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Abstract—This paper examines the problem of maximizing
net power output in a polymer electrolyte membrandPEM) fuel
cell system. The net power production depends he#yion the
oxygen excess ratio in the cathode. However, tharie-varying
parameters and complex nonlinear dynamics of the sgem
present many challenges to regulating oxygen exceasgio under
all operating conditions. A constrained extremum seking
control architecture is presented to effectively rgulate oxygen
excess ratio about an optimum value that maximizeset power
output over a broad range of operating conditionsSimulation
results demonstrate that this control technique impoves fuel cell
system performance and our constrained optimizatiompproach
enables faster convergence rates for an admissiblevel of
overshoot.

|l. INTRODUCTION

HIS paper investigates an air flow control stratégy

optimizing the net power output of fuel cell sysgem
subject to time-varying parameters. The extremugkiag
control approach ensures the fuel cell system ¢peet peak
performance under all operating conditions. Morepvtee
proposed algorithm avoids excessive power wast@aygen
starvation [1] by imposing constraints on the aippmy
subsystem. This is particularly important for irasimg the
robustness of fuel cell systems, which is genewdiffjcult to
achieve due to the challenge of accurately moddétiadnighly
coupled electrochemical, thermodynamic,
material, and fluid dynamics. In this paper, we sider
polymer electrolyte membrane (PEM) fuel cells, whare
popular in automotive applications due to their loperating

inputs (hydrogen and air flow rates) and two outp{cell
voltage and current) to a single-input single-otitf®iSO)
system to regulate fuel cell output voltage by atifg air
flow rate using model identification adaptive cah{tMIAC).
While both simulation and experimental data dematsthat
adaptive control can be implemented to adjust fanges in
system parameters effectively, over-simplified nisdean
sometimes produce erroneous calculations and ceffi
performance characteristics. Golbetral. developed a high
fidelity, spatial-time dependent model and applieddel
predictive control (MPC) to satisfy a set of dedingower
requirements [5]. Although nonlinear multivariabMPC
generally ensures accurate control under external
disturbances, on-line optimization can be compoutaiiy
intensive, particularly for the complicated fuelllcgystem
models used in the literature [2], [5]. Ideally, i more
desirable to maximize fuel cell performance via tooin
algorithms that are both computationally efficieand
self-optimizing with respect to time-varying parders and
model uncertainty.

The above survey briefly examines several appraafidre
air flow control in fuel cell systems. These methggnerally
regulate the air supply to the cathode at a fireél| either via
adaptive or optimal control techniques. Howeveg, dptimal
air supply may vary as system parameters, suchtaak s

heat teapsftemperature and membrane humidity, drift away fribweir

nominal values. Hence, we investigate the impaeixyfen
supply, stack temperature, and membrane humiditynetn
power output, by analyzing the first principles rabd

temperature. However, our extremum seeking appraschpresented in [6] and [7]. This particular modeluasss that

extendible to a general class of nonlinear dynasygtems,
including fuel cell systems with alternative eletjtes.

The fuel cell control engineering literature isrigith both
adaptive and optimal
management. Pukrushpaet al. developed a nonlinear
state-space model and used linear-quadratic-GaudsRG)
techniques to control the air supply subsystemT#]s work
introduced a physics-based fuel cell system mduoia, the
control design does not explicitly maximize powertput
over the entire operating range, as suggested byT3
achieve this goal, Yangt al. [4] reduced a model of two
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the fuel stack water and temperature dynamics @ngaled
independently, although more recent work has ireduthe
dynamic coupling between air flow, membrane watattent

control techniques for powel8], and stack temperature [5]. In practice, thésuanption

will likely be violated, since water managementresggnts one
of the most challenging obstacles in fuel cell colnénd is
currently an active area of research, e.g., [§],T® mitigate
the uncertainty imposed by water and temperatunamics,
we apply the method of extremum seeking (ES) cgn&ro
non-model based and self-optimizing algorithm, ¢eksfor
the optimal operating point using a gradient-bassatch. ES
control is sensitive to water and temperature dyosumithout
requiring an explicit model for control, thus recdimg the
tradeoff between computational efficiency and optim
performance.

