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Abstract— A critical enabling technology for electrified vehi-
cles and renewable energy resources is battery energy storage.
Advanced battery systems represent a promising technology
for these applications, however their dynamics are governed
by relatively complex electrochemical phenomena whose pa-
rameters degrade over time and vary across manufacturer.
Moreover, limited sensing and actuation exists to monitor
and control the internal state of these systems. As such,
battery management systems require advanced identification,
estimation, and control algorithms. In this paper we examine
a new battery state-of-charge (SOC) estimation algorithm
based upon the backstepping method for partial differential
equations (PDEs). The estimator is synthesized from the so-
called single particle model (SPM). Our development enables
us to rigorously analyze observability and stability properties of
the estimator design. In a companion paper we examine state-of-
health (SOH) estimation, framed as a parameter identification
problem for parabolic PDEs and nonlinearly parameterized
output functions.

I. INTRODUCTION

This paper investigates a Li-ion battery state-of-charge
(SOC) estimation algorithm based upon the backstepping
approach for partial differential equations (PDEs).

A. Motivation & Technical Challenges

Accurate battery SOC estimation algorithms are currently
of extreme importance due to their applications in electrified
transportation and energy storage systems for renewable
sources. The relevancy of this topic is further underscored
by the 27.2 billion USD federal government investment in
energy efficiency and renewable energy research, including
advanced batteries, under the American Recovery and Rein-
vestment Act (ARRA) of 2009. As such, battery management
systems within these advanced transportation and energy
infrastructures must have accurate knowledge of internal
battery energy levels [1]. Such knowledge enables them to
efficiently route energy while satisfying power demands and
device-level operating constraints [2].

Monitoring battery SOC, which depends on the lithium
concentration within each electrode, is particularly challeng-
ing for several technical reasons. First, directly measuring
Li concentration is impractical outside specialized laboratory
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environments [3]. Second, the concentration dynamics are
governed by partial differential algebraic equations derived
from electrochemical principles [4], [5]. The only measurable
quantities (voltage and current) are related to the states
through nonlinear functions. Finally, the model parameters
for these cells can vary widely with electrode chemistry,
packaging, and time. In this paper we directly address the first
two technical challenges. Namely, we design a state observer
using a reduced-form PDE model based upon electrochemical
principles. The measurements depend on the boundary states
through a static nonlinear mapping. The companion paper
addresses the third challenge as a parameter identification
problem.

B. Literature Review

Over the past decade research on battery SOC estimation
has experienced considerable growth. One may divide this
research by the battery models each algorithm employs.

The first category considers estimators based upon equiv-
alent circuit models (ECMs). These models use circuit
elements to mimic the phenomenological behavior of batteries.
For example, Plett applies extended Kalman filters [6] and
sigma-point Kalman filters [7] to simultaneously identify the
states and parameters of an ECM. Verbrugge and his co-
workers used ECMs with combined coulumb-counting and
voltage inversion techniques in [8] and adaptive parameter
identification algorithms in [9]. A similar approach in [10]
uses an indirect nonlinear adaptive observer. Impedance-
based ECMs, as opposed to voltage-based ECMS, were
applied to the SOC estimation problem in [11]. The key
advantage of ECMs is their simplicity. However, they often
require extensive parameterization for accurate predictions.
This often produces models with non-physical parameters
whose complexity becomes comparable to electrochemical
models.

The second category considers electrochemical models,
which account for the diffusion, intercalation, and electrical
dynamics. Although these models can accurately predict
internal state variables, their mathematical structure is of-
ten too complex for controller/observer design. Therefore,
these approaches combine model reduction and estimation
techniques. One of the first studies within this category uses
a “single particle model” (SPM) of electrochemical battery
dynamics in combination with an extended Kalman filter [12].
Later, these authors added electrolyte dynamics to this model
and applied an unscented Kalman filter [13]. A variation of
the SPM, known as electrode average model, was developed
in [14] in conjunction with an extended Kalman filter. A



V(t)

cs
-(r,t)

r

cs
+(r,t)

r

Li+

Li+

Anode Separator Cathode

Li+

I(t)

I(t)

