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Abstract— A critical enabling technology for electrified vehi-
cles and renewable energy resources is battery energy storage.
Advanced battery systems represent a promising technology for
these applications, however their dynamics are governed by rel-
atively complex electrochemical phenomena whose parameters
degrade over time and vary across material design. Moreover,
limited sensing and actuation exists to monitor and control the
internal state of these systems. As such, battery management
systems require advanced identification, estimation, and control
algorithms. In this paper we examine state-of-health (SOH)
estimation, framed as a parameter identification problem for
parabolic PDEs and nonlinearly parameterized output func-
tions. Specifically, we utilize the swapping identification method
for unknown parameters in the diffusion partial differential
equation (PDE). A nonlinear least squares method is applied
to the output function to identify its unknown parameters.
These identification algorithms are synthesized from the single
particle model (SPM). In a companion paper we examine a new
battery state-of-charge (SOC) estimation algorithm based upon
the backstepping method for PDEs.

[. INTRODUCTION

This paper examines identification algorithms for state-
of-health (SOH) related parameters in advanced batteries
described by partial differential equations (PDEs) with
nonlinearly parameterized output functions.

A. Motivation & Technical Challenges

Reliable battery SOH estimation algorithms are of extreme
importance due to their applications in electrified transporta-
tion [1] and energy storage systems for renewable sources
[2]. The relevancy of this topic is further underscored by the
27.2 billion USD federal government investment in energy
effciency and renewable energy research, including advanced
batteries, under the American Recovery and Reinvestment
Act (ARRA) of 2009 [3]. As such, battery management
systems within these advanced transportation and energy
infrastructures must have accurate knowledge of battery health
[4]. Such knowledge enables them to efficiently route energy
while satisfying power demands and device-level operating
constraints [5].

Estimating battery SOH is particularly challenging for
several reasons. First, no universally accepted definition for
SOH exists. Some prevailing SOH-related metrics include
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charge capacity, internal impedance, and charge/discharge
cycles. In this paper we frame SOH-estimation as a parameter
estimation problem, where the estimated parameters are
closely related to the mentioned SOH-metrics. A second
challenge is that battery dynamics are governed by partial
differential equations derived from electrochemical principles
[6]. The only measurable quantities (voltage and current) are
related to the states through nonlinear functions. Consequently
we are dealing with infinite-dimensional plants with non-
linear output mappings. Designing parameter identification
algorithms for such systems is highly nontrivial. Finally,
directly measuring the states outside specialized laboratory
environments [7] is impractical. This point means state and
parameter estimation must be performed in tandem. On-going
work addresses this third challenge via adaptive observers.

B. Literature Review

Long-term performance and health is a dominating theme
throughout the battery science and engineering literature.
One may divide this research into two categories: Offline and
online identification methods.

Offline identification methods can vary from purely exper-
imental techniques to specially designed algorithm designs.
For example, experimental techniques may apply electrochem-
ical, destructive structural testing, and various spectroscopy
methods to determine the health of individual cells [8]. Multi-
channel long-term battery cycling experiments attempt to
relate various operating conditions (e.g. temperature, cycles,
C-rate, depth of discharge, etc.) to cycle-life [9], [10]. Battery
parameter identification algorithms, in contrast, study system
identification algorithms for parameter identification from
measured voltage, current, and temperature data [11].

Online identification techniques leverage various results
from estimation and signal processing theory to determine
battery SOH. Nearly all these studies utilize equivalent
circuit models. Various algorithms have been investigated,
including batch data reconciliation, moving-horizon parameter
estimation [12], recursive least squares [13], bias-corrected
least squares [14], impedance-based Kalman filters [15],
extended Kalman filters [16], and particle filters [17]. The key
advantage of these equivalent circuit model-based methods
lie in their relatively low complexity. However, the state and
parameter values correspond to phenomenological effects as
opposed to the true physical values. Moreover, validation
of these estimation algorithms is very difficult using in-situ
methods [7].