A similar extremum seeking approach developed B [1
tracks the fuel cell stack’s maximum power point by
controlling the current input at the DC/DC poweneersion
electronics level, while providing constant oxygampply. In
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Fig. 1. Fuel cell system model, comprised of ftell stak, anode, cathoc
cooler, humidifier, compressor, and compressor mato flow in the fuel cel
system is regulated using an extremum seeking atertr

contrast, this paper focuses on maximizing netdatisystem
power output at the air flow control level. By cailing the
air flow supply to the cathode, the amount of reatbxygen
is managed to ensure proper balance of stack poutput
and compressor motor power draw. Moreover, mandtjiag
amount of reactant oxygen enables some contrdtiabiwer
preventing oxygen starvation and membrane dehyuairati
This paper thus adds two new contributions to mesean air
flow control in fuel cell systems. First, it exptly maximizes
net power output by regulating air flow, therebypnoving
system efficiency and potentially catalyzing the rkea
penetration of fuel cell systems. Second, it inhceEs a
self-optimizing control scheme that maximizes neiver
production over the entire temperature and membra
hydration range. The paper’s simulation results afestrate
an improvement in the fuel cell system'’s net popreduction
can be achieved across various operating conditielative
to several standard control techniques.

The paper is organized as follows: Section Il pmese
summary of the fuel cell system model. A steadiestaalysis
of the fuel cell system is presented in Section3kction IV
provides the mathematical control problem formolatand
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Fig. 2. Air supply subsystem, indicating modelateariables, oxygen exct
ratio Aoz, stack temperaturg., and membrane water contept

This section describes the fuel cell system modeétbped
in [6], [7] that we use for analyzing the impact mfygen
supply, stack temperature, and membrane water mioonenet
power output. The model describes the manifoldn§ll

FUEL CELL SYSTEM MODEL

. dynamics, reactant partial pressures, and compréssdia.

The fuel cell system under consideration comprisgel cell
stack, a compressor, anode and cathode manifofdsira
cooler, and a humidifier shown in Fig. 1. The faell model
used contains nine state variables, whose govesatogtions
can be grouped into the cathode manifold, anodeifaldn
and compressor. In the manifolds, the governingaggus
model the mass flow and partial pressures of thetamts and

lf:B?oducts using mass and energy conservation lawshd

compressor, the governing equations model the iahert
dynamics of the compressor and motor. The air cesgar
motor voltage/., is the controlled input, fuel cell stack current
l¢ is modeled as a disturbance input, while the pevémce
output variables are net fuel cell system polgrand oxygen
excess ratidp,. For clarity and completeness, we review the
model equations and associated phenomena heresaulérs
interested in the complete details should ref¢61o[7]. The

Section V presents the key results. The paper'snmanodel's key parameters and component sizes arédgin

conclusions are provided in Section V.

TABLE |
FUEL CELL SYSTEM MODEL SPECIFICATIONS

Membrane Type Proton Electrolyte

Maximum Power 75 kW
FUS?LSEH No. of Cells ) 381

Membrane Thicknes4f) 0.01275 cm
Cell Active Area 280 ch
Manufacturer Allied Signals

Compressor Type Centrifugal

Maximum Power 12.5 kW
Operating Nomina! TemperatureT() 353 K
Parameters Nominal Membrane

0,
Water Contenti,) 14 (100% hydrated)

Table I.