V(t) = h(cs
-(Rs

-,t), cs
+(Rs

+,t), I(t))

Rs
- Rs

+

---Single Particle Model---

Solid

Electrolyte

Fig. 1. Schematic of single particle model of a Li-ion battery. Each
electrode is idealized as a single porous spherical particle. During charging
and discharging Li intercalates into/out of these spherical particles. The
diagram depicts several important model variables, including input current
I(t), terminal voltage V (t), and Li concentration distributions in the anode
c−s (r, t) and cathode c+s (r, t).

separate research group employed residue grouping for model
reduction and linear Kalman filters for observers [15] and
constraint governors [16]. Ultimately, all of these studies
discretize the governing PDEs into a system of ODEs. In
contrast, the authors of [17] develop a PDE-based observer.
However the stability properties of this design remains as an
open question due to the model complexity.

C. Contributions

In this paper we extend the aforementioned research in
the following three ways. First, we rigorously analyze the
observability properties of the SPM. This analysis leads us
towards a single electrode SPM whose states are locally
observable. Second, we design a PDE-based observer via
the backstepping method. The resulting observer gains are
related to a Klein-Gordon equation, which turns out to have
a closed-form solution. The resulting gains are characterized
by explicit closed-form expressions which do not require
additional states, an added computational benefit. This is
the first known application of PDE backstepping to the
battery SOC estimation problem. Third, stability results for the
estimation error dynamics are automatically generated through
the backstepping design. That is, this method derives the
output injection gains such that the estimation error dynamics
match an exponentially stable target system.

D. Paper Organization

The paper is organized as follows: Section II describes
the electrochemical-based single particle model and its

TABLE I
SINGLE PARTICLE MODEL PARAMETER DEFINITIONS

Symbol Description SI Units
A Cell cross sectional area m2

aj Specific interfacial surface area m2/m3

c0e Li concentration in electrolyte phase mol/m3

cjs Li concentration in solid phase mol/m3

cjss Li concentration at particle surface mol/m3

cjs,max Max Li concentration in solid phase mol/m3

Djs Diffusion coefficent in solid phase m2/sec3
F Faraday’s constant C/mol
I Input current A
ij0 Exchange current density V
j Positive (+) or negative (-) electrode -
kj Reaction rate A·mol1.5/m5.5

Lj Electrode thickness m
R Universal gas constant J/mol-K
Rf Lumped current collector resistance Ω

Rjs Particle radius m
r Radial coordinate m or m/m
T Cell temperature K
t Time sec or sec/sec
Uj Equilibrium potential V
V Output voltage V
αj Anodic/cathodic transfer coefficient -
εjs Volume fraction of solid phase -

observability properties. Section III develops a backstepping
PDE observer for a reduced form version of the SPM and
evaluates its performance via simulation studies. Finally,
Section IV concludes the paper by summarizing its main
results.

II. SINGLE PARTICLE MODEL & ANALYSIS
The single particle model (SPM) was first applied to lithium

battery systems in [18] and is the model we utilize in this
work. The key assumption is that the solid phase of each
electrode can be idealized as a single spherical particle. In
addition, the electrolyte concentration diffusion and migration
dynamics are neglected and thermal effects are ignored. Figure
1 provides a schematic of the SPM concept. Mathematically,
the model consists of two diffusion PDEs governing each
electrode’s concentration dynamics, where input current enters
as a Neumann boundary condition. Output voltage is given
by a nonlinear function of the state values at the boundary
and the input current. Table I provides definitions for the
parameters in the equations that follow.

Although this model arguably captures less dynamic
behavior than other electrochemical-based estimation models
[18], it has a sufficiently simple structure to make statements
about observability - a unique point of this work.