C. Contributions

This paper augments the aforementioned research on
battery SOH estimation by considering an electrochemical-
based PDE battery model. Specifically, parameters in the
PDE are identified using a swapping identification method.
Parameters in the nonlinear output function are identified
using a nonlinear least squares method. Consequently, this
paper represents the first application of PDE parameter
identification theory to electrochemical-based battery models.

D. Paper Organization

The paper is organized as follows: Section II summarizes
the electrochemical-based single particle model used for
parameter identification. Section III develops a swapping
identification algorithm to determine unknown parameter
which appear in the model’s PDE and boundary conditions.
Section IV develops a least-squares identification algorithm
to determine unknown parameters which appear nonlinearly
in the model’s output function. Section V evaluates the perfor-
mance of these identification algorithms via simulation studies.
Finally, Section VI concludes the paper by summarizing its
main results.

II. SINGLE PARTICLE MODEL

In this manuscript (and the companion paper on SOC
estimation) we utilize the single particle model (SPM). The
SPM concept was first applied to lithium battery systems
in [18] where the key assumption is that the solid phase
of each electrode can be idealized as a single spherical
particle. In addition, the electrolyte concentration diffusion
and migration dynamics are neglected and thermal effects are
ignored. Mathematically, the model consists of two diffusion
PDEs governing each electrode’s concentration dynamics,
where input current enters as a Neumann boundary condition.
Output voltage is given by a nonlinear function of the state
values at the boundary and the input current.

Indeed, this model captures less dynamic behavior than
more complex electrochemical-based estimation models [18].
However, its structure is sufficiently simple for analyzing the
stability and signal properties of the proposed identification
algorithms - a key point of this work.

In order to provide some presentation completeness, yet
not repeat information, we summarize the reduced SPM used
for identification. In the companion paper on SOC estimation,
a multi-PDE SPM is presented and its observability properties
are analyzed. Since the SPM lacks complete observability,
we reduce cathode diffusion to its equilibrium. Physical
justification often exists for this reduction when the char-
acteristic diffusion times are orders of magnitude less in the
cathode than the anode. From this point, the radial and time
dimensions are normalized and a coordinate transformation
is performed to eliminate the first spatial derivative in the
spherical diffusion PDE. The final result is a linear PDE
(1)-(3) and nonlinear output equation (4)-(5) model used
for identification purposes, shown below. Please refer to the
companion article for more details on the SPM development.
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At least five parameters can be directly associated with
battery SOH. These include the diffusion coefficient e,
boundary condition coefficient g, resistance Ry, and reaction
rate coefficients kT and k™.

In the remainder of this paper we divide the parameter iden-
tification algorithm into two separable parts. First, we design
a swapping identifier to determine the unknown parameters
and ¢ in the PDE (1)-(3). Second, we consider a least squares
algorithm to determine the unknown parameters Ry, k™, k™
in the nonlinearly parameterized output function (4)-(5).
Finally, simulation results demonstrate the performance of
each algorithm. Throughout the development we shall assume
full-state measurements. This intermediate step enables us
to hopefully utilize the certainty equivalence principle to
combine the state estimation techniques in the companion
paper with the parameter identification algorithms below to
form adaptive observers in future work.

III. PDE SWAPPING IDENTIFIER

The swapping identification technique follows a common
parameter identification methodology for dynamic systems
[19]. Namely, convert a dynamic parameterization of the plant
into a static form by filtering the measured and regressor
signals. Then apply gradient or least-squares estimation
techniques to identify the parameters of this parametric
model. We apply this methodology extended to parabolic
PDE systems [20], where the filters are PDEs themselves
and the adaptation laws involve inner products of continuous
functions instead of matrix vectors.