A. Sate Equations

This section describes the state equations comelam to
the air supply subsystem shown in Fig. 2. In ththade,
supply manifold, and return manifold, mass congioua
yields the dynamic equations for the masses of exygs,,
nitrogenmy,, waterm,, ., and supply manifold aimns, given in
(1)-(4). The rate of change of supply and returmifoéd
pressurefism andp;m, are governed by energy conservation in

(5)-(6).

d
E :Wozm B OZQul _WOZ,TCI (1)
d
E =WN2Jn B NZou‘ (2)
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EmN,ca :Vvv,ca,in _Vvv,ca,out _Vvv,gen _Vvvmbr (3)

d

—m,, =W, -W, (4)

dt rnsm cp 'sm

d _JR

E psn - M aatmvsm (chTcp _Wsstm) (5)
RT

A = e (W, W) ©

dt M2V,

respectively. A value ofio, = 1 indicates the amount of
oxygen supplied to the cathode is equal to the atmeguired
by the stoichiometric chemical reaction 2H O, — 2H,0.
Woz et is directly proportional to the current drawn frahe
fuel cell stacg according to

— nIS
o,rct — VO, 4F

12)

whereMgy, n, andF are the oxygen molar mass, number of

wherem, p, W, y, R, M, V, T denote mass, pressure, mass flowells in the stack, and Faraday number, respegtivid a

rate, ratio of specific heat capacities for airjvarsal gas

result, if a constant amount of oxygen is suppliedthe

constant, molar mass of atmospheric air, volumed artathode/o, will decrease ak; increases, which corresponds

temperature, respectively. The subscripts denadoitation

of the variable, e.g\Ws, is the mass flow rate of air in the

to oxygen starvation.
Since stack power is the product of current antbge, let

supply manifold andT, is the temperature of air in the us review the phenomena associated with stackgeltd he

COMpressor.

The state equations for the anode model the fathamge
of mass for hydrogem,, and waterm,,, Vvia the mass
conservation principal in (7)-(8). These molecutese as
products of the chemical reaction in the stack.

d
EmHZ =VVHZJn _WHz,rct )
%mlv,an =Vvv,an,in _Vvv,rrbr (8)

Air is supplied to the cathode by a compressoiichviis
powered by a motor that consumes energy genenatetitiie
fuel cell stack. The mass flow rate of air produdsdthe

compressoMV, is related tops, in (5) and the compressor
speed wg, Which is governed by the following inertial

dynamics:

9
o g ©)

stack voltage is comprised of the open circuitagdtE and
voltage losses. These losses are typically catsgmrias
activation lossv,y, ohmic lossvy,m, and concentration loss
Veone, thus furnishing the following equation

Vs{ = E _Vact _Vohm _Vconc (10)
where each term on the right-hand side of (10jlsutated
from physical properties and parameters empiricadlgived
from experimental data [7]. These terms are gelyeral
nonlinear functions of both fuel cell stack temperaT;. and
water membrane conteiy,.

The power produced by the fuel cell stack is gibgrthe
product of stack currenty and stack voltagery. The
compressor motor draws power generated from thieckle
stack according to the product of curréptand voltage/g,.
As a result, the net power produced by the entied €ell
system is

P

net \/

cm - cm

=1gv, | (18)

wheredg, Vem, 7ep, Kem, K, denote the compressor inertia, motor )
input voltage, compressor driving torque, and motofhere ven serves as the control input from the extremum

constants, respectively. The model states are adated in
the state vector

X = My, .M, My My P Pr My, My @ | (20)

B. Output Equations

A critically important variable in our analysistise oxygen
excess ratio, which describes the excess oxygen supplied
the cathode as follows:

W,

_ 0,,in

W,

O,,rct

A (11)

o,

seeking feedback loop ang, is defined by the compressor
motor model.

I1l. STEADY-STATE ANALYSIS

Equation(11) indicates that high oxygen excess ratip
corresponds to more oxygen supplied to the cathatizh
improves the power generated by the sRgckdowever, ifl,
is too large, then net powé,y decreases due to excessive
ppwer demanded by the air compressor, as showb&)yAs
a result, there exists an optimal value fgsthat maximizes
P.« by trading off stack power production and compoess
motor power consumption.

