2 constraints need to be active to properly bound P_{pa} and P_{batt}

Outline

- Introduction & Motivation
- Powertrain System Modeling
- Optimization Study
- Constraint Tightening
- Discussion of Results
- Conclusions

Constraint Tightening

Proposed Solution: Make violated constraints more aggressive for the surrogate model to compensate for modeling error

Case 1: Oxygen Excess Ratio

[4] A. Parkinson, "Robust mechanical design using engineering models," *Journal of Mechanical Design,* vol. 117B, pp. 48-54, 1995.

Optimization Algorithm with Constraint Tension

- 1. Run multiple experiments to collect data on physical model
- 2. Perform monotonicity analysis to determine trends, optima, and reduce the problem
- 3. Use data to develop a surrogate model (e.g. LSM, ANN, Kriging)
- 4. Optimize with Sequential Quadratic Programming (SQP)
- 5. Cross-check solution feasibility with physical model
- 6. If solution is not feasible, tighten the violated constraints and go to Step 4
- 7. Analyze tradeoff between battery cost and fuel consumption by performing a parametric study

Outline

- Introduction & Motivation
- Powertrain System Modeling
- Optimization Study
- Constraint Tightening
- Discussion of Results
- Conclusions

Nominal vs. Optimal Designs

- Combined design/control optimization significantly increases fuel efficiency
- All components increase in size
- Number of fuel cells is constrained only by total stack length
- Battery size increases the most

Parametric Study on Battery Size

What is the optimal solution that also minimizes battery size?

Formulate Multi-objective Optimization Problem

• Parameterize the number of battery modules

Fuel Consumption vs. Battery Size 16 Additional Fuel Consumed per Month (%) FEASIBLE 12 10 Optimal n_{batt} n_{batt} Nominal **INFEASIBLE** 0 -2∟ 18 22 23 19 20 21 24 25 No. of Battery Modules

- Decreasing battery size sacrifices fuel economy
- 20% reduction in battery size
 11% increase in fuel consumption
- Tradeoff between battery cost and fuel consumption

Outline

- Introduction & Motivation
- Powertrain System Modeling
- Optimization Study
- Constraint Tightening
- Discussion of Results
- Conclusions

Conclusions

What is the optimal control & design?

- Increase component sizes
- Maximize battery participation

Note: component costs are not considered

Does an optimal system provide significant benefits?

• 55% decrease in fuel consumption per month

Summary & Future Work

Summary

- Developed combined design/control optimization algorithm for PHEV powertrain supplying microgrid power generation
- Applied constraint tightening concept to ensure solution feasibility
- Analyzed tradeoff between fuel consumption and battery cost

Future Work

- Include component cost metrics
- Integrate optimal control algorithm to replace rule-based construction
- Generalize case study for any powertrain type and load demand

Acknowledgements & References

Thank you for your contributions to this project!

- Jeongwoo Han
- Panos Y. Papalambros
- Huei Peng
- Michael Kokkolaras
- James Allison

Key References

- [1] S. J. Moura, D. Kum. "Plant/Control Optimization of a PEM Hybrid Fuel Cell Vehicle to Grid (V2G) System." Design Optimization (ME 555). http://www-personal.umich.edu/~sjmoura/projects.html Professor Panos Y. Papalambros. University of Michigan, Ann Arbor. April 19, 2007.
- [2] A. Parkinson, "Robust mechanical design using engineering models," *Journal of Mechanical Design*, vol. 117B, pp. 48-54, 1995.
- [3] J. Han., Optimal design of hybrid and non-hybrid fuel cell vehicles M.S. Thesis, University of Michigan, Ann Arbor, 2000.
- [4] J. T. Pukrushpan, A. G. Stefanopoulou and H. Peng, *Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design.*, vol. XVII, Springer, 2004, pp. 161.
- [5] P. Y. Papalambros and D. Wilde. *Principles of Optimal Design*. Cambridge University Press., 2nd edition, 2000.

QUESTIONS?

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory

Slide 28 of 28