To this end, consider the “estimation error” be-
tween the measured state c(r,t) and filtered signals

Y(r,t),n(r,t), u(r,t):
e=c—ep—qn—p 6)

where the static parametric model is €y + gn + p. The
variables 1, n, u are outputs of Kreisselmeier filters applied
to the regressor signals. These filters are deliberately designed
such that the PDE governing the estimation error e(r,t) is



exponentially stable. In particular, we select the following
PDE for e:
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which one can easily show is exponentlally stable using the
Lyapunov function Viy(t) = 1/2 ﬁ) (r,t)dr.

To obtain this PDE for the estimation error, the filters are
designed as follows. The variable v is a filter corresponding
0 Cpp:
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We now form the “parameter prediction error” as:
e=c—¢eY—qn—p (19)

Using this parametric model, we implement the following
gradient update laws with normalization:
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We use the projection operator to conserve the parabolic
character of the system, namely € > ¢ > (. Note that
the diffusion coefficient estimate £ shows up in the right-
hand side of both update laws. This is unexpected, as
nothing analogous is seen in parameter identification of finite-
dimensional systems. As shown by the stability analysis
below, however, this term helps ensure the boundedness
of the parameter estimation error signals. A block diagram
summarizing the swapping identifier is provided in Fig. 1
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Fig. 1. Block diagram of the swapping identification algorithm for unknown
parameters in the plant diffusion PDE, including the diffusion coefficient e
and boundary input coefficient gq.

This identification scheme has the following signal proper-
ties:
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which can be shown using the following Lyapunov function:
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which has the following derivative along the state trajectories:
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Applying the Cauchy-Schwarz, Poincaré, and Young’s in-
equalities to the third term in the previous equation yields
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This gives us £,§ € Lo and VZ||é||/m € Ly. These
properties and (19) give us VZ||é||/m € Lo Finally, the
boundedness and square integrability of £ and ¢ follow from
the update laws (20)-(21).

Simulation results demonstrating this swapping identifier
are presented in Section V.
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IV. PARAMETER IDENTIFIER FOR
NONLINEAR OUTPUT FUNCTION

Next we develop an identification algorithm for the
unknown parameters in the nonlinear output function. Recall
that several unknown physical parameters related to SOH
include Ry, k™, k~. With this in mind, we rearrange the
output function in (4) to yield the following nonlinearly
parameterized model:
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are signals that can be calculated from measured quantities
and known parameters. Denote the unknown parameters by:
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Note that we have grouped together the SOH-related param-
eters (R, k™, k™) with known constants (F, R), measurable
parameters (A, LT, L=, T), and empirical quantities (c?, cv).
In practice this enables one to match the model to data when
uncertainty exists among these non-SOH-related parameters.
If their values are known, however, then Ry, k*, k™ can be
extracted.

In the following we develop an identification algorithm for
this nonlinearly parameterized model which has local stability
properties. The key idea is to (i) re-express the nonlinear
model in terms of the parameter estimation error 6, and (ii)
perform a Taylor Series expansion around 0 = 0. To this end
we begin with the nonlinear parametric model
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Then the Taylor series expansion of this equation around
0 = 0 is given by:
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Fig. 2. Block diagram of the nonlinear least-squares identification algorithm
for unknown parameters in the plant output function.

Rearranging terms we get
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is the regressor vector, which depends upon measured signals
and parameter estimates only.

We now choose a least-squares parameter update law as
follows:

0 = Pe,,® (40)

P0)=Py=P] >0 (41)
where €,y = z —sinh ! (61w t) 4+ sinh ™" (ow™) + 031 is the
estimation error for the nonlinear model and m? = 1 +~®7®
is the normalization signal. A block diagram summarizing
the nonlinear least-squares update method is shown in Fig. 2

The stability properties of the parameter adaptation law
(40)-(41) can be studied by following the ideas presented in
the adaptive law design of [21]. Specifically, consider the
estimation error dynamics

T
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The first term on the right-hand side provides a stabilizing
effect while the remaining terms are potentially destabilizing.
Local stability may be established using the results for linear
time-varying systems and linearization in Section 4.6 of



Khalil [22]. Namely, one may linearize the estimation error
dynamics and consider the associated Lyapunov function
Viyap = 207 P10, If the regressor signals are bounded, then
the derivative of Viy,, along the trajectories of 0 is strictly
negative definite in ||| under an appropriate persistence of
excitation condition for the regressor ®.