Using the fuel cell system model developed in W§
investigate the effect of varying system parametersthe
optimal value of.o,. Fig. 3 demonstrates that the valudgf

where Wo,n and Woz,q are the mass flow rates of oxygenincreases &, increases, since more energy is released by the

entering the cathode and consumed by the chengaation,



governing chemical reaction. Also, as the fuel oedimbrane 20 °C
water content increases (zero hydratiok,a0; full hydration 35 N ‘ ‘ ‘ - Zg g
at/,,=14), P, also increases, since high membrane humidity " o * oo 80 °C
promotes high proton conductivity. Moreover, thaga of I =

maximum net power points for varying stack tempeed
changes depending on membrane water content. Adrlow f---—---------------————--—~-———————-—-—-——-
membrane water content values (elg=4), the range of m *
maximum net power values is more drastic comparechen I
the membrane is fully hydrated.

It is most interesting to note that the optimalueabfio,
fluctuates and ranges between 2.4 and 2.7, whidfffexent
from the results found in [6], [7], [11], [12]. Thimplies that " [
improved performance may be achieved by identifytimg 5l - - n T |
optimal /g, value and regulating the system about this point. e
Since the optimal value df, changes with respect to these - '
time-varying parameters, an on-line optimizationntcol 10l ‘ ‘
scheme is necessary to achieve maximum power oatgut L5 2 Oxygen £ 25 Ratio N 3 35
the entire operating range. 0

N
(&

Net Power (kW)
N

o

L

Fig. 3. Fuel cell system net powgfs VS. 0Xygen excess rati, for stack
currentl¢ =150A at different membrane water contépt/alues {m= 0 andim

IV. EXTREMUM SEEKING PROBLEM FORMULATION = 14 are 0% and 100% hydration, respectively).

A. Optimization Formulation Imposing this constraint within the control desmguires a

The goal of this paper is to maximize the net pomput W&y to djrectly measure or accurately estimage For 'Fhe
Poe Of the fuel system by means of air flow controhigr Present investigation, we assume such a methots €eig.

problem can be summarized mathematically as: using a Luenberger observer in [7]) and it does not
significantly alter the model dynamics or outputigtipns.
Maximize: P, =J (x,u,w) (19) Actuator saturation constraints typically bouné #et of

admissible controls. In the case of a fuel cellteys this
corresponds to minimum and maximum voltage inputhé

Subject to: x=f (X1U1W) (20) compressor motor. Hence, the set constiaiist defined as:
xOX (21)
udu (22) U ={u:v,,0[0V,220V]} (24)

where the objectivel(x,u,w) is the system output function
from (18) relating the model statesn (10), control inputy,
and disturbance inputsto the objective function value. In the
fuel cell system model discussed in this papemrresponds  B. Extremum Seeking Control Architecture
to the compressor motor voltagg, and the disturbance input  To maximize net fuel cell system power, we employ a
w corresponds to the demanded fuel cell stack cuigeithe  simple yet widely studied extremum seeking (ES)esuh
optimization is subject to the fuel cell system ayics [13]-[17] for static nonlinear maps, shown in Fig.adapted
f(x,u,w) briefly surveyed in Section Il, and the set comists to account for the inequality constraints given (B8) and
X andU, representing a feasible sets of states and dentro24). Before embarking on a detailed discussionthig
respectively. We refer to these set constraintadasissible method, we give an intuitive explanation of how épproach
states and controls. works, which can also be found in [13]-[15], bupi®sented
As discussed in Section Ill, the oxygen exces®rah  here for completeness.
(functionally dependent on the stat@ds a critical value for The control scheme applies a slow periodic pertizha
understanding how mass air flow relates to net poweasin wt to the signali, which is the current estimate of the
Therefore, if we require the fuel cell system te@igte within  optimum valuey’. If the perturbation is slow enough, then the
some neighborhood of the maximum net power pdimhaly plant appears as a static nonlinear @y from the view of
be reasonable to impose simple boundé&pio avoid oxygen the extremum seeking loop. Hence, the plant outguts
starvation and membrane dehydration. This is madtieally  periodic signay. The band-pass filter then eliminates the DC

