
  

  

Abstract—This paper examines the problem of maximizing 
net power output in a polymer electrolyte membrane (PEM) fuel 
cell system. The net power production depends heavily on the 
oxygen excess ratio in the cathode. However, the time-varying 
parameters and complex nonlinear dynamics of the system 
present many challenges to regulating oxygen excess ratio under 
all operating conditions. A constrained extremum seeking 
control architecture is presented to effectively regulate oxygen 
excess ratio about an optimum value that maximizes net power 
output over a broad range of operating conditions. Simulation 
results demonstrate that this control technique improves fuel cell 
system performance and our constrained optimization approach 
enables faster convergence rates for an admissible level of 
overshoot. 

I. INTRODUCTION 

HIS paper investigates an air flow control strategy for 
optimizing the net power output of fuel cell systems, 

subject to time-varying parameters. The extremum seeking 
control approach ensures the fuel cell system operates at peak 
performance under all operating conditions. Moreover, the 
proposed algorithm avoids excessive power waste and oxygen 
starvation [1] by imposing constraints on the air supply 
subsystem. This is particularly important for increasing the 
robustness of fuel cell systems, which is generally difficult to 
achieve due to the challenge of accurately modeling the highly 
coupled electrochemical, thermodynamic, heat transfer, 
material, and fluid dynamics. In this paper, we consider 
polymer electrolyte membrane (PEM) fuel cells, which are 
popular in automotive applications due to their low operating 
temperature. However, our extremum seeking approach is 
extendible to a general class of nonlinear dynamic systems, 
including fuel cell systems with alternative electrolytes. 

The fuel cell control engineering literature is rich with both 
adaptive and optimal control techniques for power 
management. Pukrushpan et al. developed a nonlinear 
state-space model and used linear-quadratic-Gaussian (LQG) 
techniques to control the air supply subsystem [2]. This work 
introduced a physics-based fuel cell system model, but the 
control design does not explicitly maximize power output 
over the entire operating range, as suggested by [3]. To 
achieve this goal, Yang et al. [4] reduced a model of two 
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inputs (hydrogen and air flow rates) and two outputs (cell 
voltage and current) to a single-input single-output (SISO) 
system to regulate fuel cell output voltage by adjusting air 
flow rate using model identification adaptive control (MIAC). 
While both simulation and experimental data demonstrate that 
adaptive control can be implemented to adjust for changes in 
system parameters effectively, over-simplified models can 
sometimes produce erroneous calculations and inefficient 
performance characteristics. Golbert et al. developed a high 
fidelity, spatial-time dependent model and applied model 
predictive control (MPC) to satisfy a set of desired power 
requirements [5]. Although nonlinear multivariable MPC 
generally ensures accurate control under external 
disturbances, on-line optimization can be computationally 
intensive, particularly for the complicated fuel cell system 
models used in the literature [2], [5]. Ideally, it is more 
desirable to maximize fuel cell performance via control 
algorithms that are both computationally efficient and 
self-optimizing with respect to time-varying parameters and 
model uncertainty. 

The above survey briefly examines several approaches for 
air flow control in fuel cell systems. These methods generally 
regulate the air supply to the cathode at a fixed level, either via 
adaptive or optimal control techniques. However, the optimal 
air supply may vary as system parameters, such as stack 
temperature and membrane humidity, drift away from their 
nominal values. Hence, we investigate the impact of oxygen 
supply, stack temperature, and membrane humidity on net 
power output, by analyzing the first principles model 
presented in [6] and [7]. This particular model assumes that 
the fuel stack water and temperature dynamics are controlled 
independently, although more recent work has included the 
dynamic coupling between air flow, membrane water content 
[8], and stack temperature [5]. In practice, this assumption 
will likely be violated, since water management represents one 
of the most challenging obstacles in fuel cell control and is 
currently an active area of research, e.g., [8], [9]. To mitigate 
the uncertainty imposed by water and temperature dynamics, 
we apply the method of extremum seeking (ES) control, a 
non-model based and self-optimizing algorithm, to seek for 
the optimal operating point using a gradient-based search. ES 
control is sensitive to water and temperature dynamics without 
requiring an explicit model for control, thus reconciling the 
tradeoff between computational efficiency and optimal 
performance.  