A. SPM Development

Diffusion in each electrode is governed by Fick’s law in
spherical coordinates:

∂c−s
∂t

(r, t) = D−s

[
2

r

∂c−s
∂r

(r, t) +
∂2c−s
∂r2

(r, t)

]
(1)

∂c+s
∂t

(r, t) = D+
s

[
2

r

∂c+s
∂r

(r, t) +
∂2c+s
∂r2

(r, t)

]
(2)



with Neumann boundary conditions:

∂c−s
∂r

(0, t) = 0,
∂c−s
∂r

(R−s , t) = − I(t)

D−s Fa−AL−
(3)

∂c+s
∂r

(0, t) = 0,
∂c+s
∂r

(R+
s , t) =

I(t)

D+
s Fa+AL+

(4)

The Neumann boundary conditions at r = R+
s and r = R−s

signify that the flux entering the electrode is proportional to
the input current I(t). The Neumann boundary conditions at
r = 0 are required for well-posedness. Note that the states
for the two PDEs are dynamically uncoupled, although they
have proportional boundary inputs.

The measured terminal voltage output is governed by a
combination of electric overpotential, electrode thermody-
namics, and Butler-Volmer kinetics. The end result is:

V (t) =
RT

α+F
sinh−1

(
I(t)

2a+AL+i+0 (c+ss(t))

)
− RT

α−F
sinh−1

(
I(t)

2a−AL−i−0 (c−ss(t))

)
+U+(c+ss(t))− U−(c−ss(t))−RfI(t) (5)

where the exchange current density ij0 and solid-electrolyte
surface concentration cjss are, respectively:

ij0(cjss) = kj
√
c0ec

j
ss(t)(c

j
s,max − cjss(t)) (6)

cjss(t) = cjs(R
j
s, t), j ∈ {+,−} (7)

The functions U+(·) and U−(·) are the equilibrium potentials
of each electrode material, given the surface concentration.
Mathematically, these are strictly monotonically decreasing
functions of their input. This fact implies that the inverse of
its derivative is always finite, a property which we require
later. Further details on the electrochemical principles used
to derive these equations can be found in [1], [19].

This model contains the property that the total number of
lithium ions is conserved [17]. Mathematically, d

dt (nLi) = 0

nLi =
ε+s L

+A
4
3π(R+

s )3

∫ R+
s

0

4πr2c+s (r, t)dr

+
ε−s L

−A
4
3π(R−s )3

∫ R−
s

0

4πr2c−s (r, t)dr (8)

This property will become important, as it relates the
total concentration of lithium in the cathode and anode.
We leverage this fact to perform model reduction in the
subsequent section.

B. Model Reduction & Observability

For the purpose of observer design we reduce the SPM
by approximating the cathode diffusion dynamics (2) by its
equilibrium. This step is mathematically motivated by the
fact that the SPM states are weakly observable from voltage
measurements, as has been previously noted in the literature
[14]. It turns out that approximating the cathode as instan-
taneous produces a reduced system whose states are locally
strongly observable. Moreover, physical motivation exists for
this reduction when diffusion dynamics are significantly faster

in the cathode than the anode, a common characteristic of
certain anode/cathode combinations. We discuss these points
in succession.

Lack of observability can be shown using a number of
techniques. For example, one may (i) approximate the PDEs
by ODEs using the finite difference method, producing a
tri-diagonal matrix A, (ii) linearize the output equation about
the states, producing a matrix C, (iii) and compute the rank
of the observability matrix for the pair (A,C) [20].

The reduced SPM has a PDE given by (1), boundary
conditions given by (3), and output equation:

V (t) =
RT

α+F
sinh−1

(
I(t)

2a+AL+i+0 (αc−ss(t) + β)

)
− RT

α−F
sinh−1

(
I(t)

2a−AL−i−0 (c−ss(t))

)
(9)

+U+(αc−ss(t) + β)− U−(c−ss(t))−RfI(t)

Note that c+ss(t) has been replaced by αc−ss(t) + β. This is
the critical detail of the reduced SPM. The equilibrium of
the cathode states (i.e., c+s (r, t) = c+ss(t)) can be computed
from the conservation of Li property in (8) to produce the
relationship1:

c+ss(t) =
1

ε+s L+A

[
nLi − ε−s L−Ac−ss(t)

]
(10)

where α = − ε
−
s L

−

ε+s L+
and β = nLi

ε+s L+A
.

One can show this system is locally observable (i.e.
in the linear sense) by using the same finite difference
and linearization approach described above. Ultimately, we
guarantee observability for this reduced SPM by designing
the observer gains such that the estimation error dynamics
mimic an exponentially stable target system. This is the core
concept behind backstepping observer design [21].