The maximum compressor motor voltage corresponesitiy
to the compressor's maximum power capacity.

represented by the set constraint component of (or the augmented objective function value in
the constrained case shown in Fig. 4. If the peast a static
X :{x: /]OZ 5[1,4,3_0} (23) maximum, as is the case for the fuel cell systethimstudy,

then the output of the band-pass filkexill be in phase or out



of phase with the perturbation sigresin wt if § is less than

or greater thaml’, respectively. This property is important, Wl

because when the signalis multiplied by the perturbation U [g-= (3, ) y

signal sinwt, the resulting signdlhas a DC component that is T

greater than or less than zeraiifs less than or greater than y=1J (X,U,W)

u’, respectively. Therefore, the sigratan be thought of as

the sensitivity /2) J(G) and we may use a gradient update X +

law §=k(a%/2) J(a) to forceq to converge tal . J x,u) |
This method for seeking extrema of static nonlineaps >

requires the following assumptions about the clokep

: Vng . a

system, which assist in selecting the ES parametgss K, «— k < n  Band-Pass ||

and designing the band-pass filter: f S f Filter

Assumption 1: The ES perturbation frequenayis selected asinat sinat

to ensure significant time scale separation betwbenES Fig. 4. Extremum seeking (ES) control scheme.[Jéreurbation frequency

feedback loop and plant dynamics. Therefore, thentpl @ is chosen to ensure large time scale separatitwebe the plant and

d ics in (20 h de’ . feedback loop. Hence, the plant appears as a statimear ma@d(u) from
ynam|C§ in (20) appear as 'nSt‘_antaneous[ andtjeetve the viewpoint of ESJ.ns denotes the penalty function term.

function in (19) reduces t#(u). This assumption enables the

use of a very simple ES control scheme for staipsn We

note that other ES formulations exist without theet scale

separation assumption, but they are generally nmohe
complicated (e.g. [13], [14], [16], [18], [19]).

\ 4
\ 4

\ 4

cons (

the perturbation frequency are attenuated. Thimportant
because whery is demodulated, the DC component &of
accurately represents the phase shift betweenrpation and
output signals.

Assumption 2: The objective function is locally convex with 1,4 inequality constraints are enforced by tramsfog
respect to the control, and has a maximum valuo. (23) and (24) into exterior-point penalty functiogazen by

Assumption 3: The values ok anda are sufficiently small to J =3 +] 27)

ensure the closed loop system remains stable foime. In conseonsu T meansx ,

practice, however, one desires to keand a as large as _ V;“];” /R VL Vi o8

possible to increase convergence speed. As a rdhbelt Joonsu = | 100x max min O (28)
cm cm

selection of these parameters involves a traddefiveen )
convergence rate and stability. The proposed cainst AT =) Ao, = AT
: : L 1 Jeons x =[100>< ma»{ % "% 0% 2% H (29)

extremum seeking approach eliminates this tradémff min 05 e
certain degree, as discussed in Section V-B. ©: Oz

Assumption 4:As discussed in [14], the signalsinwt andy ~ and augmenting these soft constraints to the dibgefinction

must be J(u). Here, we apply quadratic penalty functions thextalize
. the square of the percentage excursion outsidedélseed

1.in phase fori <u operating range. The concept of penalty functioss i
2. out of phase fofi > u’ fundamental to constrained optimization theory [20id

. . . - similar to existing extremum seeking techniques].[21
for U to converge ta. This property must be satisfied byHowever the application of constrained optimizatio

designing a band-pass filter _Wh'Ch does not ,'mpost%chniques to the extremum seeking architectureieduin
unwarranted phase lead as to violate the abovenasisun. [14] is novel, to the authors’ knowledge
Moreover, the band-pass filter must not attenudte t ' '

sinusoidal perturbation frequency, thus boundirgy ¢htoff
frequency from below.