A similar extremum seeking approach developed in [10] 
tracks the fuel cell stack’s maximum power point by 
controlling the current input at the DC/DC power conversion 
electronics level, while providing constant oxygen supply. In 
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contrast, this paper focuses on maximizing net fuel cell system 
power output at the air flow control level. By controlling the 
air flow supply to the cathode, the amount of reactant oxygen 
is managed to ensure proper balance of stack power output 
and compressor motor power draw. Moreover, managing the 
amount of reactant oxygen enables some controllability over 
preventing oxygen starvation and membrane dehydration. 
This paper thus adds two new contributions to research on air 
flow control in fuel cell systems. First, it explicitly maximizes 
net power output by regulating air flow, thereby improving 
system efficiency and potentially catalyzing the market 
penetration of fuel cell systems. Second, it introduces a 
self-optimizing control scheme that maximizes net power 
production over the entire temperature and membrane 
hydration range. The paper’s simulation results demonstrate 
an improvement in the fuel cell system’s net power production 
can be achieved across various operating conditions relative 
to several standard control techniques. 

The paper is organized as follows: Section II presents a 
summary of the fuel cell system model. A steady-state analysis 
of the fuel cell system is presented in Section III. Section IV 
provides the mathematical control problem formulation and 
Section V presents the key results. The paper’s main 
conclusions are provided in Section IV. 

II.  FUEL CELL SYSTEM MODEL 

This section describes the fuel cell system model developed 
in [6], [7] that we use for analyzing the impact of oxygen 
supply, stack temperature, and membrane water content on net 
power output. The model describes the manifold filling 
dynamics, reactant partial pressures, and compressor inertia. 
The fuel cell system under consideration comprises a fuel cell 
stack, a compressor, anode and cathode manifolds, an air 
cooler, and a humidifier shown in Fig. 1. The fuel cell model 
used contains nine state variables, whose governing equations 
can be grouped into the cathode manifold, anode manifold, 
and compressor. In the manifolds, the governing equations 
model the mass flow and partial pressures of the reactants and 
products using mass and energy conservation laws. In the 
compressor, the governing equations model the inertial 
dynamics of the compressor and motor. The air compressor 
motor voltage vcm is the controlled input, fuel cell stack current 
Ist is modeled as a disturbance input, while the performance 
output variables are net fuel cell system power Pnet and oxygen 
excess ratio λO2. For clarity and completeness, we review the 
model equations and associated phenomena here, but readers 
interested in the complete details should refer to [6], [7]. The 
model’s key parameters and component sizes are provided in 
Table I.  

A. State Equations 

This section describes the state equations corresponding to 
the air supply subsystem shown in Fig. 2. In the cathode, 
supply manifold, and return manifold, mass conservation 
yields the dynamic equations for the masses of oxygen mO2, 
nitrogen mN2, water mw,ca, and supply manifold air msm given in 
(1)-(4). The rate of change of supply and return manifold 
pressures, psm and prm, are governed by energy conservation in 
(5)-(6). 
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TABLE I 
FUEL CELL SYSTEM MODEL SPECIFICATIONS 

Fuel Cell 
Stack 

Membrane Type Proton Electrolyte 

Maximum Power 75 kW 

No. of Cells (n) 381 

Membrane Thickness (tm) 0.01275 cm 

Cell Active Area 280 cm2 

Compressor 

Manufacturer Allied Signals 

Type Centrifugal 

Maximum Power 12.5 kW 

Operating 
Parameters 

Nominal Temperature (Tfc) 353 K 

Nominal Membrane  
Water Content (λm) 

14 (100% hydrated) 
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Fig. 1.  Fuel cell system model, comprised of fuel cell stack, anode, cathode, 
cooler, humidifier, compressor, and compressor motor. Air flow in the fuel cell 
system is regulated using an extremum seeking controller. 
 