Physical motivation also exists for approximating the cath-
ode diffusion dynamics as instantaneous. Significant research
efforts on manufacturing and material science techniques for
cathode materials has enabled researchers to attain nano-scale
particle sizes and faster diffusion rates [22]. The result is
characteristic diffusion times (mathematically R2

s/Ds) which
are often orders of magnitude less in the cathode than the
anode. Parallel studies have been performed on the anode
side (see e.g. [23]), however they are less prevalent. Hence,
approximating cathode diffusion its equilibrium is a reason-
able approximation for certain cathode/anode combinations.
This insight was also observed through a previous parameter
identification study on commercially available LiFePO4 cells
with doped nano-scale cathode materials [24].

C. Existence of Nonlinear Output Function Inverse
Note that the SPM contains linear dynamics and a nonlinear

output function. In general an output injection-based estimator

1To be technically correct, the cathode concentration should depend on
the anode concentration summed over the spherical volume: c+ss(t) =

1

ε+s L+A

[
nLi −

3ε−s L
−A

4πR−
s

3

∫R−
s

0 4πr2c−s (r, t)dr

]
. However, this results in

a nonlinear output equation which depends on the in-domain states, as
well as the boundary state. This would create additional complexity to the
backstepping approach we employ in this paper.



Fig. 2. Block diagram of estimation scheme where the boundary state error
is injected into the estimator. The true boundary state c−ss is determined
by ϕ(V, I), which inverts the nonlinear output function w.r.t. the state,
uniformly in the input current (highlighted in pink).

would be nonlinear for this class of systems. However, we
design a linear estimator in this paper by injecting the
boundary state error. This idea requires us to calculate the
boundary state from the measured voltage, demonstrated
visually by the block diagram in Fig. 2. That is, we must
show the output function (9) is invertible with respect to the
boundary state c−ss, uniformly in the input current I(t).

Specifically, let h : R × R → R be defined such that
V (t) = h(c−ss(t), I(t)). Then we must show h is a one-to-
one function w.r.t. its first argument, uniformly in the second
argument. The horizontal line test can be used to validate
this claim. As a result, it is possible to determine the inverse
function ϕ where c−ss(t) = ϕ(V (t), I(t)).

III. BACKSTEPPING OBSERVER DESIGN

A. Normalization, State Transformation, and Structure

In this subsection we perform normalization and state
transformation to simplify the mathematical structure of the
observer.

1) Normalization: First we scale the radial r and time t
coordinates as follows:

r̄ =
r

R−s
t̄ =

D−s
(R−s )2

t (11)

which results in the following PDE and boundary conditions:

∂c−s
∂t̄

(r̄, t̄) =
2

r̄

∂c−s
∂r̄

(r̄, t̄) +
∂2c−s
∂r̄2

(r̄, t̄) (12)

∂c−s
∂r̄

(0, t̄) = 0,
∂c−s
∂r̄

(1, t̄) = − R−s I(t̄)

D−s Fa−AL−
(13)

Henceforth we will drop the bars over the space and time
coordinates to simplify notation.

2) State Transformation: Next we perform a state transfor-
mation to eliminate the first spatial derivative in the spherical
diffusion equation (12). Namely, let

c(r, t) = rc−s (r, t) (14)

thus producing the following PDE plant:

∂c

∂t
(r, t) =

∂2c

∂r2
(r, t) (15)

with Dirichlet and Robin boundary conditions:

c(0, t) = 0 (16)
∂c

∂r
(1, t)− c(1, t) = − R−s

D−s Fa−AL−
I(t) (17)

and nonlinear output map given by (9) where c+ss =
α R−s c(1, t) + β (see (10)) and c−ss = c(1, t).

The transformation is invertible since

c−s (0, t) = lim
r→0

c(r, t)

r
=
∂c

∂r
(0, t) ∈ L∞ (18)

Therefore any stability properties established for the c-system
also apply to the c−s -system.