V. SIMULATION RESULTS ANDDISCUSSION

A. Control Architectures

Remark: Butterworth filters are particularly useful for 14 avaluate the performance characteristics opeaposed
designing a band-pass filter that satisfies theimpsons extremum seeking controller, we compare it to tiopter
above, due to the following three properties: (heTpass control architectures, referred to as static femudod (SFF)
band contains the perturbation frequency and ismrally flat  and static feedforward with PI control (sFF + PI).

with unity magnitude. (2) The phase response caned to

zero at the perturbation frequency by appropriaselgcting

the cutoff frequencies. (3) Frequency componergatgr than



The idea behind the sFF control configuration isise a Ior
direct measurement of the disturbance ingtid compute the ’|  Fuel Cell
compressor motor voltage required to maintain tkggen — . System
excess ratido, = 2. This takes the form of the open loop static gl gur(Isr) >
feedforward compensatairlg) = 0.6714 + 33.55 in Fig. @)
5(a), which is synthesized by inverting the DC gafrthe I
plant. This controller is taken directly from [7hd is very > Fuel Cell 102
simple to implement, but lacks the robustness ptigseof L System
feedback controllers. Moreover, the oxygen excate will Gerer(Isr) R

not be exactly equal to two during transients orirdy
steady-state if the DC gain of the plant modehacturate.
One way to alleviate these issues is to introduéeedback
structure.

In the sFF + PI control configuration, a staticdfeward
compensator calculates the optimal oxygen excedss aa
steady-state, given a measurement of the staclerduy.
Then the PI controller adjusts the compressor madttage o 80Ame
Ve tO regulatelo, about the optimal value calculated by the
feedforward block in Fig. 5(b). Unlike sFF, thetgtamap 45ﬁ
osir+pi(l¢) is a lookup table that determines the optifagfor a ///R?
givenlg. We construct this lookup table by first simuigtihe -
model at varioudg and v, values and then plotting the & ..—————
corresponding steady-state values of net pd@ygrand Ao,
shown in Fig. 6(a). Next we identified the valueligj that %
maximizesPne given lg, which produced the lookup table F——————
shown in Fig. 6(b). In contrast to sFF, this apploa %A
determines the optimal set point fdp, related to the 16 18 2 22 24 26 28 a0 = 20 =)
disturbancedg. However, it has two distinct drawbacks. First, Orygen Bxcess Rato Ao, Stack Current(®) ly
the optimal Ao, value identified by the lookup table @) (0)

(b)

Fig. 5(a) Static feedforward (sFF) and (b) Stagiedforward with PI control
(sFF + PI) architectures.

/}/’
m//

Oxygen Excess Ratio,)\o

corresponds to steady-state response values oslg.rAsult,
optimality is not guaranteed during transients.oBec the
lookup table is generated for a fuel cell stackpgerature of
T = 353 K and membrane water content/igf= 14. As
demonstrated in Section Ill, the optimug is quite sensitive

Fig. 6(a) Net power at different stack current fragpi(ls), (b) Look-up
table forgss.+pi(ls)

power values generated are higher than either sBFfo+ Pl
at steady-state. This indicates that the ES alguréffectively
identifies the optimal net power and oxygen exces®

to these system parameters. Hence, optimality i/ ondespite variations in stack temperature and menebvaater

guaranteed when these conditions are met exactly.

B. Performance

To illustrate how ES optimizes net power, we sirteilhe
responses of compressor motor voltagg oxygen excess
ratio o, and net powelP,. to a stack curreny input of 150A
for the sFF, sFF + PI, and ES control architecturés initial
conditions are set to correspond with the steaatgstalues
produced for operating conditions Bf = 353K andl,, = 14.
However, in these simulations we 3gt= 293K andi,,= 6 to
understand how each controller deals with varyipgrating
conditions. Similar results may be obtained withpsbr ramp
inputs; however, a constant input and the aforeimesd
initial conditions provide results that are suffict for
understanding the fundamental
among the control architectures. The perturbatieguency
w is set to 0.15 rad/sec. The band-pass filterthsrd order
Butterworth filter with cut-off frequencies at 0.Gahd 0.3
rad/sec.