 
 
Fig. 2.  Air supply subsystem, indicating model state variables, oxygen excess 
ratio λO2, stack temperature Tfc, and membrane water content λm. 
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where m, p, W, γ, R, M, V, T denote mass, pressure, mass flow 
rate, ratio of specific heat capacities for air, universal gas 
constant, molar mass of atmospheric air, volume, and 
temperature, respectively. The subscripts denote the location 
of the variable, e.g., Wsm is the mass flow rate of air in the 
supply manifold and Tcp is the temperature of air in the 
compressor.  
 The state equations for the anode model the rate of change 
of mass for hydrogen mH2 and water mw,an, via the mass 
conservation principal in (7)-(8). These molecules arise as 
products of the chemical reaction in the stack. 
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 Air is supplied to the cathode by a compressor, which is 
powered by a motor that consumes energy generated from the 
fuel cell stack. The mass flow rate of air produced by the 
compressor Wcp is related to psm in (5) and the compressor 
speed ωcp, which is governed by the following inertial 
dynamics: 
 

 ( )cp cp cm cm v cp cp

d
J K v k

dt
ω ω τ= − −   (9) 

 
where Jcp, vcm, τcp, Kcm, kv denote the compressor inertia, motor 
input voltage, compressor driving torque, and motor 
constants, respectively. The model states are accumulated in 
the state vector 
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B. Output Equations 

A critically important variable in our analysis is the oxygen 
excess ratio, which describes the excess oxygen supplied to 
the cathode as follows: 
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where WO2,in and WO2,rct are the mass flow rates of oxygen 
entering the cathode and consumed by the chemical reaction, 

respectively. A value of λO2 = 1 indicates the amount of 
oxygen supplied to the cathode is equal to the amount required 
by the stoichiometric chemical reaction 2H2 + O2 → 2H2O. 
WO2,rct is directly proportional to the current drawn from the 
fuel cell stack Ist according to 
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where MO2, n, and F are the oxygen molar mass, number of 
cells in the stack, and Faraday number, respectively. As a 
result, if a constant amount of oxygen is supplied to the 
cathode, λO2 will decrease as Ist increases, which corresponds 
to oxygen starvation. 

Since stack power is the product of current and voltage, let 
us review the phenomena associated with stack voltage.  The 
stack voltage is comprised of the open circuit voltage E and 
voltage losses. These losses are typically categorized as 
activation loss vact, ohmic loss vohm, and concentration loss 
vconc, thus furnishing the following equation 
 
 

st act ohm concv E v v v= − − −  (10) 

 
where each term on the right-hand side of (10) is calculated 
from physical properties and parameters empirically derived 
from experimental data [7]. These terms are generally 
nonlinear functions of both fuel cell stack temperature Tfc and 
water membrane content λm.  

The power produced by the fuel cell stack is given by the 
product of stack current Ist and stack voltage vst. The 
compressor motor draws power generated from the fuel cell 
stack according to the product of current Icm and voltage vcm. 
As a result, the net power produced by the entire fuel cell 
system is 
 
 

net st st cm cmP I v I v= −  (18) 

 
where vcm serves as the control input from the extremum 
seeking feedback loop and Icm is defined by the compressor 
motor model. 

III.  STEADY-STATE ANALYSIS 

Equation (11) indicates that high oxygen excess ratio λO2 
corresponds to more oxygen supplied to the cathode, which 
improves the power generated by the stack Pst. However, if λO2 

is too large, then net power Pnet decreases due to excessive 
power demanded by the air compressor, as shown by (18). As 
a result, there exists an optimal value for λO2 that maximizes 
Pnet by trading off stack power production and compressor 
motor power consumption. 