3) Observer Structure: The observer structure consists
of a copy of the plant (15)-(17) plus boundary state error
injection, as follows:

∂ĉ

∂t
(r, t) =

∂2ĉ

∂r2
(r, t) + p1(r)c̃(1, t) (19)

ĉ(0, t) = 0 (20)
∂ĉ

∂r
(1, t)− ĉ(1, t) = − R−s I(t)

D−s Fa−AL−
+ p10c̃(1, t) (21)

where the boundary state error is given by:

c̃(1, t) = ϕ(V (t), I(t))− ĉ(1, t) (22)

Note that the observer is linear because we use the
boundary state for error injection. The plant boundary state
is computed by inverting the nonlinear output mapping w.r.t.
the boundary state, given a current input (i.e. ϕ(V (t), I(t))).
Our next goal is to design the output injection gains p1(r)
and p10 such that the state estimate converges exponentially
to the true state.

B. Derivation of Output Injection Gains

The backstepping approach [21] is applied to design the
output injection gains p1(r) and p10. First, denote the observer
error as c̃(r, t) = c(r, t)− ĉ(r, t). Subtracting (19)-(21) from
(15)-(17) produces the estimation error dynamics:

∂c̃

∂t
(r, t) =

∂2c̃

∂r2
(r, t)− p1(r)c̃(1, t) (23)

c̃(0, t) = 0 (24)
∂c̃

∂r
(1, t)− c̃(1, t) = −p10c̃(1, t) (25)

The backstepping approach seeks to find the upper-
triangular transformation

c̃(r, t) = w̃(r, t)−
∫ 1

r

p(r, s)w̃(s)ds (26)



which satisfies the exponentially stable target system:

∂w̃

∂t
(r, t) =

∂2w̃

∂r2
(r, t) + λw̃(r, t) (27)

w̃(0, t) = 0 (28)
∂w̃

∂r
(1, t) = −1

2
w̃(1, t) (29)

where λ < 1/4. The symbol λ is a design parameter that
enables us to adjust the pole placement of the observer.
The coefficient −1/2 in (29) ensures the target system is
exponentially stable, as can be seen by the derivation below.

One can show that (27)-(29) is exponentially stable in the
spatial L2 norm by considering the Lyapunov function:

Vlyap(t) =
1

2

∫ 1

0

w̃2(r, t)dr (30)

Taking the total time derivative and applying integration by
parts yields:

V̇lyap(t) = −1

2
w̃2(1)−

∫ 1

0

w̃2
rdr + λ

∫ 1

0

w̃2dr (31)

Recalling the Poincaré inequality

−
∫ 1

0

w̃2
rdr ≤

1

2
w̃2(1)− 1

4

∫ 1

0

w̃2dr (32)

produces

V̇lyap(t) ≤ −
(

1

4
− λ
)∫ 1

0

w̃2dr = −
(

1

2
− 2λ

)
Vlyap(t)

(33)
which by the comparison principle [25] implies
Vlyap(t) ≤ Vlyap(0) exp [−(1/2− 2λ)t] or ‖w̃(t)‖ ≤
‖w̃(0)‖ exp [−(1/4− λ)t]. Hence the target system is
exponentially stable for λ < 1/4.

Following the procedure outlined in [21], we find that the
kernel p(r, s) in (26) must satisfy the following conditions:

prr(r, s)− pss(r, s) = λp(r, s) (34)
p(0, s) = 0 (35)

p(r, r) =
λ

2
r (36)

defined on the domain D = {(r, s)|0 ≤ r ≤ s ≤ 1}. The
output injection gains are:

p1(r) = −ps(r, 1)− 1

2
p(r, 1) (37)

p10 =
3− λ

2
(38)

These conditions compose a Klein-Gordon PDE, which
coincidentally has an analytic solution, discussed next.

C. Analytic Solution to Kernel PDE

The Klein-Gordon PDE in (34)-(36) has the closed form
solution:

p(r, s) = λr
I1(
√
λ(r2 − s2))√
λ(r2 − s2)

(39)

which can be solved by converting the PDE into an equivalent
integral equation and applying the method of successive

approximations [21]. Ultimately, this closed form solution
provides the following output injection gains:

p1(r) =
−λr
2x

[
I1(x)− 2λ

x
I2(x)

]
(40)

where x =
√
λ(r2 − 1) (41)

p10 =
3− λ

2
(42)

where I1(x) and I2(x) are, respectively, the first and second
order modified Bessel functions of the first kind. Note that the
user-tunable reaction coefficient λ for the target estimation
error system appears directly in the observer gains.