In Fig. 7, we observe that ES generates final \@ti@,y =

content and produces superior power output reldatvieoth
sFF and sFF + PI.

Typically, if one wishes to enforce the set coriatsa(23)
and (24) without penalty functions, the ES paransetek, o
must be chosen conservatively and slowly increassd
satisfactory results are obtained. However, thercaah
proposed here explicitly accounts for these comta
through a penalty function transformation. Therefahere
exists more freedom in selecting aggressive ESnpeteas.
This is advantageous because the constrained BSthig
guarantees that set constraints (23) and (24)rdogoed and
allows greater values o& and k, which increases the
convergence speed [14], [16], but may result irrsiveot. In

performance diffegncFig. 8, we investigate this property by runningdations for

various values ofk. These results show the net power output
reaches the optimal value more quickly lasincreases.
However, it also makes the compressor motor voltagat
more sensitive to perturbations, resulting in greavershoot.
Hence, applying penalty functions enables more esgive

22.5 KW andi.o, = 2.64 that correspond to the optimal valuegg parameter choices, which increases convergereeds
found by the steady-state analysis in Fig. 3. Tdreesponding it higher overshoot. Nevertheless, the penaltyctions

optimal compressor motor voltage is 151V. Moreotteg,net

mitigate the tradeoff imposed by Assumption 3 oftide IV



to an extent, and allow faster convergence speéuman
acceptable overshoot range.

C. Discussion

These simulation results indicate that ES convetgeke
optimal operating point and can account for timeyivey
parameters, such as stack temperature and membetae
content, by searching for the optimal compressotomo
voltage online. The constrained extremum seekimgagth
allows the engineer to explicitly enforce set coaists
representing sufficient membrane hydration and tessc
oxygen supply. An additional benefit of the pendiligyctions
is that it enables the designer to select moreesggre ES
parameters to increase convergence speed, widfasadiry
overshoot.

Despite ES’s many desirable properties, it alsoeowith
several drawbacks. First, the periodic perturbatioay
produce unacceptable oscillations in the systecoi@#y, the
ES algorithm presented here generally takes a fiong to
converge, even with penalty functions that allow fioore
aggressive ES parameters. This is a direct refuéiquiring
the perturbation frequency to be at least one omfer
magnitude less the plant’s slowest eigenvalue dThen the
system reaches the optimal operating point, thdesys
oscillates about this value rather than convertprigexactly.
In future work, we shall apply two techniques tealee these
drawbacks. First, we will investigate alternativeripdic
signal designs (e.g. square and saw-tooth wavesteymine
if they improve convergence speed, as suggestefR2jy
Second, we will apply a periodic perturbation signith
dynamic amplitude that converges to zero as ESargeg to
the optimal values’. One simple method for doing this is to
make the periodic perturbation signal exponentidégaying
in amplitude [21].

VI. CONCLUSION

This paper investigates a novel constrained extnemu

seeking method for maximizing the net power outplt

PEM fuel cell system. First we review a popular eldd the

literature [6], [7] and analyze how the net powesduction

changes with varying stack temperature and memhwaier

content. Then we define an optimal control probieith set

constraints defining admissible state and contralues.

Finally, we simulate the proposed ES algorithm emchpare
its results against simple open loop and closeg@ lantrol

architectures. The results indicate that ES is &bieprove

the net power output relative to the other congrsll despite
variations in stack temperature and membrane veateient.

Moreover, exterior point penalty functions effeetivenforce
the set constraints and enable the use of moresgjye ES
parameters to increase convergence speed for aopajae

level of overshoot.
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