Using the fuel cell system model developed in [7], we 
investigate the effect of varying system parameters on the 
optimal value of λO2. Fig. 3 demonstrates that the value of Pnet 
increases as Tfc increases, since more energy is released by the 



  

governing chemical reaction. Also, as the fuel cell membrane 
water content increases (zero hydration at λm=0; full hydration 
at λm=14), Pnet also increases, since high membrane humidity 
promotes high proton conductivity. Moreover, the range of 
maximum net power points for varying stack temperatures 
changes depending on membrane water content. At lower 
membrane water content values (e.g. λm=4), the range of 
maximum net power values is more drastic compared to when 
the membrane is fully hydrated.  

It is most interesting to note that the optimal value of λO2 
fluctuates and ranges between 2.4 and 2.7, which is different 
from the results found in [6], [7], [11], [12]. This implies that 
improved performance may be achieved by identifying the 
optimal λO2 value and regulating the system about this point. 
Since the optimal value of λO2 changes with respect to these 
time-varying parameters, an on-line optimization control 
scheme is necessary to achieve maximum power output over 
the entire operating range. 

IV.  EXTREMUM SEEKING PROBLEM FORMULATION 

A. Optimization Formulation 

The goal of this paper is to maximize the net power output 
Pnet of the fuel system by means of air flow control. This 
problem can be summarized mathematically as: 
 
Maximize: ( ), ,netP J x u w=  (19) 

 
Subject to: ( ), ,x f x u w=ɺ  (20) 

 x X∈  (21) 
 u U∈  (22) 
 
where the objective J(x,u,w) is the system output function 
from (18) relating the model states x in (10), control input u, 
and disturbance inputs w to the objective function value. In the 
fuel cell system model discussed in this paper, u corresponds 
to the compressor motor voltage vcm, and the disturbance input 
w corresponds to the demanded fuel cell stack current Ist. The 
optimization is subject to the fuel cell system dynamics 
f(x,u,w) briefly surveyed in Section II, and the set constraints 
X and U, representing a feasible sets of states and controls, 
respectively. We refer to these set constraints as admissible 
states and controls.  

As discussed in Section III, the oxygen excess ratio λO2 
(functionally dependent on the states x) is a critical value for 
understanding how mass air flow relates to net power. 
Therefore, if we require the fuel cell system to operate within 
some neighborhood of the maximum net power point, it may 
be reasonable to impose simple bounds on λO2 to avoid oxygen 
starvation and membrane dehydration. This is mathematically 
represented by the set constraint  
 
 { }

2
: [1.4,3.0]OX x λ= ∈  (23) 

 

Imposing this constraint within the control design requires a 
way to directly measure or accurately estimate λO2. For the 
present investigation, we assume such a method exists (e.g. 
using a Luenberger observer in [7]) and it does not 
significantly alter the model dynamics or output equations.  
 Actuator saturation constraints typically bound the set of 
admissible controls. In the case of a fuel cell system, this 
corresponds to minimum and maximum voltage inputs to the 
compressor motor. Hence, the set constraint U is defined as: 
 
 { }: [0V,220V]cmU u v= ∈  (24) 

 
The maximum compressor motor voltage corresponds directly 
to the compressor’s maximum power capacity. 

B. Extremum Seeking Control Architecture 

To maximize net fuel cell system power, we employ a 
simple yet widely studied extremum seeking (ES) scheme 
[13]-[17] for static nonlinear maps, shown in Fig. 4, adapted 
to account for the inequality constraints given by (23) and 
(24).  Before embarking on a detailed discussion of this 
method, we give an intuitive explanation of how the approach 
works, which can also be found in [13]-[15], but is presented 
here for completeness. 