D. Simulation Studies

In this section we evaluate the performance of the proposed
backstepping PDE observer via simulation studies. Specifi-
cally, we apply the observer to the original SPM (includes
diffusion in both electrodes). Throughout these simulations
we work in the normalized (r, t) coordinates, but retain the
original state realization. The model parameters used in this
study originate from the genetic algorithm-based parameter
identification study performed on commercial lithium-iron
phosphate cells in [24]. For these parameters the characteristic
diffusion times (R2

s/Ds) are 745 sec and 0.32 sec for the
anode and cathode, respectively, which supports the argument
for approximating cathode diffusion as instantaneous. The
target system reaction coefficient is set at λ = −5. Finally,
the PDE models are implemented using the finite central
difference method.

The plant and observer states are initialized at different
values to demonstrate uncertainty in initial conditions. More-
over, zero mean normally distributed noise with a standard
deviation of 2 mV is added to the measurement. Figure 3
portrays the evolution of the spatially distributed state estimate
(left column) and estimation error (right column) over the
time interval t ∈ [0, 0.4] The top and bottom rows correspond
to the anode and cathode, respectively. Indeed, the estimation
error converges to the origin during this time period. Also note
that cathode diffusion is nearly instantaneous for the plant
since its characteristic time is over three orders of magnitude
faster than the anode.

The applied input current in terms of C-rate (current
normalized against charge capacity) is shown in Fig. 4(a),
where positive(negative) values indicate discharge(charge).
Figure 4(b) demonstrates the true and estimated bulk anode
SOC, defined as a normalized volume sum:

θ−(t) =
3

c−s,max

∫ 1

0

r2c−s (r, t)dr (43)

Here we see that the estimated bulk anode SOC reaches
within 1% of the true value at t = 0.205. Finally, the plant
output voltage with noise and estimated voltage are shown
in Fig. 4(c). At t = 0.205 the voltage error is less than 1 mV.

To further quantify the estimation error Fig. 5(a) and (b)
respectively portray the state and output estimation errors
as functions of time. Figure 5(a) shows the L2 spatial norm
(i.e.

∫ 1

0
(c−s (r, t)− ĉ−s (r, t))2dr) of the anode concentration
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Fig. 5. Estimation Error. (a) L2 spatial norm of anode Li concentration
estimation error. (b) Voltage estimation error. (c) True anode surface concen-
tration and processed value from inverted output function ϕ(V (t), I(t)).



state estimation error. Note the logarithmic scale for the
vertical axis. Also shown in Fig. 5(c) is the true anode surface
concentration and the processed value from the inverted
output function ϕ(V (t), I(t)). Here we see that measurement
noise and numerical inversion of the output function provide
additional uncertainty into the estimator, which mathemat-
ically appears in the same manner as measurement noise.
Nonetheless, the estimation error dynamics remain stable.

IV. CONCLUSION
In this paper we develop a PDE backstepping observer

design for battery SOC estimation. The estimator utilizes
a reduced single particle model, whose local observability
properties are rigorously analyzed. The observer design
process uses normalization and coordinate transformations to
simplify the model’s mathematical structure. Next, the PDE
backstepping method is applied to derive output injection
gains such that the estimation error dynamics match a linear
target system whose origin is proven to be exponentially
stable. Eventually we find these gains are related to the
solution of a Klein-Gordon equation, which turns out to have
an analytic solution. The result is a nonlinear PDE observer
with a simple and elegant structure. The performance of this
observer is evaluated via simulation studies.

In general battery dynamics are more complex than the
single particle model utilized here. Moreover, the model
parameters often degrade over time and differ across var-
ious battery materials. This motivates the development
of parameter identification techniques for electrochemical
battery models. This topic is the subject of the companion
paper which utilizes PDE parameter identification theory
developed in [26]. Moreover, we aim to analyze the composed
state estimator/parameter identifier structure and evaluate its
performance theoretically and experimentally.
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