V. SIMULATION STUDIES

Next we examine the PDE swapping and output function
identifiers through simulation. Throughout these simulations
we work in normalized (r,t) coordinates. This means each
normalized time unit is equivalent to 745 sec and the particle
surface is at r = 1. We utilize the model parameters from
[11] and apply the finite central difference method within
our solver schemes. We also apply the same current input
trajectory used to study the state estimation problem in the
companion manuscript and apply zero mean, 2 mV standard
deviation, normally distributed noise to the measured voltage.

A. PDE Swapping Identifier

Due to the normalization procedure the true diffusion and
boundary coefficient parameters are € = ¢ = 1. In Figure 3
we demonstrate results for the swapping identifier. The initial
diffusion and boundary coefficients are set to £(0) = 5 and
G(0) = 0, respectively. The filters are initialized as follows:
P(r,0) =n(r,0) = 0,Vr € [0,1] and pu(r,0) = r-c; (r,0).

As shown by Fig. 3, the swapping identifier estimates
converge close to the true values, where the exit estimates
are: £(1.5) = 1.0042 and §(1.5) = 0.9815. To further
provide insight into the swapping identifier, Fig. 4 portrays
the evolution of the prediction error é(r,t) defined in (19),
over the time interval ¢ € [0.1,0.6]. The gradient update laws
force this spatially distributed error signal to zero.

B. Parameter Identifier for Nonlinear Output Function

Next we discuss simulation results for the nonlinear least-
squares identifer for SOH-related parameters in the output
function (4)-(5). The parameter estimates are incorrectly
initialized as follows: 6(0) = [0.7501, 205, 305]”. Figure 5(a)
shows the evolution of the algorithm parameter estimates.
The corresponding SOH-related parameters (R, k*, k™) are
displayed in Fig. 5(b)-(c). In all cases, one can see that
the estimates converge near the true values. The existence of
some parameter bias is an expected characteristic of nonlinear
least squares estimators. In this case, a parameter sensitivity
analysis [23] reveals linear dependence between parameters -
thus producing bias. The impact of these parameter estimates
on voltage can be seen in Fig. 6(a) and (b), where the
estimated voltage quickly converges to the estimated value
after the first non-zero current input is applied.

VI. CONCLUSION

This paper examines PDE and nonlinear parameter iden-
tification techniques for battery state-of-health estimation.
Unlike most existing SOH estimation studies, we utilize an
electrochemical-based single particle model for identifica-
tion. The parameter identification process is separated into
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Fig. 3. The input current (a) and parameter estimates (b) for the swapping

identifier (diffusion coefficient, £; boundary input coefficient, §). The true
parameter values are both equal to one.
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Fig. 4. Evolution of the parameter prediction error é(r,¢) defined in (19),
over the time interval ¢ € [0.1,0.6]. As time proceeds, the curves get lighter
in shade and converge to the origin.

two parts. First, a PDE swapping identifier determines the
unknown diffusion and boundary control input coefficients.
Stability and signal properties are analyzed for this identifier.
Second, a nonlinear least squares method is applied to deter-
mine unknown parameters in the nonlinearly parameterized
output function. Performance attributes are evaluated through
simulation studies.

A key assumption throughout this work is the availability
of full-state measurements. On-going work relaxes this
assumption by formulating a parametric model which uses
measured signals only. This enables the formulation of
an adaptive observer which simultaneously estimates states
(SOC) and parameters (SOH). We also aim to analyze the
composed state estimator/parameter identifier structure and
evaluate its performance theoretically and experimentally.
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