The control scheme applies a slow periodic perturbation 
asin ωt to the signal ̂u , which is the current estimate of the 
optimum value u*. If the perturbation is slow enough, then the 
plant appears as a static nonlinear map J(u) from the view of 
the extremum seeking loop. Hence, the plant outputs a 
periodic signal y. The band-pass filter then eliminates the DC 
component of y (or the augmented objective function value in 
the constrained case shown in Fig. 4. If the plant has a static 
maximum, as is the case for the fuel cell system in this study, 
then the output of the band-pass filter η will be in phase or out 
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Fig. 3.  Fuel cell system net power Pnet vs. oxygen excess ratio λO2 for stack 
current Ist =150A at different membrane water content λm. values (λm = 0 and λm 

= 14 are 0% and 100% hydration, respectively). 



  

of phase with the perturbation signal asin ωt if û  is less than 
or greater than u*, respectively. This property is important, 
because when the signal η is multiplied by the perturbation 
signal sin ωt, the resulting signal ξ has a DC component that is 
greater than or less than zero if û  is less than or greater than 
u*, respectively. Therefore, the signal ξ can be thought of as 
the sensitivity (a2/2) J( û ) and we may use a gradient update 
law ûɺ =k(a2/2) J( û ) to force û  to converge to u*. 

This method for seeking extrema of static nonlinear maps 
requires the following assumptions about the closed loop 
system, which assist in selecting the ES parameters ω, a, k, 
and designing the band-pass filter: 
 
Assumption 1: The ES perturbation frequency ω is selected 
to ensure significant time scale separation between the ES 
feedback loop and plant dynamics. Therefore, the plant 
dynamics in (20) appear as instantaneous, and the objective 
function in (19) reduces to J(u). This assumption enables the 
use of a very simple ES control scheme for static maps. We 
note that other ES formulations exist without the time scale 
separation assumption, but they are generally much more 
complicated (e.g. [13], [14], [16], [18], [19]). 
 
Assumption 2: The objective function is locally convex with 
respect to the control, and has a maximum value of J(u*). 
 
Assumption 3: The values of k and a are sufficiently small to 
ensure the closed loop system remains stable for all time. In 
practice, however, one desires to set k and a as large as 
possible to increase convergence speed. As a result, the 
selection of these parameters involves a trade-off between 
convergence rate and stability. The proposed constrained 
extremum seeking approach eliminates this tradeoff to a 
certain degree, as discussed in Section V-B. 
 
Assumption 4: As discussed in [14], the signals asin ωt and η 
must be 

1. in phase for *û u<  

2. out of phase for *û u>  

for û  to converge to u*. This property must be satisfied by 
designing a band-pass filter which does not impose 
unwarranted phase lead as to violate the above assumption. 
Moreover, the band-pass filter must not attenuate the 
sinusoidal perturbation frequency, thus bounding the cutoff 
frequency from below.  
 
Remark: Butterworth filters are particularly useful for 
designing a band-pass filter that satisfies the assumptions 
above, due to the following three properties: (1) The pass 
band contains the perturbation frequency and is maximally flat 
with unity magnitude. (2) The phase response can be tuned to 
zero at the perturbation frequency by appropriately selecting 
the cutoff frequencies. (3) Frequency components greater than 

the perturbation frequency are attenuated. This is important 
because when η is demodulated, the DC component of ξ 
accurately represents the phase shift between perturbation and 
output signals. 
 

The inequality constraints are enforced by transforming 
(23) and (24) into exterior-point penalty functions, given by 
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and augmenting these soft constraints to the objective function 
J(u). Here, we apply quadratic penalty functions that penalize 
the square of the percentage excursion outside the desired 
operating range. The concept of penalty functions is 
fundamental to constrained optimization theory [20] and 
similar to existing extremum seeking techniques [21]. 
However, the application of constrained optimization 
techniques to the extremum seeking architecture studied in 
[14] is novel, to the authors’ knowledge. 

V. SIMULATION RESULTS AND DISCUSSION 

A. Control Architectures 

To evaluate the performance characteristics of our proposed 
extremum seeking controller, we compare it to two simpler 
control architectures, referred to as static feedforward (sFF) 
and static feedforward with PI control (sFF + PI). 
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Fig. 4.  Extremum seeking (ES) control scheme. The perturbation frequency 
ω is chosen to ensure large time scale separation between the plant and 
feedback loop. Hence, the plant appears as a static nonlinear map J(u) from 
the viewpoint of ES. Jcons denotes the penalty function term. 



  

The idea behind the sFF control configuration is to use a 
direct measurement of the disturbance input Ist to compute the 
compressor motor voltage required to maintain the oxygen 
excess ratio λO2 = 2. This takes the form of the open loop static 
feedforward compensator gsFF(Ist) = 0.67Ist + 33.55 in Fig. 
5(a), which is synthesized by inverting the DC gain of the 
plant. This controller is taken directly from [7] and is very 
simple to implement, but lacks the robustness properties of 
feedback controllers. Moreover, the oxygen excess ratio will 
not be exactly equal to two during transients or during 
steady-state if the DC gain of the plant model is inaccurate. 
One way to alleviate these issues is to introduce a feedback 
structure. 

In the sFF + PI control configuration, a static feedforward 
compensator calculates the optimal oxygen excess ratio at 
steady-state, given a measurement of the stack current Ist. 
Then the PI controller adjusts the compressor motor voltage 
vcm to regulate λO2 about the optimal value calculated by the 
feedforward block in Fig. 5(b). Unlike sFF, the static map 
gsff+PI(Ist) is a lookup table that determines the optimal λO2 for a 
given Ist.  We construct this lookup table by first simulating the 
model at various Ist and vcm values and then plotting the 
corresponding steady-state values of net power Pnet and λO2, 
shown in Fig. 6(a). Next we identified the value of λO2 that 
maximizes Pnet given Ist, which produced the lookup table 
shown in Fig. 6(b). In contrast to sFF, this approach 
determines the optimal set point for λO2 related to the 
disturbance Ist. However, it has two distinct drawbacks. First, 
the optimal λO2 value identified by the lookup table 
corresponds to steady-state response values only. As a result, 
optimality is not guaranteed during transients. Second, the 
lookup table is generated for a fuel cell stack temperature of 
Tfc = 353 K and membrane water content of λm = 14. As 
demonstrated in Section III, the optimum λO2 is quite sensitive 
to these system parameters. Hence, optimality is only 
guaranteed when these conditions are met exactly. 

B. Performance 

To illustrate how ES optimizes net power, we simulate the 
responses of compressor motor voltage vcm, oxygen excess 
ratio λO2, and net power Pnet to a stack current Ist input of 150A 
for the sFF, sFF + PI, and ES control architectures. The initial 
conditions are set to correspond with the steady-state values 
produced for operating conditions of Tfc = 353K and λm = 14. 
However, in these simulations we set Tfc = 293K and λm = 6 to 
understand how each controller deals with varying operating 
conditions. Similar results may be obtained with step or ramp 
inputs; however, a constant input and the aforementioned 
initial conditions provide results that are sufficient for 
understanding the fundamental performance differences 
among the control architectures. The perturbation frequency 
ω is set to 0.15 rad/sec. The band-pass filter is a third order 
Butterworth filter with cut-off frequencies at 0.07 and 0.3 
rad/sec.  

In Fig. 7, we observe that ES generates final values of Pnet = 
22.5 kW and λO2 = 2.64 that correspond to the optimal values 
found by the steady-state analysis in Fig. 3. The corresponding 
optimal compressor motor voltage is 151V. Moreover, the net 

power values generated are higher than either sFF or sFF + PI 
at steady-state. This indicates that the ES algorithm effectively 
identifies the optimal net power and oxygen excess ratio 
despite variations in stack temperature and membrane water 
content and produces superior power output relative to both 
sFF and sFF + PI. 

Typically, if one wishes to enforce the set constraints (23) 
and (24) without penalty functions, the ES parameters a, k, ω  
must be chosen conservatively and slowly increased until 
satisfactory results are obtained. However, the approach 
proposed here explicitly accounts for these constraints 
through a penalty function transformation. Therefore, there 
exists more freedom in selecting aggressive ES parameters. 
This is advantageous because the constrained ES algorithm 
guarantees that set constraints (23) and (24) are enforced and 
allows greater values of a and k, which increases the 
convergence speed [14], [16], but may result in overshoot. In 
Fig. 8, we investigate this property by running simulations for 
various values of k. These results show the net power output 
reaches the optimal value more quickly as k increases. 
However, it also makes the compressor motor voltage input 
more sensitive to perturbations, resulting in greater overshoot. 
Hence, applying penalty functions enables more aggressive 
ES parameter choices, which increases convergence speed 
with higher overshoot. Nevertheless, the penalty functions 
mitigate the tradeoff imposed by Assumption 3 of Section IV 

   
(a)                                              

 
                                                         (b) 

 
Fig. 5(a) Static feedforward (sFF) and (b) Static feedforward with PI control 
(sFF + PI) architectures. 
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Fig. 6(a) Net power at different stack current from gsff+PI(Ist), (b) Look-up 
table for gsff+PI(Ist) 



  

to an extent, and allow faster convergence speed within an 
acceptable overshoot range. 

C. Discussion 

These simulation results indicate that ES converges to the 
optimal operating point and can account for time-varying 
parameters, such as stack temperature and membrane water 
content, by searching for the optimal compressor motor 
voltage online. The constrained extremum seeking approach 
allows the engineer to explicitly enforce set constraints 
representing sufficient membrane hydration and reactant 
oxygen supply. An additional benefit of the penalty functions 
is that it enables the designer to select more aggressive ES 
parameters to increase convergence speed, with satisfactory 
overshoot. 

Despite ES’s many desirable properties, it also comes with 
several drawbacks. First, the periodic perturbation may 
produce unacceptable oscillations in the system. Secondly, the 
ES algorithm presented here generally takes a long time to 
converge, even with penalty functions that allow for more 
aggressive ES parameters. This is a direct result of requiring 
the perturbation frequency to be at least one order of 
magnitude less the plant’s slowest eigenvalue. Third, when the 
system reaches the optimal operating point, the system 
oscillates about this value rather than converging to it exactly. 
In future work, we shall apply two techniques to resolve these 
drawbacks. First, we will investigate alternative periodic 
signal designs (e.g. square and saw-tooth waves) to determine 
if they improve convergence speed, as suggested by [22]. 
Second, we will apply a periodic perturbation signal with 
dynamic amplitude that converges to zero as ES converges to 
the optimal value u*. One simple method for doing this is to 
make the periodic perturbation signal exponentially decaying 
in amplitude [21]. 

VI.  CONCLUSION 

This paper investigates a novel constrained extremum 
seeking method for maximizing the net power output of a 
PEM fuel cell system. First we review a popular model in the 
literature [6], [7] and analyze how the net power production 
changes with varying stack temperature and membrane water 
content. Then we define an optimal control problem with set 
constraints defining admissible state and control values. 
Finally, we simulate the proposed ES algorithm and compare 
its results against simple open loop and closed loop control 
architectures. The results indicate that ES is able to improve 
the net power output relative to the other controllers, despite 
variations in stack temperature and membrane water content. 
Moreover, exterior point penalty functions effectively enforce 
the set constraints and enable the use of more aggressive ES 
parameters to increase convergence speed for an appropriate 
level of overshoot. 
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Fig. 7.  Comparison of simulation results for each control architecture with 
initial conditions Tfc = 353K and λm = 14 simulated at Tfc = 293K and λm = 
6 , with ES parameters a = 2 and k = 12. 
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Fig. 8.  Net power response for various values of ES parameters k. Note the 
tradeoff between convergence speed and overshoot. 
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